Trace the charm code

ops[tracing] provides the first party charm tracing library, ops.tracing.Tracing, allowing you to observe and instrument your charm’s execution using OpenTelemetry.

Refer to the ops.tracing reference for the canonical usage example, configuration options, and API details.

Getting started

To enable basic tracing:

  • In pyproject.toml or requirements.txt, add ops[tracing] as a dependency

  • In charmcraft.yaml, declare the relations for tracing and (optionally) certificate_transfer interfaces, for example:

requires:
  charm-tracing:
    interface: tracing
    limit: 1
    optional: true
  receive-ca-cert:
    interface: certificate_transfer
    limit: 1
    optional: true
  • In your charm’s __init__ method, instantiate the ops.tracing.Tracing object, for example:

class MyCharm(ops.CharmBase):
    def __init__(self, framework: ops.Framework):
        super().__init__(framework)
        self.tracing = ops.tracing.Tracing(
            self,
            tracing_relation_name='charm-tracing',
            ca_relation_name='receive-ca-cert',
        )
        ...

At this point, Ops will trace:

  • The ops.main() call

  • Events that Ops emits, including all the Juju events

  • Ops calls that inspect and update Juju (also called “hook tools”)

  • Pebble API access by the charm code

This provides coarse-grained tracing, focused on the boundaries between the charm code and the external processes.

When you deploy your charm, until it is integrated with an app providing the tracing relation (and optionally the certificate_transfer relation), the traces will be buffered in a tracing database on the unit. Ops allocates a reasonable amount of storage for the buffered traces.

When the charm is successfully integrated with the tracing provider, the buffered traces and new traces will be sent to the tracing destination.

For Kubernetes charms, if the container is recreated, any buffered traces will be lost.

For example, to send traces to Grafana Tempo from a charm named my-charm, assuming that Charmed Tempo HA has already been deployed:

juju deploy my-charm
juju integrate my-charm tempo

Custom spans and events

  • At the top of your charm file, import opentelemetry.trace.

  • After the imports in your charm file, create the tracer object as tracer = opentelemetry.trace.get_tracer(name) where the name could be your charm name, or Python module __name__.

  • Around some important charm code, use tracer.start_as_current_span(name) to create a custom span.

  • At some important point in the charm code, use opentelemetry.trace.get_current_span().add_event(name, attributes) to create a custom OpenTelemetry event.

Tip

Prefer using the OpenTelemetry start_as_current_span primitive as a context manager over a decorator. While both are supported, the context manager is more ergonomic, allows exposing the resulting span, and doesn’t pollute exception stack traces.

For example, to add a custom span for the migrate_db method in this workload module, with an event for each retry:

import opentelemetry.trace

tracer = opentelemetry.trace.get_tracer(__name__)

class Workload:
    ...
    def migrate_db(self):
        with tracer.start_as_current_span('migrate-db') as span:
            for attempt in range(3):
                try:
                    subprocess.check_output('/path/to/migrate.sh')
                except subprocess.CalledProcessError:
                    span.add_event('db-migrate-failed', {'attempt': attempt})
                    time.sleep(10 ** attempt)
                else:
                    break
            else:
                logger.error('Could not migrate the database')
            ...

Adding tracing to charm libraries

  • At the top of your charm library, import opentelemetry.trace.

  • After the imports in your charm library, create the tracer object as tracer = opentelemetry.trace.get_tracer(name) where the name could be your charm library name, or Python module __name__.

  • See the Custom spans and events section above to create OpenTelemetry spans and events in the key places in your charm library.

Migrating from the charm_tracing charm library

  • In your charm’s pyproject.toml or requirements.txt, remove the dependencies: opentelemetry-sdk, opentelemetry-proto, opentelemetry-exporter-*, opentelemetry-semantic-conventions and add ops[tracing] instead.

  • In your repository, remove the charm_tracing charm library.

  • In your charm code, remove the @trace_charm decorator and its helpers: the tracing_endpoint and server_cert properties or methods.

  • In your charmcraft.yaml, take note of the tracing and (optionally) ca relation names.

  • In your charm’s __init__ method, instantiate the ops.tracing.Tracing object, using the relation names from the previous step

Note that the charm_tracing charm library auto-instruments all public functions of the decorated charm class. ops[tracing] doesn’t do that, and you are expected to create custom spans and events using the OpenTelemetry API where that makes sense.

Lower-level API

The ops.tracing.Tracing class assumes a straightforward setup: that the tracing data is to be sent to a destination that’s specified in the charm tracing relation databag.

For an example where that’s not the case, consider the tempo component of the COS stack. If it is deployed standalone, the tracing data should be sent to the current unit’s workload. And when it is deployed in a cluster, the tracing data should be sent to the load balancer.

For cases like this, a lower-level primitive, ops.tracing.set_destination(url, ca) is available.

The destination is persisted in the unit’s tracing database, next to the tracing data. Thus, a delta charm would only call this function when some relation or configuration value is changed.

At the same time, calling this function with the same data is a no-op. A reconciler charm may therefore safely call it unconditionally.

The url parameter must be the full endpoint URL, like http://localhost/v1/traces.

The ca parameter is optional, only used for HTTPS URLs, and should be a multi-line string containing the CA list (a PEM bundle).