LXD

LXD contributors

May 16, 2024






CONTENTS

1 Security 3
2 Project and community 5
2.1 Getting started . . . . L L e e e e e e e e e e e e e e e e e e 5
2.2 SECUTILY . . v v o i e e e e e e e e e e e e e e e e 23
2.3 INSEANCES . . . o i e e e e e e e e e e e e e e e e e e e 31
24 Images . . . . . 95
2.5 SEOrage . . v v e e e e e e e 107
2.6 Networking . . . . . . o . o e e e e e e e e e 141
2.7 CIUStEIiNG .« o v v o o e e e e e e e e e e e e e e e e e e e 178
2.8 Manage LXD . . . . . L. e e e e e 197
29 RESTAPL . . . . e 218
2.10 Internals & debugging . . . . . . . . .. 282
2.11 EXternal TESOUICES . . . v v v v v v v v e e e e et e e e e e e e e e e e e e e e 292







LXD

LXD ([1ks'di:]) is a modern, secure and powerful system container and virtual machine manager.

It provides a unified experience for running and managing full Linux systems inside containers or virtual machines.
LXD supports images for a large number of Linux distributions (official Ubuntu images and images provided by the
community) and is built around a very powerful, yet pretty simple, REST API. LXD scales from one instance on a
single machine to a cluster in a full data center rack, making it suitable for running workloads both for development
and in production.

LXD allows you to easily set up a system that feels like a small private cloud. You can run any type of workload in an
efficient way while keeping your resources optimized.

You should consider using LXD if you want to containerize different environments or run virtual machines, or in general
run and manage your infrastructure in a cost-effective way.

CONTENTS 1



LXD

2 CONTENTS



CHAPTER
ONE

SECURITY

Consider the following aspects to ensure that your LXD installation is secure:
» Keep your operating system up-to-date and install all available security patches.
* Use only supported LXD versions (LTS releases or monthly feature releases).
* Restrict access to the LXD daemon and the remote API.

* Do not use privileged containers unless required. If you use privileged containers, put appropriate security
measures in place. See the LXD security page for more information.

» Configure your network interfaces to be secure.

See About security for detailed information.

Important: Local access to LXD through the Unix socket always grants full access to LXD. This includes the ability
to attach file system paths or devices to any instance as well as tweak the security features on any instance.

Therefore, you should only give such access to users who you’d trust with root access to your system.



https://documentation.ubuntu.com/lxd/en/latest/explanation/security/

LXD

4 Chapter 1. Security



CHAPTER
TWO

PROJECT AND COMMUNITY

LXD is free software and developed under the Apache 2 license. It’s an open source project that warmly welcomes
community projects, contributions, suggestions, fixes and constructive feedback.

The LXD project is sponsored by Canonical Ltd.

2.1

Code of Conduct

Contribute to the project

Release announcements

Release tarballs

Get support

Watch tutorials and announcements on YouTube
Discuss on IRC (see Getting started with IRC if needed)

Ask and answer questions on the forum

Getting started

See the following sections for information on how to get started with LXD:

2.1.1 About containers and VMs

LXD provides support for two different types of instances: system containers and virtual machines.

When running a system container, LXD simulates a virtual version of a full operating system. To do this, it uses the
functionality provided by the kernel running on the host system.

When running a virtual machine, LXD uses the hardware of the host system, but the kernel is provided by the virtual
machine. Therefore, virtual machines can be used to run, for example, a different operating system.



https://www.apache.org/licenses/LICENSE-2.0
https://www.canonical.com
https://github.com/canonical/lxd/blob/main/CODE_OF_CONDUCT.md
https://discourse.ubuntu.com/c/lxd/news/
https://github.com/canonical/lxd/releases/
https://www.youtube.com/c/LXDvideos
https://web.libera.chat/#lxd
https://discourse.ubuntu.com/t/getting-started-with-irc/37907
https://discourse.ubuntu.com/c/lxd/

LXD

Application containers vs. system containers
Application containers (as provided by, for example, Docker) package a single process or application. System contain-
ers, on the other hand, simulate a full operating system and let you run multiple processes at the same time.

Therefore, application containers are suitable to provide separate components, while system containers provide a full
solution of libraries, applications, databases and so on. In addition, you can use system containers to create different
user spaces and isolate all processes belonging to each user space, which is not what application containers are intended
for.

Virtual machines vs. system containers

Virtual machines emulate a physical machine, using the hardware of the host system from a full and completely isolated
operating system. System containers, on the other hand, use the OS kernel of the host system instead of creating their
own environment. If you run several system containers, they all share the same kernel, which makes them faster and
more light-weight than virtual machines.

With LXD, you can create both system containers and virtual machines. You should use a system container to leverage
the smaller size and increased performance if all functionality you require is compatible with the kernel of your host
operating system. If you need functionality that is not supported by the OS kernel of your host system or you want to
run a completely different OS, use a virtual machine.

2.1.2 Requirements

Go

LXD requires Go 1.19 or higher and is only tested with the Golang compiler.

We recommend having at least 2GB of RAM to allow the build to complete.

Kernel requirements

The minimum supported kernel version is 5.4.
LXD requires a kernel with support for:
* Namespaces (pid, net, uts, ipc and mount)
* Seccomp
e Native Linux AIO (io_setup(2), etc.)
The following optional features also require extra kernel options or newer versions:
* Namespaces (user and cgroup)
* AppArmor (including Ubuntu patch for mount mediation)
* Control Groups (blkio, cpuset, devices, memory, pids and net_prio)
* CRIU (exact details to be found with CRIU upstream)
* SKBPRIO/QFQ qdiscs (for limits.priority, minimum kernel 5.17)

As well as any other kernel feature required by the LXC version in use.

6 Chapter 2. Project and community


https://man7.org/linux/man-pages/man2/io_setup.2.html

LXD

LXC

LXD requires LXC 4.0.0 or higher with the following build options:
* apparmor (if using LXD’s AppArmor support)
* seccomp

To run recent version of various distributions, including Ubuntu, LXCFS should also be installed.

QEMU

For virtual machines, QEMU 6.0 or higher is required.

Additional libraries (and development headers)

LXD uses dqlite for its database, to build and set it up, you can run make deps.
LXD itself also uses a number of (usually packaged) C libraries:

e libacll

e libcap2

e 1iblz4 (for dqlite)

e libuvl (for dglite)

e libsqlite3 >=3.25.0 (for dglite)

Make sure you have all these libraries themselves and their development headers (-dev packages) installed.

2.1.3 How to install LXD

The easiest way to install LXD is to install one of the available packages, but you can also install LXD from the sources.

After installing LXD, make sure you have a 1xd group on your system. Users in this group can interact with LXD. See
Manage access to LXD for instructions.

Choose your release

LXD maintains different release branches in parallel:
* Long term support (LTS) releases: currently LXD 5.0.x and LXD 4.0.x
* Feature releases: LXD 5.x

LTS releases are recommended for production environments, because they benefit from regular bugfix and security
updates. However, there are no new features added to an LTS release, nor any kind of behavioral change.

To get all the latest features and monthly updates to LXD, use the feature release branch instead.

2.1. Getting started 7



LXD

Install LXD from a package

The LXD daemon only works on Linux. The client tool (1xc) is available on most platforms.

Linux

The easiest way to install LXD on Linux is to install the Snap package, which is available for different Linux distribu-
tions.

If this option does not work for you, see the Other installation options.

Snap package

LXD publishes and tests snap packages that work for a number of Linux distributions (for example, Ubuntu, Arch
Linux, Debian, Fedora, and OpenSUSE).

Complete the following steps to install the snap:

1. Check the LXD snap page on Snapcraft to see if a snap is available for your Linux distribution. If it is not, use
one of the Other installation options.

2. Install snapd. See the installation instructions in the Snapcraft documentation.

3. Install the snap package. For the latest feature release, use:

[ sudo snap install 1xd ]

For the LXD 5.0 LTS release, use:

[ sudo snap install 1xd --channel=5.0/stable }

For more information about LXD snap packages (regarding more versions, update management etc.), see Managing
the LXD snap.

Note: On Ubuntu 18.04, if you previously had the LXD deb package installed, you can migrate all your existing data
over with the following command:

[ sudo lxd.migrate J

Other installation options

Some Linux distributions provide installation options other than the snap package.
Alpine Linux

Arch Linux

Fedora

Gentoo

To install the feature branch of LXD on Alpine Linux, run:

[apk add 1xd ]

8 Chapter 2. Project and community


https://snapcraft.io/lxd
https://snapcraft.io/lxd
https://snapcraft.io/docs/installing-snapd
https://discuss.linuxcontainers.org/t/managing-the-lxd-snap/8178
https://discuss.linuxcontainers.org/t/managing-the-lxd-snap/8178

LXD

To install the feature branch of LXD on Arch Linux, run:

[pacman -S 1xd

Fedora RPM packages for LXC/LXD are available in the COPR repository.

To install the LXD package for the feature branch, run:

dnf copr enable ganto/lxc4
dnf install 1xd

See the Installation Guide for more detailed installation instructions.

To install the feature branch of LXD on Gentoo, run:

[emerge --ask 1xd

Other operating systems

Important: The builds for other operating systems include only the client, not the server.

macOS
Windows
LXD publishes builds of the LXD client for macOS through Homebrew.

To install the feature branch of LXD, run:

[brew install 1lxc

The LXD client on Windows is provided as a Chocolatey package. To install it:
1. Install Chocolatey by following the installation instructions.

2. Install the LXD client:

[ choco install 1xc

You can also find native builds of the LXD client on GitHub:
e LXD client for Linux: bin.linux.1lxc.aarch64, bin.linux.lxc.x86_64
e LXD client for Windows: bin.windows.1xc.aarch64.exe, bin.windows.1xc.x86_64.exe
¢ LXD client for macOS: bin.macos.1lxc.aarch64, bin.macos.1lxc.x86_64

To download a specific build:

1. Make sure that you are logged into your GitHub account.

2. Filter for the branch or tag that you are interested in (for example, the latest release tag or master).

3. Select the latest build and download the suitable artifact.

2.1. Getting started


https://copr.fedorainfracloud.org/coprs/ganto/lxc4/
https://github.com/ganto/copr-lxc4/wiki
https://brew.sh/
https://community.chocolatey.org/packages/lxc
https://docs.chocolatey.org/en-us/choco/setup
https://github.com/canonical/lxd/actions
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxc.aarch64
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxc.x86_64
https://github.com/canonical/lxd/releases/latest/download/bin.windows.lxc.aarch64.exe
https://github.com/canonical/lxd/releases/latest/download/bin.windows.lxc.x86_64.exe
https://github.com/canonical/lxd/releases/latest/download/bin.macos.lxc.aarch64
https://github.com/canonical/lxd/releases/latest/download/bin.macos.lxc.x86_64

LXD

Install LXD from source

Follow these instructions if you want to build and install LXD from the source code.

We recommend having the latest versions of 1iblxc (>=4.0.0 required) available for LXD development. Additionally,
LXD requires a modern Golang (see Go) version to work. On Ubuntu, you can get those with:

sudo apt update

sudo apt install acl attr autoconf automake dnsmasq-base git libacll-dev libcap-dev..
—liblxcl liblxc-dev libsglite3-dev libtool libudev-dev liblz4-dev libuvl-dev make pkg-
—.config rsync squashfs-tools tar tcl xz-utils ebtables

command -v snap >/dev/null || sudo apt-get install snapd

sudo snap install --classic go

Note: If you use the 1iblxc-dev package and get compile time errors when building the go-1xc module, ensure
that the value for LXC_DEVEL is 0 for your 1iblxc build. To check that, look at /usr/include/1xc/version.h. If
the LXC_DEVEL value is 1, replace it with 0 to work around the problem. It’s a packaging bug, and we are aware of it
for Ubuntu 22.04 onward, see LP: #2039873.

There are a few storage drivers for LXD besides the default dir driver. Installing these tools adds a bit to initramfs and
may slow down your host boot, but are needed if you’d like to use a particular driver:

sudo apt install lvm2 thin-provisioning-tools
sudo apt install btrfs-progs

To run the test suite, you’ll also need:

[sudo apt install busybox-static curl gettext jq sqglite3 socat bind9-dnsutils J

From source: Build the latest version

These instructions for building from source are suitable for individual developers who want to build the latest version
of LXD, or build a specific release of LXD which may not be offered by their Linux distribution. Source builds for
integration into Linux distributions are not covered here and may be covered in detail in a separate document in the
future.

git clone https://github.com/canonical/lxd
cd 1xd

This will download the current development tree of LXD and place you in the source tree. Then proceed to the instruc-
tions below to actually build and install LXD.

10 Chapter 2. Project and community



https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/2039873

LXD

From source: Build a release

The LXD release tarballs bundle a complete dependency tree as well as a local copy of 1libraft and 1libdqlite for
LXD’s database setup.

tar zxvf 1xd-4.18.tar.gz
cd 1xd-4.18

This will unpack the release tarball and place you inside of the source tree. Then proceed to the instructions below to
actually build and install LXD.

Start the build

The actual building is done by two separate invocations of the Makefile: make deps — which builds libraries required
by LXD - and make, which builds LXD itself. At the end of make deps, a message will be displayed which will
specify environment variables that should be set prior to invoking make. As new versions of LXD are released, these
environment variable settings may change, so be sure to use the ones displayed at the end of the make deps process,
as the ones below (shown for example purposes) may not exactly match what your version of LXD requires:

We recommend having at least 2GB of RAM to allow the build to complete.

user@host:~$ make deps ...make[1]: Leaving directory '/root/go/deps/dqlite'#
environment Please set the following in your environment (possibly ~/.bashrc)# export
CGO_CFLAGS="${CGO_CFLAGS} -I$(go env GOPATH)/deps/dglite/include/ -I$(go env GOPATH)/
deps/raft/include/"# export CGO_LDFLAGS="${CGO_LDFLAGS} -L$(go env GOPATH)/deps/
dglite/.libs/ -L$(go env GOPATH)/deps/raft/.libs/"# export LD_LIBRARY_PATH="$(go env
GOPATH) /deps/dqlite/.1libs/:$(go env GOPATH)/deps/raft/.libs/:${LD_LIBRARY_PATH}"# export
CGO_LDFLAGS_ALLOW="(-W1,-wrap,pthread_create) | (-Wl,-z,now)" user@host:~$ make

From source: Install

Once the build completes, you simply keep the source tree, add the directory referenced by $(go env GOPATH)/bin
to your shell path, and set the LD_LIBRARY_PATH variable printed by make deps to your environment. This might
look something like this for a ~/.bashrc file:

export PATH="${PATH}:$(go env GOPATH) /bin"
export LD_LIBRARY_PATH="$(go env GOPATH) /deps/dqlite/.libs/:$(go env GOPATH)/deps/raft/.
—1libs/: ${LD_LIBRARY_PATH}"

Now, the 1xd and 1xc binaries will be available to you and can be used to set up LXD. The binaries will automati-
cally find and use the dependencies builtin $(go env GOPATH) /deps thanks to the LD_LIBRARY_PATH environment
variable.

2.1. Getting started 11



LXD

Machine setup

You’ll need sub{u,g}ids for root, so that LXD can create the unprivileged containers:

[echo "root:1000000:1000000000" | sudo tee -a /etc/subuid /etc/subgid ]

Now you can run the daemon (the --group sudo bit allows everyone in the sudo group to talk to LXD; you can create
your own group if you want):

sudo -E PATH=${PATH} LD_LIBRARY_PATH=${LD_LIBRARY_PATH} $(go env GOPATH)/bin/1xd --group..
—sudo

Note: If newuidmap/newgidmap tools are present on your system and /etc/subuid, etc/subgid exist, they must
be configured to allow the root user a contiguous range of at least 10M UID/GID.

Manage access to LXD
Access control for LXD is based on group membership. The root user and all members of the 1xd group can interact
with the local daemon. See Access to the LXD daemon for more information.

If the 1xd group is missing on your system, create it and restart the LXD daemon. You can then add trusted users to
the group. Anyone added to this group will have full control over LXD.

Because group membership is normally only applied at login, you might need to either re-open your user session or
use the newgrp 1xd command in the shell you’re using to talk to LXD.

Important: Local access to LXD through the Unix socket always grants full access to LXD. This includes the ability
to attach file system paths or devices to any instance as well as tweak the security features on any instance.

Therefore, you should only give such access to users who you’d trust with root access to your system.

Upgrade LXD

After upgrading LXD to a newer version, LXD might need to update its database to a new schema. This update happens
automatically when the daemon starts up after a LXD upgrade. A backup of the database before the update is stored
in the same location as the active database (for example, at /var/snap/lxd/common/1xd/database for the snap
installation).

Important: After a schema update, older versions of LXD might regard the database as invalid. That means that
downgrading LXD might render your LXD installation unusable.

In that case, if you need to downgrade, restore the database backup before starting the downgrade.

12 Chapter 2. Project and community



LXD

2.1.4 How to initialize LXD

Before you can create a LXD instance, you must configure and initialize LXD.

Interactive configuration

Run the following command to start the interactive configuration process:

[lxd init

Note: For simple configurations, you can run this command as a normal user. However, some more advanced opera-
tions during the initialization process (for example, joining an existing cluster) require root privileges. In this case, run
the command with sudo or as root.

The tool asks a series of questions to determine the required configuration. The questions are dynamically adapted to
the answers that you give. They cover the following areas:

Clustering (see About clustering and How to form a cluster)
A cluster combines several LXD servers. The cluster members share the same distributed database and can be
managed uniformly using the LXD client (1xc) or the REST APL

The default answer is no, which means clustering is not enabled. If you answer yes, you can either connect to
an existing cluster or create one.

MAAS support (see maas.io and MAAS - Setting up LXD for VMs)
MAAS is an open-source tool that lets you build a data center from bare-metal servers.

The default answer is no, which means MAAS support is not enabled. If you answer yes, you can connect to an
existing MAAS server and specify the name, URL and APT key.

Networking (see About networking and Network devices)
Provides network access for the instances.

You can let LXD create a new bridge (recommended) or use an existing network bridge or interface.
You can create additional bridges and assign them to instances later.

Storage pools (see About storage pools and storage volumes and Storage drivers)
Instances (and other data) are stored in storage pools.

For testing purposes, you can create a loop-backed storage pool. For production use, however, you should use
an empty partition (or full disk) instead of loop-backed storage (because loop-backed pools are slower and their
size can’t be reduced).

The recommended backends are zfs and btrfs.
You can create additional storage pools later.

Remote access (see Access to the remote API and Remote API authentication)
Allows remote access to the server over the network.

The default answer is no, which means remote access is not allowed. If you answer yes, you can connect to the
server over the network.

You can choose to add client certificates to the server (manually or through tokens, the recommended way) or
set a trust password.

Automatic image update (see About images)
You can download images from image servers. In this case, images can be updated automatically.

2.1. Getting started 13


https://maas.io/
https://maas.io/docs/setting-up-lxd-for-vms

LXD

The default answer is yes, which means that LXD will update the downloaded images regularly.

YAML 1xd init preseed (see Non-interactive configuration)
If you answer yes, the command displays a summary of your chosen configuration options in the terminal.

Minimal setup

To create a minimal setup with default options, you can skip the configuration steps by adding the --minimal flag to
the 1xd init command:

[lxd init --minimal

Note: The minimal setup provides a basic configuration, but the configuration is not optimized for speed or function-
ality. Especially the dir storage driver, which is used by default, is slower than other drivers and doesn’t provide fast
snapshots, fast copy/launch, quotas and optimized backups.

If you want to use an optimized setup, go through the interactive configuration process instead.

Non-interactive configuration

The 1xd init command supports a --preseed command line flag that makes it possible to fully configure the LXD
daemon settings, storage pools, network devices and profiles, in a non-interactive way through a preseed YAML file.

For example, starting from a brand new LXD installation, you could configure LXD with the following command:

cat <<EOF | 1xd init --preseed
config:
core.https_address: 192.0.2.1:9999
images.auto_update_interval: 15
networks:
- name: 1xdbr®
type: bridge
config:
ipv4.address: auto
ipv6.address: none
EOF

This preseed configuration initializes the LXD daemon to listen for HTTPS connections on port 9999 of the 192.0.2.1
address, to automatically update images every 15 hours and to create a network bridge device named 1xdbr®, which
gets assigned an IPv4 address automatically.

Re-configuring an existing LXD installation

If you are configuring a new LXD installation, the preseed command applies the configuration as specified (as long
as the given YAML contains valid keys and values). There is no existing state that might conflict with the specified
configuration.

However, if you are re-configuring an existing LXD installation using the preseed command, the provided YAML
configuration might conflict with the existing configuration. To avoid such conflicts, the following rules are in place:

* The provided YAML configuration overwrites existing entities. This means that if you are re-configuring an
existing entity, you must provide the full configuration for the entity and not just the different keys.

14 Chapter 2. Project and community



LXD

* If the provided YAML configuration contains entities that do not exist, they are created.

This is the same behavior as for a PUT request in the REST API.

Rollback

If some parts of the new configuration conflict with the existing state (for example, they try to change the driver of a
storage pool from dir to zfs), the preseed command fails and automatically attempts to roll back any changes that
were applied so far.

For example, it deletes entities that were created by the new configuration and reverts overwritten entities back to their
original state.

Failure modes when overwriting entities are the same as for the PUT requests in the REST API.

Note: The rollback process might potentially fail, although rarely (typically due to backend bugs or limitations). You
should therefore be careful when trying to reconfigure a LXD daemon via preseed.

Default profile

Unlike the interactive initialization mode, the 1xd init --preseed command does not modify the default profile,
unless you explicitly express that in the provided YAML payload.

For instance, you will typically want to attach a root disk device and a network interface to your default profile. See
the following section for an example.

Configuration format

The supported keys and values of the various entities are the same as the ones documented in the REST API, but
converted to YAML for convenience. However, you can also use JSON, since YAML is a superset of JSON.

The following snippet gives an example of a preseed payload that contains most of the possible configurations. You
can use it as a template for your own preseed file and add, change or remove what you need:

# Daemon settings

config:
core.https_address: 192.0.2.1:9999
core.trust_password: sekret
images.auto_update_interval: 6

# Storage pools
storage_pools:

- name: data
driver: zfs
config:

source: my-zfs-pool/my-zfs-dataset

# Network devices

networks:
- name: lxd-my-bridge
type: bridge

(continues on next page)

2.1. Getting started 15




LXD

(continued from previous page)
config:
ipv4.address: auto
ipv6.address: none

# Profiles
profiles:
- name: default
devices:
root:
path: /
pool: data
type: disk

- name: test-profile
description: "Test profile"
config:

limits.memory: 2GB
devices:
test0:
name: test®
nictype: bridged
parent: lxd-my-bridge
type: nic

2.1.5 Frequently asked questions

The following sections give answers to frequently asked questions. They explain how to resolve common issues and
point you to more detailed information.

Why do my instances not have network access?

Most likely, your firewall blocks network access for your instances. See How fo configure your firewall for more
information about the problem and how to fix it.

Another frequent reason for connectivity issues is running LXD and Docker on the same host. See Prevent connectivity
issues with LXD and Docker for instructions on how to fix such issues.

How to enable the LXD server for remote access?

By default, the LXD server is not accessible from the network, because it only listens on a local Unix socket.

You can enable it for remote access by following the instructions in How to expose LXD to the network.

16 Chapter 2. Project and community




LXD

When | do a 1xc remote add, it asks for a password or token?

To be able to access the remote API, clients must authenticate with the LXD server. Depending on how the remote
server is configured, you must provide either a trust token issued by the server or specify a trust password (if core.
trust_password is set).

See Authenticate with the LXD server for instructions on how to authenticate using a trust token (the recommended
way), and Remote API authentication for information about other authentication methods.

Why should I not run privileged containers?

A privileged container can do things that affect the entire host - for example, it can use things in /sys to reset the network
card, which will reset it for the entire host, causing network blips. See Container security for more information.

Almost everything can be run in an unprivileged container, or - in cases of things that require unusual privileges, like
wanting to mount NFS file systems inside the container - you might need to use bind mounts.

Can | bind-mount my home directory in a container?

Yes, you can do this by using a disk device:

[lxc config device add container-name home disk source=/home/${USER} path=/home/ubuntu ]

For unprivileged containers, you need to make sure that the user in the container has working read/write permissions.
Otherwise, all files will show up as the overflow UID/GID (65536:65536) and access to anything that’s not world-
readable will fail. Use either of the following methods to grant the required permissions:

e Pass shift=true tothe 1xc config device add call. This depends on the kernel and file system supporting
either idmapped mounts or shiftfs (see 1xc info).

e Add a raw.idmap entry (see Idmaps for user namespace).
¢ Place recursive POSIX ACLs on your home directory.

Privileged containers do not have this issue because all UID/GID in the container are the same as outside. But that’s
also the cause of most of the security issues with such privileged containers.

How can | run Docker inside a LXD container?

To run Docker inside a LXD container, set the security.nesting property of the container to true:

[lxc config set <container> security.nesting true ]

Note that LXD containers cannot load kernel modules, so depending on your Docker configuration, you might need to
have extra kernel modules loaded by the host. You can do so by setting a comma-separated list of kernel modules that
your container needs:

[lxc config set <container_name> linux.kernel_modules <modules> J

In addition, creating a /.dockerenv file in your container can help Docker ignore some errors it’s getting due to
running in a nested environment.

2.1. Getting started 17



LXD

Where does the LXD client (1xc) store its configuration?

The 1xc command stores its configuration under ~/ . config/1xc, or in ~/snap/1xd/common/config for snap users.
Various configuration files are stored in that directory, for example:

e client.crt: client certificate (generated on demand)

e client.key: client key (generated on demand)

* config.yml: configuration file (info about remotes, aliases, etc.)

* servercerts/: directory with server certificates belonging to remotes

Why can | not ping my LXD instance from another host?

Many switches do not allow MAC address changes, and will either drop traffic with an incorrect MAC or disable the
port totally. If you can ping a LXD instance from the host, but are not able to ping it from a different host, this could
be the cause.

The way to diagnose this problem is to run a tcpdump on the uplink and you will see either ARP Who has " xx.xx.
xx.xx  tell “yy.yy.yy.yy ., with you sending responses but them not getting acknowledged, or ICMP packets
going in and out successfully, but never being received by the other host.

How can | monitor what LXD is doing?

To see detailed information about what LXD is doing and what processes it is running, use the 1xc monitor command.

For example, to show a human-readable output of all types of messages, enter the following command:

[1xc monitor --pretty ]

See 1xc monitor --help for all options, and Debugging for more information.

Why does LXD stall when creating an instance?

Check if your storage pool is out of space (by running 1xc storage info <pool_name>). In that case, LXD cannot
finish unpacking the image, and the instance that you’re trying to create shows up as stopped.

To get more insight into what is happening, run 1xc monitor (see How can I monitor what LXD is doing?), and check
sudo dmesg for any I/O errors.

2.1.6 Contributing

Check the following guidelines before contributing to the project.

18 Chapter 2. Project and community



LXD

Pull requests

Changes to this project should be proposed as pull requests on GitHub at: https://github.com/canonical/1xd

Proposed changes will then go through code review there and once approved, be merged in the main branch.

Commit structure

Separate commits should be used for:

e API extension (api: Add XYZ extension, contains doc/api-extensions.md and shared/version/
api.go)

¢ Documentation (doc: Update XYZ for files in doc/)
e API structure (shared/api: Add XYZ for changes to shared/api/)

* Go client package (client: Add XYZ for changes to client/)

CLI (1xc/<command>: Change XYZ for changes to 1xc/)

e Scripts (scripts: Update bash completion for XYZ for changes to scripts/)
e LXD daemon (1xd/<package>: Add support for XYZ for changes to 1xd/)

o Tests (tests: Add test for XYZ for changes to tests/)

The same kind of pattern extends to the other tools in the LXD code tree and depending on complexity, things may be
split into even smaller chunks.

When updating strings in the CLI tool (1xc/), you may need a commit to update the templates:

make i18n
git commit -a -s -m "il8n: Update translation templates" po/

When updating API (shared/api), you may need a commit to update the swagger YAML:

make update-api
git commit -s -m "doc/rest-api: Refresh swagger YAML" doc/rest-api.yaml

This structure makes it easier for contributions to be reviewed and also greatly simplifies the process of back-porting
fixes to stable branches.

License and copyright

By default, any contribution to this project is made under the Apache 2.0 license.

The author of a change remains the copyright holder of their code (no copyright assignment).

2.1. Getting started 19



https://github.com/canonical/lxd

LXD

Developer Certificate of Origin
To improve tracking of contributions to this project we use the DCO 1.1 and use a “sign-off”” procedure for all changes
going into the branch.

The sign-off is a simple line at the end of the explanation for the commit which certifies that you wrote it or otherwise
have the right to pass it on as an open-source contribution.

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1
By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

An example of a valid sign-off line is:

[Signed—off—by: Random ] Developer <random@developer.org>

Use a known identity and a valid e-mail address. Sorry, no anonymous contributions are allowed.

We also require each commit be individually signed-off by their author, even when part of a larger set. You may find
git commit -s useful.

20 Chapter 2. Project and community



LXD

Code of Conduct

When contributing, you must adhere to the Code of Conduct, which is available at: https://github.com/
canonical/lxd/blob/main/CODE_OF_CONDUCT.md

Getting Started Developing

Follow the steps below to set up your development environment to get started working on new features for LXD.

Building Dependencies

To build the dependencies, follow the instructions in /nstall LXD from source.

Adding Your Fork Remote

After building your dependencies, you can now add your GitHub fork as a remote:

git remote add myfork git@github.com:<your_username>/1xd.git
git remote update

Then switch to it:

[git checkout myfork/main

Building LXD

Finally, you should be able to make inside the repository and build your fork of the project.

At this point, you would most likely want to create a new branch for your changes on your fork:

git checkout -b [name_of_your_new_branch]
git push myfork [name_of_your_new_branch]

Important Notes for New LXD Contributors

* Persistent data is stored in the LXD_DIR directory which is generated by 1xd init. The LXD_DIR defaults to
/var/lib/1xd or /var/snap/lxd/common/1xd for snap users.

* As you develop, you may want to change the LXD_DIR for your fork of LXD so as to avoid version conflicts.
* Binaries compiled from your source will be generated in the $ (go env GOPATH) /bin directory by default.

— You will need to explicitly invoke these binaries (not the global 1xd you may have installed) when testing
your changes.

— You may choose to create an alias in your ~/.bashrc to call these binaries with the appropriate flags more
conveniently.

* If you have a systemd service configured to run the LXD daemon from a previous installation of LXD, you may
want to disable it to avoid version conflicts.

2.1. Getting started 21


https://github.com/canonical/lxd/blob/main/CODE_OF_CONDUCT.md
https://github.com/canonical/lxd/blob/main/CODE_OF_CONDUCT.md

LXD

2.1.7 Support

LXD maintains different release branches in parallel:
* Long term support (LTS) releases: currently LXD 5.0.x and LXD 4.0.x
* Feature releases: LXD 5.x

The current LTS release is LXD 5.0, which is supported until June 2027 and gets frequent bugfix and security updates,
but does not receive any feature additions.

Feature releases are pushed out about every month and contain new features as well as bugfixes. The normal support
length for those releases is until the next release comes out. Some Linux distributions might offer longer support for
particular feature releases that they decided to ship.

Support and community
The following channels are available for you to interact with the LXD community.
Bug reports

You can file bug reports and feature requests at: https://github.com/canonical/lxd/issues/new

Forum

A discussion forum is available at: https://discourse.ubuntu.com/c/lxd/

IRC

If you prefer live discussions, you can find us in #1xd on irc.libera.chat. See Getting started with IRC if needed.

Commercial support

Commercial support for LXD can be obtained through Canonical Ltd.

Documentation

The official documentation is available at: https://documentation.ubuntu.com/lxd/en/stable-5.0/
You can find additional resources on the website, on YouTube and in the Tutorials section in the forum.
In addition, the following clip gives a quick and easy introduction for standard use cases:

You can find a series of demos and tutorials on YouTube:

22 Chapter 2. Project and community


https://github.com/canonical/lxd/issues/new
https://discourse.ubuntu.com/c/lxd/
https://web.libera.chat/#lxd
https://discourse.ubuntu.com/t/getting-started-with-irc/37907
https://www.canonical.com
https://documentation.ubuntu.com/lxd/en/stable-5.0/
https://ubuntu.com/lxd
https://www.youtube.com/channel/UCuP6xPt0WTeZu32CkQPpbvA
https://discourse.ubuntu.com/c/lxd/tutorials/

LXD

2.2 Security

2.2.1 About security

Consider the following aspects to ensure that your LXD installation is secure:
» Keep your operating system up-to-date and install all available security patches.
* Use only supported LXD versions (LTS releases or monthly feature releases).
* Restrict access to the LXD daemon and the remote API.

* Do not use privileged containers unless required. If you use privileged containers, put appropriate security
measures in place. See the LXD security page for more information.

 Configure your network interfaces to be secure.
See the following sections for detailed information.

If you discover a security issue, see the LXD security policy for information on how to report the issue.

Supported versions

Never use unsupported LXD versions in a production environment.
LXD has two types of releases:

* Monthly feature releases

e LTS releases

For feature releases, only the latest one is supported, and we usually don’t do point releases. Instead, users are expected
to wait until the next monthly release.

For LTS releases, we do periodic bugfix releases that include an accumulation of bugfixes from the feature releases.
Such bugfix releases do not include new features.

Access to the LXD daemon

LXD is a daemon that can be accessed locally over a Unix socket or, if configured, remotely over a TLS (Transport
Layer Security) socket. Anyone with access to the socket can fully control LXD, which includes the ability to attach
host devices and file systems or to tweak the security features for all instances.

Therefore, make sure to restrict the access to the daemon to trusted users.

Local access to the LXD daemon

The LXD daemon runs as root and provides a Unix socket for local communication. Access control for LXD is based
on group membership. The root user and all members of the 1xd group can interact with the local daemon.

Important: Local access to LXD through the Unix socket always grants full access to LXD. This includes the ability
to attach file system paths or devices to any instance as well as tweak the security features on any instance.

Therefore, you should only give such access to users who you’d trust with root access to your system.

2.2. Security 23


https://documentation.ubuntu.com/lxd/en/latest/explanation/security/
https://github.com/canonical/lxd/blob/main/SECURITY.md

LXD

Access to the remote API

By default, access to the daemon is only possible locally. By setting the core.https_address configuration option,
you can expose the same API over the network on a TLS socket. See How to expose LXD to the network for instructions.
Remote clients can then connect to LXD and access any image that is marked for public use.

There are several ways to authenticate remote clients as trusted clients to allow them to access the API. See Remote
API authentication for details.

In a production setup, you should set core.https_address to the single address where the server should be available
(rather than any address on the host). In addition, you should set firewall rules to allow access to the LXD port only
from authorized hosts/subnets.

Container security

LXD containers can use a wide range of features for security.

By default, containers are unprivileged, meaning that they operate inside a user namespace, restricting the abilities of
users in the container to that of regular users on the host with limited privileges on the devices that the container owns.

If data sharing between containers isn’t needed, you can enable security.idmap.isolated (see Security policies),
which will use non-overlapping UID/GID maps for each container, preventing potential DoS (Denial of Service) attacks
on other containers.

LXD can also run privileged containers. Note, however, that those aren’t root safe, and a user with root access in such
a container will be able to DoS the host as well as find ways to escape confinement.

More details on container security and the kernel features we use can be found on the LXC security page.

Container nhame leakage

The default server configuration makes it easy to list all cgroups on a system and, by extension, all running containers.

You can prevent this name leakage by blocking access to /sys/kernel/slab and /proc/sched_debug before you
start any containers. To do so, run the following commands:

chmod 400 /proc/sched_debug
chmod 700 /sys/kernel/slab/

Network security

Make sure to configure your network interfaces to be secure. Which aspects you should consider depends on the
networking mode you decide to use.

24 Chapter 2. Project and community


https://linuxcontainers.org/lxc/security/

LXD

Bridged NIC security

The default networking mode in LXD is to provide a “managed” private network bridge that each instance connects to.
In this mode, there is an interface on the host called 1xdbr® that acts as the bridge for the instances.

The host runs an instance of dnsmasq for each managed bridge, which is responsible for allocating IP addresses and
providing both authoritative and recursive DNS services.

Instances using DHCPv4 will be allocated an IPv4 address, and a DNS record will be created for their instance name.
This prevents instances from being able to spoof DNS records by providing false host name information in the DHCP
request.

The dnsmasq service also provides IPv6 router advertisement capabilities. This means that instances will auto-
configure their own IPv6 address using SLAAC, so no allocation is made by dnsmasq. However, instances that are also
using DHCPv4 will also get an AAAA DNS record created for the equivalent SLAAC IPv6 address. This assumes that
the instances are not using any IPv6 privacy extensions when generating IPv6 addresses.

In this default configuration, whilst DNS names cannot not be spoofed, the instance is connected to an Ethernet bridge
and can transmit any layer 2 traffic that it wishes, which means an instance that is not trusted can effectively do MAC
or IP spoofing on the bridge.

In the default configuration, it is also possible for instances connected to the bridge to modify the LXD host’s IPv6
routing table by sending (potentially malicious) IPv6 router advertisements to the bridge. This is because the 1xdbr@®
interface is created with /proc/sys/net/ipv6/conf/1xdbr®/accept_ra set to 2, meaning that the LXD host will
accept router advertisements even though forwarding is enabled (see /proc/sys/net/ipv4/* Variables for more
information).

However, LXD offers several bridged NIC (Network interface controller) security features that can be used to control
the type of traffic that an instance is allowed to send onto the network. These NIC settings should be added to the profile
that the instance is using, or they can be added to individual instances, as shown below.

The following security features are available for bridged NICs:

Key Type De- Re- Description

fault  quired
security. bool false no Prevent the instance from spoofing another instance’s MAC ad-
mac_filtering dress
security. bool false no Prevent the instance from spoofing another instance’s IPv4 address
ipv4_filtering (enables mac_filtering)
security. bool false no Prevent the instance from spoofing another instance’s IPv6 address
ipv6_filtering (enables mac_filtering)

One can override the default bridged NIC settings from the profile on a per-instance basis using:

[1xc config device override <instance> <NIC> security.mac_filtering=true

Used together, these features can prevent an instance connected to a bridge from spoofing MAC and IP addresses. These
options are implemented using either xtables (iptables, ip6tables and ebtables) or nftables, depending on
what is available on the host.

It’s worth noting that those options effectively prevent nested containers from using the parent network with a different
MAC address (i.e using bridged or macvlan NICs).

The IP filtering features block ARP and NDP advertisements that contain a spoofed IP, as well as blocking any packets
that contain a spoofed source address.

2.2. Security 25


https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

LXD

If security.ipv4_filtering or security.ipv6_filtering is enabled and the instance cannot be allocated an
IP address (because ipvX.address=none or there is no DHCP service enabled on the bridge), then all IP traffic for
that protocol is blocked from the instance.

When security.ipv6_filtering is enabled, IPv6 router advertisements are blocked from the instance.

When security.ipv4_filtering or security.ipv6_filtering is enabled, any Ethernet frames that are not
ARP, IPv4 or IPv6 are dropped. This prevents stacked VLAN Q-in-Q (802.1ad) frames from bypassing the IP filtering.

Routed NIC security

An alternative networking mode is available called “routed”. It provides a virtual Ethernet device pair between container
and host. In this networking mode, the LXD host functions as a router, and static routes are added to the host directing
traffic for the container’s IPs towards the container’s veth interface.

By default, the veth interface created on the host has its accept_ra setting disabled to prevent router advertisements
from the container modifying the IPv6 routing table on the LXD host. In addition to that, the rp_filter on the host
is set to 1 to prevent source address spoofing for IPs that the host does not know the container has.

2.2.2 Remote API authentication

Remote communications with the LXD daemon happen using JSON over HTTPS.

To be able to access the remote API, clients must authenticate with the LXD server. The following authentication
methods are supported:

* TLS client certificates
e Candid-based authentication

* Role Based Access Control (RBAC)

TLS client certificates

When using TLS client certificates for authentication, both the client and the server will generate a key pair the first
time they’re launched. The server will use that key pair for all HTTPS connections to the LXD socket. The client will
use its certificate as a client certificate for any client-server communication.

To cause certificates to be regenerated, simply remove the old ones. On the next connection, a new certificate is
generated.

Communication protocol

The supported protocol must be TLS 1.3 or better.

It’s possible to force LXD to accept TLS 1.2 by setting the LXD_INSECURE_TLS environment variable on both client
and server. However this isn’t a supported setup and should only ever be used when forced to use an outdated corporate

Proxy.
All communications must use perfect forward secrecy, and ciphers must be limited to strong elliptic curve ones (such
as ECDHE-RSA or ECDHE-ECDSA).

Any generated key should be at least 4096 bit RSA, preferably 384 bit ECDSA. When using signatures, only SHA-2
signatures should be trusted.

Since we control both client and server, there is no reason to support any backward compatibility to broken protocol or
ciphers.

26 Chapter 2. Project and community



LXD

Trusted TLS clients

You can obtain the list of TLS certificates trusted by a LXD server with 1xc config trust list.
Trusted clients can be added in either of the following ways:

* Adding trusted certificates to the server

* Adding client certificates using a trust password

* Adding client certificates using tokens

The workflow to authenticate with the server is similar to that of SSH, where an initial connection to an unknown server
triggers a prompt:

1. When the user adds a server with 1xc remote add, the server is contacted over HTTPS, its certificate is down-
loaded and the fingerprint is shown to the user.

2. The user is asked to confirm that this is indeed the server’s fingerprint, which they can manually check by con-
necting to the server or by asking someone with access to the server to run the info command and compare the
fingerprints.

3. The server attempts to authenticate the client:
« If the client certificate is in the server’s trust store, the connection is granted.

« If the client certificate is not in the server’s trust store, the server prompts the user for a token or the trust
password. If the provided token or trust password matches, the client certificate is added to the server’s
trust store and the connection is granted. Otherwise, the connection is rejected.

To revoke trust to a client, remove its certificate from the server with 1xc config trust remove FINGERPRINT.

It’s possible to restrict a TLS client to one or multiple projects. In this case, the client will also be prevented from
performing global configuration changes or altering the configuration (limits, restrictions) of the projects it’s allowed
access to.

To restrict access, use 1xc config trust edit FINGERPRINT. Set the restricted key to true and specify a list
of projects to restrict the client to. If the list of projects is empty, the client will not be allowed access to any of them.

Adding trusted certificates to the server

The preferred way to add trusted clients is to directly add their certificates to the trust store on the server. To do so,
copy the client certificate to the server and register it using 1xc config trust add <file>.

Adding client certificates using a trust password

To allow establishing a new trust relationship from the client side, you must set a trust password (core.
trust_password) for the server. Clients can then add their own certificate to the server’s trust store by providing
the trust password when prompted.

In a production setup, unset core . trust_password after all clients have been added. This prevents brute-force attacks
trying to guess the password.

2.2. Security 27



LXD

Adding client certificates using tokens

You can also add new clients by using tokens. This is a safer way than using the trust password, because tokens expire
after a configurable time (core.remote_token_expiry) or once they’ve been used.

To use this method, generate a token for each client by calling 1xc config trust add, which will prompt for the
client name. The clients can then add their certificates to the server’s trust store by providing the generated token when
prompted for the trust password.

Note: If your LXD server is behind NAT, you must specify its external public address when adding it as a remote for
a client:

[1xc remote add <name> <IP_address>

When you are prompted for the admin password, specify the generated token.

When generating the token on the server, LXD includes a list of IP addresses that the client can use to access the server.
However, if the server is behind NAT, these addresses might be local addresses that the client cannot connect to. In this
case, you must specify the external address manually.

Alternatively, the clients can provide the token directly when adding the remote: 1xc remote add <name> <token>.

Using a PKI system

In a PKI (Public key infrastructure) setup, a system administrator manages a central PKI that issues client certificates
for all the LXD clients and server certificates for all the LXD daemons.

To enable PKI mode, complete the following steps:
1. Add the CA (Certificate authority) certificate to all machines:

* Place the client.ca file in the clients’ configuration directories (~/.config/lxc or ~/snap/lxd/
common/config for snap users).

¢ Place the server.ca file in the server’s configuration directory (/var/1ib/1xd or /var/snap/lxd/
common/1xd for snap users).

2. Place the certificates issued by the CA on the clients and the server, replacing the automatically generated ones.
3. Restart the server.
In that mode, any connection to a LXD daemon will be done using the pre-seeded CA certificate.

If the server certificate isn’t signed by the CA, the connection will simply go through the normal authentication mecha-
nism. If the server certificate is valid and signed by the CA, then the connection continues without prompting the user
for the certificate.

Note that the generated certificates are not automatically trusted. You must still add them to the server in one of the
ways described in Trusted TLS clients.

28 Chapter 2. Project and community



LXD

Candid-based authentication

You can configure LXD to use Candid authentication by setting the candid. * server configuration options. In this
case, clients that try to authenticate with the server must get a Discharge token from the authentication server specified
by the candid. api.url option.

The authentication server certificate must be trusted by the LXD server.

To add a remote pointing to a LXD server configured with Candid/Macaroon authentication, run 1xc remote add
REMOTE ENDPOINT --auth-type=candid. To verify the user, the client will prompt for the credentials required by
the authentication server. If the authentication is successful, the client will connect to the LXD server and present the
token received from the authentication server. The LXD server verifies the token, thus authenticating the request. The
token is stored as cookie and is presented by the client at each request to LXD.

For instructions on how to set up Candid-based authentication, see the Candid authentication for LXD tutorial.

Role Based Access Control (RBAC)

LXD supports integrating with the Canonical RBAC service, which is included in the Ubuntu Pro subscription. Com-
bined with Candid-based authentication, RBAC (Role Based Access Control) can be used to limit what an API client
is allowed to do on LXD.

In such a setup, authentication happens through Candid, while the RBAC service maintains roles to user/group rela-
tionships. Roles can be assigned to individual projects, to all projects or to the entire LXD instance.

The meaning of the roles when applied to a project is as follows:
* auditor: Read-only access to the project

* user: Ability to do normal life cycle actions (start, stop, . .. ), execute commands in the instances, attach to console,
manage snapshots, ...

* operator: All of the above + the ability to create, re-configure and delete instances and images

* admin: All of the above + the ability to reconfigure the project itself

Important: In an unrestricted project, only the auditor and the user roles are suitable for users that you wouldn’t
trust with root access to the host.

In a restricted project, the operator role is safe to use as well if configured appropriately.

To enable RBAC for your LXD server, set the rbac. * server configuration options, which are a superset of the candid.
* ones and allow for LXD to integrate with the RBAC service.

Failure scenarios

In the following scenarios, authentication is expected to fail.

2.2. Security 29


https://github.com/canonical/candid
https://ubuntu.com/tutorials/candid-authentication-lxd
https://ubuntu.com/pro

LXD

Server certificate changed

The server certificate might change in the following cases:
* The server was fully reinstalled and therefore got a new certificate.
* The connection is being intercepted (MITM (Machine in the middle)).

In such cases, the client will refuse to connect to the server because the certificate fingerprint does not match the
fingerprint in the configuration for this remote.

It is then up to the user to contact the server administrator to check if the certificate did in fact change. If it did, the
certificate can be replaced by the new one, or the remote can be removed altogether and re-added.

Server trust relationship revoked

The server trust relationship is revoked for a client if another trusted client or the local server administrator removes
the trust entry for the client on the server.

In this case, the server still uses the same certificate, but all API calls return a 403 code with an error indicating that
the client isn’t trusted.

2.2.3 How to expose LXD to the network

By default, LXD can be used only by local users through a Unix socket and is not accessible over the network.

To expose LXD to the network, you must configure it to listen to addresses other than the local Unix socket. To do so,
set the core.https_address server configuration option.

For example, to allow access to the LXD server on port 8443, enter the following command:

[lxc config set core.https_address :8443

To allow access through a specific IP address, use ip addr to find an available address and then set it. For example:

user@host:~$ ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN group default glen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/

128 scope host valid_lft forever preferred_lft forever2: enp5s®: <BROADCAST,
MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mg state UP group default glen 1000 link/ether
00:16:3e:e3:£3:3f brd ff:ff:ff:ff:ff:ff inet 10.68.216.12/24 metric 100 brd 10.68.
216.255 scope global dynamic enp5s® valid_lft 3028sec preferred_lft 3028sec inet6
fd42:e819:7a51:5a7b:216:3eff:fee3:£33f/64 scope global mngtmpaddr noprefixroute valid_lft
forever preferred_lft forever inet6 fe80::216:3eff:fee3:£33f/64 scope link valid_lft
forever preferred_lft forever3: 1xdbr®: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu

1500 gdisc noqueue state DOWN group default glen 1000 link/ether 00:16:3e:8d:£f3:72 brd
ff:ff:ff:£f:ff:ff inet 10.64.82.1/24 scope global 1xdbr® valid_lft forever preferred_lft
forever inet6 fd42:f4ab:4399:e6eb::1/64 scope global valid_lft forever preferred_lft
forever user@host:~$ 1xc config set core.https_address 10.68.216.12 All remote clients can then
connect to LXD and access any image that is marked for public use.

30 Chapter 2. Project and community



LXD

Authenticate with the LXD server
To be able to access the remote API, clients must authenticate with the LXD server. There are several authentication
methods; see Remote API authentication for detailed information.

The recommended method is to add the client’s TLS certificate to the server’s trust store through a trust token. To
authenticate a client using a trust token, complete the following steps:

1. On the server, enter the following command:

[lxc config trust add ]

Enter the name of the client that you want to add. The command generates and prints a token that can be used to
add the client certificate.

2. On the client, add the server with the following command:

[lxc remote add <remote_name> <token> ]

Note: If your LXD server is behind NAT, you must specify its external public address when adding it as a remote for
a client:

[lxc remote add <name> <IP_address> J

When you are prompted for the admin password, specify the generated token.

When generating the token on the server, LXD includes a list of IP addresses that the client can use to access the server.
However, if the server is behind NAT, these addresses might be local addresses that the client cannot connect to. In this
case, you must specify the external address manually.

See Remote API authentication for detailed information and other authentication methods.

2.3 Instances

2.3.1 About instances

LXD supports the following types of instances:

Containers
Containers are the default type for instances. They are currently the most complete implementation of LXD
instances and support more features than virtual machines.

Containers are implemented through the use of 1iblxc (LXC).

Virtual machines

VIrTUAL MACHINES (VMs) are natively supported since version 4.0 of LXD. Thanks to a built-in agent, they can
be used almost like containers.

LXD uses gemu to provide the VM functionality.

Note: Currently, virtual machines support fewer features than containers, but the plan is to support the same set
of features for both instance types in the future.

2.3. Instances 31



LXD

To see which features are available for virtual machines, check the condition column in the /nstance options
documentation.

See About containers and VMs for more information about the different instance types.

2.3.2 How to create instances

To create an instance, you can use either the 1xc init or the 1xc launch command. The 1xc init command only
creates the instance, while the 1xc launch command creates and starts it.

Usage

Enter the following command to create a container:

[lxc launch|init <image_server>:<image_name> <instance_name> [flags]

Image
Images contain a basic operating system (for example, a Linux distribution) and some LXD-related information.
Images for various operating systems are available on the built-in remote image servers. See /mages for more
information.

Unless the image is available locally, you must specify the name of the image server and the name of the image
(for example, ubuntu: 22 .04 for the official 22.04 Ubuntu image).

Instance name
Instance names must be unique within a LXD deployment (also within a cluster). See Instance properties for
additional requirements.

Flags
See 1xc launch --helpor 1xc init --help for a full list of flags. The most common flags are:

* --config to specify a configuration option for the new instance

* --device to override device options for a device provided through a profile

e --profile to specify a profile to use for the new instance

e --network or --storage to make the new instance use a specific network or storage pool
e --target to create the instance on a specific cluster member

e --vm to create a virtual machine instead of a container

Pass a configuration file

Instead of specifying the instance configuration as flags, you can pass it to the command as a YAML file.

For example, to launch a container with the configuration from config.yaml, enter the following command:

[lxc launch images:ubuntu/22.04 ubuntu-config < config.yaml

Tip: Check the contents of an existing instance configuration (1xc config show <instance_name> -e) to see
the required syntax of the YAML file.

32 Chapter 2. Project and community



LXD

Examples

The following examples use 1xc launch, but you can use 1xc init in the same way.

Launch a container

To launch a container with an Ubuntu 22.04 image from the ubuntu server using the instance name

ubuntu-container, enter the following command:

[1xc launch images:ubuntu/22.04 ubuntu-container

Launch a virtual machine

To launch a virtual machine with an Ubuntu 22.04 image from the ubuntu server using the instance name ubuntu-vm,

enter the following command:

[1xc launch images:ubuntu/22.04 ubuntu-vm --vm

Or with a bigger disk:

[lxc launch images:ubuntu/22.04 ubuntu-vm-big --vm --device root,size=30GiB

Launch a container with specific configuration options

To launch a container and limit its resources to one vCPU and 192 MiB of RAM, enter the following command:

1xc launch images:ubuntu/22.04 ubuntu-limited --config limits.cpu=1 --config limits.
—.memory=192MiB

Launch a VM on a specific cluster member

To launch a virtual machine on the cluster member server2, enter the following command:

[lxc launch images:ubuntu/22.04 ubuntu-container --vm --target server2

Launch a container with a specific instance type

LXD supports simple instance types for clouds. Those are represented as a string that can be passed at instance creation

time.
The syntax allows the three following forms:
* <instance type>
e <cloud>:<instance type>
* c<CPU>-m<RAM in GiB>
For example, the following three instance types are equivalent:

e t2.micro

2.3. Instances

33



LXD

e aws:t2.micro
e cl-ml

To launch a container with this instance type, enter the following command:

[1xc launch images:ubuntu/22.04 my-instance --type t2.micro ]

The list of supported clouds and instance types can be found at https://github.com/dustinkirkland/
instance-type.

2.3.3 How to manage instances

Enter the following command to list all instances:

[1xc list J

You can filter the instances that are displayed, for example, by type, status or the cluster member where the instance is
located:

1xc list type=container
1xc list status=running
1xc list location=serverl

You can also filter by name. To list several instances, use a regular expression for the name. For example:

[lxc list ubuntu.* }

Enter 1xc list --help to see all filter options.

Show information about an instance

Enter the following command to show detailed information about an instance:

[lxc info <instance_name> ]

Add --show-1og to the command to show the latest log lines for the instance:

[lxc info <instance_name> --show-log ]

Start an instance

Enter the following command to start an instance:

[lxc start <instance_name> J

You will get an error if the instance does not exist or if it is running already.

To immediately attach to the console when starting, pass the --console flag. For example:

[1xc start <instance_name> --console ]

See How to access the console for more information.

34 Chapter 2. Project and community


https://github.com/dustinkirkland/instance-type
https://github.com/dustinkirkland/instance-type

LXD

Stop an instance

Enter the following command to stop an instance:

[lxc stop <instance_name> ]

You will get an error if the instance does not exist or if it is not running.

Delete an instance

If you don’t need an instance anymore, you can remove it. The instance must be stopped before you can delete it.

Enter the following command to delete an instance:

[lxc delete <instance_name> ]

Caution: This command permanently deletes the instance and all its snapshots.

Prevent accidental deletion of instances

There are two ways to prevent accidental deletion of instances:

* To be prompted for approval every time you use the 1xc delete command, create an alias for it:

[ 1xc alias add delete "delete -i" ]

* To protect a specific instance from being deleted, set security.protection.delete to true for the instance.
See How to configure instances for instructions.

2.3.4 How to configure instances

You can configure instances by setting I/nstance options or by adding and configuring Devices.

See the following sections for instructions.

Note: To store and reuse different instance configurations, use profiles.

Configure instance options

You can specify instance options when you create an instance.

To update instance options after the instance is created, use the 1xc config set command. Specify the instance
name and the key and value of the instance option:

1xc config set <instance_name> <option_key>=<option_value> <option_key>=<option_value>

— u

See Instance options for alist of available options and information about which options are available for which instance
type.

For example, to change the memory limit for your container, enter the following command:

2.3. Instances 35



LXD

[1xc config set my-container limits.memory=128MiB J

Note: Some of the instance options are updated immediately while the instance is running. Others are updated only
when the instance is restarted.

See the “Live update” column in the /nstance options tables for information about which options are applied immedi-
ately while the instance is running.

Configure instance properties

To update instance properties after the instance is created, use the 1xc config set command with the --property
flag. Specify the instance name and the key and value of the instance property:

1xc config set <instance_name> <property_key>=<property_value> <property_key>=<property_
—value> ... --property

Using the same flag, you can also unset a property just like you would unset a configuration option:

[lxc config unset <instance_name> <property_key> --property }

You can also retrieve a specific property value with:

[lxc config get <instance_name> <property_key> --property ]

Configure devices

To add and configure an instance device for your instance, use the 1xc config device add command. Generally,
devices can be added or removed for a container while it is running. VMs support hotplugging for some device types,
but not all.

Specify the instance name, a device name, the device type and maybe device options (depending on the device type):

1xc config device add <instance_name> <device_name> <device_type> <device_option_key>=
—.<device_option_value> <device_option_key>=<device_option_value>

See Devices for a list of available device types and their options.

Note: Every device entry is identified by a name unique to the instance.

Devices from profiles are applied to the instance in the order in which the profiles are assigned to the instance. Devices
defined directly in the instance configuration are applied last. At each stage, if a device with the same name already
exists from an earlier stage, the whole device entry is overridden by the latest definition.

Device names are limited to a maximum of 64 characters.

For example, to add the storage at /share/c1 on the host system to your instance at path /opt, enter the following
command:

[lxc config device add my-container disk-storage-device disk source=/share/cl path=/opt ]

To configure instance device options for a device that you have added earlier, use the 1xc config device set com-
mand:

36 Chapter 2. Project and community



LXD

1xc config device set <instance_name> <device_name> <device_option_key>=<device_option_
—value> <device_option_key>=<device_option_value>

Note: You can also specify device options by using the --device flag when creating an instance. This is useful if
you want to override device options for a device that is provided through a profile.

To remove a device, use the 1xc config device remove command. See 1xc config device --help for a full
list of available commands.

Display instance configuration

To display the current configuration of your instance, including writable instance properties, instance options, devices
and device options, enter the following command:

[1xc config show <instance_name> --expanded J

Edit the full instance configuration

To edit the full instance configuration, including writable instance properties, instance options, devices and device
options, enter the following command:

[lxc config edit <instance_name>

Note: For convenience, the 1xc config edit command displays the full configuration including read-only instance
properties. However, you cannot edit those properties. Any changes are ignored.

2.3.5 How to create instance snapshots

You can save your instance at a point in time by creating an instance snapshot, which makes it easy to restore the
instance to a previous state.

Instance snapshots are stored in the same storage pool as the instance volume itself.

Create a snapshot

Use the following command to create a snapshot of an instance:

[lxc snapshot <instance_name> [<snapshot name>] ]

Add the --reuse flag in combination with a snapshot name to replace an existing snapshot.

By default, snapshots are kept forever, unless the snapshots.expiry configuration option is set. To retain a specific
snapshot even if a general expiry time is set, use the --no-expiry flag.

For virtual machines, you can add the --stateful flag to capture not only the data included in the instance volume
but also the running state of the instance. Note that this feature is not fully supported for containers because of CRIU
limitations.

2.3. Instances 37



LXD

View, edit or delete shapshots

Use the following command to display the snapshots for an instance:

[1xc info <instance_name> ]

You can view or modify snapshots in a similar way to instances, by referring to the snapshot with <instance_name>/
<snapshot_name>.

To show configuration information about a snapshot, use the following command:

[lxc config show <instance_name>/<snapshot_name> ]

To change the expiry date of a snapshot, use the following command:

[lxc config edit <instance_name>/<snapshot_name> ]

Note: In general, snapshots cannot be edited, because they preserve the state of the instance. The only exception is
the expiry date. Other changes to the configuration are silently ignored.

To delete a snapshot, use the following command:

[1xc delete <instance_name>/<snapshot_name> ]

Schedule instance snapshots

You can configure an instance to automatically create snapshots at specific times (at most once every minute). To do
80, set the snapshots. schedule instance option.

For example, to configure daily snapshots, use the following command:

[lxc config set <instance_name> snapshots.schedule @daily J

To configure taking a snapshot every day at 6 am, use the following command:

[lxc config set <instance_name> snapshots.schedule "0 6 * * *" J

When scheduling regular snapshots, consider setting an automatic expiry (snapshots.expiry) and a naming pattern
for snapshots (snapshots.pattern). You should also configure whether you want to take snapshots of instances that
are not running (snapshots. schedule. stopped).

Restore an instance snapshot

You can restore an instance to any of its snapshots.

To do so, use the following command:

[1xc restore <instance_name> <snapshot_name> J

If the snapshot is stateful (which means that it contains information about the running state of the instance), you can
add the --stateful flag to restore the state.

38 Chapter 2. Project and community



LXD

2.3.6 How to use profiles

Profiles store a set of configuration options. They can contain instance options, devices and device options.

You can apply any number of profiles to an instance. They are applied in the order they are specified, so the last profile
to specify a specific key takes precedence. However, instance-specific configuration always overrides the configuration
coming from the profiles.

Note: Profiles can be applied to containers and virtual machines. Therefore, they might contain options and devices
that are valid for either type.

When applying a profile that contains configuration that is not suitable for the instance type, this configuration is ignored
and does not result in an error.

If you don’t specify any profiles when launching a new instance, the default profile is applied automatically. This
profile defines a network interface and a root disk. The default profile cannot be renamed or removed.

View profiles

Enter the following command to display a list of all available profiles:

[lxc profile list

Enter the following command to display the contents of a profile:

[lxc profile show <profile_name>

Create an empty profile

Enter the following command to create an empty profile:

[lxc profile create <profile_name>

Edit a profile
You can either set specific configuration options for a profile or edit the full profile in YAML format.
Set specific options for a profile

To set an instance option for a profile, use the 1xc profile set command. Specify the profile name and the key and
value of the instance option:

—

‘1xc profile set <profile_name> <option_key>=<option_value> <option_key>=<option_value> ..

To add and configure an instance device for your profile, use the 1xc profile device add command. Specify the
profile name, a device name, the device type and maybe device options (depending on the device type):

1xc profile device add <profile_name> <device_name> <device_type> <device_option_key>=
—<device_option_value> <device_option_key>=<device_option_value> ...

2.3. Instances 39



LXD

To configure instance device options for a device that you have added to the profile earlier, use the 1xc profile
device set command:

1xc profile device set <profile_name> <device_name> <device_option_key>=<device_option_
—»value> <device_option_key>=<device_option_value> ...

Edit the full profile

Instead of setting each configuration option separately, you can provide all options at once in YAML format.

Check the contents of an existing profile or instance configuration for the required markup. For example, the default
profile might look like this:

config: {}
description: Default LXD profile
devices:
eth0:
name: eth@®
network: lxdbr®

type: nic
root:
path: /
pool: default
type: disk
name: default
used_by:

Instance options are provided as an array under config. Instance devices and instance device options are provided
under devices.

To edit a profile using your standard terminal editor, enter the following command:

[lxc profile edit <profile_name> J

Alternatively, you can create a YAML file (for example, profile.yaml) with the configuration and write the config-
uration to the profile with the following command:

[lxc profile edit <profile_name> < profile.yaml J

Apply a profile to an instance

Enter the following command to apply a profile to an instance:

[lxc profile add <instance_name> <profile_name> ]

Tip: Check the configuration after adding the profile: 1xc config show <instance_name>

You will see that your profile is now listed under profiles. However, the configuration options from the profile are
not shown under config (unless you add the --expanded flag). The reason for this behavior is that these options are
taken from the profile and not the configuration of the instance.

This means that if you edit a profile, the changes are automatically applied to all instances that use the profile.

40 Chapter 2. Project and community



LXD

You can also specify profiles when launching an instance by adding the --profile flag:

[lxc launch <image> <instance_name> --profile <profile> --profile <profile>

Remove a profile from an instance

Enter the following command to remove a profile from an instance:

[1xc profile remove <instance_name> <profile_name>

2.3.7 How to use cloud-init

cloud-init is a tool for automatically initializing and customizing an instance of a Linux distribution.

By adding cloud-init configuration to your instance, you can instruct cloud-init to execute specific actions at the
first start of an instance. Possible actions include, for example:

» Updating and installing packages

* Applying certain configurations

* Adding users

* Enabling services

* Running commands or scripts

* Automatically growing the file system of a VM to the size of the disk

See the Cloud-init documentation for detailed information.

Note: The cloud-init actions are run only once on the first start of the instance. Rebooting the instance does not
re-trigger the actions.

cloud-init support in images

To use cloud-init, you must base your instance on an image that has cloud-init installed:
* All images from the ubuntu and ubuntu-daily image servers have cloud-init support.

¢ Images from the images remote have cloud-init-enabled variants, which are usually bigger in size than the
default variant. The cloud variants use the /cloud suffix, for example, images:ubuntu/22.04/cloud.

Configuration options

LXD supports two different sets of configuration options for configuring cloud-init: cloud-init.* and user.*.
Which of these sets you must use depends on the cloud-init support in the image that you use. As a rule of thumb,
newer images support the cloud-init.* configuration options, while older images support user. *. However, there
might be exceptions to that rule.

The following configuration options are supported:
¢ cloud-init.vendor-data or user.vendor-data (see Vendor data)

e cloud-init.user-data or user.user-data (see User data formats)

2.3. Instances 41


https://cloud-init.io/
https://cloudinit.readthedocs.io/en/latest/index.html#index
https://images.linuxcontainers.org/
https://cloudinit.readthedocs.io/en/latest/explanation/vendordata.html#vendordata
https://cloudinit.readthedocs.io/en/latest/explanation/format.html#user-data-formats

LXD

e cloud-init.network-config or user.network-config (see Network configuration)

For more information about the configuration options, see the cloud-init instance options, and the documentation
for the LXD data source in the cloud-init documentation.

Vendor data and user data

Both vendor-data and user-data are used to provide cloud configuration data to cloud-init.

The main idea is that vendor-data is used for the general default configuration, while user-data is used for instance-
specific configuration. This means that you should specify vendor-data in a profile and user-data in the instance
configuration. LXD does not enforce this method, but allows using both vendor-data and user-data in profiles and
in the instance configuration.

If both vendor-data and user-data are supplied for an instance, cloud-init merges the two configurations. How-
ever, if you use the same keys in both configurations, merging might not be possible. In this case, configure how
cloud-init should merge the provided data. See Merging user data sections for instructions.

How to configure cloud-init
To configure cloud-init for an instance, add the corresponding configuration options to a profile that the instance
uses or directly to the instance configuration.

When configuring cloud-init directly for an instance, keep in mind that cloud-init runs only on the first start
of the instance. That means that you must configure cloud-init before you start the instance. To do so, create the
instance with 1xc init instead of 1xc launch, and then start it after completing the configuration.

YAML format for cloud-init configuration

The cloud-init options require YAML's literal style format. You use a pipe symbol (|) to indicate that all indented
text after the pipe should be passed to cloud-init as a single string, with new lines and indentation preserved.

The vendor-data and user-data options usually start with #cloud-config.

For example:

config:
cloud-init.user-data: |

Tip: See How to validate user data for information on how to check whether the syntax is correct.

42 Chapter 2. Project and community



https://cloudinit.readthedocs.io/en/latest/reference/network-config.html#network-config
https://cloudinit.readthedocs.io/en/latest/reference/datasources/lxd.html#datasource-lxd
https://cloudinit.readthedocs.io/en/latest/explanation/format.html#cloud-config-data
https://cloudinit.readthedocs.io/en/latest/reference/merging.html#merging-user-data
https://yaml.org/spec/1.2.2/#812-literal-style
https://cloudinit.readthedocs.io/en/latest/howto/debug_user_data.html#check-user-data-cloud-config

LXD

How to check the cloud-init status

cloud-init runs automatically on the first start of an instance. Depending on the configured actions, it might take a
while until it finishes.

To check the cloud-init status, log on to the instance and enter the following command:

[cloud—init status

If the result is status: running, cloud-init is still working. If the result is status: done, it has finished.
Alternatively, use the --wait flag to be notified only when cloud-init is finished:

root@instance:~# cloud-init status --wWait @ ...ttt it ittt status:
done

How to specify user or vendor data
The user-data and vendor-data configuration can be used to, for example, upgrade or install packages, add users,
or run commands.

The provided values must have a first line that indicates what type of user data format is being passed to cloud-init.
For activities like upgrading packages or setting up a user, #cloud-config is the data format to use.

The configuration data is stored in the following files in the instance’s root file system:
e /var/lib/cloud/instance/cloud-config.txt

e /var/lib/cloud/instance/user-data.txt

Examples

See the following sections for the user data (or vendor data) configuration for different example use cases.

You can find more advanced examples in the cloud-init documentation.

Upgrade packages

To trigger a package upgrade from the repositories for the instance right after the instance is created, use the
package_upgrade key:

config:
cloud-init.user-data: |

2.3. Instances 43


https://cloudinit.readthedocs.io/en/latest/explanation/format.html#user-data-formats
https://cloudinit.readthedocs.io/en/latest/reference/examples.html#yaml-examples

LXD

Install packages

To install specific packages when the instance is set up, use the packages key and specify the package names as a list:

config:
cloud-init.user-data: |

Set the time zone

To set the time zone for the instance on instance creation, use the timezone key:

config:
cloud-init.user-data: |

Run commands

To run a command (such as writing a marker file), use the runcmd key and specify the commands as a list:

config:
cloud-init.user-data: |

Add a user account

To add a user account, use the user key. See the Including users and groups example in the cloud-init documentation
for details about default users and which keys are supported.

config:
cloud-init.user-data: |

44 Chapter 2. Project and community



https://cloudinit.readthedocs.io/en/latest/reference/examples.html#including-users-and-groups

LXD

How to specify network configuration data

By default, cloud-init configures a DHCP client on an instance’s eth@ interface. You can define your own network
configuration using the network-config option to override the default configuration (this is due to how the template
is structured).

cloud-init then renders the relevant network configuration on the system using either ifupdown or netplan, de-
pending on the Ubuntu release.

The configuration data is stored in the following files in the instance’s root file system:
e /var/lib/cloud/seed/nocloud-net/network-config
e /etc/network/interfaces.d/50-cloud-init.cfg (if using ifupdown)

* /etc/netplan/50-cloud-init.yaml (if using netplan)

Example

To configure a specific network interface with a static IPv4 address and also use a custom name server, use the following
configuration:

config:
cloud-init.network-config: |

2.3.8 How to run commands in an instance
LXD allows to run commands inside an instance using the LXD client, without needing to access the instance through
the network.

For containers, this always works and is handled directly by LXD. For virtual machines, the 1xd-agent process must
be running inside of the virtual machine for this to work.

To run commands inside your instance, use the 1xc exec command. By running a shell command (for example,
/bin/bash), you can get shell access to your instance.

2.3. Instances 45




LXD

Run commands inside your instance

To run a single command from the terminal of the host machine, use the 1xc exec command:

[1xc exec <instance_name> -- <command> ]

For example, enter the following command to update the package list on your container:

[lxc exec ubuntu-container -- apt-get update ]

Execution mode

LXD can execute commands either interactively or non-interactively.

In interactive mode, a pseudo-terminal device (PTS) is used to handle input (stdin) and output (stdout, stderr). This
mode is automatically selected by the CLI if connected to a terminal emulator (and not run from a script). To force
interactive mode, add either --force-interactive or --mode interactive to the command.

In non-interactive mode, pipes are allocated instead (one for each of stdin, stdout and stderr). This method allows
running a command and properly getting separate stdin, stdout and stderr as required by many scripts. To force non-
interactive mode, add either --force-noninteractive or --mode non-interactive to the command.

User, groups and working directory

LXD has a policy not to read data from within the instances or trust anything that can be found in the instance. There-
fore, LXD does not parse files like /etc/passwd, /etc/group or /etc/nsswitch.conf to handle user and group
resolution.

As a result, LXD doesn’t know the home directory for the user or the supplementary groups the user is in.

By default, LXD runs commands as root (UID 0) with the default group (GID 0) and the working directory set to
/root. You can override the user, group and working directory by specifying absolute values through the following
flags:

e --user - the user ID for running the command
e --group - the group ID for running the command

e --cwd - the directory in which the command should run

Environment

You can pass environment variables to an exec session in the following two ways:

Set environment variables as instance options
To set the ENVVAR environment variable to VALUE in the instance, set the environment . ENVVAR instance option:

[lxc config set <instance_name> environment.ENVVAR=VALUE ]

Pass environment variables to the exec command
To pass an environment variable to the exec command, use the --env flag. For example:

[lxc exec <instance_name> --env ENVVAR=VALUE -- <command> ]

46 Chapter 2. Project and community



LXD

In addition, LXD sets the following default values (unless they are passed in one of the ways described above):

Variable name Condition Value

PATH - Concatenation of:
e /usr/local/sbin
e /usr/local/bin
e /usr/sbin
e /usr/bin
e /sbin
e /bin
* /snap (if applicable)
* /etc/NIXOS (if applicable)

LANG - C.UTF-8
HOME running as root (UID 0) /root
USER running as root (UID 0) root

Get shell access to your instance

If you want to run commands directly in your instance, run a shell command inside it. For example, enter the following
command (assuming that the /bin/bash command exists in your instance):

[1xc exec <instance_name> -- /bin/bash ]

By default, you are logged in as the root user. If you want to log in as a different user, enter the following command:

[lxc exec <instance_name> -- su --login <user_name> ]

Note: Depending on the operating system that you run in your instance, you might need to create a user first.

To exit the instance shell, enter exit or press Ctrl+d.

2.3.9 How to access the console

Use the 1xc console command to attach to instance consoles. The console is available at boot time already, so you
can use it to see boot messages and, if necessary, debug startup issues of a container or VM.

To get an interactive console, enter the following command:

[lxc console <instance_name> ]

To show log output, pass the --show-1og flag:

[lxc console <instance_name> --show-1log ]

You can also immediately attach to the console when you start your instance:

lxc start <instance_name> --console=vga

1xc start <instance_name> --console ’

2.3. Instances 47



LXD

Access the graphical console (for virtual machines)

On virtual machines, log on to the console to get graphical output. Using the console you can, for example, install an
operating system using a graphical interface or run a desktop environment.

An additional advantage is that the console is available even if the 1xd-agent process is not running. This means that
you can access the VM through the console before the 1xd-agent starts up, and also if the 1xd-agent is not available
at all.

To start the VGA console with graphical output for your VM, you must install a SPICE client (for example,
virt-viewer or spice-gtk-client). Then enter the following command:

[lxc console <vm_name> --type vga

2.3.10 How to access files in an instance

You can manage files inside an instance using the LXD client without needing to access the instance through the
network. Files can be individually edited or deleted, pushed from or pulled to the local machine. Alternatively, you
can mount the instance’s file system onto the local machine.

For containers, these file operations always work and are handled directly by LXD. For virtual machines, the 1xd-agent
process must be running inside of the virtual machine for them to work.

Edit instance files

To edit an instance file from your local machine, enter the following command:

[lxc file edit <instance_name>/<path_to_file> J

For example, to edit the /etc/hosts file in the instance, enter the following command:

[lxc file edit my-container/etc/hosts J

Note: The file must already exist on the instance. You cannot use the edit command to create a file on the instance.

Delete files from the instance

To delete a file from your instance, enter the following command:

[lxc file delete <instance_name>/<path_to_file> }

48 Chapter 2. Project and community



LXD

Pull files from the instance to the local machine

To pull a file from your instance to your local machine, enter the following command:

[lxc file pull <instance_name>/<path_to_file> <local_file_path> ]

For example, to pull the /etc/hosts file to the current directory, enter the following command:

[lxc file pull my-instance/etc/hosts . ]

Instead of pulling the instance file into a file on the local system, you can also pull it to stdout and pipe it to stdin of
another command. This can be useful, for example, to check a log file:

[1xc file pull my-instance/var/log/syslog - | less ]

To pull a directory with all contents, enter the following command:

[lxc file pull -r <instance_name>/<path_to_directory> <local_location> }

Push files from the local machine to the instance

To push a file from your local machine to your instance, enter the following command:

[lxc file push <local_file_path> <instance_name>/<path_to_file> J

You can specify the file permissions by adding the --gid, --uid, and --mode flags.

To push a directory with all contents, enter the following command:

[lxc file push -r <local_location> <instance_name>/<path_to_directory> ]

Mount a file system from the instance

You can mount an instance file system into a local path on your client.

To do so, make sure that you have sshfs installed. Then run the following command (note that if you're using the
snap, the command requires root permissions):

[1xc file mount <instance_name>/<path_to_directory> <local_location> ]

You can then access the files from your local machine.

Set up an SSH SFTP listener

Alternatively, you can set up an SSH SFTP listener. This method allows you to connect with any SFTP client and with
a dedicated user name. Also, if you're using the snap, it does not require root permission.

To do so, first set up the listener by entering the following command:

[lxc file mount <instance_name> [--listen <address>:<port>] ]

For example, to set up the listener on a random port on the local machine (for example, 127.0.0.1:45467):

2.3. Instances 49



LXD

[1xc file mount my-instance

If you want to access your instance files from outside your local network, you can pass a specific address and port:

{lxc file mount my-instance --listen 192.0.2.50:2222

Caution: Be careful when doing this, because it exposes your instance remotely.

To set up the listener on a specific address and a random port:

[1xc file mount my-instance --listen 192.0.2.50:0

The command prints out the assigned port and a user name and password for the connection.

Tip: You can specify a user name by passing the --auth-user flag.

Use this information to access the file system. For example, if you want to use sshfs to connect, enter the following
command:

[sshfs <user_name>@<address>:<path_to_directory> <local_location> -p <port>

For example:

[sshfs xFn8ai8c@127.0.0.1:/home my-instance-files -p 35147

You can then access the file system of your instance at the specified location on the local machine.

2.3.11 How to add a routed NIC device to a virtual machine

When adding a routed NIC device to an instance, you must configure the instance to use the link-local gateway IPs as
default routes. For containers, this is configured for you automatically. For virtual machines, the gateways must be
configured manually or via a mechanism like cloud-init.

To configure the gateways with cloud-init, firstly initialize an instance:

[lxc init ubuntu:22.04 jammy --vm

Then add the routed NIC device:

1xc config device add jammy eth® nic nictype=routed parent=my-parent-network ipv4.
—address=192.0.2.2 ipv6.address=2001:db8::2

In this command, my-parent-network is your parent network, and the IPv4 and IPv6 addresses are within the subnet
of the parent.

Next we will add some netplan configuration to the instance using the cloud-init.network-config configuration
key:

cat <<EOF | lxc config set jammy cloud-init.network-config -
network:
version: 2

(continues on next page)

50 Chapter 2. Project and community



LXD

(continued from previous page)

ethernets:
enp5s0:

routes:

- to: default
via: 169.254.0.1
on-link: true

- to: default
via: fe80::1
on-link: true

addresses:

- 192.0.2.2/32

- 2001:db8::2/128

EOF

This netplan configuration adds the szatic link-local next-hop addresses (169.254.0.1 and fe80: :1) that are re-
quired. For each of these routes we set on-1link to true, which specifies that the route is directly connected to the
interface. We also add the addresses that we configured in our routed NIC device. For more information on netplan,
see their documentation.

Note: This netplan configuration does not include a name server. To enable DNS within the instance, you must set
a valid DNS IP address. If there is a 1xdbr0® network on the host, the name server can be set to that IP instead.

You can then start your instance with:

[lxc start jammy

Note: Before you start your instance, make sure that you have configured the parent network to enable proxy ARP/NDP.

2.3.12 How to troubleshoot failing instances
If your instance fails to start and ends up in an error state, this usually indicates a bigger issue related to either the image
that you used to create the instance or the server configuration.
To troubleshoot the problem, complete the following steps:
1. Save the relevant log files and debug information:

Instance log
Enter the following command to display the instance log:

[lxc info <instance_name> --show-log

Console log
Enter the following command to display the console log:

[lxc console <instance_name> --show-log

Detailed server information
The LXD snap includes a tool that collects the relevant server information for debugging. Enter the follow-
ing command to run it:

2.3. Instances 51



https://netplan.readthedocs.io/en/latest/

LXD

[sudo 1xd.buginfo

2. Reboot the machine that runs your LXD server.
3. Try starting your instance again. If the error occurs again, compare the logs to check if it is the same error.

If it is, and if you cannot figure out the source of the error from the log information, open a question in the forum.
Make sure to include the log files you collected.

Troubleshooting example

In this example, let’s investigate a RHEL 7 system in which systemd cannot start.

user@host:~$ lxc console --show-log systemd Console log: Failed to insert module
'autofs4'Failed to insert module 'unix'Failed to mount sysfs at /sys: Operation not
permittedFailed to mount proc at /proc: Operation not permitted[!!!!!!] Failed to mount

API filesystems, freezing. The errors here say that /sys and /proc cannot be mounted - which is correct in
an unprivileged container. However, LXD mounts these file systems automatically if it can.

The container requirements specify that every container must come with an empty /dev, /proc and /sys directory,
and that /sbin/init must exist. If those directories don’t exist, LXD cannot mount them, and systemd will then try
to do so. As this is an unprivileged container, systemd does not have the ability to do this, and it then freezes.

So you can see the environment before anything is changed, and you can explicitly change the init system in a con-
tainer using the raw. 1xc configuration parameter. This is equivalent to setting init=/bin/bash on the Linux kernel
command line.

[lxc config set systemd raw.lxc 'lxc.init.cmd = /bin/bash’

Here is what it looks like:

user@host:~$ 1xc config set systemd raw.lxc 'lxc.init.cmd = /bin/bash'’ user@host:~$ 1lxc
start systemd user@host:~$ 1xc console --show-log systemd Console log: [root@systemd /]#
Now that the container has started, you can check it and see that things are not running as well as expected:

user@host:~$ 1lxc exec systemd -- bash [root@systemd ~]# ls[root@systemd ~]# mountmount:
failed to read mtab: No such file or directory[root@systemd ~]# cd /[root@systemd /]# ls
/proc/sys[root@systemd /]# exit Because LXD tries to auto-heal, it created some of the directories when it
was starting up. Shutting down and restarting the container fixes the problem, but the original cause is still there - the
template does not contain the required files.

2.3.13 Instance configuration

The instance configuration consists of different categories:

Instance properties
Instance properties are specified when the instance is created. They include, for example, the instance name and
architecture. Some of the properties are read-only and cannot be changed after creation, while others can be
updated by setting their property value or editing the full instance configuration.

In the YAML configuration, properties are on the top level.
See Instance properties for a reference of available instance properties.

Instance options
Instance options are configuration options that are related directly to the instance. They include, for example,
startup options, security settings, hardware limits, kernel modules, snapshots and user keys. These options can be

52 Chapter 2. Project and community


https://discourse.ubuntu.com/c/lxd/

LXD

specified as key/value pairs during instance creation (through the --config key=value flag). After creation,
they can be configured with the 1xc config set and 1xc config unset commands.

In the YAML configuration, options are located under the config entry.

See Instance options for a reference of available instance options, and Configure instance options for instructions
on how to configure the options.

Instance devices
Instance devices are attached to an instance. They include, for example, network interfaces, mount points, USB
and GPU devices. Devices are usually added after an instance is created with the 1xc config device add
command, but they can also be added to a profile or a YAML configuration file that is used to create an instance.

Each type of device has its own specific set of options, referred to as instance device options.
In the YAML configuration, devices are located under the devices entry.

See Devices for a reference of available devices and the corresponding instance device options, and Configure
devices for instructions on how to add and configure instance devices.

Instance properties

Instance properties are set when the instance is created. They cannot be part of a profile.

The following instance properties are available:

Property Read-only Description
name yes Instance name (see /nstance name requirements)
architecture no Instance architecture

Instance name requirements

The instance name can be changed only by renaming the instance with the 1xc rename command.
Valid instance names must fulfill the following requirements:

* The name must be between 1 and 63 characters long.

* The name must contain only letters, numbers and dashes from the ASCII table.

* The name must not start with a digit or a dash.

¢ The name must not end with a dash.

The purpose of these requirements is to ensure that the instance name can be used in DNS records, on the file system,
in various security profiles and as the host name of the instance itself.

2.3. Instances 53



LXD

Instance options

Instance options are configuration options that are directly related to the instance.

See Configure instance options for instructions on how to set the instance options.

The key/value configuration is namespaced. The following options are available:

Miscellaneous options
Boot-related options
cloud-init configuration
Resource limits

Migration options

NVIDIA and CUDA configuration

Raw instance configuration overrides

Security policies

Snapshot scheduling and configuration

Volatile internal data

Note that while a type is defined for each option, all values are stored as strings and should be exported over the REST
API as strings (which makes it possible to support any extra values without breaking backward compatibility).

Miscellaneous options

In addition to the configuration options listed in the following sections, these instance options are supported:

Key Type De- Live Con-  Description

fault up- dition

date
agent. bool fals no virtual ~ Controls whether to set the name and MTU of the default network
nic_config ma- interfaces to be the same as the instance devices (this happens auto-
chine  matically for containers)
cluster. string auto no - Controls what to do when evacuating the instance (auto, migrate,
evacuate live-migrate, or stop)
environmen string - yes - Key/value environment variables to export to the instance and set for
& (exec) 1xc exec
linux. string - yes con- Comma-separated list of kernel modules to load before starting the
kernel_mod tainer  instance
linux. string - no con- Value to override the corresponding sysctl setting in the container
sysctl.* tainer
user.* string - no - Free-form user key/value storage (can be used in search)
54 Chapter 2. Project and community



LXD

Boot-related options

The following instance options control the boot-related behavior of the instance:

Key Type De- Live Con-  Description
fault update dition
boot.autostart bool - no - Controls whether to always start the instance when LXD
starts (if not set, restore the last state)

boot.autostart. in- 0 no - Number of seconds to wait after the instance started be-
delay te- fore starting the next one

ger
boot.autostart. in- 0 no - What order to start the instances in (starting with the
priority te- highest value)

ger
boot. in- 30 yes - Seconds to wait for the instance to shut down before it is
host_shutdown_tin te- force-stopped

ger
boot.stop. in- 0 no - What order to shut down the instances in (starting with
priority te- the highest value)

ger

cloud-init configuration

The following instance options control the cloud-init configuration of the instance:

Key Type Default Live Condition Description
update

cloud-init. string DHCP on  no if supported Network configuration for cloud-init
network-config eth® by image (content is used as seed value)
cloud-init. string #cloud-co: no if supported User data for cloud-init (content is used
user-data by image as seed value)
cloud-init. string #cloud-co: no if supported Vendor data for cloud-init (content is
vendor-data by image used as seed value)
user. string DHCP on  no if supported Legacy version of cloud-init.
network-config eth® by image network-config
user.user-data string #cloud-co: no if supported Legacy version of cloud-init.

by image user-data
user. string #cloud-co: no if supported Legacy version of cloud-init.
vendor-data by image vendor-data

Support for these options depends on the image that is used and is not guaranteed.

If you specify both cloud-init.user-data and cloud-init.vendor-data, the content of both options is merged.
Therefore, make sure that the cloud-init configuration you specify in those options does not contain the same keys.

2.3. Instances

55



LXD

Resource limits

The following instance options specify resource limits for the instance:

56 Chapter 2. Project and community



LXD

Key Type De- Live Con- Description

fault  up- di-

date tion

limits. string for yes - Number or range of CPUs to expose to the instance; see CPU pin-
cpu VMs: ning

1

CPU
limits. string 100%  yes con-  Controls how much of the CPU can be used: either a percentage
cpu. tainer (50%) for a soft limit or a chunk of time (25ms/100ms) for a hard
allowance limit; see Allowance and priority (container only)
limits. string - yes - Comma-separated list of NUMA node IDs or ranges to place the
cpu.nodes instance CPUs on; see Allowance and priority (container only)
limits. in- 10 yes con-  CPU scheduling priority compared to other instances sharing the
cpu. te- (max- tainer same CPUs when overcommitting resources (integer between 0 and
priority ger i- 10); see Allowance and priority (container only)

mum)
limits. in- 5 yes - Controls how much priority to give to the instance’s I/O requests
disk. te- (mediu1 when under load (integer between 0 and 10)
priority ger
limits. string - yes con-  Fixed value in bytes (various suffixes supported, see Units for stor-
hugepages. tainer  age and network limits) to limit number of 64 KB huge pages; see
64KB Huge page limits
limits. string - yes con-  Fixed value in bytes (various suffixes supported, see Units for stor-
hugepages. tainer age and network limits) to limit number of 1 MB huge pages; see
1MB Huge page limits
limits. string - yes con-  Fixed value in bytes (various suffixes supported, see Units for stor-
hugepages. tainer age and network limits) to limit number of 2 MB huge pages; see
2MB Huge page limits
limits. string - yes con-  Fixed value in bytes (various suffixes supported, see Units for stor-
hugepages. tainer age and network limits) to limit number of 1 GB huge pages; see
1GB Huge page limits
limits. string - no con-  Kernel resources per instance (for example, number of open files);
kernel.* tainer see Kernel resource limits
limits. string for yes - Percentage of the host’s memory or fixed value in bytes (various
memory VMs: suffixes supported, see Units for storage and network limits)

1Gib
limits. string hard  yes con- If hard, the instance cannot exceed its memory limit; if soft, the
memory . tainer instance can exceed its memory limit when extra host memory is
enforce available
limits. bool false no vir- Controls whether to back the instance using huge pages rather than
memory. tual regular system memory
hugepages ma-

chine

limits. bool true yes con-  Controls whether to encourage/discourage swapping less used
memory . tainer pages for this instance
swap
limits. in- 10 yes con-  Prevents the instance from being swapped to disk (integer between
memory . te-  (max- tainer 0 and 10; the higher the value, the less likely the instance is to be
swap . ger - swapped to disk)
priority mum)
limits. in- 0 yes - Controls how much priority to give to the instance’s network re-
network. te-  (min- quests when under load (integer between 0 and 10)
priority ger  i-

mum)

2.]31.m:||]i§f — sin- - yes - Maximum number of processes that can run in the instance 57

processes te- (max) tainer

ger




LXD

CPU limits

You have different options to limit CPU usage:
e Setlimits.cputo restrict which CPUs the instance can see and use. See CPU pinning for how to set this option.

e Set limits.cpu.allowance to restrict the load an instance can put on the available CPUs. This option is
available only for containers. See Allowance and priority (container only) for how to set this option.

It is possible to set both options at the same time to restrict both which CPUs are visible to the instance and the
allowed usage of those instances. However, if you use limits.cpu.allowance with a time limit, you should avoid
using limits.cpu in addition, because that puts a lot of constraints on the scheduler and might lead to less efficient
allocations.

The CPU limits are implemented through a mix of the cpuset and cpu cgroup controllers.

CPU pinning

limits.cpuresults in CPU pinning through the cpuset controller. You can specify either which CPUs or how many
CPUs are visible and available to the instance:

* To specify which CPUs to use, set 1imits.cpu to either a set of CPUs (for example, 1,2, 3) or a CPU range
(for example, 0-3).

To pin to a single CPU, use the range syntax (for example, 1-1) to differentiate it from a number of CPUs.

* If you specify a number (for example, 4) of CPUs, LXD will do dynamic load-balancing of all instances that
aren’t pinned to specific CPUs, trying to spread the load on the machine. Instances are re-balanced every time
an instance starts or stops, as well as whenever a CPU is added to the system.

CPU limits for virtual machines

Note: LXD supports live-updating the 1imits.cpu option. However, for virtual machines, this only means that the
respective CPUs are hotplugged. Depending on the guest operating system, you might need to either restart the instance
or complete some manual actions to bring the new CPUs online.

LXD virtual machines default to having just one vCPU allocated, which shows up as matching the host CPU vendor
and type, but has a single core and no threads.

When limits. cpuis set to a single integer, LXD allocates multiple vCPUs and exposes them to the guest as full cores.
Those vCPUs are not pinned to specific physical cores on the host. The number of vCPUs can be updated while the
VM is running.

When limits.cpu is set to a range or comma-separated list of CPU IDs (as provided by 1xc info --resources),
the vCPUs are pinned to those physical cores. In this scenario, LXD checks whether the CPU configuration lines up
with a realistic hardware topology and if it does, it replicates that topology in the guest. When doing CPU pinning, it
is not possible to change the configuration while the VM is running.

For example, if the pinning configuration includes eight threads, with each pair of thread coming from the same core
and an even number of cores spread across two CPUs, the guest will show two CPUs, each with two cores and each
core with two threads. The NUMA layout is similarly replicated and in this scenario, the guest would most likely end
up with two NUMA nodes, one for each CPU socket.

In such an environment with multiple NUMA nodes, the memory is similarly divided across NUMA nodes and be
pinned accordingly on the host and then exposed to the guest.

58 Chapter 2. Project and community



LXD

All this allows for very high performance operations in the guest as the guest scheduler can properly reason about
sockets, cores and threads as well as consider NUMA topology when sharing memory or moving processes across
NUMA nodes.

Allowance and priority (container only)

limits.cpu.allowance drives either the CFS scheduler quotas when passed a time constraint, or the generic CPU
shares mechanism when passed a percentage value:

* The time constraint (for example, 20ms/50ms) is a hard limit. For example, if you want to allow the container to
use a maximum of one CPU, set 1imits.cpu.allowance to a value like 100ms/100ms. The value is relative
to one CPU worth of time, so to restrict to two CPUs worth of time, use something like 100ms/50ms or 200ms/
100ms.

¢ When using a percentage value, the limit is a soft limit that is applied only when under load. It is used to calculate
the scheduler priority for the instance, relative to any other instance that is using the same CPU or CPUs. For
example, to limit the CPU usage of the container to one CPU when under load, set 1imits.cpu.allowance to
100%.

limits.cpu.nodes can be used to restrict the CPUs that the instance can use to a specific set of NUMA nodes. To
specify which NUMA nodes to use, set 1imits.cpu.nodes to either a set of NUMA node IDs (for example, 0, 1) or
a set of NUMA node ranges (for example, 0-1,2-4).

limits.cpu.priority is another factor that is used to compute the scheduler priority score when a number of in-
stances sharing a set of CPUs have the same percentage of CPU assigned to them.

Huge page limits

LXD allows to limit the number of huge pages available to a container through the 1imits.hugepage. [size] key.
Architectures often expose multiple huge-page sizes. The available huge-page sizes depend on the architecture.

Setting limits for huge pages is especially useful when LXD is configured to intercept the mount syscall for the
hugetlbfs file system in unprivileged containers. When LXD intercepts a hugetlbfs mount syscall, it mounts
the huget1bfs file system for a container with correct uid and gid values as mount options. This makes it possible to
use huge pages from unprivileged containers. However, it is recommended to limit the number of huge pages available
to the container through 1limits.hugepages. [size] to stop the container from being able to exhaust the huge pages
available to the host.

Limiting huge pages is done through the hugetlb cgroup controller, which means that the host system must expose
the huget1b controller in the legacy or unified cgroup hierarchy for these limits to apply.

Kernel resource limits

For container instances, LXD exposes a generic namespaced key limits.kernel.* that can be used to set resource
limits.

It is generic in the sense that LXD does not perform any validation on the resource that is specified following the
limits.kernel.* prefix. LXD cannot know about all the possible resources that a given kernel supports. Instead,
LXD simply passes down the corresponding resource key after the 1imits.kernel . * prefix and its value to the kernel.
The kernel does the appropriate validation. This allows users to specify any supported limit on their system.

Some common limits are:

2.3. Instances 59



LXD

Key Resource Description

limits.kernel.as RLIMIT_AS Maximum size of the process’s virtual memory

limits.kernel.core  RLIMIT_CORE Maximum size of the process’s core dump file

limits.kernel.cpu RLIMIT_CPU Limit in seconds on the amount of CPU time the process can con-
sume

limits.kernel.data  RLIMIT_DATA Maximum size of the process’s data segment

limits.kernel. RLIMIT_FSIZE Maximum size of files the process may create

fsize

limits.kernel. RLIMIT_LOCKS Limit on the number of file locks that this process may establish

locks

limits.kernel. RLIMIT_MEMLOCK Limit on the number of bytes of memory that the process may lock

memlock in RAM

limits.kernel.nice  RLIMIT_NICE Maximum value to which the process’s nice value can be raised

limits.kernel. RLIMIT_NOFILE Maximum number of open files for the process

nofile

limits.kernel. RLIMIT_NPROC Maximum number of processes that can be created for the user of

nproc the calling process

limits.kernel. RLIMIT_RTPRIO Maximum value on the real-time-priority that may be set for this

rtprio process

limits.kernel. RLIMIT_SIGPEND: Maximum number of signals that may be queued for the user of the

sigpending calling process

A full list of all available limits can be found in the manpages for the getrlimit (2)/setrlimit(2) system calls.

To specify a limit within the 1imits.kernel.* namespace, use the resource name in lowercase without the RLIMIT_
prefix. For example, RLIMIT_NOFILE should be specified as nofile.

A limit is specified as two colon-separated values that are either numeric or the word unlimited (for example, limits.
kernel.nofile=1000:2000). A single value can be used as a shortcut to set both soft and hard limit to the same
value (for example, limits.kernel.nofile=3000).

A resource with no explicitly configured limit will inherit its limit from the process that starts up the container. Note
that this inheritance is not enforced by LXD but by the kernel.

Migration options

The following instance options control the behavior if the instance is moved from one LXD server to another:

60

Chapter 2. Project and community



LXD

Key Type De- Live Con- Description
fault up- dition
date

migration. bool fals yes con- Controls whether to use incremental memory transfer of the
incremental. tainer  instance’s memory to reduce downtime
memory
migration. in- 70  yes con- Percentage of memory to have in sync before stopping the
incremental. te- tainer  instance
memory .goal ger
migration. in- 10 yes con- Maximum number of transfer operations to go through be-
incremental. te- tainer  fore stopping the instance
memory . ger
iterations
migration. bool fals no vir- Controls whether to allow for stateful stop/start and snap-
stateful tual shots (enabling this prevents the use of some features that

ma- are incompatible with it)

chine

NVIDIA and CUDA configuration

The following instance options specify the NVIDIA and CUDA configuration of the instance:

Key Type Default Live Con- Description

up- di-

date  tion
nvidia. string compute, no con-  What driver capabilities the instance
driver. utility tainer needs (sets libnvidia-container
capabilities NVIDIA_DRIVER_CAPABILITIES)
nvidia. bool false no con-  Controls whether to pass the host NVIDIA and CUDA
runtime tainer runtime libraries into the instance
nvidia. string - no con-  Version expression for the required CUDA version (sets
require.cuda tainer libnvidia-container NVIDIA_REQUIRE_CUDA)
nvidia. string - no con-  Version expression for the required driver version (sets
require. tainer libnvidia-container NVIDIA_REQUIRE_DRIVER)
driver

2.3. Instances

61



LXD

Raw instance configuration overrides

The following instance options allow direct interaction with the backend features that LXD itself uses:

Key Type De- Live Condition Description
fault update
raw. blob - yes - AppArmor profile entries to be appended to the generated
apparmor profile
raw. blob - no unprivileged Raw idmap configuration (for example, both 1000
idmap container 1000)
raw.lxc blob - no container Raw LXC configuration to be appended to the generated
one
raw.gemu blob - no virtual ma- Raw QEMU configuration to be appended to the gener-
chine ated command line
raw. blob - no virtual ma- Addition/override to the generated gemu.conf file (see
gemu. chine Override QEMU configuration)
conf
raw. blob - no container Raw Seccomp configuration
seccomp

Important: Setting these raw. * keys might break LXD in non-obvious ways. Therefore, you should avoid setting
any of these keys.

Override QEMU configuration

For VM instances, LXD configures QEMU through a configuration file that is passed to QEMU with the -readconfig
command-line option. This configuration file is generated for each instance before boot. It can be found at /var/log/
1xd/<instance_name>/qgemu.conf.

The default configuration works fine for LXD’s most common use case: modern UEFI guests with VirtlO devices. In
some situations, however, you might need to override the generated configuration. For example:

* To run an old guest OS that doesn’t support UEFI.

* To specify custom virtual devices when VirtIO is not supported by the guest OS.
* To add devices that are not supported by LXD before the machines boots.

» To remove devices that conflict with the guest OS.

To override the configuration, set the raw.gemu. conf option. It supports a format similar to gemu. conf, with some
additions. Since it is a multi-line configuration option, you can use it to modify multiple sections or keys.

* To replace a section or key in the generated configuration file, add a section with a different value.

For example, use the following section to override the default virtio-gpu-pci GPU driver:

raw.qgemu.conf: |-
[device "gemu_gpu"]
driver = "gxl-vga"

» To remove a section, specify a section without any keys. For example:

62 Chapter 2. Project and community



LXD

-

raw.gemu.conf: |-
[device "gemu_gpu'"]

.

To remove a key, specify an empty string as the value. For example:

-

raw.gemu.conf: |-
[device "gemu_gpu"]
driver = ""

* To add a new section, specify a section name that is not present in the configuration file.

The configuration file format used by QEMU allows multiple sections with the same name. Here’s a piece of the
configuration generated by LXD:

[global]

driver = "ICH9-LPC"
property = "disable_s3"
value = "1"

[global]

driver = "ICH9-LPC"
property = "disable_s4"
value = "1"

To specify which section to override, specify an index. For example:

raw.gemu.conf: |-
[global][1]
value = "0"

Section indexes start at O (which is the default value when not specified), so the above example would generate the
following configuration:

[global]

driver = "ICH9-LPC"
property = "disable_s3"
value = "1"

[global]

driver = "ICH9-LPC"
property = "disable_s4"
value = "0"

Security policies

The following instance options control the Security policies of the instance:

2.3. Instances 63




LXD

Tntercent <etxattr

Key Type De- Live Condi- Description
fault up- tion
date
security.devlxd bool true no - Controls the presence of /dev/1xd in the instance
security.devlxd. bool fals no container Controls the availability of the /1.0/images API
images over devlxd
security.idmap.base in- - no unpriv- The base host ID to use for the allocation (overrides
te- ileged auto-detection)
ger container
security.idmap. bool fals no unpriv- Controls whether to use an idmap for this instance
isolated ileged that is unique among instances with isolated set
container
security.idmap.size in- - no unpriv- The size of the idmap to use
te- ileged
ger container
security.nesting bool fals yes container Controls whether to support running LXD (nested)
inside the instance
security.privileged bool fals no container Controls whether to run the instance in privileged
mode
security. bool fals yes - Prevents the instance from being deleted
protection.delete
security. bool fals yes container Prevents the instance’s file system from being
protection.shift UID/GID shifted on startup
security.agent. bool true no virtual Controls whether the 1xd-agent is queried for state
metrics machine  information and metrics
security.secureboot bool true no virtual Controls whether UEFI secure boot is enabled with
machine  the default Microsoft keys
security.syscalls. string - no container A \n-separated list of syscalls to allow (mutually ex-
allow clusive with security.syscalls.deny*)
security.syscalls. string - no container A \n-separated list of syscalls to deny
deny
security.syscalls. bool fals no container On x86_64, controls whether to block compat_*
deny_compat syscalls (no-op on other architectures)
security.syscalls. bool true no container  Controls whether to enable the default syscall deny
deny_default
security.syscalls. bool fals no container  Controls whether to handle the bpf system call
intercept.bpf
security.syscalls. bool fals no container Controls whether to allow bpf programs for the de-
intercept.bpf. vices cgroup in the unified hierarchy to be loaded
devices
security.syscalls. bool fals no container  Controls whether to handle the mknod and mknodat
intercept.mknod system calls (allows creation of a limited subset of
char/block devices)
security.syscalls. bool fals no container Controls whether to handle the mount system call
intercept.mount
security.syscalls. string - yes container A comma-separated list of file systems that are safe
intercept.mount. to mount for processes inside the instance
allowed
security.syscalls. string - yes container Mounts of a given file system that should be redi-
intercept.mount. rected to their FUSE implementation (for example,
fuse ext4=fuse2fs)
security.syscalls. bool fals yes container  Controls whether to mount shiftfs on top of file
intercept.mount. systems handled through mount syscall interception
shift
6 ecurity.syscalls. bool fals no container Controls Cll\lg %}% Pra — alﬁi‘{l?ﬁmmuﬁ]ﬁy
intercept. sched_setschéduler system call (allows in-
sched_setscheduler creasing process priority)
security.syscalls. bool fals no container Controls whether to handle the setxattr system

call (allowe <ettinoe a limited <subecet of rec<tricted ex-



LXD

Snapshot scheduling and configuration

The following instance options control the creation and expiry of instance snapshots:

Key Type De- Live Con- Description
fault up- di-
date tion
snapshots string - no - Cron expression (<minute> <hour> <dom> <month> <dow>), a
schedule comma-separated list of schedule aliases (@hourly, @daily, @midnight,
@weekly, @monthly, @annually, @yearly), or empty to disable auto-
matic snapshots (the default)
snapshots bool fals no - Controls whether to automatically snapshot stopped instances
schedule.
stopped
snapshots string snap no - Pongo2 template string that represents the snapshot name (used for sched-
pattern uled snapshots and unnamed snapshots); see Automatic snapshot names
snapshots string - no - Controls when snapshots are to be deleted (expects an expression like 1M

expiry

2H 3d 4w 5m 6y)

Automatic snapshot names

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable creation_date. Make sure to format the
date in your template string to avoid forbidden characters in the snapshot name. For example, set snapshots.pattern
to {{ creation_date|date:'2006-01-02_15-04-05" }} toname the snapshots after their time of creation, down

to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first snapshot, the placeholder
is replaced with 0. For subsequent snapshots, the existing snapshot names are taken into account to find the highest
number at the placeholder’s position. This number is then incremented by one for the new name.

Volatile internal data

The following volatile keys are currently used internally by LXD to store internal data specific to an instance:

2.3. Instances

65



LXD

Key Type Description
volatile. string The name of a template hook that should be triggered upon next startup
apply_template
volatile.apply_nvram string Whether to regenerate VM NVRAM the next time the instance starts
volatile.base_image string The hash of the image the instance was created from (if any)
volatile.cloud-init. string The instance-id (UUID) exposed to cloud-init
instance-id
volatile.evacuate. string The origin (cluster member) of the evacuated instance
origin
volatile.idmap.base in-  The first ID in the instance’s primary idmap range
te-
ger
volatile.idmap. string The idmap currently in use by the instance
current
volatile.idmap.next string The idmap to use the next time the instance starts
volatile.last_state. string Serialized instance UID/GID map
idmap
volatile.last_state. string Instance state as of last host shutdown
power
volatile.vsock_id string Instance vsock ID used as of last start
volatile.uuid string Instance UUID (globally unique across all servers and projects)
volatile.uuid. string Instance generation UUID that will change whenever the instance’s place in
generation time moves backwards (globally unique across all servers and projects)
volatile.<name>. string Disk quota to be applied the next time the instance starts
apply_quota
volatile.<name>. string RBD device path for Ceph disk devices
ceph_rbd
volatile.<name>. string Network device name on the host
host_name
volatile.<name>. string Network device MAC address (when no hwaddr property is set on the device
hwaddr itself)
volatile.<name>. string Whether the network device physical device was created (true or false)
last_state.created
volatile.<name>. string Network device original MTU used when moving a physical device into an
last_state.mtu instance
volatile.<name>. string Network device original MAC used when moving a physical device into an
last_state.hwaddr instance
volatile.<name>. string Network device comma-separated list of last used IP addresses
last_state.
ip_addresses
volatile.<name>. string SR-IOV virtual function ID used when moving a VF into an instance
last_state.vf.id
volatile.<name>. string SR-IOV virtual function original MAC used when moving a VF into an in-
last_state.vf.hwaddr stance
volatile.<name>. string SR-IOV virtual function original VLAN used when moving a VF into an in-
last_state.vf.vlan stance
volatile.<name>. string SR-IOV virtual function original spoof check setting used when moving a VF

last_state.vf.
spoofcheck

into an instance

66

Chapter 2. Project and community



LXD

Note: Volatile keys cannot be set by the user.

Devices

Devices are attached to an instance (see Configure devices) or to a profile (see Edit a profile).

They include, for example, network interfaces, mount points, USB and GPU devices. These devices can have instance
device options, depending on the type of the instance device.

LXD supports the following device types:

ID (database) Name Condition  Description

0 none - Inheritance blocker

1 nic - Network interface

2 disk - Mount point inside the instance
3 unix-char container  Unix character device
4 unix-block container Unix block device

5 usb - USB device

6 gpu - GPU device

7 infiniband container InfiniBand device

8 proxy container  Proxy device

9 unix-hotplug container  Unix hotplug device
10 tpm - TPM device

11 pci VM PCI device

Each instance comes with a set of Standard devices.

Standard devices

LXD provides each instance with the basic devices that are required for a standard POSIX system to work. These
devices aren’t visible in the instance or profile configuration, and they may not be overridden.

The standard devices are:

Device Type of device

/dev/null Character device
/dev/zero Character device
/dev/full Character device

/dev/console Character device

/dev/tty Character device
/dev/random Character device
/dev/urandom Character device
/dev/net/tun Character device
/dev/fuse Character device
lo Network interface

Any other devices must be defined in the instance configuration or in one of the profiles used by the instance. The
default profile typically contains a network interface that becomes eth® in the instance.

2.3. Instances

67



LXD

Type: none

Note: The none device type is supported for both containers and VMs.

A none device doesn’t have any properties and doesn’t create anything inside the instance.

Its only purpose is to stop inheriting devices that come from profiles. To do so, add a device with the same name as the
one that you do not want to inherit, but with the device type none.

You can add this device either in a profile that is applied after the profile that contains the original device, or directly
on the instance.

Type: nic

Note: The nic device type is supported for both containers and VMs.

NICs support hotplugging for both containers and VMs (with the exception of the ipvlan NIC type).

Network devices, also referred to as Network Interface Controllers or NICs, supply a connection to a network. LXD
supports several different types of network devices (NVIC types).

nictype vs. network

When adding a network device to an instance, there are two methods to specify the type of device that you want to add:
through the nictype device option or the network device option.

These two device options are mutually exclusive, and you can specify only one of them when you create a device. How-
ever, note that when you specify the network option, the nictype option is derived automatically from the network

type.

nictype
When using the nictype device option, you can specify a network interface that is not controlled by LXD.
Therefore, you must specify all information that LXD needs to use the network interface.

When using this method, the nictype option must be specified when creating the device, and it cannot be
changed later.

network
When using the network device option, the NIC is linked to an existing managed network. In this case, LXD
has all required information about the network, and you need to specify only the network name when adding the
device.

When using this method, LXD derives the nictype option automatically. The value is read-only and cannot be
changed.

Other device options that are inherited from the network are marked with a “yes” in the “Managed” column of
the NIC-specific tables of device options. You cannot customize these options directly for the NIC if you’re using
the network method.

See About networking for more information.

68 Chapter 2. Project and community



LXD

Available NIC types

The following NICs can be added using the nictype or network options:

* bridged: Uses an existing bridge on the host and creates a virtual device pair to connect the host bridge to the
instance.

» macvlan: Sets up a new network device based on an existing one, but using a different MAC address.
* sriov: Passes a virtual function of an SR-IOV-enabled physical network device into the instance.

» physical: Passes a physical device from the host through to the instance. The targeted device will vanish from
the host and appear in the instance.

The following NICs can be added using only the network option:
» ovn: Uses an existing OVN network and creates a virtual device pair to connect the instance to it.

The following NICs can be added using only the nictype option:
e ipvlan: Sets up a new network device based on an existing one, using the same MAC address but a different IP.
» p2p: Creates a virtual device pair, putting one side in the instance and leaving the other side on the host.

e routed: Creates a virtual device pair to connect the host to the instance and sets up static routes and proxy
ARP/NDP entries to allow the instance to join the network of a designated parent interface.

The available device options depend on the NIC type and are listed in the tables in the following sections.

nictype: bridged

Note: You can select this NIC type through the nictype option or the network option (see Bridge network for
information about the managed bridge network).

A bridged NIC uses an existing bridge on the host and creates a virtual device pair to connect the host bridge to the
instance.

2.3. Instances 69



LXD

Device options

NIC devices of type bridged have the following device options:

70 Chapter 2. Project and community



LXD

Key Type De- Man- Description
fault agec
boot. in- - no  Boot priority for VMs (higher value boots first)
priorit te-
ger
host_na string ran- no  The name of the interface inside the host
domly
as-
signed
hwaddr string ran- no  The MAC address of the new interface
domly
as-
signed
ipv4. string - no  AnIPv4 address to assign to the instance through DHCP (can be none to restrict all
address IPv4 traffic when security.ipv4_filtering is set)
ipv4. string - no  Comma-delimited list of IPv4 static routes to add on host to NIC
routes
ipv4. string - no  Comma-delimited list of IPv4 static routes to route to the NIC and publish on uplink
routes. network (BGP)
externa
ipv6. string - no  AnIPv6 address to assign to the instance through DHCP (can be none to restrict all
address IPv6 traffic when security.ipv6_filtering is set)
ipv6. string - no  Comma-delimited list of IPv6 static routes to add on host to NIC
routes
ipv6. string - no  Comma-delimited list of IPv6 static routes to route to the NIC and publish on uplink
routes. network (BGP)
externa
limits. string - no  I/Olimitin bit/s for outgoing traffic (various suffixes supported, see Units for storage
egress and network limits)
limits. string - no  I/O limit in bit/s for incoming traffic (various suffixes supported, see Units for stor-
ingress age and network limits)
limits. string - no  I/O limit in bit/s for both incoming and outgoing traffic (same as setting both
max limits.ingress and limits.egress)
limits. in- - no  The skb->priority value (32-bit unsigned integer) for outgoing traffic, to be used
priorit te- by the kernel queuing discipline (qdisc) to prioritize network packets (The effect of
ger this value depends on the particular qdisc implementation, for example, SKBPRIO
or QFQ. Consult the kernel qdisc documentation before setting this value.)
maas. string - yes  MAAS IPv4 subnet to register the instance in
subnet.
ipv4
maas. string - yes  MAAS IPv6 subnet to register the instance in
subnet.
ipv6
mtu in- par- yes The MTU of the new interface
te- ent
ger MTU
name string ker- no  The name of the interface inside the instance
nel
as-
signed
network string - no  The managed network to link the device to (instead of specifying the nictype di-
rectly)
parent string - yes  The name of the host device (required if specifying the nictype directly)
securit bool false no  Prevent the instance from spoofing another instance’s IPv4 address (enables
v security.mac_filtering)
2.Jségcirg§ta%%gf false no  Prevent the instance from spoofing another instance’s IPv6 address (enablez
ipve_£fi security.mac_filtering)
securit bool false no  Prevent the instance from spoofing another instance’s MAC address

mac fi1]



LXD

nictype: macvlan

Note: You can select this NIC type through the nictype option or the network option (see Macvlan network for
information about the managed macvlan network).

A macvlan NIC sets up a new network device based on an existing one, but using a different MAC address.

If you are using a macvlan NIC, communication between the LXD host and the instances is not possible. Both the
host and the instances can talk to the gateway, but they cannot communicate directly.

Device options

NIC devices of type macvlan have the following device options:

Key Type Default Man- Description
aged
boot. inte- - no Boot priority for VMs (higher value boots first)
priority ger
gvrp bool false no Register VLAN using GARP VLAN Registration Protocol
hwaddr string randomly as- no The MAC address of the new interface
signed

maas. string - yes MAAS IPv4 subnet to register the instance in
subnet.ipv4
maas. string - yes MAAS IPv6 subnet to register the instance in
subnet.ipv6
mtu inte- parent MTU  yes The MTU of the new interface

ger
name string kernel as- no The name of the interface inside the instance

signed
network string - no The managed network to link the device to (instead of specify-
ing the nictype directly)
parent string - yes The name of the host device (required if specifying the
nictype directly)

vlan inte- - no The VLAN ID to attach to

ger

nictype: sriov

Note: You can select this NIC type through the nictype option or the network option (see SR-IOV network for
information about the managed sriov network).

An sriov NIC passes a virtual function of an SR-IOV-enabled physical network device into the instance.

An SR-IOV-enabled network device associates a set of virtual functions (VFs) with the single physical function (PF)
of the network device. PFs are standard PCle functions. VFs, on the other hand, are very lightweight PCle functions
that are optimized for data movement. They come with a limited set of configuration capabilities to prevent changing
properties of the PF.

72 Chapter 2. Project and community



LXD

Given that VFs appear as regular PCle devices to the system, they can be passed to instances just like a regular physical
device.

VF allocation
The sriov interface type expects to be passed the name of an SR-IOV enabled network device on the system via
the parent property. LXD then checks for any available VFs on the system.

By default, LXD allocates the first free VF it finds. If it detects that either none are enabled or all currently
enabled VFs are in use, it bumps the number of supported VFs to the maximum value and uses the first free VF.
If all possible VFs are in use or the kernel or card doesn’t support incrementing the number of VFs, LXD returns
an error.

Note: If you need LXD to use a specific VF, use a physical NIC instead of a sriov NIC and set its parent
option to the VF name.

Device options

NIC devices of type sriov have the following device options:

Key Type Default Man-  Description
aged

boot.priority inte- - no Boot priority for VMs (higher value boots first)

ger
hwaddr string randomly no The MAC address of the new interface

assigned

maas.subnet. string - yes MAAS IPv4 subnet to register the instance in
ipv4
maas.subnet. string - yes MAAS IPv6 subnet to register the instance in
ipv6
mtu inte- kernel as- yes The MTU of the new interface

ger signed
name string kernel as- no The name of the interface inside the instance

signed
network string - no The managed network to link the device to (instead of spec-
ifying the nictype directly)
parent string - yes The name of the host device (required if specifying the
nictype directly)

security. bool false no Prevent the instance from spoofing another instance’s MAC
mac_filtering address
vlan inte- - no The VLAN ID to attach to

ger

2.3. Instances 73



LXD

nictype: ovn

Note: You can select this NIC type only through the network option (see OVN network for information about the
managed ovn network).

An ovn NIC uses an existing OVN network and creates a virtual device pair to connect the instance to it.

SR-IOV hardware acceleration
To use acceleration=sriov, you must have a compatible SR-IOV physical NIC that supports the Ethernet
switch device driver model (switchdev) in your LXD host. LXD assumes that the physical NIC (PF) is config-
ured in switchdev mode and connected to the OVN integration OVS bridge, and that it has one or more virtual
functions (VFs) active.

To achieve this, follow these basic prerequisite setup steps:
1. Set up PF and VF:

1. Activate some VFs on PF (called enp9s0£fOnp0 in the following example, with a PCI address of
0000:09:00.0) and unbind them.

2. Enable switchdev mode and hw-tc-offload on the PF.
3. Rebind the VFs.

echo 4 > /sys/bus/pci/devices/0000:09:00.0/sriov_numvfs

for i in $(Ispci -nnn | grep "Virtual Function" | cut -d' ' -f1); do echo 0000:
—$i > /sys/bus/pci/drivers/mlx5_core/unbind; done

devlink dev eswitch set pci/0000:09:00.0 mode switchdev

ethtool -K enp9s0fOnp® hw-tc-offload on

for i in $(Ispci -nnn | grep "Virtual Function" | cut -d' ' -f1); do echo 0000:
—$%$i > /sys/bus/pci/drivers/mlx5_core/bind; done

2. Set up OVS by enabling hardware offload and adding the PF NIC to the integration bridge (normally called
br-int):

ovs-vsctl set open_vswitch . other_config:hw-offload=true
systemctl restart openvswitch-switch

ovs-vsctl add-port br-int enp9s®fOnp0®

ip link set enp9s0fOnp® up

74 Chapter 2. Project and community



LXD

Device options

NIC devices of type ovn have the following device options:

Key Type Default Man-  Description
aged
acceleration string none no Enable hardware offloading (either none or sriov, see
SR-IOV hardware acceleration)
boot.priority in- - no Boot priority for VMs (higher value boots first)
te-
ger
host_name string randomly  no The name of the interface inside the host
assigned
hwaddr string randomly  no The MAC address of the new interface
assigned
ipv4.address string - no An IPv4 address to assign to the instance through
DHCP
ipv4.routes string - no Comma-delimited list of [Pv4 static routes to route to
the NIC
ipv4.routes.external  string - no Comma-delimited list of [Pv4 static routes to route to
the NIC and publish on uplink network
ipv6.address string - no An IPv6 address to assign to the instance through
DHCP
ipv6.routes string - no Comma-delimited list of IPv6 static routes to route to
the NIC
ipv6.routes.external  string - no Comma-delimited list of IPv6 static routes to route to
the NIC and publish on uplink network
name string kernel as- no The name of the interface inside the instance
signed
network string - yes The managed network to link the device to (required)
security.acls string - no Comma-separated list of network ACLs to apply
security.acls. string reject no Action to use for egress traffic that doesn’t match any
default.egress. ACL rule
action
security.acls. bool false no Whether to log egress traffic that doesn’t match any
default.egress. ACL rule
logged
security.acls. string reject no Action to use for ingress traffic that doesn’t match any
default.ingress. ACL rule
action
security.acls. bool false no Whether to log ingress traffic that doesn’t match any

default.ingress.

logged

ACL rule

2.3. Instances

75



LXD

nictype: physical

Note:

* You can select this NIC type through the nictype option or the network option (see Physical network for
information about the managed physical network).

* You can have only one physical NIC for each parent device.

A physical NIC provides straight physical device pass-through from the host. The targeted device will vanish from
the host and appear in the instance (which means that you can have only one physical NIC for each targeted device).

Device options

NIC devices of type physical have the following device options:

Key Type Default Description

boot.priority integer - Boot priority for VMs (higher value boots first)

gvrp bool false Register VLAN using GARP VLAN Registration Protocol
hwaddr string  randomly assigned The MAC address of the new interface
maas.subnet.ipv4 string - MAAS IPv4 subnet to register the instance in
maas.subnet.ipv6 string - MAAS IPv6 subnet to register the instance in

mtu integer parent MTU The MTU of the new interface

name string  kernel assigned The name of the interface inside the instance

parent string - The name of the host device (required)

vlan integer - The VLAN ID to attach to

nictype: ipvlan

Note:
 This NIC type is available only for containers, not for virtual machines.
* You can select this NIC type only through the nictype option.

* This NIC type does not support hotplugging.

An ipvlan NIC sets up a new network device based on an existing one, using the same MAC address but a different
IP.

If you are using an ipvlan NIC, communication between the LXD host and the instances is not possible. Both the
host and the instances can talk to the gateway, but they cannot communicate directly.

LXD currently supports IPVLAN in L2 and L3S mode. In this mode, the gateway is automatically set by LXD, but the
IP addresses must be manually specified using the ipv4.address and/or ipv6.address options before the container
is started.

DNS
The name servers must be configured inside the container, because they are not set automatically. To do this, set
the following sysctls:

* When using IPv4 addresses:

76 Chapter 2. Project and community



LXD

[net .ipv4.conf.<parent>. forwarding=1 J

* When using IPv6 addresses:

net.ipv6.conf.<parent>.forwarding=1
net.ipv6.conf.<parent>.proxy_ndp=1

Device options

NIC devices of type ipvlan have the following device options:

Key Type Default Description
gvrp bool false Register VLAN using GARP VLAN Registration Protocol
hwaddr string ran- The MAC address of the new interface
domly
assigned
ipv4. string - Comma-delimited list of IPv4 static addresses to add to the instance (in 12 mode,
address these can be specified as CIDR values or singular addresses using a subnet of /24)
ipv4. string auto In 13s mode, whether to add an automatic default IPv4 gateway (can be auto or
gateway (13s), - none);in 12 mode, the IPv4 address of the gateway
(12)
ipv4. in- - The custom policy routing table ID to add IPv4 static routes to (in addition to the
host_tabl te- main routing table)
ger
ipv6. string - Comma-delimited list of IPv6 static addresses to add to the instance (in 12 mode,
address these can be specified as CIDR values or singular addresses using a subnet of /64)
ipv6. string auto In 13s mode, whether to add an automatic default [Pv6 gateway (can be auto or
gateway (13s), - none);in 12 mode, the IPv6 address of the gateway
12)
ipv6. in- - The custom policy routing table ID to add IPv6 static routes to (in addition to the
host_tabl te- main routing table)
ger
mode string 13s The IPVLAN mode (either 12 or 13s)
mtu in-  parent The MTU of the new interface
te- MTU
ger
name string kernel The name of the interface inside the instance
assigned
parent string - The name of the host device (required)
vlan in- - The VLAN ID to attach to
te-
ger

2.3. Instances

77



LXD

nictype: p2p

Note: You can select this NIC type only through the nictype option.

A p2p NIC creates a virtual device pair, putting one side in the instance and leaving the other side on the host.

Device options

NIC devices of type p2p have the following device options:

Key Type De-  Description
fault
boot. in- - Boot priority for VMs (higher value boots first)
prior: te-
ger
host_1 string ran-  The name of the interface inside the host
domly
as-
signed
hwadd: string ran-  The MAC address of the new interface
domly
as-
signed
ipv4. string - Comma-delimited list of IPv4 static routes to add on host to NIC
route:
ipv6. string - Comma-delimited list of IPv6 static routes to add on host to NIC
route:
limit: string - I/0 limit in bit/s for outgoing traffic (various suffixes supported, see Units for storage and
egres: network limits)
limit: string - I/O limit in bit/s for incoming traffic (various suffixes supported, see Units for storage and
ingre: network limits)
limite¢ string - I/O limit in bit/s for both incoming and outgoing traffic (same as setting both limits.
max ingress and limits.egress)
limit: in- - The skb->priority value (32-bit unsigned integer) for outgoing traffic, to be used by the
prior: te- kernel queuing discipline (qdisc) to prioritize network packets (The effect of this value de-
ger pends on the particular qdisc implementation, for example, SKBPRIO or QFQ. Consult the
kernel qdisc documentation before setting this value.)
mtu in- ker-  The MTU of the new interface
te-  nel
ger  as-
signed
name string ker-  The name of the interface inside the instance
nel
as-
signed

78

Chapter 2. Project and community



LXD

nictype: routed

Note: You can select this NIC type only through the nictype option.

A routed NIC creates a virtual device pair to connect the host to the instance and sets up static routes and proxy
ARP/NDP entries to allow the instance to join the network of a designated parent interface. For containers it uses a
virtual Ethernet device pair, and for VMs it uses a TAP device.

This NIC type is similar in operation to ipvlan, in that it allows an instance to join an external network without needing
to configure a bridge and shares the host’'s MAC address. However, it differs from ipvlan because it does not need
IPVLAN support in the kernel, and the host and the instance can communicate with each other.

This NIC type respects netfilter rules on the host and uses the host’s routing table to route packets, which can be
useful if the host is connected to multiple networks.

IP addresses, gateways and routes

You must manually specify the IP addresses (using ipv4.address and/or ipv6.address) before the instance
is started.

For containers, the NIC configures the following link-local gateway IPs on the host end and sets them as the
default gateways in the container’s NIC interface:

169.254.0.1
fe80::1

For VM, the gateways must be configured manually or via a mechanism like cloud-init (see the how to guide).

Note: If your container image is configured to perform DHCP on the interface, it will likely remove the auto-
matically added configuration. In this case, you must configure the IP addresses and gateways manually or via a
mechanism like cloud-init.

The NIC type configures static routes on the host pointing to the instance’s veth interface for all of the instance’s
IPs.

Multiple IP addresses

Each NIC device can have multiple IP addresses added to it.

However, it might be preferable to use multiple routed NIC interfaces instead. In this case, set the ipv4.
gateway and ipv6.gateway values to none on any subsequent interfaces to avoid default gateway conflicts.
Also consider specifying a different host-side address for these subsequent interfaces using ipv4.host_address
and/or ipv6.host_address.

Parent interface

This NIC can operate with and without a parent network interface set.

With the parent network interface set, proxy ARP/NDP entries of the instance’s IPs are added to the parent
interface, which allows the instance to join the parent interface’s network at layer 2.

To enable this, the following network configuration must be applied on the host via sysctl:

* When using IPv4 addresses:

[net .ipv4.conf.<parent>. forwarding=1

* When using IPv6 addresses:

23.

Instances 79



LXD

net.ipv6.conf.all. forwarding=1
net.ipv6.conf.<parent>.forwarding=1
net.ipv6.conf.all.proxy_ndp=1
net.ipv6.conf.<parent>.proxy_ndp=1

Device options

NIC devices of type routed have the following device options:

80 Chapter 2. Project and community



LXD

Key Type De-  Description
fault
gvrp bool false Register VLAN using GARP VLAN Registration Protocol
host_n: string ran-  The name of the interface inside the host
domly
as-
signed
hwaddr string ran-  The MAC address of the new interface
domly
as-
signed
ipv4.  string - Comma-delimited list of IPv4 static addresses to add to the instance
addres:
ipv4. string auto Whether to add an automatic default IPv4 gateway (can be auto or none)
gateway
ipv4. string 169. The IPv4 address to add to the host-side veth interface
host_ac 254.
0.1
ipv4. in- - The custom policy routing table ID to add IPv4 static routes to (in addition to the main
host_t: te- routing table)
ger
ipv4. bool true Whether to probe the parent network for IP address availability
neighb¢
ipv4. string - Comma-delimited list of IPv4 static routes to add on host to NIC (without L2 ARP/NDP
routes proxy)
ipv6.  string - Comma-delimited list of IPv6 static addresses to add to the instance
addres:
ipv6. string auto Whether to add an automatic default IPv6 gateway (can be auto or none)
gateway
ipv6. string fe8®: The IPv6 address to add to the host-side veth interface
host_ac
ipve. in- - The custom policy routing table ID to add IPv6 static routes to (in addition to the main
host_t: te- routing table)
ger
ipv6. bool true Whether to probe the parent network for IP address availability
neighb¢
ipv6.  string - Comma-delimited list of IPv6 static routes to add on host to NIC (without L2 ARP/NDP
routes proxy)
limits string - I/0 limit in bit/s for outgoing traffic (various suffixes supported, see Units for storage and
egress network limits)
limits string - I/O limit in bit/s for incoming traffic (various suffixes supported, see Units for storage and
ingres: network limits)
limits string - I/O limit in bit/s for both incoming and outgoing traffic (same as setting both limits.
max ingress and limits.egress)
limits in- - The skb->priority value (32-bit unsigned integer) for outgoing traffic, to be used by
priorii te- the kernel queuing discipline (qdisc) to prioritize network packets (The effect of this value
ger depends on the particular qdisc implementation, for example, SKBPRIO or QFQ. Consult the
kernel qdisc documentation before setting this value.)
mtu in- par-  The MTU of the new interface
te- ent
ger MTU
name string ker-  The name of the interface inside the instance
nel
as-
signed
Zi?érég%ta&gg? - The name of the host device to join the instance to 81
vlan in- - The VLAN ID to attach to
te-

oer



LXD

bridged, macvlan or ipvlan for connection to physical network

The bridged, macvlan and ipvlan interface types can be used to connect to an existing physical network.

macvlan effectively lets you fork your physical NIC, getting a second interface that is then used by the instance. This
method saves you from creating a bridge device and virtual Ethernet device pairs and usually offers better performance
than a bridge.

The downside to this method is that macvlan devices, while able to communicate between themselves and to the
outside, cannot talk to their parent device. This means that you can’t use macvlan if you ever need your instances to
talk to the host itself.

In such case, a bridge device is preferable. A bridge also lets you use MAC filtering and I/O limits, which cannot be
applied to a macvlan device.

ipvlan is similar to macvlan, with the difference being that the forked device has IPs statically assigned to it and
inherits the parent’s MAC address on the network.

MAAS integration

If you’re using MAAS to manage the physical network under your LXD host and want to attach your instances directly
to a MAAS-managed network, LXD can be configured to interact with MAAS so that it can track your instances.

At the daemon level, you must configure maas.api.url and maas.api.key, and then set the maas.subnet.ipv4
and/or maas . subnet.ipv6 keys on the instance or profile’s nic entry.

With this configuration, LXD registers all your instances with MAAS, giving them proper DHCP leases and DNS
records.

If you set the ipv4.address or ipv6.address keys on the NIC, those are registered as static assignments in MAAS.

Type: disk

Note: The disk device type is supported for both containers and VMs. It supports hotplugging for both containers
and VMs.

Disk devices supply additional storage to instances.

For containers, they are essentially mount points inside the instance (either as a bind-mount of an existing file or
directory on the host, or, if the source is a block device, a regular mount). Virtual machines share host-side mounts or
directories through 9p or virtiof£s (if available), or as VirtlO disks for block-based disks.

Types of disk devices

You can create disk devices from different sources. The value that you specify for the source option specifies the type
of disk device that is added:

Storage volume
The most common type of disk device is a storage volume. To add a storage volume, specify its name as the
source of the device:

1xc config device add <instance_name> <device_name> disk pool=<pool_name> source=
—s<volume_name> [path=<path_in_instance>]

82 Chapter 2. Project and community



LXD

The path is required for file system volumes, but not for block volumes.

Alternatively, you can use the 1xc storage volume attach command to Attach the volume to an instance.
Both commands use the same mechanism to add a storage volume as a disk device.

Path on the host
You can share a path on your host (either a file system or a block device) to your instance by adding it as a disk
device with the host path as the source:

1xc config device add <instance_name> <device_name> disk source=<path_on_host>..
— [path=<path_in_instance>]

The path is required for file systems, but not for block devices.

Ceph RBD
LXD can use Ceph to manage an internal file system for the instance, but if you have an existing, externally
managed Ceph RBD that you would like to use for an instance, you can add it with the following command:

1xc config device add <instance_name> <device_name> disk source=ceph:<pool_name>/
—.<volume_name> ceph.user_name=<user_name> ceph.cluster_name=<cluster_name> [path=
—<path_in_instance>]

The path is required for file systems, but not for block devices.

CephFS
LXD can use Ceph to manage an internal file system for the instance, but if you have an existing, externally
managed Ceph file system that you would like to use for an instance, you can add it with the following command:

1xc config device add <instance_name> <device_name> disk source=cephfs:<fs_name>/
—.<path> ceph.user_name=<user_name> ceph.cluster_name=<cluster_name> path=<path_in_
—instance>

ISO file
You can add an ISO file as a disk device for a virtual machine. It is added as a ROM device inside the VM.

This source type is applicable only to VMs.
To add an ISO file, specify its file path as the source:

[lxc config device add <instance_name> <device_name> disk source=<file_path_on_host> ]

VM cloud-init
You can generate a cloud-init configuration ISO from the cloud-init.vendor-data and cloud-init.
user-data configuration keys (see Instance options) and attach it to a virtual machine. The cloud-init that
is running inside the VM then detects the drive on boot and applies the configuration.

This source type is applicable only to VMs.

To add such a device, use the following command:

[lxc config device add <instance_name> <device_name> disk source=cloud-init:config ]

2.3. Instances 83



LXD

Device options

disk devices have the following device options:

Key Type De- Re- Description
fault quire
boot. in- - no  Boot priority for VMs (higher value boots first)
priorit te-
ger

ceph. string ceph no  The cluster name of the Ceph cluster (required for Ceph or CephFS sources)

cluster

ceph. string admi no  The user name of the Ceph cluster (required for Ceph or CephFS sources)

user_n:

io. string none no  Only for VMs: Override the caching mode for the device (none, writeback or

cache unsafe)

limits. string - no I/O limit in byte/s or IOPS for both read and write (same as setting both limits.

max read and limits.write)

limits. string - no  I/O limit in byte/s (various suffixes supported, see Units for storage and network lim-

read its) or in IOPS (must be suffixed with iops) - see also Configure I/0 limits

limits. string - no  I/O limit in byte/s (various suffixes supported, see Units for storage and network lim-

write its) or in IOPS (must be suffixed with iops) - see also Configure I/O limits

path string - yes  Path inside the instance where the disk will be mounted (only for containers)

pool string - no  The storage pool to which the disk device belongs (only applicable for storage vol-
umes managed by LXD)

propag: string - no Controls how a bind-mount is shared between the instance and the host (can be
one of private, the default, or shared, slave, unbindable, rshared, rslave,
runbindable, rprivate; see the Linux Kernel shared subtree documentation for a
full explanation)

raw. string - no File system specific mount options

mount.

options

readon] bool fals no  Controls whether to make the mount read-only

recursi bool fals no  Controls whether to recursively mount the source path

require bool true no Controls whether to fail if the source doesn’t exist

shift bool fals no  Setsup a shifting overlay to translate the source UID/GID to match the instance (only
for containers)

size string - no  Disk size in bytes (various suffixes supported, see Units for storage and network lim-
its) - only supported for the rootfs (/)

size. string - no  Same as size, but applies to the file-system volume used for saving runtime state in

state VMs

source string - yes  Source of a file system or block device (see Types of disk devices for details)

84 Chapter 2. Project and community


https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt

LXD

Type: unix-char

Note: The unix-char device type is supported for containers. It supports hotplugging.

Unix character devices make the specified character device appear as a device in the instance (under /dev). You can
read from the device and write to it.

Device options

unix-char devices have the following device options:

Key Type Default Description
gid int 0 GID of the device owner in the instance
major int device on host  Device major number
minor int device on host Device minor number
mode int 0660 Mode of the device in the instance
path string - Path inside the instance (one of source and path must be set)
required bool true Whether this device is required to start the instance (see Hotplugging)
source string - Path on the host (one of source and path must be set)
uid int 0 UID of the device owner in the instance
Hotplugging

Hotplugging is enabled if you set required=false and specify the source option for the device.

In this case, the device is automatically passed into the container when it appears on the host, even after the container
starts. If the device disappears from the host system, it is removed from the container as well.

Type: unix-block

Note: The unix-block device type is supported for containers. It supports hotplugging.

Unix block devices make the specified block device appear as a device in the instance (under /dev). You can read from
the device and write to it.

Device options

unix-block devices have the following device options:

2.3. Instances 85



LXD

Key Type Default Description
gid int 0 GID of the device owner in the instance
major int device on host Device major number
minor int device on host Device minor number
mode int 0660 Mode of the device in the instance
path string - Path inside the instance (one of source and path must be set)
required bool true Whether this device is required to start the instance (see Hotplugging)
source string - Path on the host (one of source and path must be set)
uid int 0 UID of the device owner in the instance
Hotplugging

Hotplugging is enabled if you set required=false and specify the source option for the device.

In this case, the device is automatically passed into the container when it appears on the host, even after the container
starts. If the device disappears from the host system, it is removed from the container as well.

Type: usb

Note: The usb device type is supported for both containers and VMs. It supports hotplugging for both containers and
VMs.

USB devices make the specified USB device appear in the instance. For performance issues, avoid using devices that
require high throughput or low latency.

For containers, only 1ibusb devices (at /dev/bus/usb) are passed to the instance. This method works for devices that
have user-space drivers. For devices that require dedicated kernel drivers, use a unix-char device or a unix-hotplug
device instead.

For virtual machines, the entire USB device is passed through, so any USB device is supported. When a device is
passed to the instance, it vanishes from the host.

Device options

usb devices have the following device options:

Key Type De- Description

fault
gid int 0 Only for containers: GID of the device owner in the instance
mode int 0660  Only for containers: Mode of the device in the instance
productis string - The product ID of the USB device

required bool false Whether this device is required to start the instance (the default is false, and all de-
vices can be hotplugged)

uid int 0 Only for containers: UID of the device owner in the instance

vendorid string - The vendor ID of the USB device

86 Chapter 2. Project and community



LXD

Type: gpu

GPU devices make the specified GPU device or devices appear in the instance.

Note: For containers, a gpu device may match multiple GPUs at once. For VMs, each device can match only a single
GPU.

The following types of GPUs can be added using the gputype device option:

* physical (container and VM): Passes an entire GPU through into the instance. This value is the default if
gputype is unspecified.

» mdev (VM only): Creates and passes a virtual GPU through into the instance.
* mig (container only): Creates and passes a MIG (Multi-Instance GPU) through into the instance.
e sriov (VM only): Passes a virtual function of an SR-IOV-enabled GPU into the instance.

The available device options depend on the GPU type and are listed in the tables in the following sections.

gputype: physical

Note: The physical GPU type is supported for both containers and VMs. It supports hotplugging only for containers,
not for VMs.

A physical GPU device passes an entire GPU through into the instance.

Device options

GPU devices of type physical have the following device options:

Key Type Default Description

gid int 0 GID of the device owner in the instance (container only)
id string - The DRM card ID of the GPU device

mode int 0660 Mode of the device in the instance (container only)

pci string - The PCI address of the GPU device

productid string - The product ID of the GPU device

uid int 0 UID of the device owner in the instance (container only)
vendorid  string - The vendor ID of the GPU device

2.3. Instances 87



LXD

gputype: mdev

Note: The mdev GPU type is supported only for VMs. It does not support hotplugging.

An mdev GPU device creates and passes a virtual GPU through into the instance. You can check the list of available
mdev profiles by running 1xc info --resources.

Device options

GPU devices of type mdev have the following device options:

Key Type Default Description

id string - The DRM card ID of the GPU device

mdev string - The mdev profile to use (required - for example, 1915-GVTg_V5_4)
pci string - The PCI address of the GPU device

productid string - The product ID of the GPU device

vendorid  string - The vendor ID of the GPU device

gputype: mig

Note: The mig GPU type is supported only for containers. It does not support hotplugging.

A mig GPU device creates and passes a MIG compute instance through into the instance. Currently, this requires
NVIDIA MIG instances to be pre-created.

Device options

GPU devices of type mig have the following device options:

Key Type Default Description

id string - The DRM card ID of the GPU device

mig.ci int - Existing MIG compute instance ID

mig.gi int - Existing MIG GPU instance ID

mig.uuid  string - Existing MIG device UUID (MIG- prefix can be omitted)
pci string - The PCI address of the GPU device

productid string - The product ID of the GPU device

vendorid  string - The vendor ID of the GPU device

You must set either mig.uuid (NVIDIA drivers 470+) or bothmig.ci and mig.gi (old NVIDIA drivers).

88 Chapter 2. Project and community



LXD

gputype: sriov

Note: The sriov GPU type is supported only for VMs. It does not support hotplugging.

An sriov GPU device passes a virtual function of an SR-IOV-enabled GPU into the instance.

Device options

GPU devices of type sriov have the following device options:

Key Type Default Description

id string - The DRM card ID of the parent GPU device
pci string - The PCI address of the parent GPU device
productid string - The product ID of the parent GPU device
vendorid  string - The vendor ID of the parent GPU device

Type: infiniband

Note: The infiniband device type is supported for both containers and VMs. It supports hotplugging only for
containers, not for VMs.

LXD supports two different kinds of network types for InfiniBand devices:

» physical: Passes a physical device from the host through to the instance. The targeted device will vanish from
the host and appear in the instance.

* sriov: Passes a virtual function of an SR-IOV-enabled physical network device into the instance.

Note: InfiniBand devices support SR-IOV, but in contrast to other SR-IOV-enabled devices, InfiniBand does
not support dynamic device creation in SR-IOV mode. Therefore, you must pre-configure the number of virtual
functions by configuring the corresponding kernel module.

To create a physical infiniband device, use the following command:

1xc config device add <instance_name> <device_name> infiniband nictype=physical parent=
—<device>

To create an sriov infiniband device, use the following command:

1xc config device add <instance_name> <device_name> infiniband nictype=sriov parent=
—.<sriov_enabled_device>

2.3. Instances 89




LXD

Device options

infiniband devices have the following device options:

Key Type Default Re- Description

quirec
hwadc string ran- no The MAC address of the new interface (can be either the full 20-byte variant or
domly the short 8-byte variant, which will only modify the last 8 bytes of the parent
assigned device)
mtu in-  parent no The MTU of the new interface
te- MTU
ger
name string kernel no The name of the interface inside the instance
assigned
nicty string - yes The device type (one of physical or sriov)
parer string - yes The name of the host device or bridge
Type: proxy

Note: The proxy device type is supported for both containers (NAT and non-NAT modes) and VMs (NAT mode
only). It supports hotplugging for both containers and VMs.

Proxy devices allow forwarding network connections between host and instance. This method makes it possible to
forward traffic hitting one of the host’s addresses to an address inside the instance, or to do the reverse and have an
address in the instance connect through the host.

In NAT mode, a proxy device can be used for TCP and UDP proxying. In non-NAT mode, you can also proxy traffic
between Unix sockets (which can be useful to, for example, forward graphical GUI or audio traffic from the container
to the host system) or even across protocols (for example, you can have a TCP listener on the host system and forward
its traffic to a Unix socket inside a container).

The supported connection types are:
e tcp <-> tcp
e udp <-> udp
e unix <-> unix
* tcp <-> unix
* unix <-> tcp
e udp <-> tcp
e tcp <-> udp
e udp <-> unix
* unix <-> udp

To add a proxy device, use the following command:

1xc config device add <instance_name> <device_name> proxy listen=<type>:<addr>:<port>[-
—<port>] [,<port>] connect=<type>:<addr>:<port> bind=<host/instance_name>

90 Chapter 2. Project and community



LXD

NAT mode

The proxy device also supports a NAT mode (nat=true), where packets are forwarded using NAT rather than being
proxied through a separate connection. This mode has the benefit that the client address is maintained without the need
for the target destination to support the HAProxy PROXY protocol (which is the only way to pass the client address
through when using the proxy device in non-NAT mode).

However, NAT mode is supported only if the host that the instance is running on is the gateway (which is the case if
you’re using 1xdbr®, for example).

In NAT mode, the supported connection types are:
e tcp <-> tep
e udp <-> udp

When configuring a proxy device with nat=true, you must ensure that the target instance has a static IP configured
on its NIC device.

Specifying IP addresses

Use the following command to configure a static IP for an instance NIC:

1xc config device set <instance_name> <nic_name> ipv4.address=<ipv4_address> ipv6.
—address=<ipv6_address>

To define a static IPv6 address, the parent managed network must have ipv6.dhcp.stateful enabled.

When defining IPv6 addresses, use the square bracket notation, for example:

[connectztcp: [2001:db8::1]:80 ]

You can specify that the connect address should be the IP of the instance by setting the connect IP to the wildcard
address (0.0.0.0 for IPv4 and [: :] for IPv6).

Note: The listen address can also use wildcard addresses when using non-NAT mode. However, when using NAT
mode, you must specify an IP address on the LXD host.

Device options

proxy devices have the following device options:

2.3. Instances 91



LXD

Key Type De- Re- Description
fault  quired

bind string host no Which side to bind on (host/instance)

connect string - yes The address and port to connect to
(<type>:<addr>:<port>[-<port>][,<port>])

gid int 0 no GID of the owner of the listening Unix socket

listen string - yes The address and port to bind and listen
(<type>:<addr>:<port>[-<port>][,<port>])

mode int 0644 no Mode for the listening Unix socket

nat bool false no Whether to optimize proxying via NAT (requires that the instance NIC

proxy_protoc bool false no

security. int 0
gid
security. int 0
uid
uid int 0

no

no

no

has a static IP address)

Whether to use the HAProxy PROXY protocol to transmit sender infor-
mation

What GID to drop privilege to

What UID to drop privilege to

UID of the owner of the listening Unix socket

Type: unix-hotplug

Note: The unix-hotplug device type is supported for containers. It supports hotplugging.

Unix hotplug devices make the requested Unix device appear as a device in the instance (under /dev). If the device
exists on the host system, you can read from it and write to it.

The implementation depends on systemd-udev to be run on the host.

Device options

unix-hotplug devices have the following device options:

Key Type De- Description

fault
gid int 0 GID of the device owner in the instance
mode int 0660  Mode of the device in the instance

productis string -
required bool false

uid int 0
vendorid string -

The product ID of the Unix device

Whether this device is required to start the instance (the default is false, and all de-
vices can be hotplugged)

UID of the device owner in the instance

The vendor ID of the Unix device

92

Chapter 2. Project and community



LXD

Type: tpm

Note: The tpm device type is supported for both containers and VMs. It supports hotplugging only for containers, not
for VM.

TPM devices enable access to a TPM (Trusted Platform Module) emulator.

TPM devices can be used to validate the boot process and ensure that no steps in the boot chain have been tampered
with, and they can securely generate and store encryption keys.

LXD uses a software TPM that supports TPM 2.0. For containers, the main use case is sealing certificates, which
means that the keys are stored outside of the container, making it virtually impossible for attackers to retrieve them.
For virtual machines, TPM can be used both for sealing certificates and for validating the boot process, which allows
using full disk encryption compatible with, for example, Windows BitLocker.

Device options

tpm devices have the following device options:

Key Type De- Required  Description

fault
path  string - for con- Only for containers: path inside the instance (for example, /dev/tpm®)
tainers
pathrm string - for con- Only for containers: resource manager path inside the instance (for exam-
tainers ple, /dev/tpmrm®)

Type: pci

Note: The pci device type is supported for VMs. It does not support hotplugging.

PCI devices are used to pass raw PCI devices from the host into a virtual machine.

They are mainly intended to be used for specialized single-function PCI cards like sound cards or video capture cards.
In theory, you can also use them for more advanced PCI devices like GPUs or network cards, but it’s usually more
convenient to use the specific device types that LXD provides for these devices (gpu device or nic device).

Device options

pci devices have the following device options:

Key Type Default Required Description

address string - yes PCI address of the device

2.3. Instances 93



LXD

Units for storage and network limits

Any value that represents bytes or bits can make use of a number of suffixes to make it easier to understand what a
particular limit is.

Both decimal and binary (kibi) units are supported, with the latter mostly making sense for storage limits.

The full list of bit suffixes currently supported is:

The full list of byte suffixes currently supported is:

« bit (1)
« kbit (1000)

« Mbit (100012)
« Gbit (10003)
« Tbit (1000°4)
« Pbit (100075)
Ebit (1000°6)
Kibit (1024)

Tibit (102474)
Pibit (1024/5)
Eibit (102476)

* B or bytes (1)
kB (1000)

* MB (100072)
* GB (100073)
* TB (1000"4)
* PB (1000"5)
EB (100076)
KiB (1024)
MiB (1024/72)
GiB (102413)
TiB (102474)
PiB (102415)
EiB (102476)

Mibit (102472)
Gibit (1024/3)

94

Chapter 2. Project and community



LXD

2.4 Images

2.4.1 About images
LXD uses an image-based workflow. Each instance is based on an image, which contains a basic operating system (for
example, a Linux distribution) and some LXD-related information.

Images are available from remote image stores (see Remote image servers for an overview), but you can also create
your own images, either based on an existing instances or a rootfs image.

You can copy images from remote servers to your local image store, or copy local images to remote servers. You can
also use a local image to create a remote instance.

Each image is identified by a fingerprint (SHA256). To make it easier to manage images, LXD allows defining one or
more aliases for each image.

Caching
When you create an instance using a remote image, LXD downloads the image and caches it locally. It is stored in the
local image store with the cached flag set. The image is kept locally as a private image until either:

* The image has not been used to create a new instance for the number of days set in images.
remote_cache_expiry.

* The image’s expiry date (one of the image properties; see Edit image properties for information on how to change
it) is reached.

LXD keeps track of the image usage by updating the last_used_at image property every time a new instance is
spawned from the image.

Auto-update

LXD can automatically keep images that come from a remote server up to date.

Note: Only images that are requested through an alias can be updated. If you request an image through a fingerprint,
you request an exact image version.

Whether auto-update is enabled for an image depends on how the image was downloaded:

* If the image was downloaded and cached when creating an instance, it is automatically updated if images.
auto_update_cached was set to true (the default) at download time.

* If the image was copied from a remote server using the 1xc image copy command, itis automatically updated
only if the --auto-update flag was specified.

You can change this behavior for an image by editing the auto_update property.

On startup and after every images.auto_update_interval (by default, every six hours), the LXD daemon checks
for more recent versions of all the images in the store that are marked to be auto-updated and have a recorded source
Server.

When a new version of an image is found, it is downloaded into the image store. Then any aliases pointing to the old
image are moved to the new one, and the old image is removed from the store.

To not delay instance creation, LXD does not check if a new version is available when creating an instance from a
cached image. This means that the instance might use an older version of an image for the new instance until the image
is updated at the next update interval.

2.4. Images 95



LXD

Special image properties

Image properties that begin with the prefix requirements (for example, requirements.XYZ) are used by LXD
to determine the compatibility of the host system and the instance that is created based on the image. If these are
incompatible, LXD does not start the instance.

The following requirements are supported:

Key Type De- Description
fault
requirements. string - If set to false, indicates that the image cannot boot under secure
secureboot boot.
requirements.cgroup string - If set to v1, indicates that the image requires the host to run cgroup
vl.
requirements.nesting bool - If set to true, indicates that the image cannot work without nesting
enabled.

2.4.2 How to use remote images

The 1xc CLI command is pre-configured with several remote image servers. See Remote image servers for an overview.

List configured remotes

To see all configured remote servers, enter the following command:

[lxc remote list ]

Remote servers that use the simple streams format are pure image servers. Servers that use the 1xd format are LXD
servers, which either serve solely as image servers or might provide some images in addition to serving as regular LXD
servers. See Remote server types for more information.

List available images on a remote

To list all remote images on a server, enter the following command:

[1xc image list <remote>: ]

You can filter the results. See Filter available images for instructions.

Add a remote server

How to add a remote depends on the protocol that the server uses.

96 Chapter 2. Project and community


https://git.launchpad.net/simplestreams/tree/

LXD

Add a simple streams server

To add a simple streams server as a remote, enter the following command:

[lxc remote add <remote_name> <URL> --protocol=simplestreams ]

The URL must use HTTPS.

Add a remote LXD server

To add a LXD server as a remote, enter the following command:

[lxc remote add <remote_name> <IP|FQDN|URL> [flags] J

Some authentication methods require specific flags (for example, use 1xc remote add <remote_name>
<IP|FQDN|URL> --auth-type=candid for Candid authentication). See Remote API authentication for more in-
formation.

For example, enter the following command to add a remote through an IP address:

[1xc remote add my-remote 192.0.2.10 J

You are prompted to confirm the remote server fingerprint and then asked for the password or token, depending on the
authentication method used by the remote.

Reference an image

To reference an image, specify its remote and its alias or fingerprint, separated with a colon. For example:

ubuntu:22.04
images:ubuntu/22.04
local:ed7509d7e83f

Select a default remote

If you specify an image name without the name of the remote, the default image server is used.

To see which server is configured as the default image server, enter the following command:

[lxc remote get-default ]

To select a different remote as the default image server, enter the following command:

[lxc remote switch <remote_name> ]

2.4. Images 97



LXD

2.4.3 How to manage images
When working with images, you can inspect various information about the available images, view and edit their prop-

erties and configure aliases to refer to specific images. You can also export an image to a file, which can be useful to
copy or import it on another machine.

List available images

To list all images on a server, enter the following command:

[lxc image list [<remote>:] ]

If you do not specify a remote, the default remote is used.

Filter available images

To filter the results that are displayed, specify a part of the alias or fingerprint after the command. For example, to show
all Ubuntu 22.04 images, enter the following command:

[lxc image list ubuntu: 22.04 J

You can specify several filters as well. For example, to show all Arm 64-bit Ubuntu 22.04 images, enter the following
command:

[lxc image list ubuntu: 22.04 arm64 J

To filter for properties other than alias or fingerprint, specify the filter in <key>=<value> format. For example:

[1xc image list ubuntu: 22.04 architecture=x86_64 ]

View image information

To view information about an image, enter the following command:

[lxc image info <image_ID> ]

As the image ID, you can specify either the image’s alias or its fingerprint. For a remote image, remember to include
the remote server (for example, ubuntu:22.04).

To display only the image properties, enter the following command:

[lxc image show <image_ID> J

You can also display a specific image property (located under the properties key) with the following command:

[lxc image get-property <image_ID> <key> J

For example, to show the release name of the official Ubuntu 22.04 image, enter the following command:

[lxc image get-property ubuntu:22.04 release ]

98 Chapter 2. Project and community



LXD

Edit image properties

To set a specific image property that is located under the properties key, enter the following command:

[lxc image set-property <image_ID> <key> ]

Note: These properties can be used to convey information about the image. They do not configure LXD’s behavior in
any way.

To edit the full image properties, including the top-level properties, enter the following command:

[1xc image edit <image_ID> J

Delete an image

To delete a local copy of an image, enter the following command:

[lxc image delete <image_ID> ]

Deleting an image won’t affect running instances that are already using it, but it will remove the image locally.

After deletion, if the image was downloaded from a remote server, it will be removed from local cache and downloaded
again on next use. However, if the image was manually created (not cached), the image will be deleted.

Configure image aliases

Configuring an alias for an image can be useful to make it easier to refer to an image, since remembering an alias
is usually easier than remembering a fingerprint. Most importantly, however, you can change an alias to point to a
different image, which allows creating an alias that always provides a current image (for example, the latest version of
arelease).

You can see some of the existing aliases in the image list. To see the full list, enter the following command:

[lxc image alias list ]

You can directly assign an alias to an image when you copy or import or publish it. Alternatively, enter the following
command:

[1xc image alias create <alias_name> <image_fingerprint> ]

You can also delete an alias:

[lxc image alias delete <alias_name> J

To rename an alias, enter the following command:

[1xc image alias rename <alias_name> <new_alias_name> J

If you want to keep the alias name, but point the alias to a different image (for example, a newer version), you must
delete the existing alias and then create a new one.

2.4. Images 99



LXD

Export an image to a file

Images are located in the image store of your local server or a remote LXD server. You can export them to a file though.
This method can be useful to back up image files or to transfer them to an air-gapped environment.

To export a container image to a file, enter the following command:

[lxc image export [<remote>:]<image> [<output_directory_path>]

To export a virtual machine image to a file, add the --vm flag:

[lxc image export [<remote>:]<image> [<output_directory_path>] --vm

See Image format for a description of the file structure used for the image.

2.4.4 How to copy and import images

To add images to an image store, you can either copy them from another server or import them from files (either local
files or files on a web server).

Copy an image from a remote

To copy an image from one server to another, enter the following command:

[lxc image copy [<source_remote>:]<image> <target_remote>:

Note: To copy the image to your local image store, specify local: as the target remote.

See 1xc image copy --help for a list of all available flags. The most relevant ones are:

--alias
Assign an alias to the copy of the image.

--copy-aliases
Copy the aliases that the source image has.

--auto-update
Keep the copy up-to-date with the original image.

--vm
When copying from an alias, copy the image that can be used to create virtual machines.

Import an image from files

If you have image files that use the required /mage format, you can import them into your image store.
There are several ways of obtaining such image files:

» Exporting an existing image (see Export an image to a file)

* Building your own image using distrobuilder (see Build an image)

* Downloading image files from a remote image server (note that it is usually easier to use the remote image directly
instead of downloading it to a file and importing it)

100 Chapter 2. Project and community



LXD

Import from the local file system

To import an image from the local file system, use the 1xc image import command. This command supports both
unified images (compressed file or directory) and split images (two files).

To import a unified image from one file or directory, enter the following command:

[1xc image import <image_file_or_directory_path> [<target_remote>:] J

To import a split image, enter the following command:

[lxc image import <metadata_tarball_path> <rootfs_tarball_path> [<target_remote>:] }

In both cases, you can assign an alias with the --alias flag. See 1xc image import --help for all available flags.

Import from a file on a remote web server

You can import image files from a remote web server by URL. This method is an alternative to running a LXD server
for the sole purpose of distributing an image to users. It only requires a basic web server with support for custom
headers (see Custom HTTP headers).

The image files must be provided as unified images (see Unified tarball).

To import an image file from a remote web server, enter the following command:

[lxc image import <URL> ]

You can assign an alias to the local image with the --alias flag.

Custom HTTP headers

LXD requires the following custom HTTP headers to be set by the web server:

LXD-Image-Hash
The SHA256 of the image that is being downloaded.

LXD-Image-URL
The URL from which to download the image.

LXD sets the following headers when querying the server:

LXD-Server-Architectures
A comma-separated list of architectures that the client supports.

LXD-Server-Version
The version of LXD in use.

2.4. Images 101



LXD

2.4.5 How to create images

If you want to create and share your own images, you can do this either based on an existing instance or snapshot or by
building your own image from scratch.

Publish an image from an instance or snapshot

If you want to be able to use an instance or an instance snapshot as the base for new instances, you should create and
publish an image from it.

To publish an image from an instance, make sure that the instance is stopped. Then enter the following command:

[lxc publish <instance_name> [<remote>:] ]

To publish an image from a snapshot, enter the following command:

[lxc publish <instance_name>/<snapshot_name> [<remote>:] ]

In both cases, you can specify an alias for the new image with the --alias flag, set an expiration date with --expire
and make the image publicly available with --public. See 1xc publish --help for a full list of available flags.

The publishing process can take quite a while because it generates a tarball from the instance or snapshot and then
compresses it. As this can be particularly I/O and CPU intensive, publish operations are serialized by LXD.

Prepare the instance for publishing

Before you publish an image from an instance, clean up all data that should not be included in the image. Usually, this
includes the following data:

¢ Instance metadata (use 1xc config metadata to edit)
* File templates (use 1xc config template to edit)

* Instance-specific data inside the instance itself (for example, host SSH keys and dbus/systemd machine-id)

Build an image

For building your own images, you can use distrobuilder.

See the distrobuilder documentation for instructions for installing and using the tool.

2.4.6 How to associate profiles with an image

You can associate one or more profiles with a specific image. Instances that are created from the image will then
automatically use the associated profiles in the order they were specified.

To associate a list of profiles with an image, use the 1xc image edit command and edit the profiles: section:

profiles:
- default

Most provided images come with a profile list that includes only the default profile. To prevent any profile (including
the default profile) from being associated with an image, pass an empty list.

102 Chapter 2. Project and community


https://github.com/lxc/distrobuilder
https://linuxcontainers.org/distrobuilder/docs/latest/

LXD

Note: Passing an empty list is different than passing nil. If you pass nil as the profile list, only the default profile
is associated with the image.

You can override the associated profiles for an image when creating an instance by adding the --profile or the
--no-profiles flag to the launch or init command.

2.4.7 Remote image servers

The 1xc CLI command comes pre-configured with the following default remote image servers:

ubuntu:
This server provides official stable Ubuntu images. All images are cloud images, which means that they include
both cloud-init and the 1xd-agent.

See cloud-images.ubuntu.com/releases for an overview of available images.

ubuntu-daily:
This server provides official daily Ubuntu images. All images are cloud images, which means that they include
both cloud-init and the 1xd-agent.

See cloud-images.ubuntu.com/daily for an overview of available images.

images:
This server provides unofficial images for a variety of Linux distributions. The images are maintained by the
Linux Containers team and are built to be compact and minimal.

See images.linuxcontainers.org for an overview of available images.

Remote server types

LXD supports the following types of remote image servers:

Simple streams servers
Pure image servers that use the simple streams format. The default image servers are simple streams servers.

Public LXD servers
LXD servers that are used solely to serve images and do not run instances themselves.

To make a LXD server publicly available over the network on port 8443, set the core.https_address configu-
ration option to : 8443 and do not configure any authentication methods (see How fo expose LXD to the network
for more information). Then set the images that you want to share to public.

LXD servers
Regular LXD servers that you can manage over a network, and that can also be used as image servers.

For security reasons, you should restrict the access to the remote API and configure an authentication method to
control access. See How to expose LXD to the network and Remote API authentication for more information.

2.4. Images 103


https://cloud-images.ubuntu.com/releases/
https://cloud-images.ubuntu.com/daily/
https://linuxcontainers.org/
https://images.linuxcontainers.org
https://git.launchpad.net/simplestreams/tree/

LXD

2.4.8 Image format

Images contain a root file system and a metadata file that describes the image. They can also contain templates for
creating files inside an instance that uses the image.

Images can be packaged as either a unified image (single file) or a split image (two files).

Content

Images for containers have the following directory structure:

metadata.yaml
rootfs/
templates/

Images for VMs have the following directory structure:

metadata.yaml
rootfs.img
templates/

For both instance types, the templates/ directory is optional.

Metadata

The metadata.yaml file contains information that is relevant to running the image in LXD. It includes the following
information:

architecture: x86_64
creation_date: 1424284563

properties:
description: Ubuntu 22.04 LTS Intel 64bit
os: Ubuntu
release: jammy 22.04

templates:

The architecture and creation_date fields are mandatory. The properties field contains a set of default prop-
erties for the image. The os, release, name and description fields are commonly used, but are not mandatory.

The templates field is optional. See Templates (optional) for information on how to configure templates.

Root file system

For containers, the rootfs/ directory contains a full file system tree of the root directory (/) in the container.

Virtual machines use a rootfs.img qcow2 file instead of a rootfs/ directory. This file becomes the main disk device.

104 Chapter 2. Project and community




LXD

Templates (optional)

You can use templates to dynamically create files inside an instance. To do so, configure template rules in the
metadata.yaml file and place the template files in a templates/ directory.

As a general rule, you should never template a file that is owned by a package or is otherwise expected to be overwritten
by normal operation of an instance.

Template rules

For each file that should be generated, create a rule in the metadata.yaml file. For example:

templates:
/etc/hosts:
when:
- create
- rename
template: hosts.tpl
properties:
foo: bar
/etc/hostname:
when:
- start
template: hostname.tpl
/etc/network/interfaces:
when:
- create
template: interfaces.tpl
create_only: true

The when key can be one or more of:
* create - run at the time a new instance is created from the image
e copy - run when an instance is created from an existing one
e start - run every time the instance is started
The template key points to the template file in the templates/ directory.
You can pass user-defined template properties to the template file through the properties key.

Set the create_only key if you want LXD to create the file if it doesn’t exist, but not overwrite an existing file.

Template files

Template files use the Pongo?2 format.

They always receive the following context:

2.4. Images 105



https://www.schlachter.tech/solutions/pongo2-template-engine/

LXD

Variable  Type Description

trigger string Name of the event that triggered the template

path string Path of the file that uses the template

instance map[string]string Key/value map of instance properties (name, architecture, privileged
and ephemeral)

config map[string]string Key/value map of the instance’s configuration

devices map[string]map[string]st Key/value map of the devices assigned to the instance

propertie map[string]string Key/value map of the template properties specified in metadata.
yaml

For convenience, the following functions are exported to the Pongo2 templates:

e config_get("user.foo", "bar™) - Returns the value of user. foo, or "bar" if not set.

Image tarballs

LXD supports two LXD-specific image formats: a unified tarball and split tarballs.

These tarballs can be compressed. LXD supports a wide variety of compression algorithms for tarballs. However, for
compatibility purposes, you should use gzip or xz.

Unified tarball

A unified tarball is a single tarball (usually *.tar.xz) that contains the full content of the image, including the meta-
data, the root file system and optionally the template files.

This is the format that LXD itself uses internally when publishing images. It is usually easier to work with; therefore,
you should use the unified format when creating LXD-specific images.

The image identifier for such images is the SHA-256 of the tarball.

Split tarballs

A split image consists of two separate tarballs. One tarball contains the metadata and optionally the template files
(usually *.tar.xz), and the other contains the root file system (usually *.squashfs for containers or *.qcow2 for
virtual machines).

For containers, the root file system tarball can be SquashFS-formatted. For virtual machines, the rootfs. img file
always uses the qcow2 format. It can optionally be compressed using gcow2’s native compression.

This format is designed to allow for easy image building from existing non-LXD rootfs tarballs that are already available.
You should also use this format if you want to create images that can be consumed by both LXD and other tools.

The image identifier for such images is the SHA-256 of the concatenation of the metadata and root file system tarball
(in that order).

106 Chapter 2. Project and community



LXD

2.5 Storage

2.5.1 About storage pools and storage volumes

LXD stores its data in storage pools, divided into storage volumes of different content types (like images or instances).
You could think of a storage pool as the disk that is used to store data, while storage volumes are different partitions on
this disk that are used for specific purposes.

Storage pools
During initialization, LXD prompts you to create a first storage pool. If required, you can create additional storage
pools later (see Create a storage pool).
Each storage pool uses a storage driver. The following storage drivers are supported:
* Directory - dir
e Btrfs - btrfs
e LVM - 1vm
e ZFS - zfs
e Ceph RBD - ceph
e CephFS - cephfs
See the following how-to guides for additional information:
* How to manage storage pools

* How to create an instance in a specific storage pool

Data storage location

Where the LXD data is stored depends on the configuration and the selected storage driver. Depending on the storage
driver that is used, LXD can either share the file system with its host or keep its data separate.

Storage location Directory Btrfs LVM ZFS Ceph RBD CephFS
Shared with the host v v - v - -
Dedicated disk/partition - v v v - -

Loop disk - v v v - -
Remote storage - - - - v v

Shared with the host

Sharing the file system with the host is usually the most space-efficient way to run LXD. In most cases, it is also the
easiest to manage.

This option is supported for the dir driver, the btrfs driver (if the host is Btrfs and you point LXD to a dedicated
sub-volume) and the zfs driver (if the host is ZFS and you point LXD to a dedicated dataset on your zpool).

2.5. Storage 107



LXD

Dedicated disk or partition

Having LXD use an empty partition on your main disk or a full dedicated disk keeps its storage completely independent
from the host.

This option is supported for the btrfs driver, the 1vm driver and the zfs driver.

Loop disk

LXD can create a loop file on your main drive and have the selected storage driver use that. This method is functionally
similar to using a disk or partition, but it uses a large file on your main drive instead. This means that every write must
go through the storage driver and your main drive’s file system, which leads to decreased performance.

The loop files reside in /var/snap/lxd/common/1xd/disks/ if you are using the snap, or in /var/lib/1xd/
disks/ otherwise.

Loop files usually cannot be shrunk. They will grow up to the configured limit, but deleting instances or images will
not cause the file to shrink. You can increase their size though; see Resize a storage pool.

Remote storage

The ceph and cephfs drivers store the data in a completely independent Ceph storage cluster that must be set up
separately.

Default storage pool

There is no concept of a default storage pool in LXD.
When you create a storage volume, you must specify the storage pool to use.

When LXD automatically creates a storage volume during instance creation, it uses the storage pool that is configured
for the instance. This configuration can be set in either of the following ways:

¢ Directly on an instance: 1xc launch <image> <instance_name> --storage <storage_pool>

* Through a profile: 1xc profile device add <profile_name> root disk path=/
pool=<storage_pool>and 1xc launch <image> <instance_name> --profile <profile_name>

* Through the default profile

In a profile, the storage pool to use is defined by the pool for the root disk device:

root:
type: disk
path: /

pool: default

In the default profile, this pool is set to the storage pool that was created during initialization.

108 Chapter 2. Project and community



LXD

Storage volumes
When you create an instance, LXD automatically creates the required storage volumes for it. You can create additional
storage volumes.
See the following how-to guides for additional information:
* How to manage storage volumes
¢ How to move or copy storage volumes

* How to back up custom storage volumes

Storage volume types

Storage volumes can be of the following types:

container/virtual-machine
LXD automatically creates one of these storage volumes when you launch an instance. It is used as the root disk
for the instance, and it is destroyed when the instance is deleted.

This storage volume is created in the storage pool that is specified in the profile used when launching the instance
(or the default profile, if no profile is specified). The storage pool can be explicitly specified by providing the
--storage flag to the launch command.

image
LXD automatically creates one of these storage volumes when it unpacks an image to launch one or more in-

stances from it. You can delete it after the instance has been created. If you do not delete it manually, it is deleted
automatically ten days after it was last used to launch an instance.

The image storage volume is created in the same storage pool as the instance storage volume, and only for storage
pools that use a storage driver that supports optimized image storage.

custom
You can add one or more custom storage volumes to hold data that you want to store separately from your
instances. Custom storage volumes can be shared between instances, and they are retained until you delete them.

You can also use custom storage volumes to hold your backups or images.

You must specify the storage pool for the custom volume when you create it.

Content types

Each storage volume uses one of the following content types:

filesystem
This content type is used for containers and container images. It is the default content type for custom storage
volumes.

Custom storage volumes of content type filesystem can be attached to both containers and virtual machines,
and they can be shared between instances.

block
This content type is used for virtual machines and virtual machine images. You can create a custom storage
volume of type block by using the --type=block flag.

Custom storage volumes of content type block can only be attached to virtual machines. They should not be
shared between instances, because simultaneous access can lead to data corruption.

2.5. Storage 109



LXD

2.5.2 How to manage storage pools

See the following sections for instructions on how to create, configure, view and resize Storage pools.

Create a storage pool

LXD creates a storage pool during initialization. You can add more storage pools later, using the same driver or different
drivers.

To create a storage pool, use the following command:

[lxc storage create <pool_name> <driver> [configuration_options...] J

Unless specified otherwise, LXD sets up loop-based storage with a sensible default size (20% of the free disk space,
but at least 5 GiB and at most 30 GiB).

See the Storage drivers documentation for a list of available configuration options for each driver.

Examples

See the following examples for how to create a storage pool using different storage drivers.
Directory

Btrfs

LVM

ZFS

Ceph RBD

CephFS

Create a directory pool named pool1l:

[lxc storage create pooll dir ]

Use the existing directory /data/1xd for pool2:

[lxc storage create pool2 dir source=/data/lxd ]

Create a loop-backed pool named pooll:

[lxc storage create pooll btrfs ]

Use the existing Btrfs file system at /some/path for pool2:

[lxc storage create pool2 btrfs source=/some/path ]

Create a pool named pool3 on /dev/sdX:

[lxc storage create pool3 btrfs source=/dev/sdX ]

Create a loop-backed pool named pooll (the LVM volume group will also be called pooll):

[lxc storage create pooll lvm }

110 Chapter 2. Project and community



LXD

Use the existing LVM volume group called my-pool for pool2:

[1xc storage create pool2 lvm source=my-pool

Use the existing LVM thin pool called my-pool in volume group my-vg for pool3:

[lxc storage create pool3 lvm source=my-vg lvm.thinpool_name=my-pool

Create a pool named pool4 on /dev/sdX (the LVM volume group will also be called pool4):

[lxc storage create pool4 lvm source=/dev/sdX

Create a pool named pool5 on /dev/sdX with the LVM volume group name my-pool:

[lxc storage create pool5 lvm source=/dev/sdX lvm.vg_name=my-pool

Create a loop-backed pool named pooll (the ZFS zpool will also be called pool1):

[lxc storage create pooll zfs

Create a loop-backed pool named pool2 with the ZFS zpool name my-tank:

[lxc storage create pool2 zfs zfs.pool_name=my-tank

Use the existing ZFS zpool my-tank for pool3:

[lxc storage create pool3 zfs source=my-tank

Use the existing ZFS dataset my-tank/slice for pool4:

[lxc storage create pool4 zfs source=my-tank/slice

Create a pool named pool5 on /dev/sdX (the ZFS zpool will also be called pool5):

[lxc storage create pool5 zfs source=/dev/sdX

Create a pool named pool6 on /dev/sdX with the ZFS zpool name my-tank:

[1xc storage create pool6 zfs source=/dev/sdX zfs.pool_name=my-tank

Create an OSD storage pool named pooll in the default Ceph cluster (named ceph):

[lxc storage create pooll ceph

Create an OSD storage pool named pool2 in the Ceph cluster my-cluster:

[1xc storage create pool2 ceph ceph.cluster_name=my-cluster

Create an OSD storage pool named pool3 with the on-disk name my-osd in the default Ceph cluster:

[lxc storage create pool3 ceph ceph.osd.pool_name=my-osd

Use the existing OSD storage pool my-already-existing-osd for pool4:

[lxc storage create pool4 ceph source=my-already-existing-osd

Use the existing OSD erasure-coded pool ecpool and the OSD replicated pool rpl-pool for pool5:

2.5. Storage

111



LXD

[1xc storage create pool5 ceph source=rpl-pool ceph.osd.data_pool_name=ecpool J

Note: When using the CephFS driver, you must create a CephFS file system beforehand. This file system consists of
two OSD storage pools, one for the actual data and one for the file metadata.

Use the existing CephFS file system my-filesystem for pooll:

[lxc storage create pooll cephfs source=my-filesystem J

Use the sub-directory my-directory from the my-filesystem file system for pool2:

[lxc storage create pool2 cephfs source=my-filesystem/my-directory ]

Create a storage pool in a cluster

If you are running a LXD cluster and want to add a storage pool, you must create the storage pool for each cluster
member separately. The reason for this is that the configuration, for example, the storage location or the size of the
pool, might be different between cluster members.

Therefore, you must first create a pending storage pool on each member with the --target=<cluster_member> flag
and the appropriate configuration for the member. Make sure to use the same storage pool name for all members. Then
create the storage pool without specifying the --target flag to actually set it up.

For example, the following series of commands sets up a storage pool with the name my-pool at different locations
and with different sizes on three cluster members:

user@host:~$ lxc storage create my-pool zfs source=/dev/sdX size=10GB --target=vm0®1l
Storage pool my-pool pending on member vmO1 user@host:~$ 1lxc storage create my-pool
zfs source=/dev/sdX size=15GB --target=vm02 Storage pool my-pool pending on member vm@2
user@host:~$ lxc storage create my-pool zfs source=/dev/sdY size=10GB --target=vm@®3
Storage pool my-pool pending on member vm03 user@host:~$ lxc storage create my-pool zfs
Storage pool my-pool created Also see How to configure storage for a cluster.

Note: For most storage drivers, the storage pools exist locally on each cluster member. That means that if you create
a storage volume in a storage pool on one member, it will not be available on other cluster members.

This behavior is different for Ceph-based storage pools (ceph and cephfs) where each storage pool exists in one central
location and therefore, all cluster members access the same storage pool with the same storage volumes.

Configure storage pool settings

See the Storage drivers documentation for the available configuration options for each storage driver.
General keys for a storage pool (like source) are top-level. Driver-specific keys are namespaced by the driver name.

Use the following command to set configuration options for a storage pool:

[lxc storage set <pool_name> <key> <value> ]

For example, to turn off compression during storage pool migration for a dir storage pool, use the following command:

112 Chapter 2. Project and community



LXD

[1xc storage set my-dir-pool rsync.compression false J

You can also edit the storage pool configuration by using the following command:

[lxc storage edit <pool_name> J

View storage pools

You can display a list of all available storage pools and check their configuration.

Use the following command to list all available storage pools:

[lxc storage list ]

The resulting table contains the storage pool that you created during initialization (usually called default or local)
and any storage pools that you added.

To show detailed information about a specific pool, use the following command:

[lxc storage show <pool_name> J

To see usage information for a specific pool, run the following command:

[lxc storage info <pool_name> ]

Resize a storage pool

If you need more storage, you can increase the size of your storage pool by changing the size configuration key:

[1xc storage set <pool_name> size=<new_size> J

This will only work for loop file backed storage pools which are managed by LXD.

2.5.3 How to create an instance in a specific storage pool

Instance storage volumes are created in the storage pool that is specified by the instance’s root disk device. This
configuration is normally provided by the profile or profiles applied to the instance. See Default storage pool for
detailed information.

To use a different storage pool when creating or launching an instance, add the --storage flag. This flag overrides
the root disk device from the profile. For example:

[lxc launch <image> <instance_name> --storage <storage_pool> }

2.5. Storage 113



LXD

Move instance storage volumes to another pool

To move an instance storage volume to another storage pool, make sure the instance is stopped. Then use the following
command to move the instance to a different pool:

[1xc move <instance_name> --storage <target_pool_name> ]

2.5.4 How to manage storage volumes

See the following sections for instructions on how to create, configure, view and resize Storage volumes.

Create a custom storage volume

When you create an instance, LXD automatically creates a storage volume that is used as the root disk for the instance.

You can add custom storage volumes to your instances. Such custom storage volumes are independent of the instance,
which means that they can be backed up separately and are retained until you delete them. Custom storage volumes
with content type filesystem can also be shared between different instances.

See Storage volumes for detailed information.

Create the volume

Use the following command to create a custom storage volume in a storage pool:

[1xc storage volume create <pool_name> <volume_name> [configuration_options...] J

See the Storage drivers documentation for a list of available storage volume configuration options for each driver.

By default, custom storage volumes use the filesystem content type. To create a custom storage volume with the
content type block, add the --type flag:

1xc storage volume create <pool_name> <volume_name> --type=block [configuration_options..

]

To add a custom storage volume on a cluster member, add the --target flag:

lxc storage volume create <pool_name> <volume_name> --target=<cluster_member>.
< [configuration_options...]

Note: For most storage drivers, custom storage volumes are not replicated across the cluster and exist only on the
member for which they were created. This behavior is different for Ceph-based storage pools (ceph and cephfs),
where volumes are available from any cluster member.

114 Chapter 2. Project and community




LXD

Attach the volume to an instance

After creating a custom storage volume, you can add it to one or more instances as a disk device.
The following restrictions apply:
» Custom storage volumes of content type block cannot be attached to containers, but only to virtual machines.

* To avoid data corruption, storage volumes of content type block should never be attached to more than one
virtual machine at a time.

For custom storage volumes with the content type filesystem, use the following command, where <location> is
the path for accessing the storage volume inside the instance (for example, /data):

[1xc storage volume attach <pool_name> <filesystem_volume_name> <instance_name> <10cation>]

Custom storage volumes with the content type block do not take a location:

[lxc storage volume attach <pool_name> <block_volume_name> <instance_name> J

By default, the custom storage volume is added to the instance with the volume name as the device name. If you want
to use a different device name, you can add it to the command:

1xc storage volume attach <pool_name> <filesystem_volume_name> <instance_name> <device_
—name> <location>
1xc storage volume attach <pool_name> <block_volume_name> <instance_name> <device_name>

Attach the volume as a device

The 1xc storage volume attachcommand is a shortcut for adding a disk device to an instance. Alternatively, you
can add a disk device for the storage volume in the usual way:

1xc config device add <instance_name> <device_name> disk pool=<pool_name> source=<volume_
—name> [path=<location>]

When using this way, you can add further configuration to the command if needed. See disk device for all available
device options.

Configure 1/O limits

When you attach a storage volume to an instance as a disk device, you can configure I/O limits for it. To do so, set the
limits.read, limits.write or limits.max properties to the corresponding limits. See the Type: disk reference
for more information.

The limits are applied through the Linux blkio cgroup controller, which makes it possible to restrict I/O at the disk
level (but nothing finer grained than that).

Note: Because the limits apply to a whole physical disk rather than a partition or path, the following restrictions apply:
» Limits will not apply to file systems that are backed by virtual devices (for example, device mapper).
« If a file system is backed by multiple block devices, each device will get the same limit.

« If two disk devices that are backed by the same disk are attached to the same instance, the limits of the two
devices will be averaged.

2.5. Storage 115



LXD

All I/O limits only apply to actual block device access. Therefore, consider the file system’s own overhead when setting
limits. Access to cached data is not affected by the limit.

Use the volume for backups or images

Instead of attaching a custom volume to an instance as a disk device, you can also use it as a special kind of volume to
store backups or images.

To do so, you must set the corresponding server configuration:

* To use a custom volume to store the backup tarballs:

[lxc config set storage.backups_volume <pool_name>/<volume_name> J

* To use a custom volume to store the image tarballs:

[lxc config set storage.images_volume <pool_name>/<volume_name> J

Configure storage volume settings

See the Storage drivers documentation for the available configuration options for each storage driver.

Use the following command to set configuration options for a storage volume:

[lxc storage volume set <pool_name> [<volume_type>/]<volume_name> <key> <value> J

The default storage volume type is custom, so you can leave out the <volume_type>/ when configuring a custom
storage volume.

For example, to set the size of your custom storage volume my-volume to 1 GiB, use the following command:

[lxc storage volume set my-pool my-volume size=1GiB J

To set the snapshot expiry time for your virtual machine my-vm to one month, use the following command:

[lxc storage volume set my-pool virtual-machine/my-vm snapshots.expiry 1M ]

You can also edit the storage volume configuration by using the following command:

[lxc storage volume edit <pool_name> [<volume_type>/]<volume_name> ]

Configure default values for storage volumes

You can define default volume configurations for a storage pool. To do so, set a storage pool configuration with a
volume prefix, thus volume . <VOLUME_CONFIGURATION>=<VALUE>.

This value is then used for all new storage volumes in the pool, unless it is set explicitly for a volume or an instance. In
general, the defaults set on a storage pool level (before the volume was created) can be overridden through the volume
configuration, and the volume configuration can be overridden through the instance configuration (for storage volumes
of type container or virtual-machine).

For example, to set a default volume size for a storage pool, use the following command:

116 Chapter 2. Project and community



LXD

[1xc storage set [<remote>:]<pool_name> volume.size <value> J

View storage volumes

You can display a list of all available storage volumes in a storage pool and check their configuration.

To list all available storage volumes in a storage pool, use the following command:

[lxc storage volume list <pool_name> ]

To display the storage volumes for all projects (not only the default project), add the --all-projects flag.

The resulting table contains the storage volume type and the content type for each storage volume in the pool.

Note: Custom storage volumes might use the same name as instance volumes (for example, you might have a container
named c1 with a container storage volume named c1 and a custom storage volume named c1). Therefore, to distinguish
between instance storage volumes and custom storage volumes, all instance storage volumes must be referred to as
<volume_type>/<volume_name> (for example, container/cl or virtual-machine/vm) in commands.

To show detailed configuration information about a specific volume, use the following command:

[lxc storage volume show <pool_name> [<volume_type>/]<volume_name> ]

To show state information about a specific volume, use the following command:

[lxc storage volume info <pool_name> [<volume_type>/]<volume_name> ]

In both commands, the default storage volume type is custom, so you can leave out the <volume_type>/ when dis-
playing information about a custom storage volume.

Resize a storage volume

If you need more storage in a volume, you can increase the size of your storage volume. In some cases, it is also possible
to reduce the size of a storage volume.

To resize a storage volume, set its size configuration:

[lxc storage volume set <pool_name> <volume_name> size <new_size> J

Important:
* Growing a storage volume usually works (if the storage pool has sufficient storage).

* Shrinking a storage volume is only possible for storage volumes with content type filesystem. It is not guar-
anteed to work though, because you cannot shrink storage below its current used size.

 Shrinking a storage volume with content type block is not possible.

2.5. Storage 117



LXD

2.5.5 How to move or copy storage volumes

You can copy or move custom storage volumes from one storage pool to another, or copy or rename them within the
same storage pool.

To move instance storage volumes from one storage pool to another, move the corresponding instance to another pool.

When copying or moving a volume between storage pools that use different drivers, the volume is automatically con-
verted.

Copy custom storage volumes

Use the following command to copy a custom storage volume:

1xc storage volume copy <source_pool_name>/<source_volume_name> <target_pool_name>/
—<target_volume_name>

Add the --volume-only flag to copy only the volume and skip any snapshots that the volume might have. If the
volume already exists in the target location, use the --refresh flag to update the copy.

Specify the same pool as the source and target pool to copy the volume within the same storage pool. You must specify
different volume names for source and target in this case.

When copying from one storage pool to another, you can either use the same name for both volumes or rename the new
volume.

Move or rename custom storage volumes

Before you can move or rename a custom storage volume, all instances that use it must be stopped.

Use the following command to move or rename a storage volume:

1xc storage volume move <source_pool_name>/<source_volume_name> <target_pool_name>/
—<target_volume_name>

Specify the same pool as the source and target pool to rename the volume while keeping it in the same storage pool.
You must specify different volume names for source and target in this case.

When moving from one storage pool to another, you can either use the same name for both volumes or rename the new
volume.

Copy or move between cluster members
For most storage drivers (except for ceph and ceph-fs), storage volumes exist only on the cluster member for which
they were created.

To copy or move a custom storage volume from one cluster member to another, add the --target and
--destination-target flags to specify the source cluster member and the target cluster member, respectively.

118 Chapter 2. Project and community



LXD

Copy or move between projects

Add the --target-project to copy or move a custom storage volume to a different project.

Copy or move between LXD servers

You can copy or move custom storage volumes between different LXD servers by specifying the remote for each pool:

1xc storage volume copy <source_remote>:<source_pool_name>/<source_volume_name> <target_
—remote>:<target_pool_name>/<target_volume_name>
1xc storage volume move <source_remote>:<source_pool_name>/<source_volume_name> <target_
—remote>:<target_pool_name>/<target_volume_name>

You can add the --mode flag to choose a transfer mode, depending on your network setup:

pull (default)
Instruct the target server to pull the respective storage volume.

push
Push the storage volume from the source server to the target server.

relay
Pull the storage volume from the source server to the local client, and then push it to the target server.

Move instance storage volumes to another pool

To move an instance storage volume to another storage pool, make sure the instance is stopped. Then use the following
command to move the instance to a different pool:

[lxc move <instance_name> --storage <target_pool_name>

2.5.6 How to back up custom storage volumes

There are different ways of backing up your custom storage volumes:
e Use snapshots for backup
» Use export files for backup
* Copy custom storage volumes
Which method to choose depends both on your use case and on the storage driver you use.

In general, snapshots are quick and space efficient (depending on the storage driver), but they are stored in the same
storage pool as the volume and therefore not too reliable. Export files can be stored on different disks and are therefore
more reliable. They can also be used to restore a volume into a different storage pool. If you have a separate, network-
connected LXD server available, regularly copying a volume to this other server gives high reliability as well, and this
method can also be used to back up snapshots of the volume.

Note: Custom storage volumes might be attached to an instance, but they are not part of the instance. Therefore, the
content of a custom storage volume is not stored when you back up your instance. You must back up the data of your
storage volume separately.

2.5. Storage 119



LXD

Use shapshots for backup

A snapshot saves the state of the storage volume at a specific time, which makes it easy to restore the volume to a
previous state. It is stored in the same storage pool as the volume itself.

Most storage drivers support optimized snapshot creation (see Feature comparison). For these drivers, creating snap-
shots is both quick and space-efficient. For the dir driver, snapshot functionality is available but not very efficient. For
the 1vm driver, snapshot creation is quick, but restoring snapshots is efficient only when using thin-pool mode.

Create a shapshot of a custom storage volume

Use the following command to create a snapshot for a custom storage volume:

[lxc storage volume snapshot <pool_name> <volume_name> [<snapshot_name>] J

Add the --reuse flag in combination with a snapshot name to replace an existing snapshot.

By default, snapshots are kept forever, unless the snapshots.expiry configuration option is set. To retain a specific
snapshot even if a general expiry time is set, use the --no-expiry flag.

View, edit or delete snhapshots

Use the following command to display the snapshots for a storage volume:

[lxc storage volume info <pool_name> <volume_name> J

You can view or modify snapshots in a similar way to custom storage volumes, by referring to the snapshot with
<volume_name>/<snapshot_name>.

To show information about a snapshot, use the following command:

[lxc storage volume show <pool_name> <volume_name>/<snapshot_name> J

To edit a snapshot (for example, to add a description or change the expiry date), use the following command:

[lxc storage volume edit <pool_name> <volume_name>/<snapshot_name> ]

To delete a snapshot, use the following command:

[lxc storage volume delete <pool_name> <volume_name>/<snapshot_name> ]

Schedule snhapshots of a custom storage volume

You can configure a custom storage volume to automatically create snapshots at specific times. To do so, set the
snapshots.schedule configuration option for the storage volume (see Configure storage volume settings).

For example, to configure daily snapshots, use the following command:

[lxc storage volume set <pool_name> <volume_name> snapshots.schedule @daily ]

To configure taking a snapshot every day at 6 am, use the following command:

[lxc storage volume set <pool_name> <volume_name> snapshots.schedule "0 6 * * *" ]

120 Chapter 2. Project and community



LXD

When scheduling regular snapshots, consider setting an automatic expiry (snapshots.expiry) and a naming pat-
tern for snapshots (snapshots.pattern). See the Storage drivers documentation for more information about those
configuration options.

Restore a shapshot of a custom storage volume

You can restore a custom storage volume to the state of any of its snapshots.

To do so, you must first stop all instances that use the storage volume. Then use the following command:

[lxc storage volume restore <pool_name> <volume_name> <snapshot_name> ]

You can also restore a snapshot into a new custom storage volume, either in the same storage pool or in a different one
(even a remote storage pool). To do so, use the following command:

1xc storage volume copy <source_pool_name>/<source_volume_name>/<source_snapshot_name>
—.<target_pool_name>/<target_volume_name>

Use export files for backup

You can export the full content of your custom storage volume to a standalone file that can be stored at any location.
For highest reliability, store the backup file on a different file system to ensure that it does not get lost or corrupted.

Export a custom storage volume

Use the following command to export a custom storage volume to a compressed file (for example, /path/to/
my-backup.tgz):

[1xc storage volume export <pool_name> <volume_name> [<file_path>] ]

If you do not specify a file path, the export file is saved as <instance name>.<extension> in the working directory
(for example, my-container.tar.gz).

Warning: If the output file (<instance name>.<extension>, <instance name>.backup, or the specified
file path) already exists, the command overwrites the existing file without warning.

You can add any of the following flags to the command:

--compression
By default, the output file uses gzip compression. You can specify a different compression algorithm (for
example, bzip2) or turn off compression with --compression=none.

--optimized-storage
If your storage pool uses the btrfs or the z£fs driver, add the --optimized-storage flag to store the data as a
driver-specific binary blob instead of an archive of individual files. In this case, the export file can only be used
with pools that use the same storage driver.

Exporting a volume in optimized mode is usually quicker than exporting the individual files. Snapshots are
exported as differences from the main volume, which decreases their size and makes them easily accessible.

--volume-only
By default, the export file contains all snapshots of the storage volume. Add this flag to export the volume without
its snapshots.

2.5. Storage 121



LXD

Restore a custom storage volume from an export file

You can import an export file (for example, /path/to/my-backup.tgz) as a new custom storage volume. To do so,
use the following command:

[lxc storage volume import <pool_name> <file_path> [<volume_name>] J

If you do not specify a volume name, the original name of the exported storage volume is used for the new volume. If
a volume with that name already (or still) exists in the specified storage pool, the command returns an error. In that
case, either delete the existing volume before importing the backup or specify a different volume name for the import.

2.5.7 Storage drivers

LXD supports the following storage drivers for storing images, instances and custom volumes:

Directory - dir

The directory storage driver is a basic backend that stores its data in a standard file and directory structure. This driver
is quick to set up and allows inspecting the files directly on the disk, which can be convenient for testing. However,
LXD operations are not optimized for this driver.

dir driver in LXD

The dir driver in LXD is fully functional and provides the same set of features as other drivers. However, it is much
slower than all the other drivers because it must unpack images and do instant copies of instances, snapshots and images.

Unless specified differently during creation (with the source configuration option), the data is stored in the /var/
snap/1lxd/common/1xd/storage-pools/ (for snap installations) or /var/1lib/1xd/storage-pools/ directory.

Quotas

The dir driver supports storage quotas when running on either ext4 or XFS with project quotas enabled at the file
system level.

Configuration options

The following configuration options are available for storage pools that use the dir driver and for storage volumes in
these pools.

Storage pool configuration

Key Type Default Description

rsync. string ® (no The upper limit to be placed on the socket I/O when rsync must be used to
bwlimit limit) transfer storage entities

rsync. bool true Whether to use compression while migrating storage pools

compression

source string - Path to an existing directory

122 Chapter 2. Project and community



LXD

Tip: In addition to these configurations, you can also set default values for the storage volume configurations. See
Configure default values for storage volumes.

Storage volume configuration

Key Type Con- Default Description
di-
tion
securil bool cus- same as Enable ID shifting overlay (allows attach by multiple isolated instances)
shiftec tom volume.
vol- security.
ume shifted or
false
securii bool cus-  same as  Disable ID mapping for the volume
unmappe tom volume.
vol- security.
ume  unmapped or
false
size string ap- same as Size/quota of the storage volume
pro-  volume.size
pri-
ate
driver
snapshc string cus-  same as  Controls when snapshots are to be deleted (expects an expression like
expiry tom volume. 1M 2H 3d 4w 5m 6y)
vol- snapshots.
ume  expiry
snapshc string cus-  same as Pongo2 template string that represents the snapshot name (used for
patter: tom volume. scheduled snapshots and unnamed snapshots) [**]
vol- snapshots.
ume pattern or
snap%d
snapshc string cus- same as Cron expression (<minute> <hour> <dom> <month> <dow>),
schedu! tom volume. a comma-separated list of schedule aliases (@Ghourly, @daily,
vol- snapshots. @midnight, @Gweekly, @Gmonthly, @annually, @yearly), or empty to
ume schedule disable automatic snapshots (the default)

Btrfs - btrfs

BtrFs (B-tree file system) is a local file system based on the COW (copy-on-write) principle. COW means that data
is stored to a different block after it has been modified instead of overwriting the existing data, reducing the risk of
data corruption. Unlike other file systems, Btrfs is extent-based, which means that it stores data in contiguous areas of

memory.

In addition to basic file system features, Btrfs offers RAID and volume management, pooling, snapshots, checksums,
compression and other features.

To use Btrfs, make sure you have btrfs-progs installed on your machine.

2.5. Storage

123



LXD

Terminology

A Btrfs file system can have subvolumes, which are named binary subtrees of the main tree of the file system with their
own independent file and directory hierarchy. A Btrfs snapshot is a special type of subvolume that captures a specific
state of another subvolume. Snapshots can be read-write or read-only.

btrfs driver in LXD

The btrfs driver in LXD uses a subvolume per instance, image and snapshot. When creating a new entity (for example,
launching a new instance), it creates a Btrfs snapshot.

Btrfs doesn’t natively support storing block devices. Therefore, when using Btrfs for VMs, LXD creates a big file on
disk to store the VM. This approach is not very efficient and might cause issues when creating snapshots.

Btrfs can be used as a storage backend inside a container in a nested LXD environment. In this case, the parent container
itself must use Btrfs. Note, however, that the nested LXD setup does not inherit the Btrfs quotas from the parent (see
Quotas below).

Quotas

Btrfs supports storage quotas via qgroups. Btrfs qgroups are hierarchical, but new subvolumes will not automatically
be added to the qgroups of their parent subvolumes. This means that users can trivially escape any quotas that are
set. Therefore, if strict quotas are needed, you should consider using a different storage driver (for example, ZFS with
refquota or LVM with Btrfs on top).

When using quotas, you must take into account that Btrfs extents are immutable. When blocks are written, they end up
in new extents. The old extents remain until all their data is dereferenced or rewritten. This means that a quota can be
reached even if the total amount of space used by the current files in the subvolume is smaller than the quota.

Note: This issue is seen most often when using VMs on Btrfs, due to the random I/O nature of using raw disk image
files on top of a Btrfs subvolume.

Therefore, you should never use VMs with Btrfs storage pools.

If you really need to use VMs with Btrfs storage pools, set the instance root disk’s size.state property to twice the
size of the root disk’s size. This configuration allows all blocks in the disk image file to be rewritten without reaching
the qgroup quota. The btrfs.mount_options=compress-force storage pool option can also avoid this scenario,
because a side effect of enabling compression is to reduce the maximum extent size such that block rewrites don’t cause
as much storage to be double-tracked. However, this is a storage pool option, and it therefore affects all volumes on the
pool.

Configuration options

The following configuration options are available for storage pools that use the btrfs driver and for storage volumes
in these pools.

124 Chapter 2. Project and community



LXD

Storage pool configuration

Key Type Default Description

btrfs. string user_subvol_rm_allowed Mount options for block devices

mount_optic

size string auto (20% of free disk Size of the storage pool when creating loop-based pools (in
space, >= 5 GiB and <= 30 bytes, suffixes supported, can be increased to grow storage
GiB) pool)

source string - Path to an existing block device, loop file or Btrfs subvolume

source. bool false Wipe the block device specified in source prior to creating

wipe the storage pool

Tip: In addition to these configurations, you can also set default values for the storage volume configurations. See
Configure default values for storage volumes.

2.5. Storage 125



LXD

Storage volume configuration

Key Type Con- Default Description
di-
tion
securil bool cus- same as Enable ID shifting overlay (allows attach by multiple isolated instances)
shiftec tom  volume.
vol- security.
ume shifted or
false
securil bool cus-  same as Disable ID mapping for the volume
unmappe tom volume.
vol- security.
ume  unmapped or
false
size string ap- same as Size/quota of the storage volume
pro-  volume.size
pri-
ate
driver
snapshc string cus-  same as  Controls when snapshots are to be deleted (expects an expression like
expiry tom volume. 1M 2H 3d 4w 5m 6y)
vol- snapshots.
ume expiry
snapshc string cus-  same as Pongo2 template string that represents the snapshot name (used for
patter: tom volume. scheduled snapshots and unnamed snapshots) [**]
vol- snapshots.
ume pattern or
snap%d
snapshc string cus- same as Cron expression (<minute> <hour> <dom> <month> <dow>),
schedu! tom volume. a comma-separated list of schedule aliases (@Ghourly, @daily,
vol- snapshots. @midnight, @weekly, @Gmonthly, @annually, @yearly), or empty to
ume  schedule disable automatic snapshots (the default)
LVM - 1vm

LVM (Logical Volume Manager) is a storage management framework rather than a file system. It is used to man-
age physical storage devices, allowing you to create a number of logical storage volumes that use and virtualize the
underlying physical storage devices.

Note that it is possible to over-commit the physical storage in the process, to allow flexibility for scenarios where not
all available storage is in use at the same time.

To use LVM, make sure you have 1vm2 installed on your machine.

126

Chapter 2. Project and community



LXD

Terminology

LVM can combine several physical storage devices into a volume group. You can then allocate logical volumes of
different types from this volume group.

One supported volume type is a thin pool, which allows over-committing the resources by creating thinly provisioned
volumes whose total allowed maximum size is larger than the available physical storage. Another type is a volume
snapshot, which captures a specific state of a logical volume.

1vm driver in LXD

The 1vm driver in LXD uses logical volumes for images, and volume snapshots for instances and snapshots.

LXD assumes that it has full control over the volume group. Therefore, you should not maintain any file system entities
that are not owned by LXD in an LVM volume group, because LXD might delete them. However, if you need to reuse
an existing volume group (for example, because your setup has only one volume group), you can do so by setting the
lvm.vg. force_reuse configuration.

By default, LVM storage pools use an LVM thin pool and create logical volumes for all LXD storage entities (images,
instances and custom volumes) in there. This behavior can be changed by setting Ivm. use_thinpool to false when
you create the pool. In this case, LXD uses “normal” logical volumes for all storage entities that are not snapshots.
Note that this entails serious performance and space reductions for the 1vm driver (close to the dir driver both in
speed and storage usage). The reason for this is that most storage operations must fall back to using rsync, because
logical volumes that are not thin pools do not support snapshots of snapshots. In addition, non-thin snapshots take up
much more storage space than thin snapshots, because they must reserve space for their maximum size at creation time.
Therefore, this option should only be chosen if the use case requires it.

For environments with a high instance turnover (for example, continuous integration) you should tweak the backup
retain_min and retain_days settings in /etc/lvm/1lvm. conf to avoid slowdowns when interacting with LXD.

Configuration options

The following configuration options are available for storage pools that use the 1vm driver and for storage volumes in
these pools.

2.5. Storage 127



LXD

Storage pool configuration

Key Type Default Description

lvm. string LXDThinPool Thin pool where volumes are created

thinpool_name

lvm. string ® (auto) The size of the thin pool metadata volume (the default is to

thinpool_metac let LVM calculate an appropriate size)

lvm. bool true Whether the storage pool uses a thin pool for logical vol-

use_thinpool umes

lvm.vg. bool false Force using an existing non-empty volume group

force_reuse

lvm.vg_name string name of the pool Name of the volume group to create

rsync. string O (no limit) The upper limit to be placed on the socket /O when rsync

bwlimit must be used to transfer storage entities

rsync. bool true Whether to use compression while migrating storage pools

compression

size string auto (20% of free disk Size of the storage pool when creating loop-based pools (in
space, >=5 GiB and <=30 bytes, suffixes supported, can be increased to grow storage
GiB) pool)

source string - Path to an existing block device, loop file or LVM volume

group
source.wipe bool false Wipe the block device specified in source prior to creating

the storage pool

Tip:

Configure default values for storage volumes.

In addition to these configurations, you can also set default values for the storage volume configurations. See

128

Chapter 2. Project and community



LXD

Storage volume configuration

Key Type Con- Default Description
di-
tion
block. string block same as File system of the storage volume: btrfs, ext4 or xfs (ext4 if not set)
filesys based volume.
driver block.
filesystem
block. string block same as  Mount options for block devices
mount_c based volume.
driver block.
mount_options
lvm. string LVM  same as  Number of stripes to use for new volumes (or thin pool volume)
stripes driver volume.lvm.
stripes
lvm. string LVM  same as  Size of stripes to use (at least 4096 bytes and multiple of 512 bytes)
stripes driver volume.lvm.
size stripes.
size
securit bool cus-  same as Enable ID shifting overlay (allows attach by multiple isolated instances)
shiftec tom volume.
vol- security.
ume shifted or
false
securit bool cus-  same as Disable ID mapping for the volume
unmappe tom volume.
vol- security.
ume  unmapped or
false
size string ap- same as Size/quota of the storage volume
pro-  volume.size
pri-
ate
driver
snapshc string cus-  same as Controls when snapshots are to be deleted (expects an expression like
expiry tom volume. 1M 2H 3d 4w 5m 6y)
vol- snapshots.
ume expiry
snapshc string cus-  same as Pongo2 template string that represents the snapshot name (used for
pattern tom volume. scheduled snapshots and unnamed snapshots) [**]
vol- snapshots.
ume pattern or
snap%d
snapshc string cus- same as Cron expression (<minute> <hour> <dom> <month> <dow>),
schedul tom volume. a comma-separated list of schedule aliases (@hourly, @daily,
vol- snapshots. @midnight, @weekly, @monthly, @annually, @yearly), or empty to
ume schedule disable automatic snapshots (the default)

2.5. Storage

129



LXD

ZFS - zfs

ZFS (Zettabyte file system) combines both physical volume management and a file system. A ZFS installation can span
across a series of storage devices and is very scalable, allowing you to add disks to expand the available space in the
storage pool immediately.

ZFS is a block-based file system that protects against data corruption by using checksums to verify, confirm and correct
every operation. To run at a sufficient speed, this mechanism requires a powerful environment with a lot of RAM.

In addition, ZFS offers snapshots and replication, RAID management, copy-on-write clones, compression and other
features.

To use ZFS, make sure you have zfsutils-1linux installed on your machine.

Terminology

ZFS creates logical units based on physical storage devices. These logical units are called ZF'S pools or zpools. Each
zpool is then divided into a number of . These can be of different types:

* A can be seen as a partition or a mounted file system.
* A ZFS volume represents a block device.
* A ZFS snapshot captures a specific state of either a or a ZFS volume. ZFS snapshots are read-only.

* A ZFS clone is a writable copy of a ZFS snapshot.

zfs driver in LXD

The zfs driver in LXD uses and ZFS volumes for images and custom storage volumes, and ZFS snapshots and clones
to create instances from images and for instance and custom volume snapshots. By default, LXD enables compression
when creating a ZFS pool.

LXD assumes that it has full control over the ZFS pool and . Therefore, you should never maintain any or file system
entities that are not owned by LXD in a ZFS pool or , because LXD might delete them.

Due to the way copy-on-write works in ZFS, parent can’t be removed until all children are gone. As a result, LXD
automatically renames any objects that are removed but still referenced. Such objects are kept at a random deleted/
path until all references are gone and the object can safely be removed. Note that this method might have ramifications
for restoring snapshots. See Limitations below.

LXD automatically enables trimming support on all newly created pools on ZFS 0.8 or later. This increases the lifetime
of SSDs by allowing better block re-use by the controller, and it also allows to free space on the root file system when
using a loop-backed ZFS pool. If you are running a ZFS version earlier than 0.8 and want to enable trimming, upgrade
to at least version 0.8. Then use the following commands to make sure that trimming is automatically enabled for the
ZFS pool in the future and trim all currently unused space:

zpool upgrade ZPOOL-NAME
zpool set autotrim=on ZPOOL-NAME
zpool trim ZPOOL-NAME

130 Chapter 2. Project and community



LXD

Limitations

The z£s driver has the following limitations:

Restoring from older snapshots
ZFS doesn’t support restoring from snapshots other than the latest one. You can, however, create new instances
from older snapshots. This method makes it possible to confirm whether a specific snapshot contains what you
need. After determining the correct snapshot, you can remove the newer snapshots so that the snapshot you need
is the latest one and you can restore it.

Alternatively, you can configure LXD to automatically discard the newer snapshots during restore. To
do so, set the zfs.remove_snapshots configuration for the volume (or the corresponding volume.zfs.
remove_snapshots configuration on the storage pool for all volumes in the pool).

Note, however, that if zfs. clone_copy is set to true, instance copies use ZFS snapshots too. In that case, you
cannot restore an instance to a snapshot taken before the last copy without having to also delete all its descendants.
If this is not an option, you can copy the wanted snapshot into a new instance and then delete the old instance.
You will, however, lose any other snapshots the instance might have had.

Observing I/0 quotas
I/O quotas are unlikely to affect very much. That’s because ZFS is a port of a Solaris module (using SPL) and
not a native Linux file system using the Linux VFS API, which is where I/O limits are applied.

Feature support in ZFS
Some features, like the use of idmaps or delegation of a ZFS dataset, require ZFS 2.2 or higher and are therefore
not widely available yet.

Quotas

ZFS provides two different quota properties: quota and refquota. quota restricts the total size of a , including its
snapshots and clones. refquota restricts only the size of the data in the , not its snapshots and clones.

By default, LXD uses the quota property when you set up a quota for your storage volume. If you want to use the
refquota property instead, set the zfs. use_refquota configuration for the volume (or the corresponding volume.
zfs.use_refquota configuration on the storage pool for all volumes in the pool).

You can also set the zfs.use_reserve_space (or volume.zfs.use_reserve_space) configuration to use ZFS
reservation or refreservation along with quota or refquota.

Configuration options

The following configuration options are available for storage pools that use the zfs driver and for storage volumes in
these pools.

2.5. Storage 131



LXD

Storage pool configuration

Key Type Default Description

size string auto (20% of free disk space, Size of the storage pool when creating loop-based pools (in bytes,
>=5 GiB and <= 30 GiB) suffixes supported, can be increased to grow storage pool)

source string - Path to an existing block device, loop file or ZFS dataset/pool

source. bool false Wipe the block device specified in source prior to creating the

wipe storage pool

zfs. string true Whether to use ZFS lightweight clones rather than full copies

clone_coj (Boolean), or rebase to copy based on the initial image

zfs. bool true Disable zpool export while unmount performed

export

zfs. string name of the pool Name of the zpool

pool_name

Tip: In addition to these configurations, you can also set default values for the storage volume configurations. See
Configure default values for storage volumes.

132 Chapter 2. Project and community



LXD

Storage volume configuration

Key Type Con- Default Description
di-
tion
securit bool cus- same as Enable ID shifting overlay (allows attach by multiple isolated instances)
shifted tom  volume.
vol- security.
ume  shifted or
false
securit bool cus-  same as Disable ID mapping for the volume
unmappe tom volume.
vol- security.
ume  unmapped or
false
size string ap- same as Size/quota of the storage volume
pro-  volume.size
pri-
ate
driver
snapsho string cus-  same as Controls when snapshots are to be deleted (expects an expression like
expiry tom volume. 1M 2H 3d 4w 5m 6y)
vol- snapshots.
ume expiry
snapsho string cus-  same as Pongo2 template string that represents the snapshot name (used for
pattern tom volume. scheduled snapshots and unnamed snapshots) [**]
vol- snapshots.
ume pattern or
snap%d
snapsho string cus-  same as Cron expression (<minute> <hour> <dom> <month> <dow>),
schedul tom snapshots. a comma-separated list of schedule aliases (@hourly, @daily,
vol- schedule @midnight, @weekly, @monthly, @annually, @yearly), or empty
ume to disable automatic snapshots (the default)
zfs. string ZFS  same as  Size of the ZFS block in range from 512 to 16 MiB (must be power of
blocksi driver volume.zfs. 2) - for block volume, a maximum value of 128 KiB will be used even
blocksize if a higher value is set
zfs. bool ZFS  same as  Whether to use a formatted zvol rather than a
block_m driver volume.zfs.
block_mode
zfs. bool ZFS  same as Remove snapshots as needed
remove_ driver volume.zfs.
remove_snapsh
or false
zfs. bool ZFS  same as Use refquota instead of quota for space
use_ref driver volume.zfs.
use_refquota
or false
zfs. bool ZFS  same as Use reservation/refreservation along with quota/refquota
reserve driver volume.zfs.

reserve_space

or false

2.5. Storage

133



LXD

Ceph RBD - ceph

Ceph is an open-source storage platform that stores its data in a storage cluster based on RADOS (Reliable Autonomic
Distributed Object Store). It is highly scalable and, as a distributed system without a single point of failure, very
reliable.

Tip: If you want to quickly set up a basic Ceph cluster, check out MicroCeph.

Ceph provides different components for block storage and for file systems.

Ceph RBD (RADOS Block Device) is Ceph’s block storage component that distributes data and workload across the
Ceph cluster. It uses thin provisioning, which means that it is possible to over-commit resources.

Terminology

Ceph uses the term object for the data that it stores. The daemon that is responsible for storing and managing data is
the Ceph OSD (Object Storage Daemon). Ceph’s storage is divided into pools, which are logical partitions for storing
objects. They are also referred to as data pools, storage pools or OSD pools.

Ceph block devices are also called RBD images, and you can create snapshots and clones of these RBD images.

ceph driver in LXD

Note: To use the Ceph RBD driver, you must specify it as ceph. This is slightly misleading, because it uses only Ceph
RBD (block storage) functionality, not full Ceph functionality. For storage volumes with content type filesystem
(images, containers and custom file-system volumes), the ceph driver uses Ceph RBD images with a file system on top
(see block. filesystem).

Alternatively, you can use the CephFS driver to create storage volumes with content type filesystem.

Unlike other storage drivers, this driver does not set up the storage system but assumes that you already have a Ceph
cluster installed.

This driver also behaves differently than other drivers in that it provides remote storage. As a result and depending
on the internal network, storage access might be a bit slower than for local storage. On the other hand, using remote
storage has big advantages in a cluster setup, because all cluster members have access to the same storage pools with
the exact same contents, without the need to synchronize storage pools.

The ceph driver in LXD uses RBD images for images, and snapshots and clones to create instances and snapshots.

LXD assumes that it has full control over the OSD storage pool. Therefore, you should never maintain any file system
entities that are not owned by LXD in a LXD OSD storage pool, because LXD might delete them.

Due to the way copy-on-write works in Ceph RBD, parent RBD images can’t be removed until all children are gone.
As aresult, LXD automatically renames any objects that are removed but still referenced. Such objects are kept with a
zombie_ prefix until all references are gone and the object can safely be removed.

134 Chapter 2. Project and community


https://ceph.io/en/
https://microcloud.is

LXD

Limitations

The ceph driver has the following limitations:

Sharing custom volumes between instances
Custom storage volumes with content type filesystem can usually be shared between multiple instances
different cluster members. However, because the Ceph RBD driver “simulates” volumes with content type
filesystem by putting a file system on top of an RBD image, custom storage volumes can only be assigned to a
single instance at a time. If you need to share a custom volume with content type filesystem, use the CephFS

driver instead.

Sharing the OSD storage pool between installations

Sharing the same OSD storage pool between multiple LXD installations is not supported.

Using an OSD pool of type “erasure”
To use a Ceph OSD pool of type “erasure”, you must create the OSD pool beforehand. You must also create a
separate OSD pool of type “replicated” that will be used for storing metadata. This is required because Ceph
RBD does not support omap. To specify which pool is “erasure coded”, set the ceph.osd.data_pool_name
configuration option to the erasure coded pool name and the source configuration option to the replicated pool

name.

Configuration options

The following configuration options are available for storage pools that use the ceph driver and for storage volumes in

these pools.

Storage pool configuration

Key Type Default Description

ceph.cluster_name string ceph Name of the Ceph cluster in which to create new storage pools

ceph.osd. string - Name of the OSD data pool

data_pool_name

ceph.osd.pg_num string 32 Number of placement groups for the OSD storage pool

ceph.osd.pool_name string name of the Name of the OSD storage pool

pool

ceph.rbd.clone_copy bool true Whether to use RBD lightweight clones rather than full
dataset copies

ceph.rbd.du bool true Whether to use RBD du to obtain disk usage data for stopped
instances

ceph.rbd. features string layering Comma-separated list of RBD features to enable on the vol-
umes

ceph.user.name string admin The Ceph user to use when creating storage pools and vol-
umes

source string - Existing OSD storage pool to use

volatile.pool. string true Whether the pool was empty on creation time

pristine

Tip: In addition to these configurations, you can also set default values for the storage volume configurations. See
Configure default values for storage volumes.

2.5. Storage

135



LXD

Storage volume configuration

Key Type Con- Default Description

di-

tion
block. string block same as File system of the storage volume: btrfs, ext4 or xfs (ext4 if not set)
filesys based volume.

driver block.

filesystem

block. string block same as  Mount options for block devices
mount_c based volume.

driver block.
mount_options

securit bool cus-  same as Enable ID shifting overlay (allows attach by multiple isolated instances)
shiftec tom volume.
vol- security.
ume  shifted or
false
securit bool cus-  same as  Disable ID mapping for the volume
unmappe tom volume.
vol- security.
ume  unmapped or
false
size string ap- same as  Size/quota of the storage volume
pro-  volume.size
pri-
ate
driver
snapshc string cus-  same as Controls when snapshots are to be deleted (expects an expression like
expiry tom volume. 1M 2H 3d 4w 5m 6y)
vol- snapshots.
ume expiry
snapshc string cus-  same as Pongo2 template string that represents the snapshot name (used for
pattern tom  volume. scheduled snapshots and unnamed snapshots)'
vol- snapshots.
ume pattern or
snap%d
snapshc string cus- same as Cron expression (<minute> <hour> <dom> <month> <dow>),
schedul tom volume. a comma-separated list of schedule aliases (@hourly, @daily,
vol- snapshots. @midnight, @weekly, @monthly, @annually, @yearly), or empty to
ume schedule disable automatic snapshots (the default)

! The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable creation_date. Make sure to format the date in your template string to
avoid forbidden characters in the snapshot name. For example, set snapshots.patternto {{ creation_date|date:'2006-01-02_15-04-05"
}} to name the snapshots after their time of creation, down to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first snapshot, the placeholder is replaced with 8. For
subsequent snapshots, the existing snapshot names are taken into account to find the highest number at the placeholder’s position. This number is
then incremented by one for the new name.

136 Chapter 2. Project and community



LXD

CephFS - cephfs

Ceph is an open-source storage platform that stores its data in a storage cluster based on RADOS. It is highly scalable
and, as a distributed system without a single point of failure, very reliable.

Tip: If you want to quickly set up a basic Ceph cluster, check out MicroCeph.

Ceph provides different components for block storage and for file systems.

CepHFS (Ceph File System) is Ceph’s file system component that provides a robust, fully-featured POSIX-compliant
distributed file system. Internally, it maps files to Ceph objects and stores file metadata (for example, file ownership,
directory paths, access permissions) in a separate data pool.

Terminology

Ceph uses the term object for the data that it stores. The daemon that is responsible for storing and managing data
is the Ceph OSD. Ceph’s storage is divided into pools, which are logical partitions for storing objects. They are also
referred to as data pools, storage pools or OSD pools.

A CephFSS file system consists of two OSD storage pools, one for the actual data and one for the file metadata.

cephfs driver in LXD

Note: The cephfs driver can only be used for custom storage volumes with content type filesystem.

For other storage volumes, use the Ceph driver. That driver can also be used for custom storage volumes with content
type filesystem, but it implements them through Ceph RBD images.

Unlike other storage drivers, this driver does not set up the storage system but assumes that you already have a Ceph
cluster installed.

You must create the CephFS file system that you want to use beforehand and specify it through the source option.

This driver also behaves differently than other drivers in that it provides remote storage. As a result and depending
on the internal network, storage access might be a bit slower than for local storage. On the other hand, using remote
storage has big advantages in a cluster setup, because all cluster members have access to the same storage pools with
the exact same contents, without the need to synchronize storage pools.

LXD assumes that it has full control over the OSD storage pool. Therefore, you should never maintain any file system
entities that are not owned by LXD in a LXD OSD storage pool, because LXD might delete them.

The cephfs driver in LXD supports snapshots if snapshots are enabled on the server side.

2.5. Storage 137


https://ceph.io/en/
https://microcloud.is

LXD

Configuration options

The following configuration options are available for storage pools that use the cephfs driver and for storage volumes

in these pools.

Storage pool configuration

Key Type Default Description

cephfs.cluster_name string ceph Name of the Ceph cluster that contains the CephFS file system
cephfs. fscache bool false Enable use of kernel fscache and cachefilesd
cephfs.path string  / The base path for the CephFS mount

cephfs.user.name string admin  The Ceph user to use

source string - Existing CephFS file system or file system path to use
volatile.pool.pristine string true Whether the CephFS file system was empty on creation time

Tip: In addition to these configurations, you can also set default values for the storage volume configurations. See
Configure default values for storage volumes.

138

Chapter 2. Project and community



LXD

Storage volume configuration

Key Type Con- Default Description
di-
tion
securil bool cus- same as Enable ID shifting overlay (allows attach by multiple isolated instances)
shiftec tom  volume.
vol- security.
ume shifted or
false
securil bool cus-  same as Disable ID mapping for the volume
unmappe tom volume.
vol- security.
ume  unmapped or
false
size string ap- same as Size/quota of the storage volume
pro-  volume.size
pri-
ate
driver
snapshc string cus-  same as  Controls when snapshots are to be deleted (expects an expression like
expiry tom volume. 1M 2H 3d 4w 5m 6y)
vol- snapshots.
ume expiry
snapshc string cus-  same as Pongo2 template string that represents the snapshot name (used for
patter: tom  volume. scheduled snapshots and unnamed snapshots)'
vol- snapshots.
ume pattern or
snap%d
snapshc string cus- same as Cron expression (<minute> <hour> <dom> <month> <dow>),
schedu! tom volume. a comma-separated list of schedule aliases (@Ghourly, @daily,
vol- snapshots. @midnight, @weekly, @Gmonthly, @annually, @yearly), or empty to
ume  schedule disable automatic snapshots (the default)

See the corresponding pages for driver-specific information and configuration options.

! The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable creation_date. Make sure to format the date in your template string to
avoid forbidden characters in the snapshot name. For example, set snapshots.patternto {{ creation_date|date:'2006-01-02_15-04-05"

}} to name the snapshots after their time of creation, down to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first snapshot, the placeholder is replaced with 8. For
subsequent snapshots, the existing snapshot names are taken into account to find the highest number at the placeholder’s position. This number is
then incremented by one for the new name.

2.5. Storage

139



LXD

Feature comparison

Where possible, LXD uses the advanced features of each storage system to optimize operations.

Feature Direc- Btrfs LVM ZFS Ceph CephFS Ceph Ob-
tory RBD ject
Optimized image storage no yes yes  yes  yes n/a n/a
Optimized instance creation no yes yes yes  yes n/a n/a
Optimized snapshot creation no yes yes yes  yes yes n/a
Optimized image transfer no yes no yes  yes n/a n/a
Optimized volume transfer no yes no yes  yes n/a n/a
Copy on write no yes yes yes  yes yes n/a
Block based no no yes  no yes no n/a
Instant cloning no yes yes  yes  yes yes n/a
Storage driver usable inside a con- yes yes no no no n/a n/a
tainer
Restore from older snapshots (not lat-  yes yes yes  no yes yes n/a
est)
Storage quotas yes* yes yes yes yes yes yes
Available on 1xd init yes yes yes yes yes no no

Optimized image storage

All storage drivers except for the directory driver have some kind of optimized image storage format. To make instance
creation near instantaneous, LXD clones a pre-made image volume when creating an instance rather than unpacking
the image tarball from scratch.

To prevent preparing such a volume on a storage pool that might never be used with that image, the volume is generated
on demand. Therefore, the first instance takes longer to create than subsequent ones.

Optimized volume transfer

Btrfs, ZFS and Ceph RBD have an internal send/receive mechanism that allows for optimized volume transfer.

LXD uses this optimized transfer when transferring instances and snapshots between storage pools that use the same
storage driver, if the storage driver supports optimized transfer and the optimized transfer is actually quicker. Otherwise,
LXD uses rsync to transfer container and file system volumes, or raw block transfer to transfer virtual machine and
custom block volumes.

The optimized transfer uses the underlying storage driver’s native functionality for transferring data, which is usually
faster than using rsync. However, the full potential of the optimized transfer becomes apparent when refreshing a copy
of an instance or custom volume that uses periodic snapshots. With optimized transfer, LXD bases the refresh on the
latest snapshot, which means:

* When you take a first snapshot and refresh the copy, the transfer will take roughly the same time as a full copy.
LXD transfers the new snapshot and the difference between the snapshot and the main volume.

* For subsequent snapshots, the transfer is considerably faster. LXD does not transfer the full new snapshot, but
only the difference between the new snapshot and the latest snapshot that already exists on the target.

* When refreshing without a new snapshot, LXD transfers only the differences between the main volume and the
latest snapshot on the target. This transfer is usually faster than using rsync (as long as the latest snapshot is not
too outdated).

140 Chapter 2. Project and community



LXD

On the other hand, refreshing copies of instances without snapshots (either because the instance doesn’t have any
snapshots or because the refresh uses the --instance-only flag) would actually be slower than using rsync. In
such cases, the optimized transfer would transfer the difference between the (non-existent) latest snapshot and the main
volume, thus the full volume. Therefore, LXD uses rsync instead of the optimized transfer for refreshes without
snapshots.

Recommended setup

The two best options for use with LXD are ZFS and Btrfs. They have similar functionalities, but ZFS is more reliable.

Whenever possible, you should dedicate a full disk or partition to your LXD storage pool. LXD allows to create loop-
based storage, but this isn’t recommended for production use. See Data storage location for more information.

The directory backend should be considered as a last resort option. It supports all main LXD features, but is slow
and inefficient because it cannot perform instant copies or snapshots. Therefore, it constantly copies the instance’s full
storage.

Security considerations

Currently, the Linux kernel might silently ignore mount options and not apply them when a block-based file system (for
example, ext4) is already mounted with different mount options. This means when dedicated disk devices are shared
between different storage pools with different mount options set, the second mount might not have the expected mount
options. This becomes security relevant when, for example, one storage pool is supposed to provide acl support and
the second one is supposed to not provide acl support.

For this reason, it is currently recommended to either have dedicated disk devices per storage pool or to ensure that all
storage pools that share the same dedicated disk device use the same mount options.

2.6 Networking

2.6.1 About networking

There are different ways to connect your instances to the Internet. The easiest method is to have LXD create a network
bridge during initialization and use this bridge for all instances, but LXD supports many different and advanced setups
for networking.

Network devices
To grant direct network access to an instance, you must assign it at least one network device, also called NIC. You can
configure the network device in one of the following ways:

¢ Use the default network bridge that you set up during the LXD initialization. Check the default profile to see the
default configuration:

[ 1xc profile show default

This method is used if you do not specify a network device for your instance.

» Use an existing network interface by adding it as a network device to your instance. This network interface is
outside of LXD control. Therefore, you must specify all information that LXD needs to use the network interface.

Use a command similar to the following:

2.6. Networking 141



LXD

[ 1xc config device add <instance_name> <device_name> nic nictype=<nic_type> ... J

See Type: nic for a list of available NIC types and their configuration properties.

For example, you could add a pre-existing Linux bridge (br®) with the following command:

[ 1xc config device add <instance_name> eth® nic nictype=bridged parent=br® ]

* Create a managed network and add it as a network device to your instance. With this method, LXD has all
required information about the configured network, and you can directly attach it to your instance as a device:

[ 1xc network attach <network_name> <instance_name> <device_name> ]

See Attach a network to an instance for more information.

Managed networks

Managed networks in LXD are created and configured with the 1xc network [create|edit|set] command.
Depending on the network type, LXD either fully controls the network or just manages an external network interface.

Note that not all NIC types are supported as network types. LXD can only set up some of the types as managed networks.

Fully controlled networks

Fully controlled networks create network interfaces and provide most functionality, including, for example, the ability
to do IP management.

LXD supports the following network types:

Bridge network
A network bridge creates a virtual L2 Ethernet switch that instance NICs can connect to, making it possible for
them to communicate with each other and the host. LXD bridges can leverage underlying native Linux bridges
and Open vSwitch.

In LXD context, the bridge network type creates an L2 bridge that connects the instances that use it together
into a single network L2 segment. This makes it possible to pass traffic between the instances. The bridge can
also provide local DHCP and DNS.

This is the default network type.

OVN network
OVN (Open Virtual Network) is a software-defined networking system that supports virtual network abstraction.
You can use it to build your own private cloud. See www.ovn.org for more information.

In LXD context, the ovn network type creates a logical network. To set it up, you must install and configure the
OVN tools. In addition, you must create an uplink network that provides the network connection for OVN. As
the uplink network, you should use one of the external network types or a managed LXD bridge.

Tip: Unlike the other network types, you can create and manage an OVN network inside a project. This means
that you can create your own OVN network as a non-admin user, even in a restricted project.

142 Chapter 2. Project and community


https://www.ovn.org/

LXD

External networks

External networks use network interfaces that already exist. Therefore, LXD has limited possibility to control them,
and LXD features like network ACLs, network forwards and network zones are not supported.

The main purpose for using external networks is to provide an uplink network through a parent interface. This external
network specifies the presets to use when connecting instances or other networks to a parent interface.

LXD supports the following external network types:

Macvlan network
Macvlan is a virtual LAN (Local Area Network) that you can use if you want to assign several IP addresses to
the same network interface, basically splitting up the network interface into several sub-interfaces with their own
IP addresses. You can then assign IP addresses based on the randomly generated MAC addresses.

In LXD context, the macvlan network type provides a preset configuration to use when connecting instances to
a parent macvlan interface.

SR-10V network
SR-IOV (Single root I/O virtualization) is a hardware standard that allows a single network card port to appear
as several virtual network interfaces in a virtualized environment.

In LXD context, the sriov network type provides a preset configuration to use when connecting instances to a
parent SR-IOV interface.

Physical network
The physical network type connects to an existing physical network, which can be a network interface or a
bridge, and serves as an uplink network for OVN.

It provides a preset configuration to use when connecting OVN networks to a parent interface.

Recommendations
In general, if you can use a managed network, you should do so because networks are easy to configure and you can
reuse the same network for several instances without repeating the configuration.

Which network type to choose depends on your specific use case. If you choose a fully controlled network, it provides
more functionality than using a network device.

As a general recommendation:

* If you are running LXD on a single system or in a public cloud, use a Bridge network, possibly in connection
with the Ubuntu Fan.

* If you are running LXD in your own private cloud, use an OVN network.

Note: OVN requires a shared L2 uplink network for proper operation. Therefore, using OVN is usually not
possible if you run LXD in a public cloud.

* To connect an instance NIC to a managed network, use the network property rather than the parent property, if
possible. This way, the NIC can inherit the settings from the network and you don’t need to specify the nictype.

2.6. Networking 143


https://www.youtube.com/watch?v=5cwd0vZJ5bw

LXD

2.6.2 How to create and configure a network

To create and configure a managed network, use the 1xc network command and its subcommands. Append --help
to any command to see more information about its usage and available flags.

Network types

The following network types are available:

Network type Documentation  Configuration options

bridge Bridge network Configuration options
ovn OVN network Configuration options
macvlan Macvlan network  Configuration options
sriov SR-IOV network  Configuration options
physical Physical network  Configuration options

Create a network

Use the following command to create a network:

[1xc network create <name> --type=<network_type> [configuration_options...] J

See Network types for a list of available network types and links to their configuration options.

If you do not specify a --type argument, the default type of bridge is used.

Create a network in a cluster

If you are running a LXD cluster and want to create a network, you must create the network for each cluster member
separately. The reason for this is that the network configuration, for example, the name of the parent network interface,
might be different between cluster members.

Therefore, you must first create a pending network on each member with the --target=<cluster_member> flag and
the appropriate configuration for the member. Make sure to use the same network name for all members. Then create
the network without specifying the --target flag to actually set it up.

For example, the following series of commands sets up a physical network with the name UPLINK on three cluster
members:

user@host:~$ 1xc network create UPLINK --type=physical parent=br® --target=vm01l Network
UPLINK pending on member vm01 user@host:~$ 1xc network create UPLINK --type=physical
parent=br® --target=vm@2 Network UPLINK pending on member vm0@2 userGhost:~$ lxc network
create UPLINK --type=physical parent=br® --target=vm@3 Network UPLINK pending on member
vm®3 user@host:~$ 1xc network create UPLINK --type=physical Network UPLINK created Also see
How to configure networks for a cluster.

144 Chapter 2. Project and community



LXD

Attach a network to an instance

After creating a managed network, you can attach it to an instance as a NIC device.

To do so, use the following command:

[lxc network attach <network_name> <instance_name> [<device_name>] [<interface_name>] ]

The device name and the interface name are optional, but we recommend specifying at least the device name. If
not specified, LXD uses the network name as the device name, which might be confusing and cause problems. For
example, LXD images perform IP auto-configuration on the eth@® interface, which does not work if the interface is
called differently.

For example, to attach the network my-network to the instance my-instance as eth@ device, enter the following
command:

[1xc network attach my-network my-instance eth® ]

Attach the network as a device

The 1xc network attach command is a shortcut for adding a NIC device to an instance. Alternatively, you can add
a NIC device based on the network configuration in the usual way:

[1xc config device add <instance_name> <device_name> nic network=<network_name> ]

When using this way, you can add further configuration to the command to override the default settings for the network
if needed. See NIC device for all available device options.

Configure a network

To configure an existing network, use either the 1xc network setandlxc network unset commands (to configure
single settings) or the 1xc network edit command (to edit the full configuration). To configure settings for specific
cluster members, add the --target flag.

For example, the following command configures a DNS server for a physical network:

[lxc network set UPLINK dns.nameservers=8.8.8.8 ]

The available configuration options differ depending on the network type. See Network types for links to the configu-
ration options for each network type.

There are separate commands to configure advanced networking features. See the following documentation:
* How to configure network ACLs
* How to configure network forwards
* How to configure network zones

* How to create peer routing relationships (OVN only)

2.6. Networking 145



LXD

2.6.3 How to configure network ACLs

Note: Network ACLs are available for the OVN NIC type, the OVN network and the Bridge network (with some
exceptions, see Bridge limitations).

Network ACLs (Access Control Lists) define traffic rules that allow controlling network access between different in-
stances connected to the same network, and access to and from other networks.

Network ACLs can be assigned directly to the NIC of an instance or to a network. When assigned to a network, the
ACL applies to all NICs connected to the network.

The instance NICs that have a particular ACL applied (either explicitly or implicitly through a network) make up a log-
ical group, which can be referenced from other rules as a source or destination. See ACL groups for more information.

Create an ACL

Use the following command to create an ACL:

[lxc network acl create <ACL_name> [configuration_options...]

This command creates an ACL without rules. As a next step, add rules to the ACL.

Valid network ACL names must adhere to the following rules:

* Names must be between 1 and 63 characters long.

* Names must be made up exclusively of letters, numbers and dashes from the ASCII table.

* Names must not start with a digit or a dash.

¢ Names must not end with a dash.

ACL properties

ACLs have the following properties:

Property Type Re- Description
quired
name string yes Unique name of the network ACL in the project
description string no Description of the network ACL
ingress rule list no Ingress traffic rules
egress rule list no Egress traffic rules
config string no Configuration options as key/value pairs (only user.* custom keys sup-
set ported)
146 Chapter 2. Project and community



LXD

Add or remove rules

Each ACL contains two lists of rules:
e Ingress rules apply to inbound traffic going towards the NIC.
 Egress rules apply to outbound traffic leaving the NIC.

To add a rule to an ACL, use the following command, where <direction> can be either ingress or egress:

[lxc network acl rule add <ACL_name> <direction> [properties...] }

This command adds a rule to the list for the specified direction.

You cannot edit a rule (except if you edit the full ACL), but you can delete rules with the following command:

[lxc network acl rule remove <ACL_name> <direction> [properties...] ]

You must either specify all properties needed to uniquely identify a rule or add --force to the command to delete all
matching rules.

Rule ordering and priorities

Rules are provided as lists. However, the order of the rules in the list is not important and does not affect filtering.
LXD automatically orders the rules based on the action property as follows:

e drop

e reject

e allow

* Automatic default action for any unmatched traffic (defaults to reject, see Configure default actions).

This means that when you apply multiple ACLs to a NIC, there is no need to specify a combined rule ordering. If one
of the rules in the ACLs matches, the action for that rule is taken and no other rules are considered.

2.6. Networking 147



LXD

Rule properties

ACL rules have the following properties:

Property Type Re- Description
quired

action string yes Action to take for matching traffic (allow, reject or drop)

state string yes State of the rule (enabled, disabled or logged), defaulting to enabled if not
specified

description string no Description of the rule

source string no Comma-separated list of CIDR or IP ranges, source subject name selectors (for
ingress rules), or empty for any

destination string no Comma-separated list of CIDR or IP ranges, destination subject name selectors
(for egress rules), or empty for any

protocol string no Protocol to match (icmp4, icmp6, tcp, udp) or empty for any

source_port string no If protocol is udp or tcp, then a comma-separated list of ports or port ranges
(start-end inclusive), or empty for any

destination_j string no If protocol is udp or tcp, then a comma-separated list of ports or port ranges
(start-end inclusive), or empty for any

icmp_type string no If protocol is icmp4 or icmp6, then ICMP type number, or empty for any

icmp_code string no If protocol is icmp4 or icmp6, then ICMP code number, or empty for any

Use selectors in rules

Note: This feature is supported only for the OVN NIC type and the OVN network.

The source field (for ingress rules) and the destination field (for egress rules) support using selectors instead of
CIDR or IP ranges.

With this method, you can use ACL groups or network selectors to define rules for groups of instances without needing
to maintain IP lists or create additional subnets.

ACL groups

Instance NICs that are assigned a particular ACL (either explicitly or implicitly through a network) make up a logical
port group.

Such ACL groups are called subject name selectors, and they can be referenced with the name of the ACL in other
ACL groups.

For example, if you have an ACL with the name foo, you can specify the group of instance NICs that are assigned this
ACL as source with source=foo.

148 Chapter 2. Project and community



LXD

Network selectors

You can use network subject selectors to define rules based on the network that the traffic is coming from or going to.

There are two special network subject selectors called @internal and @external. They represent network local and
external traffic, respectively. For example:

[source:@internal J

If your network supports network peers, you can reference traffic to or from the peer connection by using a network
subject selector in the format @<network_name>/<peer_name>. For example:

[source:@ovnl/mypeer }

When using a network subject selector, the network that has the ACL applied to it must have the specified peer con-
nection. Otherwise, the ACL cannot be applied to it.

Log traffic

Generally, ACL rules are meant to control the network traffic between instances and networks. However, you can also
use them to log specific network traffic, which can be useful for monitoring, or to test rules before actually enabling
them.

To add a rule for logging, create it with the state=1ogged property. You can then display the log output for all logging
rules in the ACL with the following command:

[1xc network acl show-log <ACL_name> J

Edit an ACL

Use the following command to edit an ACL:

[lxc network acl edit <ACL_name> ]

This command opens the ACL in YAML format for editing. You can edit both the ACL configuration and the rules.

Assign an ACL

After configuring an ACL, you must assign it to a network or an instance NIC.

To do so, add it to the security.acls list of the network or NIC configuration. For networks, use the following
command:

[1xc network set <network_name> security.acls="<ACL_name>" ]

For instance NICs, use the following command:

[lxc config device set <instance_name> <device_name> security.acls="<ACL_name>" ]

2.6. Networking 149



LXD

Configure default actions
When one or more ACLs are applied to a NIC (either explicitly or implicitly through a network), a default reject rule
is added to the NIC. This rule rejects all traffic that doesn’t match any of the rules in the applied ACLs.

You can change this behavior with the network and NIC level security.acls.default.ingress.action and
security.acls.default.egress.action settings. The NIC level settings override the network level settings.

For example, to set the default action for inbound traffic to allow for all instances connected to a network, use the
following command:

[1xc network set <network_name> security.acls.default.ingress.action=allow J

To configure the same default action for an instance NIC, use the following command:

lxc config device set <instance_name> <device_name> security.acls.default.ingress.
—action=allow

Bridge limitations

When using network ACLs with a bridge network, be aware of the following limitations:

» Unlike OVN ACLs, bridge ACLs are applied only on the boundary between the bridge and the LXD host. This
means they can only be used to apply network policies for traffic going to or from external networks. They cannot
be used for to create firewalls, thus firewalls that control traffic between instances connected to the same bridge.

* ACL groups and network selectors are not supported.

* When using the iptables firewall driver, you cannot use IP range subjects (for example, 192.0.2.1-192.0.
2.10).

 Baseline network service rules are added before ACL rules (in their respective INPUT/OUTPUT chains), because
we cannot differentiate between INPUT/OUTPUT and FORWARD traffic once we have jumped into the ACL
chain. Because of this, ACL rules cannot be used to block baseline service rules.

2.6.4 How to configure network forwards

Note: Network forwards are available for the OVN network and the Bridge network.

Network forwards allow an external IP address (or specific ports on it) to be forwarded to an internal IP address (or
specific ports on it) in the network that the forward belongs to.

This feature can be useful if you have limited external IP addresses and want to share a single external address between
multiple instances. There are two different ways how you can use network forwards in this case:

 Forward all traffic from the external address to the internal address of one instance. This method makes it easy
to move the traffic destined for the external address to another instance by simply reconfiguring the network
forward.

 Forward traffic from different port numbers of the external address to different instances (and optionally different
ports on those instances). This method allows to “share” your external IP address and expose more than one
instance at a time.

150 Chapter 2. Project and community



LXD

Create a network forward

Use the following command to create a network forward:

[1xc network forward create <network_name> <listen_address> [configuration_options...] ]

Each forward is assigned to a network. It requires a single external listen address (see Requirements for listen addresses
for more information about which addresses can be forwarded, depending on the network that you are using).

You can specify an optional default target address by adding the target_address=<IP_address> configuration
option. If you do, any traffic that does not match a port specification is forwarded to this address. Note that this target
address must be within the same subnet as the network that the forward is associated to.

Forward properties

Network forwards have the following properties:

Property Type Re- Description
quired
listen_addre string  yes IP address to listen on
description string no Description of the network forward
config string  no Configuration options as key/value pairs (only target_address and user. *
set custom keys supported)
ports port no List of port specifications
list

Requirements for listen addresses

The requirements for valid listen addresses vary depending on which network type the forward is associated to.
Bridge network

* Any non-conflicting listen address is allowed.

* The listen address must not overlap with a subnet that is in use with another network.
OVN network

* Allowed listen addresses must be defined in the uplink network’s ipv{n} .routes settings or the project’s
restricted.networks. subnets setting (if set).

* The listen address must not overlap with a subnet that is in use with another network.

Configure ports

You can add port specifications to the network forward to forward traffic from specific ports on the listen address to
specific ports on the target address. This target address must be different from the default target address. It must be
within the same subnet as the network that the forward is associated to.

Use the following command to add a port specification:

1xc network forward port add <network_name> <listen_address> <protocol> <listen_ports>
—.<target_address> [<target_ports>]

2.6. Networking 151



LXD

You can specify a single listen port or a set of ports. If you want to forward the traffic to different ports, you have two

options:

» Specify a single target port to forward traffic from all listen ports to this target port.

* Specify a set of target ports with the same number of ports as the listen ports to forward traffic from the first

listen port to the first target port, the second listen port to the second target port, and so on.

Port properties

Network forward ports have the following properties:

Property Type Required Description

protocol string  yes Protocol for the port(s) (tcp or udp)

listen_port string  yes Listen port(s) (e.g. 80,90-100)

target_address string yes IP address to forward to

target_port string  no Target port(s) (e.g. 70,80-90 or 90), same as listen_port if empty
description string no Description of port(s)

Edit a network forward

Use the following command to edit a network forward:

[lxc network forward edit <network_name> <listen_address>

)

This command opens the network forward in YAML format for editing. You can edit both the general configuration

and

Delete a network forward

the port specifications.

Use the following command to delete a network forward:

[1xc network forward delete <network_name> <listen_address>

2.6.5 How to configure network zones

Note: Network zones are available for the OVN nerwork and the Bridge network.

Network zones can be used to serve DNS records for LXD networks.

You can use network zones to automatically maintain valid forward and reverse records for all your instances. This can
be useful if you are operating a LXD cluster with multiple instances across many networks.

Having DNS records for each instance makes it easier to access network services running on an instance. It is also
important when hosting, for example, an outbound SMTP service. Without correct forward and reverse DNS entries
for the instance, sent mail might be flagged as potential spam.

Each network can be associated to different zones:

» Forward DNS records - multiple comma-separated zones (no more than one per project)

152

Chapter 2. Project and community



LXD

* IPv4 reverse DNS records - single zone
* IPv6 reverse DNS records - single zone

LXD will then automatically manage forward and reverse records for all instances, network gateways and downstream
network ports and serve those zones for zone transfer to the operator’s production DNS servers.

Project views

Projects have a features.networks.zones feature, which is disabled by default. This controls which project new
networks zones are created in. When this feature is enabled new zones are created in the project, otherwise they are
created in the default project.

This allows projects that share a network in the default project (i.e those with features.networks=false) to have
their own project level DNS zones that give a project oriented “view” of the addresses on that shared network (which
only includes addresses from instances in their project).

Generated records

Forward records

If you configure a zone with forward DNS records for 1xd.example.net for your network, it generates records that
resolve the following DNS names:

¢ For all instances in the network: <instance_name>.1xd.example.net
* For the network gateway: <network_name>.gw.l1xd.example.net

* For downstream network ports (for network zones set on an uplink network with a downstream OVN network):
<project_name>-<downstream_network_name>.uplink.lxd.example.net

* Manual records added to the zone.
You can check the records that are generated with your zone setup with the dig command.

This assumes that core.dns_address was set to <DNS_server_IP>:<DNS_server_PORT>. (Setting that configu-
ration option causes the backend to immediately start serving on that address.)

In order for the dig request to be allowed for a given zone, you must set the peers.NAME.address configuration
option for that zone. NAME can be anything random. The value must match the IP address where your dig is calling
from. You must leave peers.NAME.key for that same random NAME unset.

For example: 1xc network zone set lxd.example.net peers.whatever.address=192.0.2.1.

Note: It is not enough for the address to be of the same machine that dig is calling from; it needs to match as a string
with what the DNS server in 1xd thinks is the exact remote address. dig binds to 0.0.0.0, therefore the address you
need is most likely the same that you provided to core.dns_address.

For example, running dig @<DNS_server_IP> -p <DNS_server_PORT> axfr 1xd.example.net mightgive the
following output:

user@host:~$ dig @192.0.2.200 -p 1053 axfr 1xd.example.net 1xd.example.net. 3600 IN
SOA 1xd.example.net. nsl.lxd.example.net. 1669736788 120 60 86400 301xd.example.

net. 300 IN NS nsl.lxd.example.net.lxdtest.gw.lxd.example.net. 300 IN A 192.0.2.
11xdtest.gw.lxd.example.net. 300 IN AAAA fd42:4131:a53c:7211::1default-ovntest.
uplink.1lxd.example.net. 300 IN A 192.0.2.20default-ovntest.uplink.lxd.example.net.

300 IN AAAA fd42:4131:a53c:7211:216:3eff:fede:b794cl.1xd.example.net. 300 IN AAAA

2.6. Networking 153



LXD

£d42:4131:a53c:7211:216:3eff:fel9:6edecl.lxd.example.net. 300 IN A 192.0.2.125manualtest.
1xd.example.net. 300 IN A 8.8.8.81xd.example.net. 3600 IN SOA 1xd.example.net. nsl.lxd.
example.net. 1669736788 120 60 86400 30

Reverse records

If you configure a zone for IPv4 reverse DNS records for 2.0.192.in-addr.arpa for a network using 192.0.2.0/
24, it generates reverse PTR DNS records for addresses from all projects that are referencing that network via one of
their forward zones.

For example, running dig @<DNS_server_IP> -p <DNS_server_PORT> axfr 2.0.192.in-addr.arpa might
give the following output:

user@host:~$ dig @192.0.2.200 -p 1053 axfr 2.0.192.in-addr.arpa 2.0.192.in-addr.arpa. 3600
IN SOA 2.0.192.in-addr.arpa. nsl1.2.0.192.in-addr.arpa. 1669736828 120 60 86400 302.0.
192.in-addr.arpa. 300 IN NS nsl1.2.0.192.in-addr.arpa.1.2.0.192.in-addr.arpa. 300 IN PTR
lxdtest.gw.1lxd.example.net.20.2.0.192.in-addr.arpa. 300 IN PTR default-ovntest.uplink.
1xd.example.net.125.2.0.192.in-addr.arpa. 300 IN PTR cl.lxd.example.net.2.0.192.in-addr.
arpa. 3600 IN SOA 2.0.192.in-addr.arpa. nsl.2.0.192.in-addr.arpa. 1669736828 120 60 86400
30

Enable the built-in DNS server

To make use of network zones, you must enable the built-in DNS server.

To do so, set the core.dns_address configuration option (see Core configuration) to a local address on the LXD
server. To avoid conflicts with an existing DNS we suggest not using the port 53. This is the address on which the DNS
server will listen. Note that in a LXD cluster, the address may be different on each cluster member.

Note: The built-in DNS server supports only zone transfers through AXFR. It cannot be directly queried for DNS
records. Therefore, the built-in DNS server must be used in combination with an external DNS server (bind9, nsd,
...), which will transfer the entire zone from LXD, refresh it upon expiry and provide authoritative answers to DNS
requests.

Authentication for zone transfers is configured on a per-zone basis, with peers defined in the zone configuration and a
combination of IP address matching and TSIG-key based authentication.

Create and configure a network zone

Use the following command to create a network zone:

[lxc network zone create <network_zone> [configuration_options...] J

The following examples show how to configure a zone for forward DNS records, one for IPv4 reverse DNS records and
one for [Pv6 reverse DNS records, respectively:

1xc network zone create lxd.example.net
1xc network zone create 2.0.192.in-addr.arpa
1xc network zone create 1.0.0.0.1.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa

154 Chapter 2. Project and community



LXD

Note: Zones must be globally unique, even across projects. If you get a creation error, it might be due to the zone
already existing in another project.

You can either specify the configuration options when you create the network or configure them afterwards with the
following command:

[lxc network zone set <network_zone> <key>=<value> J

Use the following command to edit a network zone in YAML format:

[lxc network zone edit <network_zone> ]

Configuration options

The following configuration options are available for network zones:

Key Type Re- De- Description
quired fault
peers.NAME. string no - IP address of a DNS server
address
peers.NAME.key string no - TSIG key for the server
dns.nameservers string no - Comma-separated list of DNS server FQDNs (for NS
set records)
network.nat bool no true Whether to generate records for NAT-ed subnets
user.* o no - User-provided free-form key/value pairs
Note: When generating the TSIG key using tsig-keygen, the key name must follow the format

<zone_name>_<peer_name>.. For example, if your zone name is 1xd.example.net and the peer name is bind9,
then the key name must be 1xd.example.net_bind9.. If this format is not followed, zone transfer might fail.

Add a network zone to a network

To add a zone to a network, set the corresponding configuration option in the network configuration:
* For forward DNS records: dns.zone. forward
* For IPv4 reverse DNS records: dns.zone.reverse.ipv4
¢ For IPv6 reverse DNS records: dns.zone.reverse.ipv6

For example:

[lxc network set <network_name> dns.zone.forward="1xd.example.net" }

Zones belong to projects and are tied to the networks features of projects. You can restrict projects to specific domains
and sub-domains through the restricted.networks.zones project configuration key.

2.6. Networking 155



LXD

Add custom records

A network zone automatically generates forward and reverse records for all instances, network gateways and down-
stream network ports. If required, you can manually add custom records to a zone.

To do so, use the 1xc network zone record command.

Create a record

Use the following command to create a record:

[lxc network zone record create <network_zone> <record_name> ]

This command creates an empty record without entries and adds it to a network zone.

Record properties

Records have the following properties:

Property Type Re- Description
quired
name string yes Unique name of the record
description string no Description of the record
entries entry no A list of DNS entries
list
config string no Configuration options as key/value pairs (only user.* custom keys sup-
set ported)

Add or remove entries

To add an entry to the record, use the following command:

1xc network zone record entry add <network_zone> <record_name> <type> <value> [--ttl
—<TTL>]

This command adds a DNS entry with the specified type and value to the record.

For example, to create a dual-stack web server, add a record with two entries similar to the following:

1xc network zone record entry add <network_zone> <record_name> A 1.2.3.4
1xc network zone record entry add <network_zone> <record_name> AAAA 1234::1234

You can use the --ttl flag to set a custom time-to-live (in seconds) for the entry. Otherwise, the default of 300 seconds
is used.

You cannot edit an entry (except if you edit the full record with 1xc network zone record edit), but you can
delete entries with the following command:

[lxc network zone record entry remove <network_zone> <record_name> <type> <value>

156 Chapter 2. Project and community



LXD

2.6.6 How to configure LXD as a BGP server

Note: The BGP server feature is available for the Bridge network and the Physical network.

BGP (Border Gateway Protocol) is a protocol that allows exchanging routing information between autonomous systems.

If you want to directly route external addresses to specific LXD servers or instances, you can configure LXD as a BGP
server. LXD will then act as a BGP peer and advertise relevant routes and next hops to external routers, for example,
your network router. It automatically establishes sessions with upstream BGP routers and announces the addresses and
subnets that it’s using.

The BGP server feature can be used to allow a LXD server or cluster to directly use internal/external address space
by getting the specific subnets or addresses routed to the correct host. This way, traffic can be forwarded to the target
instance.

For bridge networks, the following addresses and networks are being advertised:
* Network ipv4.address or ipv6.address subnets (if the matching nat property isn’t set to true)
* Network ipv4.nat.address or ipv6.nat.address subnets (if the matching nat property is set to true)
* Network forward addresses

* Addresses or subnets specified in ipv4.routes.external or ipv6.routes.external on an instance NIC
that is connected to the bridge network

Make sure to add your subnets to the respective configuration options. Otherwise, they won’t be advertised.

For physical networks, no addresses are advertised directly at the level of the physical network. Instead, the networks,
forwards and routes of all downstream networks (the networks that specify the physical network as their uplink network
through the network option) are advertised in the same way as for bridge networks.

Note: At this time, it is not possible to announce only some specific routes/addresses to particular peers. If you need
this, filter prefixes on the upstream routers.

Configure the BGP server
To configure LXD as a BGP server, set the following server configuration options (see Core configuration) on all cluster
members:

e core.bgp_address - the IP address for the BGP server

* core.bgp_asn - the ASN (Autonomous System Number) for the local server

e core.bgp_routerid - the unique identifier for the BGP server

For example, set the following values:

1xc config set core.bgp_address=192.0.2.50:179
1xc config set core.bgp_asn=65536
1xc config set core.bgp_routerid=192.0.2.50

Once these configuration options are set, LXD starts listening for BGP sessions.

2.6. Networking 157



LXD

Configure next-hop (bridge only)

For bridge networks, you can override the next-hop configuration. By default, the next-hop is set to the address used
for the BGP session.

To configure a different address, set bgp.ipv4.nexthop or bgp.ipv6.nexthop.

Configure BGP peers for OVN networks

If you run an OVN network with an uplink network (physical or bridge), the uplink network is the one that holds
the list of allowed subnets and the BGP configuration. Therefore, you must configure BGP peers on the uplink network
that contain the information that is required to connect to the BGP server.

Set the following configuration options on the uplink network:
* bgp.peers.<name>.address - the peer address to be used by the downstream networks
¢ bgp.peers.<name>.asn - the ASN for the local server
* bgp.peers.<name>.password - an optional password for the peer session

Once the uplink network is configured, downstream OVN networks will get their external subnets and addresses an-
nounced over BGP. The next-hop is set to the address of the OVN router on the uplink network.

2.6.7 How to display IPAM information of a LXD deployment
IPAM (IP Address Management) is a method used to plan, track, and manage the information associated with a computer
network’s IP address space. In essence, it’s a way of organizing, monitoring, and manipulating the IP space in a network.

Checking the IPAM information for your LXD setup can help you debug networking issues. You can see which IP
addresses are used for instances, network interfaces, forwards, and load balancers and use this information to track
down where traffic is lost.

To display IPAM information, enter the following command:

[lxc network list-allocations ]

By default, this command shows the IPAM information for the default project. You can select a different project with
the --project flag, or specify --all-projects to display the information for all projects.

The resulting output will look something like this:

o e e T to—mm - +-————- o +
[ USED BY | ADDRESS | TYPE | NAT | HARDWARE ADDRESS |
tom e - tommm - +o—mm - +--———- et +
| /1.0/networks/lxdbr® | 192.0.2.0/24 | network | true | |
TR e B e R e +
| /1.0/networks/l1xdbr® | 2001:db8::/32 | network | true | |
it e T to—mm - +-————- R et e +
| /1.0/instances/ul | 2001:db8::1/128 | instance | true | 00:16:3e:04:£0:95 |
tom - Fomm - +o—— - +-————- R e T e +
| /1.0/instances/ul | 192.0.2.2/32 | instance | true | 00:16:3e:04:£0:95 |
e e R e e +

158 Chapter 2. Project and community



LXD

Each listed entry lists the IP address (in CIDR notation) of one of the following LXD entities: network,
network-forward, network-load-balancer, and instance. An entry contains an IP address using the CIDR
notation. It also contains a LXD resource URI, the type of the entity, whether it is in NAT mode, and the hardware
address (only for the instance entity).

2.6.8 Bridge network

As one of the possible network configuration types under LXD, LXD supports creating and managing network bridges.

A network bridge creates a virtual L2 Ethernet switch that instance NICs can connect to, making it possible for them
to communicate with each other and the host. LXD bridges can leverage underlying native Linux bridges and Open
vSwitch.

The bridge network type allows to create an L2 bridge that connects the instances that use it together into a single
network L2 segment. Bridges created by LXD are managed, which means that in addition to creating the bridge
interface itself, LXD also sets up a local dnsmasq process to provide DHCP, IPv6 route announcements and DNS
services to the network. By default, it also performs NAT for the bridge.

See How to configure your firewall for instructions on how to configure your firewall to work with LXD bridge networks.

Note: Static DHCP assignments depend on the client using its MAC address as the DHCP identifier. This method
prevents conflicting leases when copying an instance, and thus makes statically assigned leases work properly.

IPv6 prefix size

If you’re using IPv6 for your bridge network, you should use a prefix size of 64.

Larger subnets (i.e., using a prefix smaller than 64) should work properly too, but they aren’t typically that useful for
SLAAC (Stateless Address Auto-configuration).

Smaller subnets are in theory possible (when using stateful DHCPv6 for IPv6 allocation), but they aren’t properly
supported by dnsmasq and might cause problems. If you must create a smaller subnet, use static allocation or another
standalone router advertisement daemon.

Configuration options

The following configuration key namespaces are currently supported for the bridge network type:
* bgp (BGP peer configuration)
* bridge (L2 interface configuration)

* dns (DNS server and resolution configuration)

fan (configuration specific to the Ubuntu FAN overlay)

ipv4 (L3 IPv4 configuration)

ipv6 (L3 IPv6 configuration)

maas (MAAS network identification)

security (network ACL configuration)
* raw (raw configuration file content)

* tunnel (cross-host tunneling configuration)

2.6. Networking 159



LXD

* user (free-form key/value for user metadata)

Note:

LXD uses the CIDR notation where network subnet information is required, for example, 192.0.2.0/24 or
2001:db8::/32. This does not apply to cases where a single address is required, for example, local/remote addresses
of tunnels, NAT addresses or specific addresses to apply to an instance.

The following configuration options are available for the bridge network type:

Key Type  Condition Default Description
bgp.peers.NAME. address string  BGP server - Peer address (IPv4 or IPv¢
bgp.peers.NAME. asn integer BGP server - Peer AS number
bgp.peers.NAME. password string BGP server - (no password) Peer session password (op
bgp.ipv4.nexthop string BGP server local address Override the next-hop for
bgp.ipv6.nexthop string ~ BGP server local address Override the next-hop for
bridge.driver string - native Bridge driver: native or
bridge.external_interfaces string - - Comma-separated list of u
bridge.hwaddr string - - MAC address for the bridg
bridge.mode string - standard Bridge operation mode: s
bridge.mtu integer - 1500 Bridge MTU (default vari
dns.domain string - 1xd Domain to advertise to DF
dns.mode string - managed DNS registration mode: n
dns.search string - - Full comma-separated dor
dns.zone. forward string - managed DNS zone name for forwa
dns.zone.reverse.ipv4 string - managed DNS zone name for IPv4 1
dns.zone.reverse.ipv6 string - managed DNS zone name for IPv6 1
fan.overlay_subnet string fan mode 240.0.0.0/8 Subnet to use as the overla
fan. type string  fan mode vxlan Tunneling type for the FA]
fan.underlay_subnet string fan mode auto (on create only)  Subnet to use as the under
ipv4.address string  standard mode auto (on create only) IPv4 address for the bridg
ipv4.dhcp bool IPv4 address true Whether to allocate addres
ipv4.dhcp.expiry string IPv4 DHCP 1h When to expire DHCP lea
ipv4.dhcp.gateway string  [Pv4 DHCP IPv4 address Address of the gateway for
ipv4.dhcp.ranges string  IPv4 DHCP all addresses Comma-separated list of [
ipv4.firewall bool IPv4 address true Whether to generate filteri
ipv4.nat bool IPv4 address false Whether to NAT (if unset
ipv4.nat.address string ~ IPv4 address - The source address used f
ipv4.nat.order string ~ IPv4 address before Whether to add the require
ipv4.ovn.ranges string - - Comma-separated list of I
ipv4.routes string ~ IPv4 address - Comma-separated list of a
ipv4.routing bool IPv4 address true Whether to route traffic in
ipv6.address string  standard mode auto (on create only) IPv6 address for the bridg
ipv6.dhcp bool IPv6 address true Whether to provide additic
ipv6.dhcp.expiry string IPv6 DHCP 1h When to expire DHCP lea
ipv6.dhcp.ranges string IPv6 stateful DHCP  all addresses Comma-separated list of I
ipv6.dhcp.stateful bool IPv6 DHCP false Whether to allocate addre:
ipv6.firewall bool IPv6 address true Whether to generate filteri
ipv6.nat bool IPv6 address false Whether to NAT (if unset
ipv6.nat.address string ~ IPv6 address - The source address used f
ipv6.nat.order string  IPv6 address before Whether to add the require
ipv6.ovn.ranges string - - Comma-separated list of I
ipv6.routes string ~ IPv6 address - Comma-separated list of a
160 Chapter 2. Project and community


https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

LXD

Table 1 — continued from

Key Type  Condition Default Description

ipv6.routing bool IPv6 address true Whether to route traffic in
maas.subnet.ipv4 string ~ IPv4 address - MAAS IPv4 subnet to reg
maas.subnet.ipv6 string ~ IPv6 address - MAAS IPv6 subnet to reg
raw.dnsmasq string - - Additional dnsmasq confi
security.acls string - - Comma-separated list of
security.acls.default.egress.action string security.acls reject Action to use for egress tr:
security.acls.default.egress.logged bool security.acls false Whether to log egress traf]
security.acls.default.ingress.action string security.acls reject Action to use for ingress ti
security.acls.default.ingress.logged bool security.acls false Whether to log ingress tra
tunnel . NAME. group string  vxlan 239.0.0.1 Multicast address for vx1z
tunnel .NAME. id integer vxlan 0 Specific tunnel ID to use f
tunnel.NAME.interface string  vxlan - Specific host interface to v
tunnel.NAME.local string  gre or vxlan - Local address for the tunn
tunnel.NAME.port integer vxlan 0 Specific port to use for the
tunnel .NAME.protocol string  standard mode - Tunneling protocol: vxla:
tunnel.NAME.remote string  gre or vxlan - Remote address for the tur
tunnel.NAME. ttl integer vxlan 1 Specific TTL to use for mx
user.* string - - User-provided free-form k

Supported features

The following features are supported for the bridge network type:

* How to configure network ACLs

* How to configure network forwards

* How to configure network zones

* How to configure LXD as a BGP server

* How to integrate with systemd-resolved

How to integrate with systemd-resolved

If the system that runs LXD uses systemd-resolved to perform DNS lookups, you should notify resolved of the
domains that LXD can resolve. To do so, add the DNS servers and domains provided by a LXD network bridge to the
resolved configuration.

Note: The dns.mode option (see Configuration options) must be set to managed or dynamic if you want to use this

feature.

Depending on the configured dns.domain, you might need to disable DNSSEC in resolved to allow for DNS reso-
lution. This can be done through the DNSSEC option in resolved. conf.

2.6. Networking

161



LXD

Configure resolved

To add a network bridge to the resolved configuration, specify the DNS addresses and domains for the respective
bridge.

DNS address
You can use the IPv4 address, the IPv6 address or both. The address must be specified without the subnet
netmask.

To retrieve the IPv4 address for the bridge, use the following command:

[lxc network get <network_bridge> ipv4.address ]

To retrieve the IPv6 address for the bridge, use the following command:

[lxc network get <network_bridge> ipv6.address ]

DNS domain
To retrieve the DNS domain name for the bridge, use the following command:

[lxc network get <network_bridge> dns.domain ]

If this option is not set, the default domain name is 1xd.

Use the following commands to configure resolved:

resolvectl dns <network_bridge> <dns_address>
resolvectl domain <network_bridge> ~<dns_domain>

Note: When configuring resolved with the DNS domain name, you should prefix the name with ~. The ~ tells
resolved to use the respective name server to look up only this domain.

Depending on which shell you use, you might need to include the DNS domain in quotes to prevent the ~ from being
expanded.

For example:

resolvectl dns 1xdbr® 192.0.2.10
resolvectl domain 1xdbr® '~1xd'

Note: Alternatively, you can use the systemd-resolve command. This command has been deprecated in newer
releases of systemd, but it is still provided for backwards compatibility.

systemd-resolve --interface <network_bridge> --set-domain ~<dns_domain> --set-dns <dns_ ’
—,address>

The resolved configuration persists as long as the bridge exists. You must repeat the commands after each reboot and
after LXD is restarted, or make it persistent as described below.

162 Chapter 2. Project and community



LXD

Make the resolved configuration persistent

You can automate the systemd-resolved DNS configuration, so that it is applied on system start and takes effect
when LXD creates the network interface.

To do so, create a systemd unit file named /etc/systemd/system/lxd-dns-<network_bridge>.service with
the following content:

[Unit]

Description=LXD per-link DNS configuration for <network_bridge>
BindsTo=sys-subsystem-net-devices-<network_bridge>.device
After=sys-subsystem-net-devices-<network_bridge>.device

[Service]

Type=oneshot

ExecStart=/usr/bin/resolvectl dns <network_bridge> <dns_address>
ExecStart=/usr/bin/resolvectl domain <network_bridge> <dns_domain>
ExecStopPost=/usr/bin/resolvectl revert <network_ bridge>
RemainAfterExit=yes

[Install]
WantedBy=sys-subsystem-net-devices-<network_bridge>.device

Replace <network_bridge> in the file name and content with the name of your bridge (for example, 1xdbr®). Also
replace <dns_address> and <dns_domain> as described in Configure resolved.

Then enable and start the service with the following commands:

sudo systemctl daemon-reload
sudo systemctl enable --now lxd-dns-<network_bridge>

If the respective bridge already exists (because LXD is already running), you can use the following command to check
that the new service has started:

[sudo systemctl status lxd-dns-<network_bridge>.service

You should see output similar to the following:

user@host:~$ sudo systemctl status lxd-dns-1xdbr0®.service 1xd-dns-1xdbr®.service
- LXD per-link DNS configuration for 1lxdbr® Loaded: loaded (/etc/systemd/system/
1xd-dns-1xdbr®.service; enabled; vendor preset: enabled) Active: inactive (dead)

since Mon 2021-06-14 17:03:12 BST; 1min 2s ago Process: 9433 ExecStart=/usr/bin/
resolvectl dns 1xdbr® n.n.n.n (code=exited, status=0/SUCCESS) Process: 9434 ExecStart=/
usr/bin/resolvectl domain 1lxdbr® ~1xd (code=exited, status=0/SUCCESS) Main PID: 9434
(code=exited, status=0/SUCCESS) To check that resolved has applied the settings, use resolvectl status
<network_bridge>:

user@host:~$ resolvectl status 1xdbr0® Link 6 (1xdbr®) Current Scopes: DNSDefaultRoute
setting: no LLMNR setting: yesMulticastDNS setting: no DNSOverTLS setting: no DNSSEC

setting: no DNSSEC supported: no Current DNS Server: n.n.n.n DNS Servers: n.n.n.n DNS
Domain: ~1xd

2.6. Networking 163



LXD

How to configure your firewall

Linux firewalls are based on netfilter. LXD uses the same subsystem, which can lead to connectivity issues.

If you run a firewall on your system, you might need to configure it to allow network traffic between the managed LXD
bridge and the host. Otherwise, some network functionality (DHCP, DNS and external network access) might not work
as expected.

You might also see conflicts between the rules defined by your firewall (or another application) and the firewall rules
that LXD adds. For example, your firewall might erase LXD rules if it is started after the LXD daemon, which might
interrupt network connectivity to the instance.

xtables vs. nftables

There are different userspace commands to add rules to netfilter: xtables (iptables for [Pv4 and ip6tables
for IPv6) and nftables.

xtables provides an ordered list of rules, which might cause issues if multiple systems add and remove entries from
the list. nftables adds the ability to separate rules into namespaces, which helps to separate rules from different
applications. However, if a packet is blocked in one namespace, it is not possible for another namespace to allow it.
Therefore, rules in one namespace can still affect rules in another namespace, and firewall applications can still impact
LXD network functionality.

If your system supports and uses nftables, LXD detects this and switches to nftables mode. In this mode, LXD
adds its rules into the nftables, using its own nftables namespace.

Use LXD’s firewall

By default, managed LXD bridges add firewall rules to ensure full functionality. If you do not run another firewall on
your system, you can let LXD manage its firewall rules.

To enable or disable this behavior, use the ipv4. firewall or ipv6.firewall configuration options.

Use another firewall

Firewall rules added by other applications might interfere with the firewall rules that LXD adds. Therefore, if you use
another firewall, you should disable LXD’s firewall rules. You must also configure your firewall to allow network traffic
between the instances and the LXD bridge, so that the LXD instances can access the DHCP and DNS server that LXD
runs on the host.

See the following sections for instructions on how to disable LXD’s firewall rules and how to properly configure
firewalld and UFW, respectively.

Disable LXD’s firewall rules

Run the following commands to prevent LXD from setting firewall rules for a specific network bridge (for example,
1xdbr0):

1xc network set <network_bridge> ipv6.firewall false
1xc network set <network_bridge> ipv4.firewall false

164 Chapter 2. Project and community



LXD

firewalld: Add the bridge to the trusted zone

To allow traffic to and from the LXD bridge in firewalld, add the bridge interface to the trusted zone. To do this
permanently (so that it persists after a reboot), run the following commands:

sudo firewall-cmd --zone=trusted --change-interface=<network_bridge> --permanent
sudo firewall-cmd --reload

For example:

sudo firewall-cmd --zone=trusted --change-interface=1xdbr® --permanent
sudo firewall-cmd --reload

Warning:

The commands given above show a simple example configuration. Depending on your use case, you might need
more advanced rules and the example configuration might inadvertently introduce a security risk.

UFW: Add rules for the bridge

If UFW has a rule to drop all unrecognized traffic, it blocks the traffic to and from the LXD bridge. In this case, you
must add rules to allow traffic to and from the bridge, as well as allowing traffic forwarded to it.

To do so, run the following commands:

sudo ufw allow in on <network_bridge>
sudo ufw route allow in on <network_bridge>
sudo ufw route allow out on <network_bridge>

For example:

sudo ufw allow in on 1lxdbr®
sudo ufw route allow in on 1xdbr®
sudo ufw route allow out on 1lxdbr®

Warning: The commands given above show a simple example configuration. Depending on your use case, you
might need more advanced rules and the example configuration might inadvertently introduce a security risk.

Here’s an example for more restrictive firewall rules that limit access from the guests to the host to only DHCP and
DNS and allow all outbound connections:

# allow the guest to get an IP from the LXD host
sudo ufw allow in on lxdbr® to any port 67 proto udp
sudo ufw allow in on lxdbr® to any port 547 proto udp

# allow the guest to resolve host names from the LXD host
sudo ufw allow in on 1lxdbr® to any port 53

# allow the guest to have access to outbound connections

CIDR4="$(1xc network get lxdbr® ipv4.address | sed 's|\.[0-9]\+/]|.0/]")"
CIDR6="$(1lxc network get lxdbr® ipv6.address | sed 's|:[0-9]\+/|:/]"D"
sudo ufw route allow in on lxdbr® from "$ "

sudo ufw route allow in on lxdbr® from "$

2.6. Networking 165




LXD

Prevent connectivity issues with LXD and Docker

Running LXD and Docker on the same host can cause connectivity issues. A common reason for these issues is that
Docker sets the global FORWARD policy to drop, which prevents LXD from forwarding traffic and thus causes the
instances to lose network connectivity. See Docker on a router for detailed information.

There are different ways of working around this problem:

Uninstall Docker
The easiest way to prevent such issues is to uninstall Docker from the system that runs LXD and restart the
system. You can run Docker inside a LXD container or virtual machine instead.

See Running Docker inside of a LXD container for detailed information.

Enable IPv4 forwarding
If uninstalling Docker is not an option, enabling IPv4 forwarding before the Docker service starts will prevent
Docker from modifying the global FORWARD policy. LXD bridge networks enable this setting normally. How-
ever, if LXD starts after Docker, then Docker will already have modified the global FORWARD policy.

Warning: Enabling IPv4 forwarding can cause your Docker container ports to be reachable from any ma-
chine on your local network. Depending on your environment, this might be undesirable. See local network
container access issue for more information.

To enable IPv4 forwarding before Docker starts, ensure that the following sysctl setting is enabled:

[net .ipv4.conf.all. forwarding=1

Important: You must make this setting persistent across host reboots.

One way of doing this is to add a file to the /etc/sysctl.d/ directory using the following commands:

echo "net.ipv4.conf.all.forwarding=1" > /etc/sysctl.d/99-forwarding.conf
systemctl restart systemd-sysctl

Allow egress network traffic flows
If you do not want the Docker container ports to be potentially reachable from any machine on your local network,
you can apply a more complex solution provided by Docker.

Use the following commands to explicitly allow egress network traffic flows from your LXD managed bridge
interface:

iptables -I DOCKER-USER -i <network_bridge> -j ACCEPT
iptables -I DOCKER-USER -o <network_bridge> -m conntrack --ctstate RELATED,
—ESTABLISHED -j ACCEPT

For example, if your LXD managed bridge is called 1xdbr®, you can allow egress traffic to flow using the
following commands:

iptables -I DOCKER-USER -i 1xdbr® -j ACCEPT
iptables -I DOCKER-USER -o lxdbr® -m conntrack --ctstate RELATED,ESTABLISHED -j.
—ACCEPT

166 Chapter 2. Project and community


https://docs.docker.com/network/iptables/#docker-on-a-router
https://www.youtube.com/watch?v=_fCSSEyiGro
https://github.com/moby/moby/issues/14041
https://github.com/moby/moby/issues/14041

LXD

Important: You must make these firewall rules persistent across host reboots. How to do this depends on your
Linux distribution.

2.6.9 OVN network

OVN is a software-defined networking system that supports virtual network abstraction. You can use it to build your
own private cloud. See www.ovn.org for more information.

The ovn network type allows to create logical networks using the OVN SDN (software-defined networking). This kind
of network can be useful for labs and multi-tenant environments where the same logical subnets are used in multiple
discrete networks.

A LXD OVN network can be connected to an existing managed Bridge network or Physical network to gain access to
the wider network. By default, all connections from the OVN logical networks are NATed to an IP allocated from the
uplink network.

See How to set up OVN with LXD for basic instructions for setting up an OVN network.

Note: Static DHCP assignments depend on the client using its MAC address as the DHCP identifier. This method
prevents conflicting leases when copying an instance, and thus makes statically assigned leases work properly.

Configuration options

The following configuration key namespaces are currently supported for the ovn network type:
* bridge (L2 interface configuration)
* dns (DNS server and resolution configuration)
* ipv4 (L3 IPv4 configuration)
e ipv6 (L3 IPv6 configuration)
e security (network ACL configuration)

* user (free-form key/value for user metadata)

Note: LXD uses the CIDR notation where network subnet information is required, for example, 192.0.2.0/24 or
2001:db8::/32. This does not apply to cases where a single address is required, for example, local/remote addresses
of tunnels, NAT addresses or specific addresses to apply to an instance.

The following configuration options are available for the ovn network type:

2.6. Networking 167


https://www.ovn.org/
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

LXD

Key Type Condi- Default Description
tion
network string - - Uplink network to use for external network access
bridge.hwaddr string - - MAC address for the bridge
bridge.mtu in- - 1442 Bridge MTU (default allows host to host Geneve tunnels)
te-
ger
dns.domain string - 1xd Domain to advertise to DHCP clients and use for DNS
resolution
dns.search string - - Full comma-separated domain search list, defaulting to
dns.domain value
dns.zone. forward string - - DNS zone name for forward DNS records
dns.zone.reverse. string - - DNS zone name for IPv4 reverse DNS records
ipv4
dns.zone.reverse. string - - DNS zone name for IPv6 reverse DNS records
ipv6
ipv4.address string standard auto (on IPv4 address for the bridge (use none to turn off IPv4 or
mode create auto to generate a new random unused subnet) (CIDR)
only)
ipv4.dhcp bool IPv4ad- true Whether to allocate addresses using DHCP
dress
ipv4.nat bool IPv4ad- false Whether to NAT (defaults to true if unset and a random
dress ipv4.address is generated)
ipv4.nat.address string IPv4 ad- - The source address used for outbound traffic from the
dress network (requires uplink ovn. ingress_mode=routed)
ipv6.address string standard auto (on IPv6 address for the bridge (use none to turn off IPv6 or
mode create auto to generate a new random unused subnet) (CIDR)
only)
ipv6.dhcp bool IPv6ad- true Whether to provide additional network configuration
dress over DHCP
ipv6.dhcp. bool IPv6 false Whether to allocate addresses using DHCP
stateful DHCP
ipv6.nat bool IPv6ad- false Whether to NAT (defaults to true if unset and a random
dress ipv6.address is generated)
ipv6.nat.address string IPv6 ad- - The source address used for outbound traffic from the
dress network (requires uplink ovn. ingress_mode=routed)
security.acls string - - Comma-separated list of Network ACLs to apply to NICs
connected to this network
security.acls. string security reject Action to use for egress traffic that doesn’t match any
default.egress. acls ACL rule
action
security.acls. bool security false Whether to log egress traffic that doesn’t match any ACL
default.egress. acls rule
logged
security.acls. string security reject Action to use for ingress traffic that doesn’t match any
default.ingress. acls ACL rule
action
security.acls. bool security false Whether to log ingress traffic that doesn’t match any ACL
default.ingress. acls rule
logged
user.* string - - User-provided free-form key/value pairs

168 Chapter 2. Project and community



LXD

Supported features

The following features are supported for the ovn network type:
* How to configure network ACLs
* How to configure network forwards
* How to configure network zones

* How to create peer routing relationships

How to set up OVN with LXD

See the following sections for how to set up a basic OVN network, either as a standalone network or to host a small
LXD cluster.

Set up a standalone OVN network

Complete the following steps to create a standalone OVN network that is connected to a managed LXD parent bridge
network (for example, 1xdbr®) for outbound connectivity.

1. Install the OVN tools on the local server:

[sudo apt install ovn-host ovn-central ]

2. Configure the OVN integration bridge:

r

sudo ovs-vsctl set open_vswitch . \
external_ids:ovn-remote=unix:/var/run/ovn/ovnsb_db.sock \
external_ids:ovn-encap-type=geneve \
external_ids:ovn-encap-ip=127.0.0.1

.

3. Create an OVN network:

p
1xc network set <parent_network> ipv4.dhcp.ranges=<IP_range> ipv4.ovn.ranges=<IP_
—range>

1xc network create ovntest --type=ovn network=<parent_network>

4. Create an instance that uses the ovntest network:

lxc init ubuntu:22.04 cl
1xc config device override cl eth® network=ovntest
1xc start cl

5. Run 1xc 1list to show the instance information:

user@host:~$ 1lxc list+------ e e o
NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |+------ R R oo
cl | RUNNING | 192.0.2.2 (eth®) | 2001:db8:cff3:5089:216:3eff:fef0®:549f (eth®) |

CONTAINER | O [+------ o o= o .

2.6. Networking 169



LXD

Set up a LXD cluster on OVN

Complete the following steps to set up a LXD cluster that uses an OVN network.

Just like LXD, the distributed database for OVN must be run on a cluster that consists of an odd number of members.
The following instructions use the minimum of three servers, which run both the distributed database for OVN and the
OVN controller. In addition, you can add any number of servers to the LXD cluster that run only the OVN controller.
See the linked YouTube video for the complete tutorial using four machines.

1. Complete the following steps on the three machines that you want to run the distributed database for OVN:

1. Install the OVN tools:

[sudo apt install ovn-central ovn-host

2. Mark the OVN services as enabled to ensure that they are started when the machine boots:

systemctl enable ovn-central
systemctl enable ovn-host

3. Stop OVN for now:

[systemctl stop ovn-central

4. Note down the IP address of the machine:

[ip -4 a

5. Open /etc/default/ovn-central for editing.

6. Paste in one of the following configurations (replace <server_1>, <server_2> and <server_3> with the
IP addresses of the respective machines, and <local> with the IP address of the machine that you are on).

¢ For the first machine:

(OVN_CTL_OPTS=" \
--db-nb-addr=<local> \
--db-nb-create-insecure-remote=yes \
--db-sb-addr=<local> \
--db-sb-create-insecure-remote=yes \
--db-nb-cluster-local-addr=<local> \
--db-sb-cluster-local-addr=<local> \
--ovn-northd-nb-db=tcp:<server_1>:6641,tcp:<server_2>:6641,tcp:<server_
—3>:6641 \
--ovn-northd-sb-db=tcp:<server_1>:6642,tcp:<server_2>:6642,tcp:<server_
3>:6642"

For the second and third machine:

(OVN_CTL_OPTS=" \

--db-nb-addr=<local> \
--db-nb-cluster-remote-addr=<server_1> \
--db-nb-create-insecure-remote=yes \
--db-sb-addr=<local> \
--db-sb-cluster-remote-addr=<server_1> \
--db-sb-create-insecure-remote=yes \
--db-nb-cluster-local-addr=<local> \

(continues on next page)

170 Chapter 2. Project and community




LXD

(continued from previous page)
--db-sb-cluster-local-addr=<local> \
--ovn-northd-nb-db=tcp:<server_1>:6641,tcp:<server_2>:6641,tcp:<server_
—3>:6641 \
--ovn-northd-sb-db=tcp:<server_1>:6642,tcp:<server_2>:6642,tcp:<server_
—3>:6642"

7. Start OVN:

[systemctl start ovn-central

2. On the remaining machines, install only ovn-host and make sure it is enabled:

sudo apt install ovn-host
systemctl enable ovn-host

3. On all machines, configure Open vSwitch (replace the variables as described above):

sudo ovs-vsctl set open_vswitch . \
external_ids:ovn-remote=tcp:<server_1>:6642,tcp:<server_2>:6642,tcp:<server_3>
16642 \
external_ids:ovn-encap-type=geneve \
external_ids:ovn-encap-ip=<local>

L

4. Create a LXD cluster by running 1xd init on all machines. On the first machine, create the cluster. Then
join the other machines with tokens by running 1xc cluster add <machine_name> on the first machine and
specifying the token when initializing LXD on the other machine.

5. On the first machine, create and configure the uplink network:

1xc network create UPLINK --type=physical parent=<uplink_interface> --target=
—<machine_name_1>
1xc network create UPLINK --type=physical parent=<uplink_interface> --target=
—.<machine_name_2>
1xc network create UPLINK --type=physical parent=<uplink_interface> --target=
—<machine_name_3>
1xc network create UPLINK --type=physical parent=<uplink_interface> --target=
—<machine_name_4>
1xc network create UPLINK --type=physical \

ipv4.ovn.ranges=<IP_range> \

ipv6.ovn.ranges=<IP_range> \

ipv4.gateway=<gateway> \

ipv6.gateway=<gateway> \

dns.nameservers=<name_server>

L

To determine the required values:

Uplink interface
A high availability OVN cluster requires a shared layer 2 network, so that the active OVN chassis can move
between cluster members (which effectively allows the OVN router’s external IP to be reachable from a
different host).

Therefore, you must specify either an unmanaged bridge interface or an unused physical interface as the
parent for the physical network that is used for OVN uplink. The instructions assume that you are using a
manually created unmanaged bridge. See How to configure network bridges for instructions on how to set
up this bridge.

2.6. Networking 171


https://netplan.readthedocs.io/en/stable/examples/#how-to-configure-network-bridges

LXD

Gateway
Run ip -4 route show default and ip -6 route show default.

Name server
Run resolvectl.

IP ranges
Use suitable IP ranges based on the assigned IPs.

6. Still on the first machine, configure LXD to be able to communicate with the OVN DB cluster. To do so, find
the value for ovn-northd-nb-db in /etc/default/ovn-central and provide it to LXD with the following
command:

{lxc config set network.ovn.northbound_connection <ovn-northd-nb-db>

7. Finally, create the actual OVN network (on the first machine):

[lxc network create my-ovn --type=ovn J

8. To test the OVN network, create some instances and check the network connectivity:

-

1xc launch images:ubuntu/22.04 cl --network my-ovn
1xc launch images:ubuntu/22.04 c2 --network my-ovn
1xc launch images:ubuntu/22.04 c3 --network my-ovn
1xc launch images:ubuntu/22.04 c4 --network my-ovn
lxc list

1xc exec c4 -- bash

ping <IP of cl>

ping <nameserver>

ping6 -n www.example.com

How to create peer routing relationships

By default, traffic between two OVN networks goes through the uplink network. This path is inefficient, however,
because packets must leave the OVN subsystem and transit through the host’s networking stack (and, potentially, an
external network) and back into the OVN subsystem of the target network. Depending on how the host’s networking
is configured, this might limit the available bandwidth (if the OVN overlay network is on a higher bandwidth network
than the host’s external network).

Therefore, LXD allows creating peer routing relationships between two OVN networks. Using this method, traffic
between the two networks can go directly from one OVN network to the other and thus stays within the OVN subsystem,
rather than transiting through the uplink network.

Create a routing relationship between networks

To add a peer routing relationship between two networks, you must create a network peering for both networks. The
relationship must be mutual. If you set it up on only one network, the routing relationship will be in pending state, but
not active.

When creating the peer routing relationship, specify a peering name that identifies the relationship for the respective
network. The name can be chosen freely, and you can use it later to edit or delete the relationship.

Use the following commands to create a peer routing relationship between networks in the same project:

172 Chapter 2. Project and community



LXD

1xc network peer create <networkl> <peering_name> <network2> [configuration_options]
1xc network peer create <network2> <peering_name> <networkl> [configuration_options]

You can also create peer routing relationships between OVN networks in different projects:

1xc network peer create <networkl> <peering_name> <project2/network2> [configuration_
—.options] --project=<projectl>
1xc network peer create <network2> <peering_name> <projectl/networkl> [configuration_
—,options] --project=<project2>

Important: If the project or the network name is incorrect, the command will not return any error indicating that
the respective project/network does not exist, and the routing relationship will remain in pending state. This behavior
prevents users in a different project from discovering whether a project and network exists.

Peering properties

Peer routing relationships have the following properties:

Property Type Re- Description
quired
name string yes Name of the network peering on the local network
description  string no Description of the network peering
config string no Configuration options as key/value pairs (only user.* custom keys sup-
set ported)
target_projec string yes Which project the target network exists in (required at create time)
target_networ. string yes Which network to create a peering with (required at create time)
status string - Status indicating if pending or created (mutual peering exists with the tar-

get network)

List routing relationships

To list all network peerings for a network, use the following command:

[lxc network peer list <network>

Edit a routing relationship

Use the following command to edit a network peering:

[lxc network peer edit <network> <peering_name>

This command opens the network peering in YAML format for editing.

2.6. Networking 173



LXD

2.6.10 External networks
External networks use network interfaces that already exist. Therefore, LXD has limited possibility to control them,
and LXD features like network ACLs, network forwards and network zones are not supported.

The main purpose for using external networks is to provide an uplink network through a parent interface. This external
network specifies the presets to use when connecting instances or other networks to a parent interface.

LXD supports the following external network types:

Macvlan network

Macvlan is a virtual LAN that you can use if you want to assign several IP addresses to the same network interface,
basically splitting up the network interface into several sub-interfaces with their own IP addresses. You can then assign
IP addresses based on the randomly generated MAC addresses.

The macvlan network type allows to specify presets to use when connecting instances to a parent interface. In this
case, the instance NICs can simply set the network option to the network they connect to without knowing any of the
underlying configuration details.

Note: If you are using a macvlan network, communication between the LXD host and the instances is not possible.
Both the host and the instances can talk to the gateway, but they cannot communicate directly.

Configuration options

The following configuration key namespaces are currently supported for the macvlan network type:
e maas (MAAS network identification)

* user (free-form key/value for user metadata)

Note: LXD uses the CIDR notation where network subnet information is required, for example, 192.0.2.0/24 or
2001:db8::/32. This does not apply to cases where a single address is required, for example, local/remote addresses
of tunnels, NAT addresses or specific addresses to apply to an instance.

The following configuration options are available for the macvlan network type:

Key Type Condi- De- Description
tion fault

gvrp bool - false Register VLAN using GARP VLAN Registration Protocol
mtu inte- - - The MTU of the new interface

ger
parent string - - Parent interface to create macvlan NICs on
vlan inte- - - The VLAN ID to attach to

ger
maas.subnet. string [Pv4 - MAAS IPv4 subnet to register instances in (when using network
ipv4 address property on NIC)
maas.subnet. string IPv6 - MAAS IPv6 subnet to register instances in (when using network
ipv6 address property on NIC)
user.* string - - User-provided free-form key/value pairs

174 Chapter 2. Project and community


https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

LXD

SR-I0V network
SR-IOV is a hardware standard that allows a single network card port to appear as several virtual network interfaces in
a virtualized environment.

The sriov network type allows to specify presets to use when connecting instances to a parent interface. In this
case, the instance NICs can simply set the network option to the network they connect to without knowing any of the
underlying configuration details.

Configuration options

The following configuration key namespaces are currently supported for the sriov network type:
* maas (MAAS network identification)

* user (free-form key/value for user metadata)

Note: LXD uses the CIDR notation where network subnet information is required, for example, 192.0.2.0/24 or
2001:db8::/32. This does not apply to cases where a single address is required, for example, local/remote addresses
of tunnels, NAT addresses or specific addresses to apply to an instance.

The following configuration options are available for the sriov network type:

Key Type Condi- De- Description
tion fault

mtu inte- - - The MTU of the new interface

ger
parent string - - Parent interface to create sriov NICs on
vlan inte- - - The VLAN ID to attach to

ger
maas.subnet. string IPv4 - MAAS IPv4 subnet to register instances in (when using network
ipv4d address property on NIC)
maas.subnet. string IPv6 - MAAS IPv6 subnet to register instances in (when using network
ipv6 address property on NIC)
user.* string - - User-provided free-form key/value pairs

Physical network

The physical network type connects to an existing physical network, which can be a network interface or a bridge,
and serves as an uplink network for OVN.

This network type allows to specify presets to use when connecting OVN networks to a parent interface or to allow an
instance to use a physical interface as a NIC. In this case, the instance NICs can simply set the networkoption to the
network they connect to without knowing any of the underlying configuration details.

2.6. Networking 175


https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

LXD

Configuration options

The following configuration key namespaces are currently supported for the physical network type:

bgp (BGP peer configuration)

dns (DNS server and resolution configuration)
ipv4 (L3 IPv4 configuration)

ipv6 (L3 IPv6 configuration)

maas (MAAS network identification)

ovn (OVN configuration)

user (free-form key/value for user metadata)

Note:

LXD uses the CIDR notation where network subnet information is required, for example, 192.0.2.0/24 or

2001:db8::/32. This does not apply to cases where a single address is required, for example, local/remote addresses
of tunnels, NAT addresses or specific addresses to apply to an instance.

The following configuration options are available for the physical network type:

176

Chapter 2. Project and community


https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

LXD

Key Type Condi- Default Description
tion
gvrp bool - false Register VLAN using GARP VLAN Registration Protocol
mtu in- - - The MTU of the new interface
te-
ger
parent string - - Existing interface to use for network
vlan in- - - The VLAN ID to attach to
te-
ger
bgp.peers. string BGP - Peer address (IPv4 or IPv6) for use by ovn downstream networks
NAME. server
address
bgp.peers. in- BGP - Peer AS number for use by ovn downstream networks
NAME. asn te- server
ger
bgp.peers. string BGP - (no Peer session password (optional) for use by ovn downstream net-
NAME. server pass- works
password word)
dns. string stan- - List of DNS server IPs on physical network
nameservers dard
mode
ipv4. string stan- - IPv4 address for the gateway and network (CIDR)
gateway dard
mode
ipv4.ovn. string - - Comma-separated list of IPv4 ranges to use for child OVN network
ranges routers (FIRST-LAST format)
ipv4.routes  string IPv4 - Comma-separated list of additional IPv4 CIDR subnets that can be
ad- used with child OVN networks ipv4.routes.external setting
dress
ipv4. bool IPv4 false Allow the overlapping routes to be used on multiple networks/NIC
routes. ad- at the same time
anycast dress
ipv6. string stan- - IPv6 address for the gateway and network (CIDR)
gateway dard
mode
ipv6.ovn. string - - Comma-separated list of IPv6 ranges to use for child OVN network
ranges routers (FIRST-LAST format)
ipv6.routes  string IPv6 - Comma-separated list of additional IPv6 CIDR subnets that can be
ad- used with child OVN networks ipv6.routes.external setting
dress
ipv6. bool IPv6 false Allow the overlapping routes to be used on multiple networks/NIC
routes. ad- at the same time
anycast dress
maas. string IPv4 - MAAS IPv4 subnet to register instances in (when using network
subnet.ipv4 ad- property on NIC)
dress
maas. string IPv6 - MAAS IPv6 subnet to register instances in (when using network
subnet.ipv6 ad- property on NIC)
dress
ovn. string stan- 12proxy Sets the method how OVN NIC external IPs will be advertised on
ingress_mode dard uplink network: 12proxy (proxy ARP/NDP) or routed
mode
user.* string - - User-provided free-form key/value pairs

2.6. Networking

177



LXD

Supported features

The following features are supported for the physical network type:

* How to configure LXD as a BGP server

2.7 Clustering

2.7.1 About clustering

To spread the total workload over several servers, LXD can be run in clustering mode. In this scenario, any number
of LXD servers share the same distributed database that holds the configuration for the cluster members and their
instances. The LXD cluster can be managed uniformly using the 1xc client or the REST API.

This feature was introduced as part of the clustering API extension and is available since LXD 3.0.

Tip: If you want to quickly set up a basic LXD cluster, check out MicroCloud.

Cluster members
A LXD cluster consists of one bootstrap server and at least two further cluster members. It stores its state in a distributed
database, which is a Dqlite database replicated using the Raft algorithm.

While you could create a cluster with only two members, it is strongly recommended that the number of cluster members
be at least three. With this setup, the cluster can survive the loss of at least one member and still be able to establish
quorum for its distributed state.

When you create the cluster, the Dqlite database runs on only the bootstrap server until a third member joins the cluster.
Then both the second and the third server receive a replica of the database.

See How to form a cluster for more information.

Member roles

In a cluster with three members, all members replicate the distributed database that stores the state of the cluster. If
the cluster has more members, only some of them replicate the database. The remaining members have access to the
database, but don’t replicate it.

At each time, there is an elected cluster leader that monitors the health of the other members.

Each member that replicates the database has either the role of a voter or of a stand-by. If the cluster leader goes offline,
one of the voters is elected as the new leader. If a voter member goes offline, a stand-by member is automatically
promoted to voter. The database (and hence the cluster) remains available as long as a majority of voters is online.

The following roles can be assigned to LXD cluster members. Automatic roles are assigned by LXD itself and cannot
be modified by the user.

178 Chapter 2. Project and community


https://microcloud.is
https://dqlite.io/

LXD

Role Automatic Description

database yes Voting member of the distributed database

database-leader  yes Current leader of the distributed database

database-standby yes Stand-by (non-voting) member of the distributed database

event-hub no Exchange point (hub) for the internal LXD events (requires at least two)
ovn-chassis no Uplink gateway candidate for OVN networks

The default number of voter members (cluster.max_voters) is three. The default number of stand-by members
(cluster.max_standby) is two. With this configuration, your cluster will remain operational as long as you switch
off at most one voting member at a time.

See How to manage a cluster for more information.

Offline members and fault tolerance

If a cluster member is down for more than the configured offline threshold, its status is marked as offline. In this case,
no operations are possible on this member, and neither are operations that require a state change across all members.

As soon as the offline member comes back online, operations are available again.
If the member that goes offline is the leader itself, the other members will elect a new leader.
If you can’t or don’t want to bring the server back online, you can delete it from the cluster.

You can tweak the amount of seconds after which a non-responding member is considered offline by setting the
cluster.offline_threshold configuration. The default value is 20 seconds. The minimum value is 10 seconds.

To automatically evacuate instances from an offline member, set the cluster.healing_threshold configuration to
a non-zero value.

See How to recover a cluster for more information.

Failure domains

You can use failure domains to indicate which cluster members should be given preference when assigning roles to a
cluster member that has gone offline. For example, if a cluster member that currently has the database role gets shut
down, LXD tries to assign its database role to another cluster member in the same failure domain, if one is available.

To update the failure domain of a cluster member, use the 1xc cluster edit <member> command and change the
failure_domain property from default to another string.

Member configuration

LXD cluster members are generally assumed to be identical systems. This means that all LXD servers joining a cluster
must have an identical configuration to the bootstrap server, in terms of storage pools and networks.

To accommodate things like slightly different disk ordering or network interface naming, there is an exception for some
configuration options related to storage and networks, which are member-specific.

When such settings are present in a cluster, any server that is being added must provide a value for them. Most often,
this is done through the interactive 1xd init command, which asks the user for the value for a number of configuration
keys related to storage or networks.

Those settings typically include:

2.7. Clustering 179



LXD

* The source device and size for a storage pool
* The name for a ZFS zpool, LVM thin pool or LVM volume group
» External interfaces and BGP next-hop for a bridged network
* The name of the parent network device for managed physical or macvlan networks
See How to configure storage for a cluster and How to configure networks for a cluster for more information.

If you want to look up the questions ahead of time (which can be useful for scripting), query the /1.0/cluster API
endpoint. This can be done through 1xc query /1.0/cluster or through other API clients.

Images
By default, LXD replicates images on as many cluster members as there are database members. This typically means
up to three copies within the cluster.

You can increase that number to improve fault tolerance and the likelihood of the image being locally available. To
do so, set the cluster.images_minimal_replica configuration. The special value of -1 can be used to have the
image copied to all cluster members.

Cluster groups

In a LXD cluster, you can add members to cluster groups. You can use these cluster groups to launch instances on a
cluster member that belongs to a subset of all available members. For example, you could create a cluster group for all
members that have a GPU and then launch all instances that require a GPU on this cluster group.

By default, all cluster members belong to the default group.

See How to set up cluster groups and Launch an instance on a specific cluster member for more information.

Automatic placement of instances
In a cluster setup, each instance lives on one of the cluster members. When you launch an instance, you can target it to
a specific cluster member, to a cluster group or have LXD automatically assign it to a cluster member.

By default, the automatic assignment picks the cluster member that has the lowest number of instances. If several
members have the same amount of instances, one of the members is chosen at random.

However, you can control this behavior with the scheduler. instance configuration option:
¢ If scheduler.instance is set to all for a cluster member, this cluster member is selected for an instance if:
— The instance is created without --target and the cluster member has the lowest number of instances.
— The instance is targeted to live on this cluster member.

— The instance is targeted to live on a member of a cluster group that the cluster member is a part of, and the
cluster member has the lowest number of instances compared to the other members of the cluster group.

¢ If scheduler.instance is set to manual for a cluster member, this cluster member is selected for an instance
if:

— The instance is targeted to live on this cluster member.

e If scheduler.instance is set to group for a cluster member, this cluster member is selected for an instance
if:

— The instance is targeted to live on this cluster member.

180 Chapter 2. Project and community



LXD

— The instance is targeted to live on a member of a cluster group that the cluster member is a part of, and the
cluster member has the lowest number of instances compared to the other members of the cluster group.

2.7.2 How to form a cluster
When forming a LXD cluster, you start with a bootstrap server. This bootstrap server can be an existing LXD server
or a newly installed one.

After initializing the bootstrap server, you can join additional servers to the cluster. See Cluster members for more
information.

You can form the LXD cluster interactively by providing configuration information during the initialization process or
by using preseed files that contain the full configuration.

To quickly and automatically set up a basic LXD cluster, you can use MicroCloud. Note, however, that this project is
still in an early phase.

Configure the cluster interactively
To form your cluster, you must first run 1xd init on the bootstrap server. After that, run it on the other servers that
you want to join to the cluster.

When forming a cluster interactively, you answer the questions that 1xd init prompts you with to configure the cluster.

Initialize the bootstrap server

To initialize the bootstrap server, run 1xd init and answer the questions according to your desired configuration.
You can accept the default values for most questions, but make sure to answer the following questions accordingly:
* Would you like to use LXD clustering?
Select yes.
* What IP address or DNS name should be used to reach this server?
Make sure to use an IP or DNS address that other servers can reach.
e Are you joining an existing cluster?
Select no.
e Setup password authentication on the cluster?
Select no to use authentication tokens (recommended) or yes to use a trust password.

user@host:~$ 1xd init Would you like to use LXD clustering? (yes/no) [default=no]:
yesWhat IP address or DNS name should be used to reach this server? [default=192.0.2.
101]:Are you joining an existing cluster? (yes/no) [default=no]: noWhat member name
should be used to identify this server in the cluster? [default=serverl]:Setup password
authentication on the cluster? (yes/no) [default=no]: noDo you want to configure a

new local storage pool? (yes/no) [default=yes]:Name of the storage backend to use
(btrfs, dir, lvm, zfs) [default=zfs]:Create a new ZFS pool? (yes/no) [default=yes]:Would
you like to use an existing empty block device (e.g. a disk or partition)? (yes/no)
[default=no]:Size in GiB of the new loop device (1GiB minimum) [default=9GiB]:Do you
want to configure a new remote storage pool? (yes/no) [default=no]:Would you like to
connect to a MAAS server? (yes/no) [default=no]:Would you like to configure LXD to use
an existing bridge or host interface? (yes/no) [default=no]:Would you like to create a

2.7. Clustering 181



LXD

new Fan overlay network? (yes/no) [default=yes]:What subnet should be used as the Fan
underlay? [default=auto]:Would you like stale cached images to be updated automatically?
(yes/no) [default=yes]:Would you like a YAML "lxd init" preseed to be printed? (yes/no)
[default=no]:

After the initialization process finishes, your first cluster member should be up and available on your network. You can
check this with 1xc cluster list.

Join additional servers

You can now join further servers to the cluster.

Note: The servers that you add should be newly installed LXD servers. If you are using existing servers, make sure to
clear their contents before joining them, because any existing data on them will be lost.

To join a server to the cluster, run 1xd init on the cluster. Joining an existing cluster requires root privileges, so make
sure to run the command as root or with sudo.

Basically, the initialization process consists of the following steps:
1. Request to join an existing cluster.
Answer the first questions that 1xd init asks accordingly:
e Would you like to use LXD clustering?
Select yes.
e What IP address or DNS name should be used to reach this server?
Make sure to use an IP or DNS address that other servers can reach.
e Are you joining an existing cluster?
Select yes.
e Do you have a join token?

Select yes if you configured the bootstrap server to use authentication tokens (recommended) or no if you
configured it to use a frust password.

2. Authenticate with the cluster.

There are two alternative methods, depending on which authentication method you choose when configuring the
bootstrap server.

Authentication tokens (recommended)
Trust password

If you configured your cluster to use authentication tokens, you must generate a join token for each new member.
To do so, run the following command on an existing cluster member (for example, the bootstrap server):

[lxc cluster add <new_member_name>

This command returns a single-use join token that is valid for a configurable time (see cluster.
join_token_expiry). Enter this token when 1xd init prompts you for the join token.

The join token contains the addresses of the existing online members, as well as a single-use secret and the
fingerprint of the cluster certificate. This reduces the amount of questions that you must answer during 1xd
init, because the join token can be used to answer these questions automatically.

182 Chapter 2. Project and community



LXD

If you configured your cluster to use a frust password, 1xd init requires more information about the cluster
before it can start the authorization process:

1. Specify a name for the new cluster member.

2. Provide the address of an existing cluster member (the bootstrap server or any other server you have already
added).

3. Verify the fingerprint for the cluster.
4. If the fingerprint is correct, enter the trust password to authorize with the cluster.
3. Confirm that all local data for the server is lost when joining a cluster.
4. Configure server-specific settings (see Member configuration for more information).
You can accept the default values or specify custom values for each server.
Authentication tokens (recommended)
Trust password

user@host:~$ sudo 1xd init Would you like to use LXD clustering? (yes/no) [default=no]:
yesWhat IP address or DNS name should be used to reach this server? [default=192.
0.2.102]:Are you joining an existing cluster? (yes/no) [default=no]: yesDo you

have a join token? (yes/no/[token]) [default=no]: yesPlease provide join token:
ey1zZX12ZX]fbmFtZSI6InJwaTAxIiwiZmluZ2VycHIpbnQiOiIyNjZjZmExZDk®ZDZiMjk2Nzk0YjUOYz]1YzdjOTMwNDASZjIzNjd
existing data is lost when joining a cluster, continue? (yes/no) [default=no] yesChoose
"size" property for storage pool "local":Choose "source" property for storage pool
"local":Choose "zfs.pool_name" property for storage pool "local":Would you like a

YAML "1xd init" preseed to be printed? (yes/no) [default=no]: user@host:~$
sudo 1xd init Would you like to use LXD clustering? (yes/no) [default=no]: yesWhat
IP address or DNS name should be used to reach this server? [default=192.0.2.

102] :Are you joining an existing cluster? (yes/no) [default=no]: yesDo you have a

join token? (yes/no/[token]) [default=no]: noWhat member name should be used to

identify this server in the cluster? [default=server2]:IP address or FQDN of an

existing cluster member (may include port): 192.0.2.101:8443Cluster fingerprint:
2915dafdf5c159681a9086£732644fb70680533b0fb9005b8c6e9bca51533113You can validate this
fingerprint by running "lxc info" locally on an existing cluster member.Is this the
correct fingerprint? (yes/no/[fingerprint]) [default=no]: yesCluster trust password:All
existing data is lost when joining a cluster, continue? (yes/no) [default=no] yesChoose
"size" property for storage pool "local":Choose "source" property for storage pool
"local":Choose "zfs.pool_name" property for storage pool "local":Would you like a YAML
"lxd init" preseed to be printed? (yes/no) [default=no]:

After the initialization process finishes, your server is added as a new cluster member. You can check this with 1xc
cluster list.

Configure the cluster through preseed files
To form your cluster, you must first run 1xd init on the bootstrap server. After that, run it on the other servers that
you want to join to the cluster.

Instead of answering the 1xd init questions interactively, you can provide the required information through preseed
files. You can feed a file to 1xd init with the following command:

[cat <preseed-file> | 1xd init --preseed ]

You need a different preseed file for every server.

2.7. Clustering 183



LXD

Initialize the bootstrap server

The required contents of the preseed file depend on whether you want to use authentication tokens (recommended) or
a trust password for authentication.

Authentication tokens (recommended)
Trust password

To enable clustering, the preseed file for the bootstrap server must contain the following fields:

config:

core.https_address: <IP_address_and_port>
cluster:

server_name: <server_name>

enabled: true

Here is an example preseed file for the bootstrap server:

config:
core.https_address: 192.0.2.101:8443
images.auto_update_interval: 15
storage_pools:
- name: default
driver: dir
- name: my-pool
driver: zfs

networks:
- name: 1xdbr®
type: bridge
profiles:
- name: default
devices:
root:
path: /
pool: my-pool
type: disk
eth®:
name: eth0®

nictype: bridged
parent: 1xdbr®
type: nic
cluster:
server_name: serverl
enabled: true

To enable clustering, the preseed file for the bootstrap server must contain the following fields:

config:
core.https_address: <IP_address_and_port>
core.trust_password: <trust_password>
cluster:
server_name: <server_name>
enabled: true

Here is an example preseed file for the bootstrap server:

184 Chapter 2. Project and community




LXD

config:
core.trust_password: the_password
core.https_address: 192.0.2.101:8443
images.auto_update_interval: 15
storage_pools:
- name: default
driver: dir
- name: my-pool
driver: zfs

networks:
- name: 1xdbr®
type: bridge
profiles:
- name: default
devices:
root:
path: /
pool: my-pool
type: disk
eth®:
name: eth0®

nictype: bridged
parent: 1xdbr®
type: nic
cluster:
server_name: serverl
enabled: true

Join additional servers

The required contents of the preseed files depend on whether you configured the bootstrap server to use authentication
tokens (recommended) or a trust password for authentication.

The preseed files for new cluster members require only a cluster section with data and configuration values that are
specific to the joining server.

Authentication tokens (recommended)
Trust password

The preseed file for additional servers must include the following fields:

cluster:
enabled: true
server_address: <IP_address_of_server>
cluster_token: <join_token>

Here is an example preseed file for a new cluster member:

cluster:
enabled: true
server_address: 192.0.2.102:8443
cluster_token: ..
—.eyJ]zZX12ZX] fomFtZSI6Im5vZGUyliwiZmluZ2VycHIpbnQi0iljZjlmNmVhMWIZY jhiNjgxNzQ1YTY1INTY2YjM3ZGUwOTUZN jRmM,

(continues on next page)

2.7. Clustering 185



LXD

(continued from previous page)

member_config:

- entity: storage-pool
name: default
key: source
value: ""

- entity: storage-pool
name: my-pool
key: source
value: ""

- entity: storage-pool
name: my-pool
key: driver
value: "zfs"

The preseed file for additional servers must include the following fields:

cluster:
server_name: <server_name>
enabled: true
cluster_address: <IP_address_of_bootstrap_server>
server_address: <IP_address_of_server>
cluster_password: <trust_password>
cluster_certificate: <certificate> # use this or cluster_certificate_path
cluster_certificate_path: <path_to-certificate_file> # use this or cluster_certificate

To create a YAML-compatible entry for the cluster_certificate key, run one the following commands on the
bootstrap server:

* When using the snap: sed ':a;N;$!ba;s/\n/\n\n/g' /var/snap/lxd/common/lxd/cluster.crt
¢ Otherwise: sed ':a;N;$!ba;s/\n/\n\n/g' /var/lib/lxd/cluster.crt

Alternatively, copy the cluster.crt file from the bootstrap server to the server that you want to join and specify its
path in the cluster_certificate_path key.

Here is an example preseed file for a new cluster member:

cluster:
server_name: server?2
enabled: true
server_address: 192.0.2.102:8443
cluster_address: 192.0.2.101:8443
cluster_certificate: "----- BEGIN CERTIFICATE-----

opyQ1VRpAg2sV2C48irbNgeUsTeZZxhLgp4vNOXXBBrSqUCdPulJXADVOkavgll

2sXYoMobyV3K+RaJgsr10iHjacGiGCQT3YyNGGY/n5zgT/8xI0Dquvja®bNkaf6f

cluster_password: the_password
member_config:

(continues on next page)

186 Chapter 2. Project and community




LXD

(continued from previous page)
- entity: storage-pool
name: default
key: source
value: ""
- entity: storage-pool
name: my-pool
key: source
value: ""
- entity: storage-pool
name: my-pool
key: driver
value: "zfs"

Use MicroCloud

Instead of setting up your LXD cluster manually, you can use MicroCloud to get a fully highly available LXD cluster
with OVN and with Ceph storage up and running.

To install the required snaps, run the following command:

[snap install 1xd microceph microovn microcloud ]

Then start the bootstrapping process with the following command:

[microcloud init ]

During the initialization process, MicroCloud detects the other servers, sets up OVN networking and prompts you to
add disks to Ceph.

When the initialization is complete, you’ll have an OVN cluster, a Ceph cluster and a LXD cluster, and LXD itself will
have been configured with both networking and storage suitable for use in a cluster.

See the MicroCloud documentation for more information.

2.7.3 How to manage a cluster

After your cluster is formed, use 1xc cluster list to see a list of its members and their status:

user@host:~$ 1lxc cluster list+--------- oo o o +
NAME | URL | ROLES | ARCHITECTURE | FAILURE DOMAIN | DESCRIPTION | STATE | MESSAGE

[+----——--- e e e E L L R e E LT T e e E L L Fomm -
serverl | https://192.0.2.101:8443 | database-leader | x86_64 | default | | ONLINE |

Fully operational || | | database | | | | | [+--------- o it
server2 | https://192.0.2.102:8443 | database-standby | aarch64 | default | | ONLINE |

Fully operational [+--------- e e E e L e e Fom - Fomm - Fommm -
server3 | https://192.0.2.103:8443 | database-standby | aarch64 | default | | ONLINE |

Fully operational [+--------- e o o Fomm

To see more detailed information about an individual cluster member, run the following command:

[lxc cluster show <member_name> ]

2.7. Clustering 187


https://microcloud.is/
https://canonical-microcloud.readthedocs-hosted.com/en/latest/

LXD

Configure your cluster

To configure your cluster, use 1xc config. For example:

[1xc config set cluster.max_voters 5 ]

Keep in mind that some server configuration options are global and others are local. You can configure the global
options on any cluster member, and the changes are propagated to the other cluster members through the distributed
database. The local options are set only on the server where you configure them (or alternatively on the server that you
target with --target).

In addition to the server configuration, there are a few cluster configurations that are specific to each cluster member.
See Cluster member configuration for all available configurations.

To set these configuration options, use 1xc cluster set or 1xc cluster edit. For example:

[lxc cluster set serverl scheduler.instance manual ]

Assign member roles

To add or remove a member role for a cluster member, use the 1xc cluster role command. For example:

[1xc cluster role add serverl event-hub J

Note: You can add or remove only those roles that are not assigned automatically by LXD.

Edit the cluster member configuration

To edit all properties of a cluster member, including the member-specific configuration, the member roles, the failure
domain and the cluster groups, use the 1xc cluster edit command.

Evacuate and restore cluster members

There are scenarios where you might need to empty a given cluster member of all its instances (for example, for routine
maintenance like applying system updates that require a reboot, or to perform hardware changes).

To do so, use the 1xc cluster evacuate command. This command migrates all instances on the given server,
moving them to other cluster members. The evacuated cluster member is then transitioned to an “evacuated” state,
which prevents the creation of any instances on it.

You can control how each instance is moved through the cluster.evacuate instance configuration key. Instances
are shut down cleanly, respecting the boot.host_shutdown_timeout configuration key.

When the evacuated server is available again, use the 1xc cluster restore command to move the server back into
anormal running state. This command also moves the evacuated instances back from the servers that were temporarily
holding them.

188 Chapter 2. Project and community



LXD

Automatic evacuation

If yousetthe cluster.healing_threshold configuration to a non-zero value, instances are automatically evacuated
if a cluster member goes offine.

When the evacuated server is available again, you must manually restore it.

Delete cluster members

To cleanly delete a member from the cluster, use the following command:

[lxc cluster remove <member_name> ]

You can only cleanly delete members that are online and that don’t have any instances located on them.

Deal with offline cluster members

If a cluster member goes permanently offline, you can force-remove it from the cluster. Make sure to do so as soon as
you discover that you cannot recover the member. If you keep an offline member in your cluster, you might encounter
issues when upgrading your cluster to a newer version.

To force-remove a cluster member, enter the following command on one of the cluster members that is still online:

[lxc cluster remove --force <member_name> ]

Caution: Force-removing a cluster member will leave the member’s database in an inconsistent state (for example,
the storage pool on the member will not be removed). As a result, it will not be possible to re-initialize LXD later,
and the server must be fully reinstalled.

Upgrade cluster members

To upgrade a cluster, you must upgrade all of its members. All members must be upgraded to the same version of LXD.

Caution: Do not attempt to upgrade your cluster if any of its members are offline. Offline members cannot be
upgraded, and your cluster will end up in a blocked state.

Also note that if you are using the snap, upgrades might happen automatically, so to prevent any issues you should
always recover or remove offline members immediately.

To upgrade a single member, simply upgrade the LXD package on the host and restart the LXD daemon. For example,
if you are using the snap then refresh to the latest version and cohort in the current channel (also reloads LXD):

[sudo snap refresh 1xd --cohort="+" ]

If the new version of the daemon has database schema or API changes, the upgraded member might transition into a
“blocked” state. In this case, the member does not serve any LXD API requests (which means that 1xc commands
don’t work on that member anymore), but any running instances will continue to run.

This happens if there are other cluster members that have not been upgraded and are therefore running an older version.
Run 1xc cluster list on a cluster member that is not blocked to see if any members are blocked.

2.7. Clustering 189



LXD

As you proceed upgrading the rest of the cluster members, they will all transition to the “blocked” state. When you
upgrade the last member, the blocked members will notice that all servers are now up-to-date, and the blocked members
become operational again.

Update the cluster certificate

Ina LXD cluster, the API on all servers responds with the same shared certificate, which is usually a standard self-signed
certificate with an expiry set to ten years.

The certificate is stored at /var/snap/lxd/common/lxd/cluster.crt (if you use the snap) or /var/lib/1xd/
cluster.crt (otherwise) and is the same on all cluster members.

You can replace the standard certificate with another one. To do so, use the 1xc cluster update-certificate
command. This command replaces the certificate on all servers in your cluster.

2.7.4 How to recover a cluster

It might happen that one or several members of your cluster go offline or become unreachable. In that case, no operations
are possible on this member, and neither are operations that require a state change across all members. See Offfine
members and fault tolerance and Automatic evacuation for more information.

If you can bring the offline cluster members back or delete them from the cluster, operation resumes as normal. If this
is not possible, there are a few ways to recover the cluster, depending on the scenario that caused the failure. See the
following sections for details.

Note: When your cluster is in a state that needs recovery, most 1xc commands do not work, because the LXD client
cannot connect to the LXD daemon.

Therefore, the commands to recover the cluster are provided directly by the LXD daemon (1xd). Run 1xd cluster
--help for an overview of all available commands.

Recover from quorum loss

Every LXD cluster has a specific number of members (configured through cluster.max_voters) that serve as voting
members of the distributed database. If you permanently lose a majority of these cluster members (for example, you
have a three-member cluster and you lose two members), the cluster loses quorum and becomes unavailable. However,
if at least one database member survives, it is possible to recover the cluster.

To do so, complete the following steps:

1. Log on to any surviving member of your cluster and run the following command:

[sudo 1xd cluster list-database

This command shows which cluster members have one of the database roles.

2. Pick one of the listed database members that is still online as the new leader. Log on to the machine (if it differs
from the one you are already logged on to).

3. Make sure that the LXD daemon is not running on the machine. For example, if you're using the snap:

[sudo snap stop lxd

4. Log on to all other cluster members that are still online and stop the LXD daemon.

190 Chapter 2. Project and community



LXD

5. On the server that you picked as the new leader, run the following command:

[sudo 1xd cluster recover-from-quorum-loss

)

6. Start the LXD daemon again on all machines, starting with the new leader. For example, if you’re using the snap:

[sudo snap start lxd

)

The database should now be back online. No information has been deleted from the database. All information about
the cluster members that you have lost is still there, including the metadata about their instances. This can help you
with further recovery steps if you need to re-create the lost instances.

To permanently delete the cluster members that you have lost, force-remove them. See Delete cluster members.

Recover cluster members with changed addresses

If some members of your cluster are no longer reachable, or if the cluster itself is unreachable due to a change in IP
address or listening port number, you can reconfigure the cluster.

To do so, edit the cluster configuration on each member of the cluster and change the IP addresses or listening port
numbers as required. You cannot remove any members during this process. The cluster configuration must contain the
description of the full cluster, so you must do the changes for all cluster members on all cluster members.

You can edit the Member roles of the different members, but with the following limitations:

* A cluster member that does not have a database* role cannot become a voter, because it might lack a global

database.

* At least two members must remain voters (except in the case of a two-member cluster, where one voter suffices),

or there will be no quorum.

Log on to each cluster member and complete the following steps:

1. Stop the LXD daemon. For example, if you’re using the snap:

[sudo snap stop 1lxd

2. Run the following command:

[sudo 1xd cluster edit

3. Edit the YAML representation of the information that this cluster member has about the rest of the cluster:

members:
-id: 1
name: serverl

role: voter
- id: 2
name: server2

role: stand-by
- id: 3
name: servers3

#
#

address: 192.0.2.10:

#
#

address: 192.0.2.11:

#
#

# Latest dqlite segment ID: 1234

Internal ID
Name of the
8443 # Last

# Last
Internal ID
Name of the
8443 # Last

# Last
Internal ID
Name of the

of the member (Read-only)
cluster member (Read-only)

known address of the member (Writeable)
known role of the member (Writeable)

of the member (Read-only)
cluster member (Read-only)

known address of the member (Writeable)
known role of the member (Writeable)

of the member (Read-only)
cluster member (Read-only)

(continues on next page)

2.7. Clustering

191




LXD

(continued from previous page)

address: 192.0.2.12:8443 # Last known address of the member (Writeable)
role: spare # Last known role of the member (Writeable)

You can edit the addresses and the roles.

After doing the changes on all cluster members, start the LXD daemon on all members again. For example, if you're
using the snap:

[sudo snap start 1xd J

The cluster should now be fully available again with all members reporting in. No information has been deleted from
the database. All information about the cluster members and their instances is still there.

Manually alter Raft membership
In some situations, you might need to manually alter the Raft membership configuration of the cluster because of some
unexpected behavior.

For example, if you have a cluster member that was removed uncleanly, it might not show up in 1xc cluster list
but still be part of the Raft configuration. To see the Raft configuration, run the following command:

[lxd sql local "SELECT * FROM raft_nodes" J

In that case, run the following command to remove the leftover node:

[lxd cluster remove-raft-node <address> ]

2.7.5 How to manage instances in a cluster

In a cluster setup, each instance lives on one of the cluster members. You can operate each instance from any cluster
member, so you do not need to log on to the cluster member on which the instance is located.

Launch an instance on a specific cluster member

When you launch an instance, you can target it to run on a specific cluster member. You can do this from any cluster
member.

For example, to launch an instance named c1 on the cluster member server2, use the following command:

[1xc launch images:ubuntu/22.04 cl --target server2 ]

You can launch instances on specific cluster members or on specific cluster groups.

If you do not specify a target, the instance is assigned to a cluster member automatically. See Automatic placement of
instances for more information.

192 Chapter 2. Project and community



LXD

Check where an instance is located

To check on which member an instance is located, list all instances in the cluster:

[1xc list ]

The location column indicates the member on which each instance is running.

Move an instance

You can move an existing instance to another cluster member. For example, to move the instance c1 to the cluster
member serverl, use the following commands:

1xc stop cl
1xc move cl --target serverl
1xc start cl

See How to move existing LXD instances between servers for more information.

To move an instance to a member of a cluster group, use the group name prefixed with @ for the --target flag. For
example:

[lxc move cl --target @groupl

2.7.6 How to configure storage for a cluster

All members of a cluster must have identical storage pools. The only configuration keys that may differ between pools
on different members are source, size, zfs.pool_name, 1vm.thinpool_name and lvm.vg_name. See Member
configuration for more information.

LXD creates a default 1ocal storage pool for each cluster member during initialization.
Creating additional storage pools is a two-step process:

1. Define and configure the new storage pool across all cluster members. For example, for a cluster that has three
members:

1xc storage create --target serverl data zfs source=/dev/vdbl
lxc storage create --target server2 data zfs source=/dev/vdcl
lxc storage create --target server3 data zfs source=/dev/vdbl size=10GiB

Note:  You can pass only the member-specific configuration keys source, size, zfs.pool_name, lvm.
thinpool_name and 1lvm.vg_name. Passing other configuration keys results in an error.

These commands define the storage pool, but they don’t create it. If you run 1xc storage list, you can see
that the pool is marked as “pending”.

2. Run the following command to instantiate the storage pool on all cluster members:

1xc storage create data zfs

Note: You can add configuration keys that are not member-specific to this command.

2.7. Clustering 193



LXD

If you missed a cluster member when defining the storage pool, or if a cluster member is down, you get an error.
Also see Create a storage pool in a cluster.
View member-specific pool configuration

Running 1xc storage show <pool_name> shows the cluster-wide configuration of the storage pool.

To view the member-specific configuration, use the --target flag. For example:

[1xc storage show data --target server2 J

Create storage volumes

For most storage drivers (all except for Ceph-based storage drivers), storage volumes are not replicated across the cluster
and exist only on the member for which they were created. Run 1xc storage volume list <pool_name> to see
on which member a certain volume is located.

When creating a storage volume, use the --target flag to create a storage volume on a specific cluster member.
Without the flag, the volume is created on the cluster member on which you run the command. For example, to create
a volume on the current cluster member serverl:

[lxc storage volume create local voll ]

To create a volume with the same name on another cluster member:

[1xc storage volume create local voll --target server2 ]

Different volumes can have the same name as long as they live on different cluster members. Typical examples for this
are image volumes.

You can manage storage volumes in a cluster in the same way as you do in non-clustered deployments, except that you
must pass the --target flag to your commands if more than one cluster member has a volume with the given name.
For example, to show information about the storage volumes:

1xc storage volume show local voll --target serverl
1xc storage volume show local voll --target server?2

2.7.7 How to configure networks for a cluster

All members of a cluster must have identical networks defined. The only configuration keys that may differ between
networks on different members are bridge.external_interfaces, parent, bgp.ipv4.nexthop and bgp.ipvé6.
nexthop. See Member configuration for more information.

Creating additional networks is a two-step process:

1. Define and configure the new network across all cluster members. For example, for a cluster that has three
members:

1xc network create --target serverl my-network
1xc network create --target server2 my-network
lxc network create --target server3 my-network

194 Chapter 2. Project and community



LXD

Note: You can pass only the member-specific configuration keys bridge.external_interfaces, parent,
bgp.ipv4.nexthop and bgp.ipv6.nexthop. Passing other configuration keys results in an error.

These commands define the network, but they don’t create it. If you run 1xc network list, you can see that
the network is marked as “pending”.

2. Run the following command to instantiate the network on all cluster members:

[lxc network create my-network }

Note: You can add configuration keys that are not member-specific to this command.

If you missed a cluster member when defining the network, or if a cluster member is down, you get an error.

Also see Create a network in a cluster.

Separate REST API and clustering networks

You can configure different networks for the REST API endpoint of your clients and for internal traffic between the
members of your cluster. This separation can be useful, for example, to use a virtual address for your REST API, with
DNS round robin.

To do so, you must specify different addresses for cluster.https_address (the address for internal cluster traffic)
and core.https_address (the address for the REST API):

1. Create your cluster as usual, and make sure to use the address that you want to use for internal cluster traffic as
the cluster address. This address is set as the cluster.https_address configuration.

2. After joining your members, set the core.https_address configuration to the address for the REST API. For
example:

Elxc config set core.https_address 0.0.0.0:8443 J

Note: core.https_address is specific to the cluster member, so you can use different addresses on different
members. You can also use a wildcard address to make the member listen on multiple interfaces.

2.7.8 How to set up cluster groups

Cluster members can be assigned to Cluster groups. By default, all cluster members belong to the default group.

To create a cluster group, use the 1xc cluster group create command. For example:

[lxc cluster group create gpu ]

To assign a cluster member to one or more groups, use the 1xc cluster group assign command. This command
removes the specified cluster member from all the cluster groups it currently is a member of and then adds it to the
specified group or groups.

For example, to assign serverl to only the gpu group, use the following command:

[1xc cluster group assign serverl gpu ]

2.7. Clustering 195



LXD

To assign serverl to the gpu group and also keep it in the default group, use the following command:

[lxc cluster group assign serverl default,gpu J

To add a cluster member to a specific group without removing it from other groups, use the 1xc cluster group add
command.

For example, to add serverl to the gpu group and also keep it in the default group, use the following command:

[lxc cluster group add serverl gpu ]

Launch an instance on a cluster group member

With cluster groups, you can target an instance to run on one of the members of the cluster group, instead of targeting
it to run on a specific member.

Note: scheduler.instance must be set to either all (the default) or group to allow instances to be targeted to a
cluster group.

See Automatic placement of instances for more information.

To launch an instance on a member of a cluster group, follow the instructions in Launch an instance on a specific cluster
member, but use the group name prefixed with @ for the --target flag. For example:

[lxc launch images:ubuntu/22.04 cl --target=@gpu ]

2.7.9 Cluster member configuration

Each cluster member has its own key/value configuration with the following supported namespaces:
¢ user (free form key/value for user metadata)
* scheduler (options related to how the member is automatically targeted by the cluster)

The following keys are currently supported:

Key Type De- Description
fault
scheduler. string all Possible values are all, manual and group. See Automatic placement of in-
instance stances for more information.
user.* string - Free form user key/value storage (can be used in search).

196 Chapter 2. Project and community



LXD

2.8 Manage LXD

2.8.1 Server configuration

The LXD server can be configured through a set of key/value configuration options.

You can configure a server option with the following command:

[lxc config set <key> <value> ]

If the LXD server is part of a cluster, some of the options apply to the cluster, while others apply only to the local
server, thus the cluster member. Options marked with a global scope in the following tables are immediately applied
to all cluster members. Options with a 1ocal scope must be set on a per-member basis. To do so, add the --target
flag to the 1xc config set command.

The key/value configuration is namespaced. The following options are available:
* Core configuration
* Candid and RBAC configuration
¢ Cluster configuration
* [mages configuration

* Miscellaneous options

Core configuration

The following server options control the core daemon configuration:

2.8. Manage LXD 197



LXD

Key Type Scor De- Description
fault
core. string lo- - Address to bind the BGP server to (BGP)
bgp_address cal
core.bgp_asn string globa - The BGP Autonomous System Number to use for the local server
core. string lo- - A unique identifier for this BGP server (formatted as an IPv4 address)
bgp_routerid cal
core. string lo- - Address to bind the pprof debug server to (HTTP)
debug_address cal
core. string lo- - Address to bind the authoritative DNS server to (DNS)
dns_address cal
core. string lo- - Address to bind for the remote API (HTTPS)
https_address cal
core. bool globa - Whether to set the Access-Control-Allow-Credentials HTTP
https_allowed_cr: header value to true
core. string globa - Access-Control-Allow-Headers HTTP header value
https_allowed_he:
core. string globa - Access-Control-Allow-Methods HTTP header value
https_allowed_me
core. string globa - Access-Control-Allow-Origin HTTP header value
https_allowed_or:
core. string globa - Comma-separated list of IP addresses of trusted servers to provide the
https_trusted_pr: client’s address through the proxy connection header
core. string globa - Address to bind the metrics server to (HTTPS)
metrics_address
core. bool globa true Whether to enforce authentication on the metrics endpoint
metrics_authenti
core. string globa - HTTPS proxy to use, if any (falls back to HTTPS_PROXY environment
proxy_https variable)
core.proxy_http string globa - HTTP proxy to use, if any (falls back to HTTP_PROXY environment vari-
able)
core. string globa - Hosts that don’t need the proxy (similar format to NO_PROXY, for exam-
proxy_ignore_hos ple,1.2.3.4,1.2.3.5, falls back to NO_PROXY environment variable)
core. string globa - Time after which a remote add token expires (defaults to no expiry)
remote_token_exp:
core. in-  globa 5 Number of minutes to wait for running operations to complete before the
shutdown_timeout te- LXD server shuts down
ger
core. bool globz - Whether to automatically trust clients signed by the CA
trust_ca_certifi
core. string globa - Password to be provided by clients to set up a trust

trust_password

198

Chapter 2. Project and community



LXD

Candid and RBAC configuration

The following server options configure external user authentication, through Candid-based authentication or through
Role Based Access Control (RBAC):

Key Type Scope De- Description
fault
candid.api.key string global - Public key of the Candid server (required for HTTP-only servers)
candid.api.url string global - URL of the external authentication endpoint using Candid
candid.domains string global - Comma-separated list of allowed Candid domains (empty string
means all domains are valid)

candid.expiry inte- global 3600 Candid macaroon expiry in seconds

ger
rbac.agent. string global - Private key of the Candid agent as provided during RBAC registra-
private_key tion
rbac.agent. string global - Public key of the Candid agent as provided during RBAC registra-
public_key tion
rbac.agent.url string global - URL of the Candid agent as provided during RBAC registration
rbac.agent. string global - User name of the Candid agent as provided during RBAC registra-
username tion
rbac.api.expiry inte- global - RBAC macaroon expiry in seconds

ger
rbac.api.key string global - Public key of the RBAC server (required for HTTP-only servers)
rbac.api.url string global - URL of the external RBAC server

Cluster configuration

The following server options control Clustering:

Key Type Scor De- Description
fault

cluster. string lo- - Address to use for clustering traffic
https_address cal
cluster. in-  globa 3 Minimal number of cluster members with a copy of a particular image
images_minimal_rep te- (set to 1 for no replication or to -1 for all members)

ger
cluster. string globa 3H Time after which a cluster join token expires
join_token_expiry
cluster. in-  globa 2 Maximum number of cluster members that are assigned the database
max_standby te- stand-by role (must be between 0 and 5)

ger
cluster. in-  globa 3 Maximum number of cluster members that are assigned the database
max_voters te- voter role (must be an odd number >= 3)

ger
cluster. in-  globa 20 Number of seconds after which an unresponsive member is consid-
offline_threshold te- ered offline

ger

2.8. Manage LXD

199



LXD

Images configuration

The following server options configure how to handle /mages:

Key Type Scope De- Description

fault
images. bool global true  Whether to automatically update any image that LXD caches
auto_update_cached
images. inte- global 6 Interval (in hours) at which to look for updates to cached
auto_update_interval  ger images (0 to disable)
images. string global gzip Compression algorithm to use for new images (bzip2,
compression_algorithm gzip, 1zma, xz or none)
images. string - - Default architecture to use in a mixed-architecture cluster
default_architecture
images. inte- global 10 Number of days after which an unused cached remote image
remote_cache_expiry ger is flushed

Mis

cellaneous options

The following server options configure server-specific settings for /nstances, MAAS integration, OVN integration,
Backups and Storage:

Scop Default

Description

Key Type
backups. string
compression_algorith
maas.api.key string
maas.api.url string
maas.machine string
network.ovn. string
integration_bridge
network.ovn. string
northbound_connectio
storage. string
backups_volume

storage. string
images_volume

globa gzip

globa -

globa -

lo-  host name
cal

globa br-int

globa unix:/var/run/
ovn/ovnnb_db.sock

lo- -

cal

lo- -

cal

Compression algorithm to use for new images
(bzip2, gzip, 1zma, xz or none)

API key to manage MAAS

URL of the MAAS server

Name of this LXD host in MAAS

OVS integration bridge to use for OVN net-
works
OVN northbound database connection string

Volume to use to store the backup tarballs (syn-
tax is POOL/VOLUME)
Volume to use to store the image tarballs (syn-
tax is POOL /VOLUME)

2.8

.2 Projects

LXD supports projects as a way to split your LXD server. Each project holds its own set of instances and may also
have its own images and profiles.

What a project contains is defined through the features configuration keys. When a feature is disabled, the project
inherits from the default project.

By default all new projects get the entire feature set, on upgrade, existing projects do not get new features enabled.

The key/value configuration is namespaced with the following namespaces currently supported:

» features (What part of the project feature set is in use)

200

Chapter 2. Project and community



LXD

* limits (Resource limits applied on containers and VMs belonging to the project)

¢ user (free form key/value for user metadata)

Key Type  Condition Default Description
backups.compression_algorithm string - - Compression algorithm to use for backup
features.images bool - true Separate set of images and image aliases
features.networks bool - false Separate set of networks for the project
features.profiles bool - true Separate set of profiles for the project
features.storage.volumes bool - true Separate set of storage volumes for the pr
images.auto_update_cached bool - - Whether to automatically update any ima;
images.auto_update_interval integer - - Interval in hours at which to look for upd:
images.compression_algorithm string - - Compression algorithm to use for images
images.default_architecture string - - Default architecture which should be usec
images.remote_cache_expiry integer - - Number of days after which an unused ca
limits.containers integer - - Maximum number of containers that can
limits.cpu integer - - Maximum value for the sum of individual
limits.disk string - - Maximum value of aggregate disk space t
limits.instances integer - - Maximum number of total instances that «
limits.memory string - - Maximum value for the sum of individual
limits.networks integer - - Maximum value for the number of networ
limits.processes integer - - Maximum value for the sum of individual
limits.virtual-machines integer - - Maximum number of VMs that can be cr
restricted bool - false Block access to security-sensitive feature:
restricted.backups string - block Prevents the creation of any instance or ve
restricted.cluster.groups string - - Prevents targeting cluster groups other the
restricted.cluster.target string - block Prevents direct targeting of cluster memb
restricted.containers.lowlevel string - block Prevents use of low-level container optior
restricted.containers.nesting string - block Prevents setting security.nesting=tr
restricted.containers.privilege string - unpriviliged If unpriviliged, prevents setting secul
restricted.containers.interception string - block Prevents use for system call interception c
restricted.devices.disk string - managed If block prevent use of disk devices exce
restricted.devices.disk.paths string - - If restricted.devices.disk is set to
restricted.devices.gpu string - block Prevents use of devices of type gpu
restricted.devices.infiniband string - block Prevents use of devices of type infinibec
restricted.devices.nic string - managed If block prevent use of all network devic
restricted.devices.pci string - block Prevents use of devices of type pci
restricted.devices.proxy string - block Prevents use of devices of type proxy
restricted.devices.unix-block string - block Prevents use of devices of type unix-blc
restricted.devices.unix-char string - block Prevents use of devices of type unix-chze
restricted.devices.unix-hotplug string - block Prevents use of devices of type unix-hot
restricted.devices.usb string - block Prevents use of devices of type usb
restricted.idmap.uid string - - Specifies the allowed host UID ranges all
restricted.idmap.gid string - - Specifies the allowed host GID ranges all
restricted.networks.access string - - Comma-delimited list of network names t
restricted.networks.subnets string - block Comma-delimited list of network subnets
restricted.networks.uplinks string - block Comma-delimited list of network names t
restricted.networks.zones string - block Comma-delimited list of network zones tl
restricted.snapshots string - block Prevents the creation of any instance or ve
restricted.virtual-machines.lowlevel string - block Prevents use of low-level virtual-machine

Those keys can be set using the 1xc tool with:

2.8. Manage LXD 201



LXD

[1xc project set <project> <key> <value>

Project limits
Note that to be able to set one of the 1imits.* configuration keys, all instances in the project must have that same
configuration key defined, either directly or via a profile.
In addition to that:
e The limits.cpu configuration key also requires that CPU pinning is not used.
* The limits.memory configuration key must be set to an absolute value, not a percentage.

The limits.* configuration keys defined on a project act as a hard upper bound for the aggregate value of the indi-
vidual 1imits.* configuration keys defined on the project’s instances, either directly or via profiles.

For example, setting the project’s 1imits.memory configuration key to 50GB means that the sum of the individual
values of all 1imits.memory configuration keys defined on the project’s instances will be kept under 50GB. Trying to
create or modify an instance assigning it a 1imits.memory value that would make the total sum exceed 50GB, will
result in an error.

Similarly, setting the project’s 1imits.cpu configuration key to 100, means that the sum of individual 1imits.cpu
values will be kept below 100.

Project restrictions
If the restricted configuration key is set to true, then the instances of the project won’t be able to access security-
sensitive features, such as container nesting, raw LXC configuration, etc.

The exact set of features that the restricted configuration key blocks may grow across LXD releases, as more features
are added that are considered security-sensitive.

Using the various restricted. * sub-keys, it’s possible to pick individual features which would be normally blocked
by restricted and allow them, so they can be used by instances of the project.

For example:

1xc project set <project> restricted=true
1xc project set <project> restricted.containers.nesting=allow

will block all security-sensitive features except container nesting.

Each security-sensitive feature has an associated restricted.* project configuration sub-key whose default value
needs to be explicitly changed if you want for that feature to be allowed it in the project.

Note that changing the value of a specific restricted.* configuration key has an effect only if the top-level

restricted key itself is currently set to true. If restricted is set to false, changing a restricted.* sub-key
is effectively a no-op.

Most 'restricted.* configuration keys are binary switches that can be set to either block (the default) or allow.
However some of them support other values for more fine-grained control.

Setting all restricted.* keys to allow is effectively equivalent to setting restricted itself to false.

202 Chapter 2. Project and community



LXD

2.8.3 Remotes

Introduction

Remotes are a concept in the LXD command line client which are used to refer to various LXD servers or clusters. A
remote is effectively a name pointing to the URL of a particular LXD server as well as needed credentials to login and
authenticate the server. LXD has four types of remotes:

* Static
* Default
* Global (per-system)

* Local (per-user)

Static

Static remotes are:
¢ local (default)
* ubuntu
e ubuntu-daily

They are hardcoded and can’t be modified by the user.

Default

Automatically added on first use.

Global (per-system)

By default the global configuration file is kept in either /etc/1xd/config.yml, or /var/snap/lxd/common/
global-conf/ for the snap version, or in LXD_GLOBAL_CONF if defined. The configuration file can be manually
edited to add global remotes. Certificates for those remotes should be stored inside the servercerts directory (e.g.
/etc/1xd/servercerts/) and match the remote name (e.g. foo.crt).

An example configuration is below:

remotes:

foo:
addr: https://10.0.2.4:8443
auth_type: tls
project: default
protocol: 1xd
public: false

bar:
addr: https://10.0.2.5:8443
auth_type: tls
project: default
protocol: 1xd
public: false

2.8. Manage LXD 203



LXD

Local (per-user)

Local level remotes are managed from the CLI (1xc) with: 1xc remote [command]

By default the configuration file is kept in ~/.config/lxc/config.yml, or ~/snap/lxd/common/config/
config.yml for the snap version, or in LXD_CONF if defined. Users have the possibility to override system remotes
(e.g. by running 1xc remote rename or 1xc remote set-url) which results in the remote being copied to their
own configuration, including any associated certificates.

2.8.4 Performance tuning

When you are ready to move your LXD setup to production, you should take some time to optimize the performance
of your system. There are different aspects that impact performance. The following steps help you to determine the
choices and settings that you should tune to improve your LXD setup.

Run benchmarks

LXD provides a benchmarking tool to evaluate the performance of your system. You can use the tool to initialize
or launch a number of containers and measure the time it takes for the system to create the containers. By running
the tool repeatedly with different LXD configurations, system settings or even hardware setups, you can compare the
performance and evaluate which is the ideal configuration.

See How to benchmark performance for instructions on running the tool.

Monitor instance metrics
LXD collects metrics for all running instances. These metrics cover the CPU, memory, network, disk and process
usage. They are meant to be consumed by Prometheus, and you can use Grafana to display the metrics as graphs.

You should regularly monitor the metrics to evaluate the resources that your instances use. The numbers help you to
determine if there are any spikes or bottlenecks, or if usage patterns change and require updates to your configuration.

See Metrics for more information about metrics collection.

Tune server settings

The default kernel settings for most Linux distributions are not optimized for running a large number of containers or
virtual machines. Therefore, you should check and modify the relevant server settings to avoid hitting limits caused by
the default settings.

Typical errors that you might see when you encounter those limits are:
e Failed to allocate directory watch: Too many open files
e <Error> <Error>: Too many open files
e failed to open stream: Too many open files in...
e neighbour: ndisc_cache: neighbor table overflow!

See Server settings for a LXD production setup for a list of relevant server settings and suggested values.

204 Chapter 2. Project and community



LXD

Tune the network bandwidth

If you have a lot of local activity between instances or between the LXD host and the instances, or if you have a fast
internet connection, you should consider increasing the network bandwidth of your LXD setup. You can do this by
increasing the transmit and receive queue lengths.

See How to increase the network bandwidth for instructions.

How to benchmark performance

The performance of your LXD server or cluster depends on a lot of different factors, ranging from the hardware, the
server configuration, the selected storage driver and the network bandwidth to the overall usage patterns.

To find the optimal configuration, you should run benchmark tests to evaluate different setups.

LXD provides a benchmarking tool for this purpose. This tool allows you to initialize or launch a number of containers
and measure the time it takes for the system to create the containers. If you run this tool repeatedly with different
configurations, you can compare the performance and evaluate which is the ideal configuration.

Get the tool

If you’re using the snap, the benchmarking tool is automatically installed. It is available as 1xd.benchmark.

Otherwise, if you have installed LXD through your distribution’s package manager or built from source, the tool should
be available as 1xd-benchmark. If it isn’t, make sure that you have go (see Go) installed and install the tool with the
following command:

[go install github.com/canonical/lxd/lxd-benchmark@latest ]

Run the tool

Run 1xd.benchmark [action] to measure the performance of your LXD setup. (This command assumes that you
are using the snap; otherwise, replace 1xd.benchmark with 1xd-benchmark, also in the following examples.)

The benchmarking tool uses the current LXD configuration. If you want to use a different project, specify it with
--project.

For all actions, you can specify the number of parallel threads to use (default is to use a dynamic batch size). You can
also choose to append the results to a CSV report file and label them in a certain way.

See 1xd.benchmark help for all available actions and flags.

Select an image

Before you run the benchmark, select what kind of image you want to use.

Local image
If you want to measure the time it takes to create a container and ignore the time it takes to download the image,
you should copy the image to your local image store before you run the benchmarking tool.

To do so, run a command similar to the following and specify the fingerprint (for example, 2d21da400963) of
the image when you run 1xd.benchmark:

2.8. Manage LXD 205



LXD

[lxc image copy ubuntu:22.04 local: J
You can also assign an alias to the image and specify that alias (for example, ubuntu) when you run 1xd.
benchmark:

[lxc image copy ubuntu:22.04 local: --alias ubuntu ]

Remote image
If you want to include the download time in the overall result, specify a remote image (for example, ubuntu:22.
04). The default image that 1xd.benchmark uses is the latest Ubuntu image (ubuntu:), so if you want to use
this image, you can leave out the image name when running the tool.

Create and launch containers

Run the following command to create a number of containers:

[lxd.benchmark init --count <number> <image> ]

Add --privileged to the command to create privileged containers.

For example:

Command Description

1xd.benchmark init --count 10 Create ten privileged containers that use the latest Ubuntu

--privileged image.

1xd.benchmark init --count 20 --parallel Create 20 containers that use the Alpine Edge image, us-

4 images:alpine/edge ing four parallel threads.

1xd.benchmark init 2d21da400963 Create one container that uses the local image with the
fingerprint 2d21da400963.

1xd.benchmark init --count 10 ubuntu Create ten containers that use the image with the alias
ubuntu.

If you use the init action, the benchmarking containers are created but not started. To start the containers that you
created, run the following command:

[lxd .benchmark start J

Alternatively, use the launch action to both create and start the containers:

[lxd.benchmark launch --count 10 <image> J

For this action, you can add the --freeze flag to freeze each container right after it starts. Freezing a container pauses
its processes, so this flag allows you to measure the pure launch times without interference of the processes that run in
each container after startup.

206 Chapter 2. Project and community



LXD

Delete containers

To delete the benchmarking containers that you created, run the following command:

[lxd .benchmark delete ]

Note: You must delete all existing benchmarking containers before you can run a new benchmark.

How to increase the network bandwidth

You can increase the network bandwidth of your LXD setup by configuring the transmit queue length (txqueuelen).
This change makes sense in the following scenarios:

* You have a NIC with 1 GbE or higher on a LXD host with a lot of local activity (instance-instance connections
or host-instance connections).

* You have an internet connection with 1 GbE or higher on your LXD host.

The more instances you use, the more you can benefit from this tweak.

Note: The following instructions use a txqueuelen value of 10000, which is commonly used with 10GbE NICs, and
a net.core.netdev_max_backlog value of 182757. Depending on your network, you might need to use different
values.

In general, you should use small txqueuelen values with slow devices with a high latency, and high txqueuelen
values with devices with a low latency. For the net.core.netdev_max_backlog value, a good guideline is to use
the minimum value of the net.ipv4.tcp_mem configuration.

Increase the network bandwidth on the LXD host

Complete the following steps to increase the network bandwidth on the LXD host:

1. Increase the transmit queue length (txqueuelen) of both the real NIC and the LXD NIC (for example, 1xdbr®).
You can do this temporarily for testing with the following command:

[ifconfig <interface> txqueuelen 10000 ]

To make the change permanent, add the following command to your interface configuration in /etc/network/
interfaces:

[up ip link set eth® txqueuelen 10000 ]

2. Increase the receive queue length (net.core.netdev_max_backlog). You can do this temporarily for testing
with the following command:

[echo 182757 > /proc/sys/net/core/netdev_max_backlog ]

To make the change permanent, add the following configuration to /etc/sysctl. conf:

[net .core.netdev_max_backlog = 182757 ]

2.8. Manage LXD 207



LXD

Increase the transmit queue length on the instances

You must also change the txqueuelen value for all Ethernet interfaces in your instances. To do this, use one of the
following methods:

* Apply the same changes as described above for the LXD host.

 Set the queue. tx.length device option on the instance profile or configuration.

Server settings for a LXD production setup

To allow your LXD server to run a large number of instances, configure the following settings to avoid hitting server

limits.

The Value column contains the suggested value for each parameter.

/etc/security/limits.conf

Note: For users of the snap, those limits are automatically raised.

Do- Type ltem Value De- Description
main fault
* soft nofile 1048576 unset Maximum number of open files
hard nofile 1048576 wunset Maximum number of open files
root soft nofile 1048576 unset Maximum number of open files
root hard nofile 1048576 unset Maximum number of open files
* soft memlocl unlimite unset Maximum locked-in-memory address space (KB)
* hard memlocl unlimite unset Maximum locked-in-memory address space (KB)
root  soft memlocl unlimite unset Maximum locked-in-memory address space (KB), only need with
bpf£ syscall supervision
root  hard memlocl unlimite unset Maximum locked-in-memory address space (KB), only need with

bpf£ syscall supervision

/etc/sysctl.conf

Note: Reboot the server after changing any of these parameters.

208

Chapter 2. Project and community



LXD

Parameter Valuc De- Description
fault
fs. 5242 6553 Maximum number of concurrent asynchronous I/O operations (you might need to in-
aio-max-nr crease this limit further if you have a lot of workloads that use the AIO subsystem, for
example, MySQL)
fs. 1048 1638 Upper limit on the number of events that can be queued to the corresponding inotify
inotify. instance (see inotify)
max_queued.
fs. 1048 128 Upper limit on the number of inotify instances that can be created per real user ID
inotify. (see inotify)
max_user_il
fs. 1048 8192 Upper limit on the number of watches that can be created per real user ID (see inotify)
inotify.
max_user_w.
kernel. 1 0 Whether to deny container access to the messages in the kernel ring buffer (note that
dmesg_rest: this will also deny access to non-root users on the host system)
kernel. 2000 2000 Maximum size of the key ring that non-root users can use
keys.
maxbytes
kernel. 2000 200 Maximum number of keys that a non-root user can use (the value should be higher than
keys. the number of instances)
maxkeys
net.core. 1000 varie: Limit on the size of eBPF JIT allocations (on kernels < 5.15 that are compiled with
bpf_jit_li CONFIG_BPF_JIT_ALWAYS_ON=y, this value might limit the amount of instances that
can be created)
net.ipv4. 8192 1024 Maximum number of entries in the IPv4 ARP table (increase this value if you
neigh. plan to create over 1024 instances - otherwise, you will get the error neighbour:
default. ndisc_cache: neighbor table overflow! when the ARP table gets full and the
gc_thresh3 instances cannot get a network configuration; see ip-sysctl)
net.ipv6. 8192 1024 Maximum number of entries in [IPv6 ARP table (increase this value if you plan to create
neigh. over 1024 instances - otherwise, you will get the error neighbour: ndisc_cache:
default. neighbor table overflow! when the ARP table gets full and the instances cannot
gc_thresh3 get a network configuration; see ip-sysctl)
vim. 2621 6553 Maximum number of memory map areas a process may have (memory map areas are

max_map_cor

used as a side-effect of calling malloc, directly by mmap and mprotect, and also when
loading shared libraries)

2.8.5 Backing up a LXD server

What to back up

When planning to back up a LXD server, consider all the different entities that are stored/managed by LXD:

* Instances (database records and file systems)

* Images (database records, image files and file systems)

¢ Networks (database records and state files)

¢ Profiles (database records)

 Storage volumes (database records and file systems)

Only backing up the database or only backing up the instances will not get you a fully functional backup.

2.8. Manage LXD

209


https://man7.org/linux/man-pages/man7/inotify.7.html
https://man7.org/linux/man-pages/man7/inotify.7.html
https://man7.org/linux/man-pages/man7/inotify.7.html
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

LXD

In some disaster recovery scenarios, that may be reasonable but if your goal is to get back online quickly, consider all
the different pieces of LXD you’re using.

Full backup

A full backup would include the entirety of /var/1lib/1xd or /var/snap/1lxd/common/1xd for snap users.

You will also need to appropriately back up any external storage that you made LXD use, this can be LVM volume
groups, ZFS zpools or any other resource which isn’t directly self-contained to LXD.

Restoring involves stopping LXD on the target server, wiping the 1xd directory, restoring the backup and any external
dependency it requires.

If not using the snap package and your source system has a /etc/subuid and /etc/subgid file, restoring those or at
least the entries inside them for both the 1xd and root user is also a good idea (avoids needless shifting of container
file systems).

Then start LXD again and check that everything works fine.

Secondary backup LXD server

LXD supports copying and moving instances and storage volumes between two hosts.

So with a spare server, you can copy your instances and storage volumes to that secondary server every so often,
allowing it to act as either an offline spare or just as a storage server that you can copy your instances back from if
needed.

Instance backups

The 1xc export command can be used to export instances to a backup tarball. Those tarballs will include all snapshots
by default and an “optimized” tarball can be obtained if you know that you’ll be restoring on a LXD server using the
same storage pool backend.

You can use any compressor installed on the server using the --compression flag. There is no validation on the LXD
side, any command that is available to LXD and supports -c for stdout should work.

Those tarballs can be saved any way you want on any file system you want and can be imported back into LXD using
the 1xc import command.

Disaster recovery

LXD provides the 1xd recover command (note the 1xd command rather than the normal 1xc command). This is an
interactive CLI tool that will attempt to scan all storage pools that exist in the database looking for missing volumes
that can be recovered. It also provides the ability for the user to specify the details of any unknown storage pools (those
that exist on disk but do not exist in the database) and it will attempt to scan those too.

Because LXD maintains a backup.yaml file in each instance’s storage volume which contains all necessary informa-
tion to recover a given instance (including instance configuration, attached devices, storage volume and pool configu-
ration) it can be used to rebuild the instance, storage volume and storage pool database records.

The 1xd recover tool will attempt to mount the storage pool (if not already mounted) and scan it for unknown volumes
that look like they are associated with LXD. For each instance volume LXD will attempt to mount it and access the
backup.yaml file. From there it will perform some consistency checks to compare what is in the backup.yaml file
with what is actually on disk (such as matching snapshots) and if all checks out then the database records are recreated.

210 Chapter 2. Project and community



LXD

If the storage pool database record also needs to be created then it will prefer to use an instance backup.yaml file as
the basis of its configuration, rather than what the user provided during the discovery phase, however if not available
then it will fallback to restoring the pool’s database record with what was provided by the user.

2.8.6 Migration

LXD provides tools and functionality to migrate instances in different contexts.

Migrate existing LXD instances between servers
The most basic kind of migration is if you have a LXD instance on one server and want to move it to a different
LXD server. For virtual machines, you can do that as a live migration, which means that you can migrate your
VM while it is running and there will be no downtime.

See How to move existing LXD instances between servers for more information.

Migrate physical or virtual machines to LXD instances
If you have an existing machine, either physical or virtual (VM or container), you can use the 1xd-migrate tool
to create a LXD instance based on your existing machine. The tool copies the provided partition, disk or image
to the LXD storage pool of the provided LXD server, sets up an instance using that storage and allows you to
configure additional settings for the new instance.

See How to import physical or virtual machines to LXD instances for more information.

Migrate instances from LXC to LXD
If you are using LXC and want to migrate all or some of your LXC containers to a LXD installation on the same
machine, you can use the 1xc-to-1xd tool. The tool analyzes the LXC configuration and copies the data and
configuration of your existing LXC containers into new LXD containers.

See How to migrate containers from LXC to LXD for more information.

How to move existing LXD instances between servers

To move an instance from one LXD server to another, use the 1xc move command:

1xc move [<source_remote>:]<source_instance_name> <target_remote>:[<target_instance_name>

-]

Note: When moving a container, you must stop it first. See Live migration for containers for more information.

When moving a virtual machine, you must either enable Live migration for virtual machines or stop it first.

You don’t need to specify the source remote if it is your default remote, and you can leave out the target instance name
if you want to use the same instance name. If you want to move the instance to a specific cluster member, specify it
with the --target flag. In this case, do not specify the source and target remote.

You can add the --mode flag to choose a transfer mode, depending on your network setup:

pull (default)
Instruct the target server to connect to the source server and pull the respective instance.

push
Instruct the source server to connect to the target server and push the instance.

relay
Instruct the client to connect to both the source and the target server and transfer the data through the client.

2.8. Manage LXD 211



LXD

If you need to adapt the configuration for the instance to run on the target server, you can either specify the new
configuration directly (using --config, --device, --storage or --target-project) or through profiles (using
--no-profiles or --profile). See 1xc move --help for all available flags.

Live migration

Live migration means migrating an instance while it is running. This method is supported for virtual machines. For
containers, there is limited support.

Live migration for virtual machines

Virtual machines can be moved to another server while they are running, thus without any downtime.
To allow for live migration, you must enable support for stateful migration. To do so, ensure the following configuration:
e Setmigration.stateful to true on the instance.

e Set size.state of the virtual machine’s root disk device to at least the size of the virtual machine’s 1imits.
memory setting.

Live migration for containers

For containers, there is limited support for live migration using CRIU (Checkpoint/Restore in Userspace). However,
because of extensive kernel dependencies, only very basic containers (non-systemd containers without a network
device) can be migrated reliably. In most real-world scenarios, you should stop the container, move it over and then
start it again.

If you want to use live migration for containers, you must enable CRIU on both the source and the target server. If you
are using the snap, use the following commands to enable CRIU:

snap set 1xd criu.enable=true
systemctl reload snap.lxd.daemon

Otherwise, make sure you have CRIU installed on both systems.

To optimize the memory transfer for a container, set the migration.incremental.memory property to true to make
use of the pre-copy features in CRIU. With this configuration, LXD instructs CRIU to perform a series of memory
dumps for the container. After each dump, LXD sends the memory dump to the specified remote. In an ideal scenario,
each memory dump will decrease the delta to the previous memory dump, thereby increasing the percentage of memory
that is already synced. When the percentage of synced memory is equal to or greater than the threshold specified via
migration.incremental.memory.goal, or the maximum number of allowed iterations specified via migration.
incremental .memory.iterations is reached, LXD instructs CRIU to perform a final memory dump and transfers
it.

212 Chapter 2. Project and community


https://criu.org/

LXD

How to import physical or virtual machines to LXD instances

LXD provides a tool (1xd-migrate) to create a LXD instance based on an existing disk or image.

You can run the tool on any Linux machine. It connects to a LXD server and creates a blank instance, which you can
configure during or after the migration. The tool then copies the data from the disk or image that you provide to the
instance.

Note: If you want to configure your new instance during the migration process, set up the entities that you want your
instance to use before starting the migration process.

By default, the new instance will use the entities specified in the default profile. You can specify a different profile
(or a profile list) to customize the configuration. See How fo use profiles for more information. You can also override
Instance options, the storage pool to be used and the size for the storage volume, and the network to be used.

Alternatively, you can update the instance configuration after the migration is complete.

The tool can create both containers and virtual machines:

* When creating a container, you must provide a disk or partition that contains the root file system for the container.
For example, this could be the / root disk of the machine or container where you are running the tool.

e When creating a virtual machine, you must provide a bootable disk, partition or image. This means that just
providing a file system is not sufficient, and you cannot create a virtual machine from a container that you are
running. It is also not possible to create a virtual machine from the physical machine that you are using to do
the migration, because the migration tool would be using the disk that it is copying. Instead, you could provide
a bootable image, or a bootable partition or disk that is currently not in use.

Tip: If you want to convert a Windows VM from a foreign hypervisor (not from QEMU/KVM with
Q35/virtio-scsi), you must install the virtio-win drivers to your Windows. Otherwise, your VM won’t
boot.

1. Install virt-v2v version >= 2.3.4 (this is the minimal version that supports the --block-driver option).

2. Install the virtio-win package, or download the virtio-win.iso image and put it into the /usr/
share/virtio-win folder.

3. You might also need to install rhsrvany.

Now you can use virt-v2v to convert images from a foreign hypervisor to raw images for LXD and include the
required drivers:

# Example 1. Convert a vmdk disk image to a raw image suitable for lxd-migrate

sudo virt-v2v --block-driver virtio-scsi -o local -of raw -os ./os -i vmx ./test-vm.
<, VX

# Example 2. Convert a QEMU/KVM qcow2 image and integrate virtio-scsi driver

sudo virt-v2v --block-driver virtio-scsi -o local -of raw -os ./os -if qcow2 -i.
—.disk test-vm-disk.qcow?2

You can find the resulting image in the os directory and use it with 1xd-migrate on the next steps.

Complete the following steps to migrate an existing machine to a LXD instance:

1. Download the bin.linux.lxd-migrate tool (bin.linux.lxd-migrate.aarch64 or bin.linux.
1xd-migrate.x86_64) from the Assets section of the latest LXD release.

2. Place the tool on the machine that you want to use to create the instance. Make it executable (usually by running
chmod u+x bin.linux.lxd-migrate).

2.8. Manage LXD 213



https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://github.com/rwmjones/rhsrvany
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-migrate.aarch64
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-migrate.x86_64
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-migrate.x86_64
https://github.com/canonical/lxd/releases

LXD

3.

4.

Make sure that the machine has rsync installed. If it is missing, install it (for example, with sudo apt install
rsync).

Run the tool:

[sudo ./bin.linux.lxd-migrate

The tool then asks you to provide the information required for the migration.

Tip: As an alternative to running the tool interactively, you can provide the configuration as parameters to the
command. See ./bin.linux.lxd-migrate --help for more information.

1. Specify the LXD server URL, either as an IP address or as a DNS name.

Note: The LXD server must be exposed to the network. If you want to import to a local LXD server, you
must still expose it to the network. You can then specify 127.0.0.1 as the IP address to access the local
server.

2. Check and confirm the certificate fingerprint.
3. Choose a method for authentication (see Remote API authentication).

For example, if you choose using a certificate token, log on to the LXD server and create a token for
the machine on which you are running the migration tool with 1xc config trust add. Then use the
generated token to authenticate the tool.

4. Choose whether to create a container or a virtual machine. See About containers and VMs.
5. Specify a name for the instance that you are creating.

6. Provide the path to a root file system (for containers) or a bootable disk, partition or image file (for virtual
machines).

7. For containers, optionally add additional file system mounts.
8. For virtual machines, specify whether secure boot is supported.

9. Optionally, configure the new instance. You can do so by specifying profiles, directly setting configuration
options or changing sforage or network settings.

Alternatively, you can configure the new instance after the migration.
10. When you are done with the configuration, start the migration process.

user@host:~$ sudo ./bin.linux.lxd-migrate Please provide LXD server URL: https:/
/192.0.2.7:8443Certificate fingerprint: XxxXXXXXXxxxxxxxxxok (y/n)? y 1) Use a
certificate token2) Use an existing TLS authentication certificate3) Generate a
temporary TLS authentication certificatePlease pick an authentication mechanism
above: 1Please provide the certificate token: XXXXXXXXXXXXXXXX Remote LXD
server: Hostname: bar Version: 5.4 Would you like to create a container (1) or
virtual-machine (2)?: 1Name of the new instance: fooPlease provide the path to a
root filesystem: /Do you want to add additional filesystem mounts? [default=no]:
Instance to be created: Name: foo Project: default Type: container Source:

/ Additional overrides can be applied at this stage:1) Begin the migration with
the above configuration2) Override profile list3) Set additional configuration
options4) Change instance storage pool or volume size5) Change instance network
Please pick one of the options above [default=1]: 3Please specify config keys and
values (key=value ...): limits.cpu=2 Instance to be created: Name: foo Project:

214

Chapter 2. Project and community



LXD

default Type: container Source: / Config: limits.cpu: "2" Additional overrides
can be applied at this stage:1) Begin the migration with the above configuration2)
Override profile list3) Set additional configuration options4) Change instance
storage pool or volume size5) Change instance network Please pick one of the options
above [default=1]: 4Please provide the storage pool to use: defaultDo you want to
change the storage size? [default=no]: yesPlease specify the storage size: 20GiB
Instance to be created: Name: foo Project: default Type: container Source:

/ Storage pool: default Storage pool size: 20GiB Config: limits.cpu: "2"
Additional overrides can be applied at this stage:1) Begin the migration with the
above configuration2) Override profile list3) Set additional configuration options4)
Change instance storage pool or volume size5) Change instance network Please pick
one of the options above [default=1]: ©5Please specify the network to use for

the instance: 1xdbr® Instance to be created: Name: foo Project: default Type:
container Source: / Storage pool: default Storage pool size: 20GiB Network

name: 1xdbr® Config: limits.cpu: "2" Additional overrides can be applied at this
stage:1) Begin the migration with the above configuration2) Override profile 1list3)
Set additional configuration options4) Change instance storage pool or volume size5)
Change instance network Please pick one of the options above [default=1]: 1Instance
foo successfully created

user@host:~$ sudo ./bin.linux.lxd-migrate Please provide LXD server URL: https:/
/192.0.2.7:8443Certificate fingerprint: XxxxxXXXxxxxxxxxxxok (y/n)? y 1) Use a
certificate token2) Use an existing TLS authentication certificate3) Generate a
temporary TLS authentication certificatePlease pick an authentication mechanism
above: 1Please provide the certificate token: XXXXXXXXXXXXXXXX Remote LXD

server: Hostname: bar Version: 5.4 Would you like to create a container (1)

or virtual-machine (2)?: 2Name of the new instance: fooPlease provide the path

to a root filesystem: ./virtual-machine.imgDoes the VM support UEFI Secure Boot?
[default=no]: no Instance to be created: Name: foo Project: default Type:
virtual-machine Source: ./virtual-machine.img Config: security.secureboot:

"false" Additional overrides can be applied at this stage:1) Begin the migration
with the above configuration2) Override profile list3) Set additional configuration
options4) Change instance storage pool or volume size5) Change instance network
Please pick one of the options above [default=1]: 3Please specify config keys and

values (key=value ...): limits.cpu=2 Instance to be created: Name: foo Project:
default Type: virtual-machine Source: ./virtual-machine.img Config: limits.
cpu: "2" security.secureboot: '"false" Additional overrides can be applied at this

stage:1) Begin the migration with the above configuration2) Override profile 1list3)
Set additional configuration options4) Change instance storage pool or volume size5)
Change instance network Please pick one of the options above [default=1]: 4Please
provide the storage pool to use: defaultDo you want to change the storage size?
[default=no]: yesPlease specify the storage size: 20GiB Instance to be created:

Name: foo Project: default Type: virtual-machine Source: ./virtual-machine.
img Storage pool: default Storage pool size: 20GiB Config: limits.cpu: "2"
security.secureboot: "false" Additional overrides can be applied at this stage:1)

Begin the migration with the above configuration2) Override profile list3) Set
additional configuration options4) Change instance storage pool or volume size5)
Change instance network Please pick one of the options above [default=1]: 5Please
specify the network to use for the instance: 1xdbr® Instance to be created: Name:

foo Project: default Type: virtual-machine Source: ./virtual-machine.img Storage
pool: default Storage pool size: 20GiB Network name: 1xdbr® Config: limits.
cpu: "2" security.secureboot: "false" Additional overrides can be applied at this

stage:1) Begin the migration with the above configuration2) Override profile 1list3)
Set additional configuration options4) Change instance storage pool or volume size5)

2.8. Manage LXD 215



LXD

Change instance network Please pick one of the options above [default=1]: 1Instance
foo successfully created

5. When the migration is complete, check the new instance and update its configuration to the new environment.
Typically, you must update at least the storage configuration (/etc/fstab) and the network configuration.

How to migrate containers from LXC to LXD

LXD provides a tool (1xc-to-1xd) that you can use to import LXC containers into your LXD server. The LXC
containers must exist on the same machine as the LXD server.

The tool analyzes the LXC containers and migrates both their data and their configuration into new LXD containers.

Note: Alternatively, you can use the 1xd-migrate tool within a LXC container to migrate it to LXD (see How fo
import physical or virtual machines to LXD instances). However, this tool does not migrate any of the LXC container
configuration.

Get the tool

If you’re using the snap, the 1xc-to-1xd is automatically installed. It is available as 1xd.1xc-to-1xd.

Otherwise, make sure that you have go (Go) installed and get the tool with the following command:

[go install github.com/canonical/lxd/lxc-to-1xd@latest }

Prepare your LXC containers

You can migrate one container at a time or all of your LXC containers at the same time.

Note: Migrated containers use the same name as the original containers. You cannot migrate containers with a name
that already exists as an instance name in LXD.

Therefore, rename any LXC containers that might cause name conflicts before you start the migration process.

Before you start the migration process, stop the LXC containers that you want to migrate.

Start the migration process

Run sudo 1xd.lxc-to-1xd [flags] to migrate the containers. (This command assumes that you are using the
snap; otherwise, replace 1xd.1lxc-to-1xd with 1xc-to-1xd, also in the following examples.)

For example, to migrate all containers:

[sudo 1xd.1lxc-to-1xd --all

To migrate only the 1xc1 container:

[sudo 1xd.lxc-to-1xd --containers 1lxcl

To migrate two containers (1xc1 and 1xc2) and use the my-storage storage pool in LXD:

216 Chapter 2. Project and community



LXD

[sudo 1xd.1lxc-to-1xd --containers 1lxcl,lxc2 --storage my-storage

To test the migration of all containers without actually running it:

[sudo 1xd.1xc-to-1xd --all --dry-run

To migrate all containers but limit the rsync bandwidth to 5000 KB/s:

[sudo 1xd.lxc-to-1xd --all --rsync-args --bwlimit=5000

Run sudo 1xd.lxc-to-1xd --help to check all available flags.

Note: If you get an error that the 1inux64 architecture isn’t supported, either update the tool to the latest version or
change the architecture in the LXC container configuration from 1inux64 to either amd64 or x86_64.

Check the configuration

The tool analyzes the LXC configuration and the configuration of the container (or containers) and migrates as much
of the configuration as possible. You will see output similar to the following:

user@host:~$ sudo 1lxd.lxc-to-1lxd --containers lxcl Parsing LXC configurationChecking
for unsupported LXC configuration keysChecking for existing containersChecking whether
container has already been migratedValidating whether incomplete AppArmor support

is enabledValidating whether mounting a minimal /dev is enabledValidating container
rootfsProcessing network configurationProcessing storage configurationProcessing
environment configurationProcessing container boot configurationProcessing container
apparmor configurationProcessing container seccomp configurationProcessing container
SELinux configurationProcessing container capabilities configurationProcessing container
architecture configurationCreating containerTransferring container: 1lxcl: ...Container
'1xcl' successfully created After the migration process is complete, you can check and, if necessary, update
the configuration in LXD before you start the migrated LXD container.

2.8.7 Architectures

LXD can run on just about any architecture that is supported by the Linux kernel and by Go.
Some entities in LXD are tied to an architecture, for example, the instances, instance snapshots and images.

The following table lists all supported architectures including their unique identifier and the name used to refer to them.
The architecture names are typically aligned with the Linux kernel architecture names.

2.8. Manage LXD 217



LXD

ID Name Notes Personalities
1 1686 32bit Intel x86
2 x86_64 64bit Intel x86 x86

3 armv71l

4 aarch64
5 ppc

6 ppc64

7 ppcb4le
8 s$390x

9 mips

10 mips64

11 riscv32

12 riscv64

32bit ARMvV7 little-endian

64bit ARMvS little-endian
32bit PowerPC big-endian

64bit PowerPC big-endian
64bit PowerPC little-endian

64bit ESA/390 big-endian
32bit MIPS

64bit MIPS
32bit RISC-V little-endian

64bit RISC-V little-endian

armv? (optional)

powerpc

mips

Note: LXD cares only about the kernel architecture, not the particular userspace flavor as determined by the toolchain.

That means that LXD considers ARMv7 hard-float to be the same as ARMv7 soft-float and refers to both as armv7. If
useful to the user, the exact userspace ABI may be set as an image and container property, allowing easy query.

2.9 REST API

2.9.1 REST API

All communication between LXD and its clients happens using a RESTful API over HTTP. This API is encapsulated
over either TLS (for remote operations) or a Unix socket (for local operations).

See Remote API authentication for information about how to access the API remotely.

Tip:

* For examples on how the API is used, run any command of the LXD client (1xc) with the --debug flag. The
debug information displays the API calls and the return values.

* For quickly querying the API, the LXD client provides a 1xc query command.

218

Chapter 2. Project and community



LXD

API versioning

The list of supported major API versions can be retrieved using GET /.
The reason for a major API bump is if the API breaks backward compatibility.

Feature additions done without breaking backward compatibility only result in addition to api_extensions which
can be used by the client to check if a given feature is supported by the server.

Return values

There are three standard return types:
* Standard return value
* Background operation

¢ Error

Standard return value

For a standard synchronous operation, the following JSON object is returned:

{

"type": "sync",

"status": "Success",

"status_code": 200,

"metadata": {} // Extra resource/action specific metadata
}
HTTP code must be 200.

Background operation

When a request results in a background operation, the HTTP code is set to 202 (Accepted) and the Location HTTP
header is set to the operation URL.

The body is a JSON object with the following structure:

{

"type": "async",

"status": "OK",

"status_code": 100,

"operation": "/1.0/instances/<id>", // URL to the background.,
—soperation

"metadata": {} // Operation metadata (see.
—below)
}

The operation metadata structure looks like:

{

"id": "a40£f5541-5e98-454f-b3b6-8a51ef5dbd3c", // UUID of the operation
"class": "websocket", // Class of the operation.,

(continues on next page)

2.9. REST API 219




LXD

(continued from previous page)

— (task, websocket or token)

"created_at": "2015-11-17T22:32:02.226176091-05:00", // When the operation was.
—created

"updated_at": "2015-11-17T22:32:02.226176091-05:00", // Last time the operation.,
—was updated

"status": "Running", // String version of the.
—soperation's status

"status_code": 103, // Integer version of the.
—operation's status (use this rather than status)

"resources": { // Dictionary of resource.

—types (container, snapshots, images) and affected resources
"containers": [
"/1.0/instances/test"

1
1
"metadata": { // Metadata specific to the.
—soperation in question (in this case, exec)
"fds": {
"0": "2a4a97af81529f6608dca31f®3a7b7e47accOb8dc6514496eb25e325f9e4faba",
"control": "5b64c661e£313b423b5317ba9ch6410e40b705806c28255£601c0ef603£079a7"
}
}!
"may_cancel": false, // Whether the operation can.
—be canceled (DELETE over REST)
"err": "" // The error string should.
—the operation have failed

}

The body is mostly provided as a user friendly way of seeing what’s going on without having to pull the target operation,
all information in the body can also be retrieved from the background operation URL.

Error

There are various situations in which something may immediately go wrong, in those cases, the following return value
is used:

{

"type": "error",

"error": "Failure",

"error_code": 400,

"metadata": {} // More details about the error
}

HTTP code must be one of of 400, 401, 403, 404, 409, 412 or 500.

220 Chapter 2. Project and community




LXD

Status codes
The LXD REST API often has to return status information, be that the reason for an error, the current state of an
operation or the state of the various resources it exports.

To make it simple to debug, all of those are always doubled. There is a numeric representation of the state which is
guaranteed never to change and can be relied on by API clients. Then there is a text version meant to make it easier for
people manually using the API to figure out what’s happening.

In most cases, those will be called status and status_code, the former being the user-friendly string representation
and the latter the fixed numeric value.

The codes are always 3 digits, with the following ranges:
* 100 to 199: resource state (started, stopped, ready, ...)
* 200 to 399: positive action result
* 400 to 599: negative action result

¢ 600 to 999: future use

List of current status codes

Code Meaning

100 Operation created
101 Started

102 Stopped

103 Running

104 Canceling

105 Pending

106 Starting

107 Stopping

108 Aborting

109 Freezing

110 Frozen
111 Thawed
112 Error

200 Success
400 Failure
401 Canceled

Recursion
To optimize queries of large lists, recursion is implemented for collections. A recursion argument can be passed to
a GET query against a collection.

The default value is O which means that collection member URLSs are returned. Setting it to 1 will have those URLSs be
replaced by the object they point to (typically another JSON object).

Recursion is implemented by simply replacing any pointer to an job (URL) by the object itself.

2.9. REST API 221



LXD

Filtering

To filter your results on certain values, filter is implemented for collections. A filter argument can be passed to a
GET query against a collection.

Filtering is available for the instance, image and storage volume endpoints.

There is no default value for filter which means that all results found will be returned. The following is the language
used for the filter argument:

[?filterzfield_name eq desired_field_assignment ]

The language follows the OData conventions for structuring REST API filtering logic. Logical operators are also
supported for filtering: not (not), equals (eq), not equals (ne), and (and), or (or). Filters are evaluated with left
associativity. Values with spaces can be surrounded with quotes. Nesting filtering is also supported. For instance, to
filter on a field in a configuration you would pass:

[?filter:config.field_name eq desired_field_assignment ]

For filtering on device attributes you would pass:

[?filter:devices.device_name.field_name eq desired_field_assignment ]

Here are a few GET query examples of the different filtering methods mentioned above:

containers?filter=name eq "my container" and status eq Running
containers?filter=config.image.os eq ubuntu or devices.eth®.nictype eq bridged

images?filter=Properties.os eq Centos and not UpdateSource.Protocol eq simplestreams

Asynchronous operations
Any operation which may take more than a second to be done must be done in the background, returning a background
operation ID to the client.

The client will then be able to either poll for a status update or wait for a notification using the long-poll API.

Notifications
A WebSocket-based API is available for notifications, different notification types exist to limit the traffic going to the
client.

It’s recommended that the client always subscribes to the operations notification type before triggering remote opera-
tions so that it doesn’t have to then poll for their status.

222 Chapter 2. Project and community



LXD

PUT vs PATCH

The LXD API supports both PUT and PATCH to modify existing objects.

PUT replaces the entire object with a new definition, it’s typically called after the current object state was retrieved
through GET.

To avoid race conditions, the ETag header should be read from the GET response and sent as If-Match for the PUT
request. This will cause LXD to fail the request if the object was modified between GET and PUT.

PATCH can be used to modify a single field inside an object by only specifying the property that you want to change.
To unset a key, setting it to empty will usually do the trick, but there are cases where PATCH won’t work and PUT
needs to be used instead.

Instances, containers and virtual-machines
The documentation shows paths such as /1.0/instances/. . ., which were introduced with LXD 3.19. Older releases
that supported only containers and not virtual machines supply the exact same APl at /1.0/containers/....

For backward compatibility reasons, LXD does still expose and support that /1.0/containers API, though for the
sake of brevity, we decided not to double-document everything.

An additional endpoint at /1.0/virtual-machines is also present and much like /1.0/containers will only show
you instances of that type.

API structure

LXD has an auto-generated Swagger specification describing its API endpoints. The YAML version of this API spec-
ification can be found in rest-api.yaml. See Main API specification for a convenient web rendering of it.

2.9.2 Main API specification

2.9.3 API extensions

The changes below were introduced to the LXD API after the 1.0 API was finalized.

They are all backward compatible and can be detected by client tools by looking at the api_extensions field in GET
/1.0.

storage_zfs_remove_snapshots

A storage.zfs_remove_snapshots daemon configuration key was introduced.

It’s a Boolean that defaults to false and that when set to true instructs LXD to remove any needed snapshot when
attempting to restore another.

This is needed as ZFS will only let you restore the latest snapshot.

2.9. REST API 223


https://swagger.io/
https://github.com/canonical/lxd/blob/main/doc/rest-api.yaml

LXD

container_host_shutdown_timeout

A boot.host_shutdown_timeout container configuration key was introduced.
It’s an integer which indicates how long LXD should wait for the container to stop before killing it.

Its value is only used on clean LXD daemon shutdown. It defaults to 30s.

container_stop_priority

A boot.stop.priority container configuration key was introduced.
It’s an integer which indicates the priority of a container during shutdown.
Containers will shutdown starting with the highest priority level.

Containers with the same priority will shutdown in parallel. It defaults to 0.

container_syscall_filtering

A number of new syscalls related container configuration keys were introduced.
e security.syscalls.blacklist_default
e security.syscalls.blacklist_compat
e security.syscalls.blacklist
e security.syscalls.whitelist

See Instance configuration for how to use them.

auth_pki

This indicates support for PKI authentication mode.
In this mode, the client and server both must use certificates issued by the same PKI.

See Security for details.

container_last_used_at

A last_used_at field was added to the GET /1.0/containers/<name> endpoint.
It is a timestamp of the last time the container was started.

If a container has been created but not started yet, last_used_at field will be 1970-01-01T00: 00:00Z

224 Chapter 2. Project and community



LXD

etag

Add support for the ETag header on all relevant endpoints.

This adds the following HTTP header on answers to GET:
* ETag (SHA-256 of user modifiable content)

And adds support for the following HTTP header on PUT requests:
* If-Match (ETag value retrieved through previous GET)

This makes it possible to GET a LXD object, modify it and PUT it without risking to hit a race condition where LXD
or another client modified the object in the meantime.

patch

Add support for the HTTP PATCH method.
PATCH allows for partial update of an object in place of PUT.

usb_devices

Add support for USB hotplug.

https_allowed_credentials

To use LXD API with all Web Browsers (via SPAs) you must send credentials (certificate) with each XHR (in order
for this to happen, you should set withCredentials=true flag to each XHR Request).

Some browsers like Firefox and Safari can’t accept server response without Access-Control-Allow-Credentials:
true header. To ensure that the server will return a response with that header, set core.
https_allowed_credentials=true.

image_compression_algorithm

This adds support for a compression_algorithm property when creating an image (POST /1.0/images).
Setting this property overrides the server default value (images.compression_algorithm).
directory_manipulation

This allows for creating and listing directories via the LXD API, and exports the file type via the X-LXD-type header,
which can be either file or directory right now.

2.9. REST API 225


https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/withCredentials

LXD

container_cpu_time

This adds support for retrieving CPU time for a running container.

storage_zfs_use_refquota

Introduces a new server property storage.zfs_use_refquota which instructs LXD to set the refquota property
instead of quota when setting a size limit on a container. LXD will also then use usedbydataset in place of used
when being queried about disk utilization.

This effectively controls whether disk usage by snapshots should be considered as part of the container’s disk space
usage.

storage_lvm_mount_options

Adds a new storage.lvm_mount_options daemon configuration option which defaults to discard and allows the
user to set addition mount options for the file system used by the LVM LV.

network

Network management API for LXD.
This includes:
* Addition of the managed property on /1.0/networks entries
 All the network configuration options (see Network configuration for details)
e POST /1.0/networks (see RESTful API for details)
e PUT /1.0/networks/<entry> (see RESTful API for details)
e PATCH /1.0/networks/<entry> (see RESTful API for details)
e DELETE /1.0/networks/<entry> (see RESTful API for details)
e ipv4.address property on nic type devices (when nictype is bridged)
* ipv6.address property on nic type devices (when nictype is bridged)

e security.mac_filtering property on nic type devices (when nictype is bridged)

profile_usedby

Adds a new used_by field to profile entries listing the containers that are using it.

container_push

When a container is created in push mode, the client serves as a proxy between the source and target server. This is
useful in cases where the target server is behind a NAT or firewall and cannot directly communicate with the source
server and operate in pull mode.

226 Chapter 2. Project and community



LXD

container_exec_recording
Introduces a new Boolean record-output, parameter to /1.0/containers/<name>/exec which when set to true

and combined with with wait-for-websocket set to false, will record stdout and stderr to disk and make them
available through the logs interface.

The URL to the recorded output is included in the operation metadata once the command is done running.
That output will expire similarly to other log files, typically after 48 hours.

certificate_update

Adds the following to the REST API:
» ETag header on GET of a certificate
e PUT of certificate entries
* PATCH of certificate entries
container_exec_signal_handling
Adds support /1.0/containers/<name>/exec for forwarding signals sent to the client to the processes executing in

the container. Currently SIGTERM and SIGHUP are forwarded. Further signals that can be forwarded might be added
later.

gpu_devices

Enables adding GPUs to a container.

container_image_properties

Introduces a new image configuration key space. Read-only, includes the properties of the parent image.

migration_progress

Transfer progress is now exported as part of the operation, on both sending and receiving ends. This shows up as a
fs_progress attribute in the operation metadata.

id_map

Enables setting the security.idmap.isolated and security.idmap.isolated, security.idmap.size, and
raw.id_map fields.

2.9. REST API 227



LXD

network_firewall filtering

Add two new keys, ipv4.firewall and ipv6.firewall which if set to false will turn off the generation of
iptables FORWARDING rules. NAT rules will still be added so long as the matching ipv4.nat or ipv6.nat
key is set to true.

Rules necessary for dnsmasq to work (DHCP/DNS) will always be applied if dnsmasq is enabled on the bridge.

network_routes

Introduces ipv4.routes and ipv6.routes which allow routing additional subnets to a LXD bridge.

storage

Storage management API for LXD.

This includes:

GET /1.0/storage-pools

POST /1.0/storage-pools (see RESTful API for details)

GET /1.0/storage-pools/<name> (see RESTful API for details)

POST /1.0/storage-pools/<name> (see RESTful API for details)

PUT /1.0/storage-pools/<name> (see RESTful API for details)

PATCH /1.0/storage-pools/<name> (see RESTful API for details)

DELETE /1.0/storage-pools/<name> (see RESTful API for details)

GET /1.0/storage-pools/<name>/volumes (see RESTful API for details)

GET /1.0/storage-pools/<name>/volumes/<volume_type> (see RESTful API for details)

POST /1.0/storage-pools/<name>/volumes/<volume_type> (see RESTful API for details)

GET /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API for details)
POST /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API for details)
PUT /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API for details)
PATCH /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API for details)
DELETE /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API for details)

All storage configuration options (see Storage configuration for details)

file_delete

Implements DELETE in /1.0/containers/<name>/files

228

Chapter 2. Project and community



LXD

file_append

Implements the X-LXD-write header which can be one of overwrite or append.

network_dhcp_expiry

Introduces ipv4.dhcp.expiry and ipv6.dhcp.expiry allowing to set the DHCP lease expiry time.

storage_lvm_vg_rename

Introduces the ability to rename a volume group by setting storage.lvm.vg_name.

storage_lvm_thinpool_rename

Introduces the ability to rename a thin pool name by setting storage . thinpool_name.

network_vlan

This adds a new vlan property to macvlan network devices.

When set, this will instruct LXD to attach to the specified VLAN. LXD will look for an existing interface for that
VLAN on the host. If one can’t be found it will create one itself and then use that as the macvlan parent.

image_create_aliases

Adds a new aliases field to POST /1.0/images allowing for aliases to be set at image creation/import time.

container_stateless_copy

This introduces a new live attribute in POST /1.0/containers/<name>. Setting it to false tells LXD not to
attempt running state transfer.

container_only_migration

Introduces a new Boolean container_only attribute. When set to true only the container will be copied or moved.

storage_zfs_clone_copy

Introduces a new Boolean storage_zfs_clone_copy property for ZFS storage pools. When set to false copying a
container will be done through zfs send and receive. This will make the target container independent of its source
container thus avoiding the need to keep dependent snapshots in the ZFS pool around. However, this also entails less
efficient storage usage for the affected pool. The default value for this property is true, i.e. space-efficient snapshots
will be used unless explicitly set to false.

2.9. REST API 229



LXD

unix_device_rename
Introduces the ability to rename the unix-block/unix-char device inside container by setting path, and the source
attribute is added to specify the device on host. If source is set without a path, we should assume that path will be

the same as source. If path is set without source and major/minor isn’t set, we should assume that source will
be the same as path. So at least one of them must be set.

storage_rsync_bwlimit

When rsync has to be invoked to transfer storage entities setting rsync.bwlimit places an upper limit on the amount
of socket I/O allowed.

network_vxlan_interface

This introduces a new tunnel .NAME. interface option for networks.

This key control what host network interface is used for a VXLAN tunnel.
storage_btrfs_mount_options

This introduces the btrfs.mount_options property for Btrfs storage pools.
This key controls what mount options will be used for the Btrfs storage pool.
entity_description

This adds descriptions to entities like containers, snapshots, networks, storage pools and volumes.

image_force_refresh

This allows forcing a refresh for an existing image.

storage_lvm_lv_resizing

This introduces the ability to resize logical volumes by setting the size property in the containers root disk device.

id_map_base

This introduces a new security.idmap.base allowing the user to skip the map auto-selection process for isolated
containers and specify what host UID/GID to use as the base.

230 Chapter 2. Project and community



LXD

file_symlinks

This adds support for transferring symlinks through the file API. X-LXD-type can now be symlink with the request
content being the target path.

container_push_target

This adds the target field to POST /1.0/containers/<name> which can be used to have the source LXD host
connect to the target during migration.

network_vlan_physical

Allows use of vlan property with physical network devices.

When set, this will instruct LXD to attach to the specified VLAN on the parent interface. LXD will look for an
existing interface for that parent and VLAN on the host. If one can’t be found it will create one itself. Then, LXD
will directly attach this interface to the container.

storage_images_delete

This enabled the storage API to delete storage volumes for images from a specific storage pool.

container_edit_metadata

This adds support for editing a container metadata.yaml and related templates via API, by accessing URLs under
/1.0/containers/<name>/metadata. It can be used to edit a container before publishing an image from it.

container_snapshot_stateful_migration

This enables migrating stateful container snapshots to new containers.

storage_driver_ceph

This adds a Ceph storage driver.

storage_ceph_user_name

This adds the ability to specify the Ceph user.

instance_types

This adds the instance_type field to the container creation request. Its value is expanded to LXD resource limits.

2.9. REST API 231



LXD

storage_volatile_initial_source

This records the actual source passed to LXD during storage pool creation.

storage_ceph_force_osd_reuse

This introduces the ceph.osd. force_reuse property for the Ceph storage driver. When set to true LXD will reuse
an OSD storage pool that is already in use by another LXD instance.

storage_block_filesystem_btrfs

This adds support for Btrfs as a storage volume file system, in addition to ext4 and xfs.

resources

This adds support for querying a LXD daemon for the system resources it has available.

kernel_limits

This adds support for setting process limits such as maximum number of open files for the container via nofile. The
format is 1imits.kernel. [limit name].

storage_api_volume_rename

This adds support for renaming custom storage volumes.

macaroon_authentication

This adds support for external authentication via Macaroons.

network_sriov

This adds support for SR-IOV enabled network devices.

console

This adds support to interact with the container console device and console log.

restrict_devlxd

A new security.devlxd container configuration key was introduced. The key controls whether the /dev/1xd inter-
face is made available to the instance. If set to false, this effectively prevents the container from interacting with the
LXD daemon.

232 Chapter 2. Project and community



LXD

migration_pre_copy

This adds support for optimized memory transfer during live migration.

infiniband

This adds support to use InfiniBand network devices.

maas_network

This adds support for MAAS network integration.

When configured at the daemon level, it’s then possible to attach a nic device to a particular MAAS subnet.
devlxd_events

This adds a WebSocket API to the dev1xd socket.

When connecting to /1.0/events over the devlxd socket, you will now be getting a stream of events over WebSocket.
proxy

This adds a new proxy device type to containers, allowing forwarding of connections between the host and container.

network_dhcp_gateway

Introduces a new ipv4.dhcp.gateway network configuration key to set an alternate gateway.

file_get_symlink

This makes it possible to retrieve symlinks using the file API.

network_leases

Adds a new /1.0/networks/NAME/leases API endpoint to query the lease database on bridges which run a LXD-
managed DHCP server.

unix_device_hotplug

This adds support for the required property for Unix devices.

2.9. REST API 233



LXD

storage_api_local_volume_handling

This add the ability to copy and move custom storage volumes locally in the same and between storage pools.

operation_description

Adds a description field to all operations.

clustering

Clustering API for LXD.
This includes the following new endpoints (see RESTful API for details):
* GET /1.0/cluster

UPDATE /1.0/cluster

GET /1.0/cluster/members

GET /1.0/cluster/members/<name>

POST /1.0/cluster/members/<name>
e DELETE /1.0/cluster/members/<name>
The following existing endpoints have been modified:
e POST /1.0/containers accepts a new target query parameter
* POST /1.0/storage-pools accepts a new target query parameter
e GET /1.0/storage-pool/<name> accepts a new target query parameter
e POST /1.0/storage-pool/<pool>/volumes/<type> accepts a new target query parameter
* GET /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query parameter
e POST /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query parameter
e PUT /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query parameter
e PATCH /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query parameter
e DELETE /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query parameter
e POST /1.0/networks accepts a new target query parameter

e GET /1.0/networks/<name> accepts a new target query parameter

event_lifecycle

This adds a new 1ifecycle message type to the events APL

234 Chapter 2. Project and community



LXD

storage_api_remote_volume_handling

This adds the ability to copy and move custom storage volumes between remote.

nvidia_runtime

Adds anvidia_runtime configuration option for containers, setting this to true will have the NVIDIA runtime and
CUDA libraries passed to the container.

container_mount_propagation

This adds a new propagation option to the disk device type, allowing the configuration of kernel mount propagation.

container_backup

Add container backup support.
This includes the following new endpoints (see RESTful API for details):

e GET /1.0/containers/<name>/backups

POST /1.0/containers/<name>/backups

GET /1.0/containers/<name>/backups/<name>

POST /1.0/containers/<name>/backups/<name>

e DELETE /1.0/containers/<name>/backups/<name>

e GET /1.0/containers/<name>/backups/<name>/export
The following existing endpoint has been modified:

e POST /1.0/containers accepts the new source type backup
devlxd_images
Adds a security.devlxd.images configuration option for containers which controls the availability of a /1.0/

images/FINGERPRINT/export API over devlxd. This can be used by a container running nested LXD to access raw
images from the host.

container_local_cross_pool_handling

This enables copying or moving containers between storage pools on the same LXD instance.

2.9. REST API 235



LXD

proxy_unix

Add support for both Unix sockets and abstract Unix sockets in proxy devices. They can be used by specifying the
address as unix:/path/to/unix.sock (normal socket) or unix:@/tmp/unix.sock (abstract socket).

Supported connections are now:

TCP <-> TCP
UNIX <-> UNIX

e TCP <-> UNIX
e UNIX <-> TCP
proxy_udp

Add support for UDP in proxy devices.

Supported connections are now:

TCP <-> TCP
UNIX <-> UNIX
TCP <-> UNIX
UNIX <-> TCP
UDP <-> UDP
TCP <-> UDP
UNIX <-> UDP

clustering_join

This makes GET /1.0/cluster return information about which storage pools and networks are required to be created
by joining nodes and which node-specific configuration keys they are required to use when creating them. Likewise
the PUT /1.0/cluster endpoint now accepts the same format to pass information about storage pools and networks

to be automatically created before attempting to join a cluster.

proxy_tcp_udp_multi_port_handling

Adds support for forwarding traffic for multiple ports. Forwarding is allowed between a range of ports if the port
range is equal for source and target (for example 1.2.3.4 0-1000 -> 5.6.7.8 1000-2000) and between a range
of source ports and a single target port (for example 1.2.3.4 0-1000 -> 5.6.7.8 1000).

236

Chapter 2. Project and community



LXD

network_state

Adds support for retrieving a network’s state.

This adds the following new endpoint (see RESTful API for details):
e GET /1.0/networks/<name>/state

proxy_unix_dac_properties

This adds support for GID, UID, and mode properties for non-abstract Unix sockets.

container_protection_delete

Enables setting the security.protection.delete field which prevents containers from being deleted if set to true.
Snapshots are not affected by this setting.

proxy_priv_drop

Adds security.uid and security.gid for the proxy devices, allowing privilege dropping and effectively changing
the UID/GID used for connections to Unix sockets too.

pprof_http

This adds a new core.debug_address configuration option to start a debugging HTTP server.

That server currently includes a pprof API and replaces the old cpu-profile, memory-profile and
print-goroutines debug options.

proxy_haproxy_protocol

Adds a proxy_protocol key to the proxy device which controls the use of the HAProxy PROXY protocol header.

network_hwaddr

Adds a bridge.hwaddr key to control the MAC address of the bridge.

proxy_nat

This adds optimized UDP/TCP proxying. If the configuration allows, proxying will be done via iptables instead of
proxy devices.

2.9. REST API 237



LXD

network_nat_order

This introduces the ipv4.nat.order and ipv6.nat.order configuration keys for LXD bridges. Those keys control
whether to put the LXD rules before or after any pre-existing rules in the chain.

container_full
This introduces a new recursion=2 mode for GET /1.0/containers which allows for the retrieval of all container
structs, including the state, snapshots and backup structs.

This effectively allows for 1xc list to get all it needs in one query.

candid_authentication

This introduces the new candid.api.url configuration option and removes core.macaroon. endpoint.

backup_compression

This introduces a new backups. compression_algorithm configuration key which allows configuration of backup
compression.

candid_config

This introduces the configuration keys candid.domains and candid.expiry. The former allows specifying al-
lowed/valid Candid domains, the latter makes the macaroon’s expiry configurable. The 1xc remote add command
now has a --domain flag which allows specifying a Candid domain.

nvidia_runtime_config
This introduces a few extra configuration keys when using nvidia.runtime and the 1ibnvidia-container library.
Those keys translate pretty much directly to the matching NVIDIA container environment variables:

e nvidia.driver.capabilities => NVIDIA_DRIVER_CAPABILITIES

e nvidia.require.cuda => NVIDIA_REQUIRE_CUDA

e nvidia.require.driver => NVIDIA_REQUIRE_DRIVER

storage_api_volume_snapshots

Add support for storage volume snapshots. They work like container snapshots, only for volumes.
This adds the following new endpoint (see RESTful API for details):

e GET /1.0/storage-pools/<pool>/volumes/<type>/<name>/snapshots

e POST /1.0/storage-pools/<pool>/volumes/<type>/<name>/snapshots

* GET /1.0/storage-pools/<pool>/volumes/<type>/<volume>/snapshots/<name>

e PUT /1.0/storage-pools/<pool>/volumes/<type>/<volume>/snapshots/<name>

POST /1.0/storage-pools/<pool>/volumes/<type>/<volume>/snapshots/<name>

DELETE /1.0/storage-pools/<pool>/volumes/<type>/<volume>/snapshots/<name>

238 Chapter 2. Project and community



LXD

storage_unmapped

Introduces a new security.unmapped Boolean on storage volumes.

Setting it to true will flush the current map on the volume and prevent any further idmap tracking and remapping on
the volume.

This can be used to share data between isolated containers after attaching it to the container which requires write access.
projects

Add a new project AP, supporting creation, update and deletion of projects.

Projects can hold containers, profiles or images at this point and let you get a separate view of your LXD resources by
switching to it.

candid_config_key

This introduces a new candid.api.key option which allows for setting the expected public key for the endpoint,
allowing for safe use of a HTTP-only Candid server.

network_vxlan_ttl

This adds a new tunnel.NAME. ttl network configuration option which makes it possible to raise the TTL on VXLAN
tunnels.

container_incremental_copy
This adds support for incremental container copy. When copying a container using the --refresh flag, only the

missing or outdated files will be copied over. Should the target container not exist yet, a normal copy operation is
performed.

usb_optional_vendorid

As the name implies, the vendorid field on USB devices attached to containers has now been made optional, allowing
for all USB devices to be passed to a container (similar to what’s done for GPUs).

snapshot_scheduling

This adds support for snapshot scheduling. It introduces three new configuration keys: snapshots.schedule,
snapshots.schedule.stopped, and snapshots.pattern. Snapshots can be created automatically up to every
minute.

2.9. REST API 239



LXD

snapshots_schedule_aliases

Snapshot schedule can be configured by a comma-separated list of schedule aliases. Available aliases are <@hourly>
<@daily> <@midnight> <@weekly> <@monthly> <@annually> <@yearly> <@startup> for instances, and
<@hourly> <@daily> <@midnight> <@weekly> <@monthly> <@annually> <@yearly> for storage volumes.

container_copy_project

Introduces a project field to the container source JSON object, allowing for copy/move of containers between projects.

clustering_server_address

This adds support for configuring a server network address which differs from the REST API client network address.
When bootstrapping a new cluster, clients can set the new cluster.https_address configuration key to specify
the address of the initial server. When joining a new server, clients can set the core.https_address configuration
key of the joining server to the REST API address the joining server should listen at, and set the server_address
key in the PUT /1.0/cluster API to the address the joining server should use for clustering traffic (the value of
server_address will be automatically copied to the cluster.https_address configuration key of the joining
server).

clustering_image_replication

Enable image replication across the nodes in the cluster. A new cluster.images_minimal_replica configuration
key was introduced can be used to specify to the minimal numbers of nodes for image replication.

container_protection_shift

Enables setting the security.protection.shift option which prevents containers from having their file system
shifted.

snapshot_expiry

This adds support for snapshot expiration. The task is run minutely. The configuration option snapshots.expiry
takes an expression in the form of 1M 2H 3d 4w 5m 6y (1 minute, 2 hours, 3 days, 4 weeks, 5 months, 6 years),
however not all parts have to be used.

Snapshots which are then created will be given an expiry date based on the expression. This expiry date, de-
fined by expires_at, can be manually edited using the API or 1xc config edit. Snapshots with a valid expiry
date will be removed when the task in run. Expiry can be disabled by setting expires_at to an empty string or
0001-01-01TO0:00:00Z (zero time). This is the default if snapshots.expiry is not set.

This adds the following new endpoint (see RESTful API for details):

e PUT /1.0/containers/<name>/snapshots/<name>

240 Chapter 2. Project and community



LXD

snapshot_expiry_creation

Adds expires_at to container creation, allowing for override of a snapshot’s expiry at creation time.

network_leases_location

Introduces a Location field in the leases list. This is used when querying a cluster to show what node a particular
lease was found on.

resources_cpu_socket

Add Socket field to CPU resources in case we get out of order socket information.

resources_gpu

Add a new GPU struct to the server resources, listing all usable GPUs on the system.

resources_numa

Shows the NUMA node for all CPUs and GPUs.

kernel_features

Exposes the state of optional kernel features through the server environment.

id_map_current
This introduces a new internal volatile.idmap.current key which is used to track the current mapping for the
container.
This effectively gives us:
e volatile.last_state.idmap => On-disk idmap
e volatile.idmap.current => Current kernel map
e volatile.idmap.next => Next on-disk idmap

This is required to implement environments where the on-disk map isn’t changed but the kernel map is (e.g. shiftfs).

event_location

Expose the location of the generation of API events.

2.9. REST API 241



LXD

storage_api_remote_volume_snapshots

This allows migrating storage volumes including their snapshots.

network_nat_address

This introduces the ipv4.nat.address and ipv6.nat.address configuration keys for LXD bridges. Those keys
control the source address used for outbound traffic from the bridge.

container_nic_routes

This introduces the ipv4.routes and ipv6.routes properties on nic type devices. This allows adding static routes
on host to container’s NIC.

rbac

Adds support for RBAC (role based access control). This introduces new configuration keys:
e rbac.api.url
e rbac.api.key
e rbac.api.expiry
e rbac.agent.url
* rbac.agent.username
e rbac.agent.private_key

e rbac.agent.public_key

cluster_internal_copy

This makes it possible to do a normal POST /1.0/containers to copy a container between cluster nodes with LXD
internally detecting whether a migration is required.

seccomp_notify

If the kernel supports seccomp-based syscall interception LXD can be notified by a container that a registered syscall
has been performed. LXD can then decide to trigger various actions.

1xc_features

This introduces the 1xc_features section output from the 1xc info command via the GET /1.0 route. It outputs
the result of checks for key features being present in the underlying LXC library.

242 Chapter 2. Project and community



LXD

container_nic_ipvlan

This introduces the ipvlan nic device type.

network_vlan_sriov

This introduces VLAN (v1lan) and MAC filtering (security.mac_filtering) support for SR-IOV devices.

storage_cephfs

Add support for CephFS as a storage pool driver. This can only be used for custom volumes, images and containers
should be on Ceph (RBD) instead.

container_nic_ipfilter

This introduces container IP filtering (security.ipv4_filtering and security.ipv6_£filtering) support for
bridged NIC devices.

resources_v?2

Rework the resources API at /1.0/resources, especially:

« CPU

Fix reporting to track sockets, cores and threads

Track NUMA node per core

Track base and turbo frequency per socket

Track current frequency per core

Add CPU cache information

— Export the CPU architecture
— Show online/offline status of threads
* Memory
— Add huge-pages tracking
— Track memory consumption per NUMA node too

* GPU

Split DRM information to separate struct

Export device names and nodes in DRM struct

Export device name and node in NVIDIA struct
Add SR-IOV VF tracking

2.9. REST API 243



LXD

container_exec_user_group_cwd

Adds support for specifying User, Group and Cwd during POST /1.0/containers/NAME/exec.

container_syscall_intercept

Adds the security.syscalls.intercept.* configuration keys to control what system calls will be intercepted by
LXD and processed with elevated permissions.

container_disk_shift

Adds the shift property on disk devices which controls the use of the shiftfs overlay.

storage_shifted

Introduces a new security.shifted Boolean on storage volumes.

Setting it to true will allow multiple isolated containers to attach the same storage volume while keeping the file system
writable from all of them.

This makes use of shiftfs as an overlay file system.
resources_infiniband

Export InfiniBand character device information (issm, umad, uverb) as part of the resources API.

daemon_storage

This introduces two new configuration keys storage.images_volume and storage.backups_volume to allow for
a storage volume on an existing pool be used for storing the daemon-wide images and backups artifacts.

instances

This introduces the concept of instances, of which currently the only type is container.

image_types

This introduces support for a new Type field on images, indicating what type of images they are.

resources_disk_sata

Extends the disk resource API struct to include:
* Proper detection of SATA devices (type)
* Device path
e Drive RPM
* Block size

¢ Firmware version

244 Chapter 2. Project and community



LXD

¢ Serial number

clustering_roles

This adds a new roles attribute to cluster entries, exposing a list of roles that the member serves in the cluster.

images_expiry

This allows for editing of the expiry date on images.

resources_network_firmware

Adds a FirmwareVersion field to network card entries.

backup_compression_algorithm

This adds support for a compression_algorithm property when creating a backup (POST /1.0/containers/
<name>/backups).

Setting this property overrides the server default value (backups.compression_algorithm).
ceph_data_pool_name
This adds support for an optional argument (ceph.osd.data_pool_name) when creating storage pools using Ceph

RBD, when this argument is used the pool will store it’s actual data in the pool specified with data_pool_name while
keeping the metadata in the pool specified by pool_name.

container_syscall_intercept_mount
Adds the security.syscalls.intercept.mount, security.syscalls.intercept.mount.allowed, and

security.syscalls.intercept.mount.shift configuration keys to control whether and how the mount system
call will be intercepted by LXD and processed with elevated permissions.

compression_squashfs

Adds support for importing/exporting of images/backups using SquashFS file system format.

container_raw_mount

This adds support for passing in raw mount options for disk devices.

2.9. REST API 245



LXD

container_nic_routed

This introduces the routed nic device type.

container_syscall_intercept_mount_fuse

Adds the security.syscalls.intercept.mount. fuse key. It can be used to redirect file-system mounts to their
fuse implementation. To this end, set e.g. security.syscalls.intercept.mount.fuse=ext4=fuse2fs.

container_disk_ceph

This allows for existing a Ceph RBD or CephFS to be directly connected to a LXD container.

virtual-machines

Add virtual machine support.

image_profiles

Allows a list of profiles to be applied to an image when launching a new container.

clustering_architecture

This adds a new architecture attribute to cluster members which indicates a cluster member’s architecture.

resources_disk_id

Add a new device_id field in the disk entries on the resources API.

storage_lvm_stripes

This adds the ability to use LVM stripes on normal volumes and thin pool volumes.

vm_boot_priority

Adds a boot.priority property on NIC and disk devices to control the boot order.

unix_hotplug_devices

Adds support for Unix char and block device hotplugging.

246 Chapter 2. Project and community



LXD

api_filtering

Adds support for filtering the result of a GET request for instances and images.

instance_nic_network

Adds support for the network property on a NIC device to allow a NIC to be linked to a managed network. This allows
it to inherit some of the network’s settings and allows better validation of IP settings.

clustering_sizing

Support specifying a custom values for database voters and standbys. The new cluster.max_voters and cluster.
max_standby configuration keys were introduced to specify to the ideal number of database voter and standbys.

firewall_driver

Adds the Firewall property to the ServerEnvironment struct indicating the firewall driver being used.

storage_lvm_vg_force_reuse

Introduces the ability to create a storage pool from an existing non-empty volume group. This option should be used
with care, as LXD can then not guarantee that volume name conflicts won’t occur with non-LXD created volumes in
the same volume group. This could also potentially lead to LXD deleting a non-LXD volume should name conflicts
occur.

container_syscall_intercept_hugetlbfs

When mount syscall interception is enabled and huget1bfs is specified as an allowed file system type LXD will mount
a separate hugetlbf£s instance for the container with the UID and GID mount options set to the container’s root UID
and GID. This ensures that processes in the container can use huge pages.

limits_hugepages

This allows to limit the number of huge pages a container can use through the hugetlb cgroup. This means the
hugetlb cgroup needs to be available. Note, that limiting huge pages is recommended when intercepting the mount
syscall for the hugetlbfs file system to avoid allowing the container to exhaust the host’s huge pages resources.

container_nic_routed_gateway

This introduces the ipv4.gateway and ipv6.gateway NIC configuration keys that can take a value of either auto
or none. The default value for the key if unspecified is auto. This will cause the current behavior of a default gateway
being added inside the container and the same gateway address being added to the host-side interface. If the value is set
to none then no default gateway nor will the address be added to the host-side interface. This allows multiple routed
NIC devices to be added to a container.

2.9. REST API 247



LXD

projects_restrictions

This introduces support for the restricted configuration key on project, which can prevent the use of security-
sensitive features in a project.

custom_volume_snapshot_expiry

This allows custom volume snapshots to expiry. Expiry dates can be set individually, or by setting the snapshots.
expiry configuration key on the parent custom volume which then automatically applies to all created snapshots.

volume_snapshot_scheduling

This adds support for custom volume snapshot scheduling. It introduces two new configuration keys: snapshots.
schedule and snapshots.pattern. Snapshots can be created automatically up to every minute.

trust_ca_certificates

This allows for checking client certificates trusted by the provided CA (server.ca). It can be enabled by setting
core.trust_ca_certificates to true. If enabled, it will perform the check, and bypass the trusted password if
true. An exception will be made if the connecting client certificate is in the provided CRL (ca. crl). In this case, it
will ask for the password.

snapshot_disk_usage

This adds a new size field to the output of /1.0/instances/<name>/snapshots/<snapshot> which represents
the disk usage of the snapshot.

clustering_edit_roles

This adds a writable endpoint for cluster members, allowing the editing of their roles.

container_nic_routed_host_address

This introduces the ipv4 .host_address and ipv6.host_address NIC configuration keys that can be used to control
the host-side veth interface’s IP addresses. This can be useful when using multiple routed NICs at the same time and
needing a predictable next-hop address to use.

This also alters the behavior of ipv4.gateway and ipv6.gateway NIC configuration keys. When they are set to
auto the container will have its default gateway set to the value of ipv4.host_address or ipv6.host_address
respectively.

The default values are:
ipv4.host_address: 169.254.0.1 ipv6.host_address: fe80::1

This is backward compatible with the previous default behavior.

248 Chapter 2. Project and community



LXD

container_nic_ipvlan_gateway

This introduces the ipv4.gateway and ipv6.gateway NIC configuration keys that can take a value of either auto
or none. The default value for the key if unspecified is auto. This will cause the current behavior of a default gateway
being added inside the container and the same gateway address being added to the host-side interface. If the value is set

to none then no default gateway nor will the address be added to the host-side interface. This allows multiple [IPVLAN
NIC devices to be added to a container.

resources_usb_pci

This adds USB and PCI devices to the output of /1.0/resources.

resources_cpu_threads_numa

This indicates that the numa_node field is now recorded per-thread rather than per core as some hardware apparently
puts threads in different NUMA domains.

resources_cpu_core_die

Exposes the die_id information on each core.

api_os

This introduces two new fields in /1.0, os and os_version.
Those are taken from the OS-release data on the system.
container_nic_routed_host_table

This introduces the ipv4.host_table and ipv6.host_table NIC configuration keys that can be used to add static
routes for the instance’s IPs to a custom policy routing table by ID.

container_nic_ipvlan_host_table

This introduces the ipv4.host_table and ipv6.host_table NIC configuration keys that can be used to add static
routes for the instance’s IPs to a custom policy routing table by ID.

container_nic_ipvlan_mode
This introduces the mode NIC configuration key that can be used to switch the ipvlan mode into either 12 or 13s. If
not specified, the default value is 13s (which is the old behavior).

In 12 mode the ipv4.address and ipv6.address keys will accept addresses in either CIDR or singular formats. If
singular format is used, the default subnet size is taken to be /24 and /64 for IPv4 and IPv6 respectively.

In 12 mode the ipv4.gateway and ipv6.gateway keys accept only a singular IP address.

2.9. REST API 249



LXD

resources_system

This adds system information to the output of /1.0/resources.

images_push_relay

This adds the push and relay modes to image copy. It also introduces the following new endpoint:

e POST 1.0/images/<fingerprint>/export

network_dns_search

This introduces the dns . search configuration option on networks.

container_nic_routed_limits

This introduces 1imits.ingress, limits.egress and 1imits.max for routed NICs.

instance_nic_bridged_vlan

This introduces the vlan and vlan.tagged settings for bridged NICs.

vlan specifies the non-tagged VLAN to join, and vlan.tagged is a comma-delimited list of tagged VLANS to join.

network_state_bond_bridge

This adds a bridge and bond section to the /1.0/networks/NAME/state APL
Those contain additional state information relevant to those particular types.
Bond:

* Mode

e Transmit hash

e Up delay

e Down delay

* MII frequency

* MII state

* Lower devices
Bridge:

« ID

» Forward delay

e STP mode
Default VLAN
VLAN filtering

» Upper devices

250 Chapter 2. Project and community



LXD

resources_cpu_isolated

Add an Isolated property on CPU threads to indicate if the thread is physically Online but is configured not to accept
tasks.

usedby_consistency
This extension indicates that UsedBy should now be consistent with suitable ?project= and ?target= when appro-
priate.
The 5 entities that have UsedBy are:
* Profiles
* Projects
* Networks
* Storage pools

* Storage volumes

custom_block_volumes

This adds support for creating and attaching custom block volumes to instances. It introduces the new --type flag
when creating custom storage volumes, and accepts the values fs and block.

clustering_failure_domains

This extension adds a new failure_domain field to the PUT /1.0/cluster/<node> API, which can be used to set
the failure domain of a node.

container_syscall_filtering_allow_deny_syntax

A number of new syscalls related container configuration keys were updated.
e security.syscalls.deny_default
e security.syscalls.deny_compat
e security.syscalls.deny

e security.syscalls.allow

resources_gpu_mdev

Expose available mediated device profiles and devices in /1.0/resources.

2.9. REST API 251



LXD

console_vga_type
This extends the /1.0/console endpoint to take a ?type= argument, which can be set to console (default) or vga
(the new type added by this extension).

When doing a POST to /1.0/<instance name>/console?type=vga the data WebSocket returned by the operation
in the metadata field will be a bidirectional proxy attached to a SPICE Unix socket of the target virtual machine.

projects_limits_disk

Add limits.disk to the available project configuration keys. If set, it limits the total amount of disk space that
instances volumes, custom volumes and images volumes can use in the project.

network_type_macvlan
Adds support for additional network type macvlan and adds parent configuration key for this network type to specify
which parent interface should be used for creating NIC device interfaces on top of.

Also adds network configuration key support for macvlan NICs to allow them to specify the associated network of
the same type that they should use as the basis for the NIC device.

network_type_sriov
Adds support for additional network type sriov and adds parent configuration key for this network type to specify
which parent interface should be used for creating NIC device interfaces on top of.

Also adds network configuration key support for sriov NICs to allow them to specify the associated network of the
same type that they should use as the basis for the NIC device.

container_syscall_intercept_bpf_devices

This adds support to intercept the bpf syscall in containers. Specifically, it allows to manage device cgroup bpf
programs.

network_type_ovn

Adds support for additional network type ovn with the ability to specify a bridge type network as the parent.

Introduces a new NIC device type of ovn which allows the network configuration key to specify which ovn type
network they should connect to.

Also introduces two new global configuration keys that apply to all ovn networks and NIC devices:
* network.ovn.integration_bridge - the OVS integration bridge to use.

* network.ovn.northbound_connection - the OVN northbound database connection string.

252 Chapter 2. Project and community



LXD

projects_networks

Adds the features.networks configuration key to projects and the ability for a project to hold networks.

projects_networks_restricted_uplinks

Adds the restricted.networks.uplinks project configuration key to indicate (as a comma-delimited list) which
networks the networks created inside the project can use as their uplink network.

custom_volume_backup

Add custom volume backup support.

This includes the following new endpoints (see RESTful API for details):
e GET /1.0/storage-pools/<pool>/<type>/<volume>/backups
e POST /1.0/storage-pools/<pool>/<type>/<volume>/backups

e GET /1.0/storage-pools/<pool>/<type>/<volume>/backups/<name>

POST /1.0/storage-pools/<pool>/<type>/<volume>/backups/<name>

DELETE /1.0/storage-pools/<pool>/<type>/<volume>/backups/<name>
e GET /1.0/storage-pools/<pool>/<type>/<volume>/backups/<name>/export
The following existing endpoint has been modified:

* POST /1.0/storage-pools/<pool>/<type>/<volume> accepts the new source type backup

backup_override_name

Adds Name field to InstanceBackupArgs to allow specifying a different instance name when restoring a backup.

Adds Name and PoolName fields to StoragePoolVolumeBackupArgs to allow specifying a different volume name
when restoring a custom volume backup.

storage_rsync_compression

Adds rsync. compression configuration key to storage pools. This key can be used to disable compression in rsync
while migrating storage pools.

network_type_physical

Adds support for additional network type physical that can be used as an uplink for ovn networks.

The interface specified by parent on the physical network will be connected to the ovn network’s gateway.

2.9. REST API 253



LXD

network_ovn_external_subnets

Adds support for ovn networks to use external subnets from uplink networks.

Introduces the ipv4.routes and ipv6.routes setting on physical networks that defines the external routes allowed
to be used in child OVN networks in their ipv4.routes.external and ipv6.routes.external settings.

Introduces the restricted.networks. subnets project setting that specifies which external subnets are allowed to
be used by OVN networks inside the project (if not set then all routes defined on the uplink network are allowed).

network_ovn_nat

Adds support for ipv4.nat and ipv6.nat settings on ovn networks.

When creating the network if these settings are unspecified, and an equivalent IP address is being generated for the
subnet, then the appropriate NAT setting will added set to true.

If the setting is missing then the value is taken as false.
network_ovn_external_routes_remove

Removes the settings ipv4.routes.external and ipv6.routes.external from ovn networks.

The equivalent settings on the ovn NIC type can be used instead for this, rather than having to specify them both at the
network and NIC level.

tpm_device_type

This introduces the tpm device type.

storage_zfs_clone_copy_rebase

This introduces rebase as a value for zfs. clone_copy causing LXD to track down any image dataset in the ancestry
line and then perform send/receive on top of that.

gpu_mdev

This adds support for virtual GPUs. It introduces the mdev configuration key for GPU devices which takes a supported
mdev type, e.g. 1915-GVTg_V5_4.

resources_pci_iommu

This adds the IOMMUGroup field for PCI entries in the resources API.

254 Chapter 2. Project and community



LXD

resources_network_usb

Adds the usb_address field to the network card entries in the resources API.

resources_disk_address

Adds the usb_address and pci_address fields to the disk entries in the resources API.

network_physical_ovn_ingress_mode

Adds ovn.ingress_mode setting for physical networks.
Sets the method that OVN NIC external IPs will be advertised on uplink network.
Either 12proxy (proxy ARP/NDP) or routed.

network_ovn_dhcp

Adds ipv4.dhcp and ipv6.dhcp settings for ovn networks.
Allows DHCP (and RA for IPv6) to be disabled. Defaults to on.

network_physical_routes_anycast
Adds ipv4.routes.anycast and ipv6.routes.anycast Boolean settings for physical networks. Defaults to
false.

Allows OVN networks using physical network as uplink to relax external subnet/route overlap detection when used
with ovn.ingress_mode=routed.

projects_limits_instances

Adds limits.instances to the available project configuration keys. If set, it limits the total number of instances
(VMs and containers) that can be used in the project.

network_state_vlan

This adds a vlan section to the /1.0/networks/NAME/state APL
Those contain additional state information relevant to VLAN interfaces:
¢ lower_device

e vid

2.9. REST API 255



LXD

instance_nic_bridged_port_isolation

This adds the security.port_isolation field for bridged NIC instances.

instance_bulk_state_change

Adds the following endpoint for bulk state change (see RESTful API for details):
* PUT /1.0/instances

network_gvrp

This adds an optional gvrp property to macvlan and physical networks, and to ipvlan, macvlan, routed and
physical NIC devices.

When set, this specifies whether the VLAN should be registered using GARP VLAN Registration Protocol. Defaults
to false.

instance_pool_move

This adds a pool field to the POST /1.0/instances/NAME API, allowing for easy move of an instance root disk
between pools.

gpu_sriov

This adds support for SR-IOV enabled GPUs. It introduces the sriov GPU type property.

pci_device_type

This introduces the pci device type.

storage_volume_state

Add new /1.0/storage-pools/POOL/volumes/VOLUME/state API endpoint to get usage data on a volume.

network_acl

This adds the concept of network ACLs to API under the API endpoint prefix /1.0/network-acls.

migration_stateful

Add anew migration.stateful configuration key.

256 Chapter 2. Project and community



LXD

disk_state_quota

This introduces the size.state device configuration key on disk devices.

storage_ceph_features

Adds anew ceph.rbd. features configuration key on storage pools to control the RBD features used for new volumes.

projects_compression

Adds new backups.compression_algorithm and images.compression_algorithm configuration keys which
allows configuration of backup and image compression per-project.

projects_images_remote_cache_expiry

Add new images.remote_cache_expiry configuration key to projects, allowing for set number of days after which
an unused cached remote image will be flushed.

certificate_project

Adds a new restricted property to certificates in the API as well as projects holding a list of project names that
the certificate has access to.

network_ovn_acl

Adds a new security.acls property to OVN networks and OVN NICs, allowing Network ACLs to be applied.

projects_images_auto_update

Adds new images.auto_update_cached and images.auto_update_interval configuration keys which allows
configuration of images auto update in projects

projects_restricted_cluster_target

Adds new restricted.cluster.target configuration key to project which prevent the user from using —target to
specify what cluster member to place a workload on or the ability to move a workload between members.

images_default_architecture

Adds new images.default_architecture global configuration key and matching per-project key which lets user
tell LXD what architecture to go with when no specific one is specified as part of the image request.

2.9. REST API 257



LXD

network_ovn_acl_defaults
Adds new security.acls.default.{in,e}gress.action and security.acls.default.{in,e}gress.

logged configuration keys for OVN networks and NICs. This replaces the removed ACL default.action and
default.logged keys.

gpu_mig

This adds support for NVIDIA MIG. It introduces the mig GPU type and associated configuration keys.

project_usage

Adds an API endpoint to get current resource allocations in a project. Accessible at API GET /1.0/projects/
<name>/state.

network_bridge_acl

Adds a new security.acls configuration key to bridge networks, allowing Network ACLs to be applied.

Also adds security.acls.default.{in,e}gress.action and security.acls.default.{in,e}gress.
logged configuration keys for specifying the default behavior for unmatched traffic.

warnings

Warning API for LXD.
This includes the following endpoints (see Restful API for details):
e GET /1.0/warnings
e GET /1.0/warnings/<uuid>
e PUT /1.0/warnings/<uuid>
e DELETE /1.0/warnings/<uuid>

projects_restricted_backups_and_snapshots

Adds new restricted.backups and restricted. snapshots configuration keys to project which prevents the user
from creation of backups and snapshots.

clustering_join_token

AddsPOST /1.0/cluster/members API endpoint for requesting a join token used when adding new cluster members
without using the trust password.

258 Chapter 2. Project and community



LXD

clustering_description

Adds an editable description to the cluster members.

server_trusted_proxy

This introduces support for core.https_trusted_proxy which has LXD parse a HAProxy style connection header
on such connections and if present, will rewrite the request’s source address to that provided by the proxy server.

clustering_update_cert

Adds PUT /1.0/cluster/certificate endpoint for updating the cluster certificate across the whole cluster

storage_api_project

This adds support for copy/move custom storage volumes between projects.

server_instance_driver_operational

This modifies the driver output for the /1.0 endpoint to only include drivers which are actually supported and oper-
ational on the server (as opposed to being included in LXD but not operational on the server).

server_supported_storage_drivers

This adds supported storage driver info to server environment info.

event_lifecycle_requestor_address

Adds a new address field to 1ifecycle requestor.

resources_gpu_usb

Add a new USBAddress (usb_address) field to ResourcesGPUCard (GPU entries) in the resources API.

clustering_evacuation

Adds POST /1.0/cluster/members/<name>/state endpoint for evacuating and restoring cluster members. It also
adds the configuration keys cluster.evacuate and volatile.evacuate.origin for setting the evacuation method
(auto, stop or migrate) and the origin of any migrated instance respectively.

2.9. REST API 259



LXD

network_ovn_nat_address

This introduces the ipv4.nat.address and ipv6.nat.address configuration keys for LXD ovn networks. Those
keys control the source address used for outbound traffic from the OVN virtual network. These keys can only be
specified when the OVN network’s uplink network has ovn.ingress_mode=routed.

network_bgp

This introduces support for LXD acting as a BGP router to advertise routes to bridge and ovn networks.
This comes with the addition to global configuration of:
e core.bgp_address
e core.bgp_asn
e core.bgp_routerid
The following network configurations keys (bridge and physical):
¢ bgp.peers.<name>.address
* bgp.peers.<name>.asn
* bgp.peers.<name>.password
The nexthop configuration keys (bridge):
* bgp.ipv4.nexthop
* bgp.ipv6.nexthop
And the following NIC-specific configuration keys (bridged NIC type):
e ipv4d.routes.external

e ipv6.routes.external

network_forward

This introduces the networking address forward functionality. Allowing for bridge and ovn networks to define external
IP addresses that can be forwarded to internal IP(s) inside their respective networks.

custom_volume_refresh

Adds support for refresh during volume migration.

network_counters_errors_dropped

This adds the received and sent errors as well as inbound and outbound dropped packets to the network counters.

260 Chapter 2. Project and community



LXD

metrics

This adds metrics to LXD. It returns metrics of running instances using the OpenMetrics format.
This includes the following endpoints:

e GET /1.0/metrics

image_source_project

Adds a new project field to POST /1.0/images allowing for the source project to be set at image copy time.

clustering_config

Adds new config property to cluster members with configurable key/value pairs.

network_peer

This adds network peering to allow traffic to flow between OVN networks without leaving the OVN subsystem.

linux_sysctl

Adds new linux.sysctl.* configuration keys allowing users to modify certain kernel parameters within containers.

network_dns

Introduces a built-in DNS server and zones API to provide DNS records for LXD instances.
This introduces the following server configuration key:
e core.dns_address
The following network configuration key:
* dns.zone. forward
* dns.zone.reverse.ipv4
¢ dns.zone.reverse.ipv6
And the following project configuration key:
* restricted.networks.zones
A new REST API is also introduced to manage DNS zones:
e /1.0/network-zones (GET, POST)
e /1.0/network-zones/<name> (GET, PUT, PATCH, DELETE)

2.9. REST API 261



LXD

ovn_nic_acceleration

Adds new acceleration configuration key to OVN NICs which can be used for enabling hardware offloading. It
takes the values none or sriov.

certificate_self_renewal

This adds support for renewing a client’s own trust certificate.

instance_project_move

This adds a project field to the POST /1.0/instances/NAME API, allowing for easy move of an instance between
projects.

storage_volume_project_move

This adds support for moving storage volume between projects.

cloud_init

This adds a new cloud-init configuration key namespace which contains the following keys:
* cloud-init.vendor-data
e cloud-init.user-data
e cloud-init.network-config

It also adds a new endpoint /1.0/devices to devlxd which shows an instance’s devices.

network_dns_nat

This introduces network.nat as a configuration option on network zones (DNS).

It defaults to the current behavior of generating records for all instances NICs but if set to false, it will instruct LXD
to only generate records for externally reachable addresses.

database_leader

Adds new database-1leader role which is assigned to cluster leader.

instance_all_projects

This adds support for displaying instances from all projects.

262 Chapter 2. Project and community



LXD

clustering_groups

Add support for grouping cluster members.
This introduces the following new endpoints:

e /1.0/cluster/groups (GET, POST)

e /1.0/cluster/groups/<name> (GET, POST, PUT, PATCH, DELETE)
The following project restriction is added:

e restricted.cluster.groups

ceph_rbd_du

Adds a new ceph.rbd.du Boolean on Ceph storage pools which allows disabling the use of the potentially slow rbd
du calls.

instance_get_full

This introduces a new recursion=1 mode for GET /1.0/instances/{name} which allows for the retrieval of all
instance structs, including the state, snapshots and backup structs.

gemu_metrics

This adds a new security.agent.metrics Boolean which defaults to true. When set to false, it doesn’t connect
to the 1xd-agent for metrics and other state information, but relies on stats from QEMU.

gpu_mig_uuid

Adds support for the new MIG UUID format used by NVIDIA 470+ drivers (for example,
MIG-74c6a3la-fde5-5c61-973b-70e12346c202), the MIG- prefix can be omitted

This extension supersedes old mig.gi and mig.ci parameters which are kept for compatibility with old drivers and
cannot be set together.

event_project

Expose the project an API event belongs to.

clustering_evacuation_live

This adds 1ive-migrate as a configuration option to cluster.evacuate, which forces live-migration of instances
during cluster evacuation.

2.9. REST API 263



LXD

instance_allow_inconsistent_copy

Adds allow_inconsistent field to instance source on POST /1.0/instances. If true, rsync will ignore the
Partial transfer due to vanished source files (code 24) error when creating an instance from a copy.

network_state_ovn

This adds an ovn section to the /1.0/networks/NAME/state API which contains additional state information rele-
vant to OVN networks:

e chassis
storage_volume_api_filtering

Adds support for filtering the result of a GET request for storage volumes.

image_restrictions

This extension adds on to the image properties to include image restrictions/host requirements. These requirements
help determine the compatibility between an instance and the host system.

storage_zfs_export

Introduces the ability to disable zpool export when unmounting pool by setting zfs.export.

network_dns_records

This extends the network zones (DNS) API to add the ability to create and manage custom records.
This adds:
* GET /1.0/network-zones/ZONE/records

POST /1.0/network-zones/ZONE/records

GET /1.0/network-zones/ZONE/records/RECORD

PUT /1.0/network-zones/ZONE/records/RECORD

PATCH /1.0/network-zones/ZONE/records/RECORD

DELETE /1.0/network-zones/ZONE/records/RECORD

storage_zfs_reserve_space

Adds ability to set the reservation/refreservation ZFS property along with quota/refquota.

264 Chapter 2. Project and community



LXD

network_acl_log

Adds anew GET /1.0/networks-acls/NAME/log API to retrieve ACL firewall logs.

storage_zfs_blocksize

Introduces a new zfs.blocksize property for ZFS storage volumes which allows to set volume block size.

metrics_cpu_seconds

This is used to detect whether LXD was fixed to output used CPU time in seconds rather than as milliseconds.

instance_snapshot_never

Adds a @never option to snapshots. schedule which allows disabling inheritance.

certificate_token

This adds token-based certificate addition to the trust store as a safer alternative to a trust password.

It adds the token field to POST /1.0/certificates.

instance_nic_routed_neighbor_probe

This adds the ability to disable the routed NIC IP neighbor probing for availability on the parent network.

Adds the ipv4.neighbor_probe and ipv6.neighbor_probe NIC settings. Defaulting to true if not specified.
event_hub

This adds support for event-hub cluster member role and the ServerEventMode environment field.

agent_nic_config

If set to true, on VM start-up the 1xd-agent will apply NIC configuration to change the names and MTU of the
instance NIC devices.

projects_restricted_intercept

Adds new restricted.container.intercept configuration key to allow usually safe system call interception op-
tions.

2.9. REST API 265



LXD

metrics_authentication

Introduces a new core.metrics_authentication server configuration option to allow for the /1.0/metrics end-
point to be generally available without client authentication.

images_target_project

Adds ability to copy image to a project different from the source.

cluster_migration_inconsistent_copy

Adds allow_inconsistent field to POST /1.0/instances/<name>. Set to true to allow inconsistent copying
between cluster members.

cluster_ovn_chassis

Introduces a new ovn-chassis cluster role which allows for specifying what cluster member should act as an OVN
chassis.

container_syscall_intercept_sched_setscheduler

Adds the security.syscalls.intercept.sched_setscheduler to allow advanced process priority management
in containers.

storage_lvm_thinpool_metadata_size

Introduces the ability to specify the thin pool metadata volume size via storage.thinpool_metadata_size.
If this is not specified then the default is to let LVM pick an appropriate thin pool metadata volume size.
storage_volume_state_total

This adds total field to the GET /1.0/storage-pools/{name}/volumes/{type}/{volume}/state APL

instance_file_head

Implements HEAD on /1.0/instances/NAME/file.

resources_pci_vpd

Adds a new VPD struct to the PCI resource entries. This struct extracts vendor provided data including the full product
name and additional key/value configuration pairs.

266 Chapter 2. Project and community



LXD

gemu_raw_conf

Introduces a raw.gemu. conf configuration key to override select sections of the generated qemu. conf.

storage_cephfs_fscache

Add support for £scache/cachefilesd on CephFS pools through a new cephfs. fscache configuration option.

vsock_api

This introduces a bidirectional vsock interface which allows the 1xd-agent and the LXD server to communicate
better.

storage_volumes_all_projects

This introduces the ability to list storage volumes from all projects.

projects_networks_restricted_access

Adds the restricted.networks.access project configuration key to indicate (as a comma-delimited list) which
networks can be accessed inside the project. If not specified, all networks are accessible (assuming it is also allowed
by the restricted.devices.nic setting, described below).

This also introduces a change whereby network access is controlled by the project’s restricted.devices.nic set-
ting:

e If restricted.devices.nic is set to managed (the default if not specified), only managed networks are ac-
cessible.

e If restricted.devices.nic is set to allow, all networks are accessible (dependent on the restricted.
networks.access setting).

e If restricted.devices.nic is set to block, no networks are accessible.
cluster_join_token_expiry

This adds an expiry to cluster join tokens which defaults to 3 hours, but can be changed by setting the cluster.
join_token_expiry configuration key.

remote_token_expiry

This adds an expiry to remote add join tokens. It can be set in the core.remote_token_expiry configuration key,
and default to no expiry.

2.9. REST API 267



LXD

cpu_hotplug

This adds CPU hotplugging for VMs. Hotplugging is disabled when using CPU pinning, because this would require
hotplugging NUMA devices as well, which is not possible.

storage_pool_source_wipe

Adds support for a source.wipe Boolean on the storage pool, indicating that LXD should wipe partition headers off
the requested disk rather than potentially fail due to pre-existing file systems.

zfs_block_mode

This adds support for using ZFS block volumes allowing the use of different file systems on top of ZFS.
This adds the following new configuration options for ZFS storage pools:

* volume.zfs.block_mode

¢ volume.block.mount_options

e volume.block.filesystem
instance_generation_id
Adds support for instance generation ID. The VM or container generation ID will change whenever the instance’s place

in time moves backwards. As of now, the generation ID is only exposed through to VM type instances. This allows for
the VM guest OS to reinitialize any state it needs to avoid duplicating potential state that has already occurred:

e volatile.uuid.generation
disk_io_cache

This introduces a new io.cache property to disk devices which can be used to override the VM caching behavior.

storage_pool_loop_resize

This allows growing loop file backed storage pools by changing the size setting of the pool.

migration_vm_live

This adds support for performing VM QEMU to QEMU live migration for both shared storage (clustered Ceph) and
non-shared storage pools.

This also adds the CRIUType_VM_QEMU value of 3 for the migration CRIUType protobuf field.

268 Chapter 2. Project and community



LXD

auth_user

Add current user details to the main API endpoint.

instances_state_total

This extension adds a new total field to InstanceStateDisk and InstanceStateMemory, both part of the in-
stance’s state API.

numa_cpu_placement

This adds the possibility to place a set of CPUs in a desired set of NUMA nodes.
This adds the following new configuration key:

e limits.cpu.nodes : (string) comma-separated list of NUMA node IDs or NUMA node ID ranges to place the
CPUs (chosen with a dynamic value of 1imits.cpu) in.

network_allocations

This adds the possibility to list a LXD deployment’s network allocations.

Through the 1xc network list-allocations command and the --project <PROJECT> | --all-projects
flags, you can list all the used IP addresses, hardware addresses (for instances), resource URIs and whether it uses NAT
for each instance, network, and network forward.

storage_api_remote_volume_snapshot_copy

This allows copying storage volume snapshots to and from remotes.

zfs_delegate
This implements a new zfs.delegate volume Boolean for volumes on a ZFS storage driver. When enabled and a

suitable system is in use (requires ZFS 2.2 or higher), the ZFS dataset will be delegated to the container, allowing for
its use through the zfs command line tool.

operations_get_query_all_projects

This introduces support for the all-projects query parameter for the GET API calls to both /1.0/operations and
/1.0/operations?recursion=1. This parameter allows bypassing the project name filter.

2.9. REST API 269



LXD

event_lifecycle_name_and_project

This adds the fields Name and Project to 1lifecycle events.

instances_nic_limits_priority

This introduces a new per-NIC limits.priority option that works with both cgroupl and cgroup?2 unlike the dep-
recated 1imits.network.priority instance setting, which only worked with cgroupl.

operation_wait

This API extension indicates that the /1.0/operations/{id}/wait endpoint exists on the server. This indicates to
the client that the endpoint can be used to wait for an operation to complete rather than waiting for an operation event
via the /1.0/events endpoint.

cluster_internal_custom_volume_copy

This extension adds support for copying and moving custom storage volumes within a cluster with a single API
call. Calling POST /1.0/storage-pools/<pool>/custom?target=<target> will copy the custom volume
specified in the source part of the request. Calling POST /1.0/storage-pools/<pool>/custom/<volume>?
target=<target> will move the custom volume from the source, specified in the source part of the request, to
the target.

instance_move_config

This API extension provides the ability to use flags --profile, --no-profile, --device, and --config when
moving an instance between projects and/or storage pools.

server_instance_type_info
This API extension enables querying a server’s supported instance types. When querying the /1.0 endpoint, a new

field named instance_types is added to the retrieved data. This field indicates which instance types are supported
by the server.

server_version_lts

The API extension adds indication whether the LXD version is an LTS release. This is indicated when command 1xc
version is executed or when /1.0 endpoint is queried.

instances_files_modify_permissions

Adds the ability for POST /1.0/instances/{name}/files to modify the permissions of files that already exist via
the X-LXD-modify-perm header.

X-LXD-modify-perm should be a comma-separated list of 0 or more of mode, uid, and gid.

270 Chapter 2. Project and community



LXD

image_restriction_nesting

This extension adds a new image restriction, requirements.nesting which when true indicates that an image
cannot be run without nesting.

2.9.4 Communication between instance and host

Communication between the hosted workload (instance) and its host while not strictly needed is a pretty useful feature.
In LXD, this feature is implemented through a /dev/1xd/sock node which is created and set up for all LXD instances.

This file is a Unix socket which processes inside the instance can connect to. It’s multi-threaded so multiple clients can
be connected at the same time.

Note: security.devlxd must be set to true (which is the default) for an instance to allow access to the socket.

Implementation details

LXD on the host binds /var/lib/1xd/dev1xd/sock and starts listening for new connections on it.
This socket is then exposed into every single instance started by LXD at /dev/1xd/sock.

The single socket is required so we can exceed 4096 instances, otherwise, LXD would have to bind a different socket
for every instance, quickly reaching the FD limit.

Authentication

Queries on /dev/1xd/sock will only return information related to the requesting instance. To figure out where a
request comes from, LXD will extract the initial socket’s user credentials and compare that to the list of instances it
manages.

Protocol
The protocol on /dev/1xd/sock is plain-text HTTP with JSON messaging, so very similar to the local version of the
LXD protocol.

Unlike the main LXD API, there is no background operation and no authentication support in the /dev/1xd/sock
APIL.

REST-API

API structure

*/
- /1.0
% /1.0/config
- /1.0/config/{key}
* /1.0/devices

2.9. REST API 271



LXD

* /1.0/events
% /1.0/images/{fingerprint}/export

* /1.0/meta-data

API details

GET

* Description: List of supported APIs
* Return: list of supported API endpoint URLs (by default ['/1.0'])

Return value:

[
"/1.0"

]

/1.0

GET

* Description: Information about the 1.0 API
* Return: JSON object

Return value:

{
"api_version": "1.0"

¥

/1.0/config

GET

 Description: List of configuration keys
 Return: list of configuration keys URL

Note that the configuration key names match those in the instance configuration, however not all configuration names-
paces will be exported to /dev/1xd/sock. Currently only the cloud-init.* and user. * keys are accessible to the
instance.

At this time, there also aren’t any instance-writable namespace.

Return value:

272 Chapter 2. Project and community



LXD

"/1.0/config/user.a"

/1.0/config/<KEY>
GET

* Description: Value of that key
* Return: Plain-text value

Return value:

[blah

/1.0/devices

GET

* Description: Map of instance devices
* Return: JSON object

Return value:

{
"eth®": {
"name": "eth0",
"network": "lxdbr0",
"type": "nic"
}7
"root": {
"path": "/",
"pool": "default",
"type": "disk"
}
}

/1.0/events
GET

* Description: WebSocket upgrade
e Return: none (never ending flow of events)
Supported arguments are:
* type: comma-separated list of notifications to subscribe to (defaults to all)

The notification types are:

2.9. REST API 273



LXD

» config (changes to any of the user.* configuration keys)
* device (any device addition, change or removal)

This never returns. Each notification is sent as a separate JSON object:

{
"timestamp": "2017-12-21T18:28:26.846603815-05:00",
"type": "device",

"metadata": {
"name": "kvm",
"action": "added",
"config": {
"type": "unix-char",
"path": "/dev/kvm"

"timestamp": "2017-12-21T18:28:26.846603815-05:00",
"type": "config",
"metadata": {

"key": "user.foo",

"old_value": s
"value": "bar"

/1.0/images/<FINGERPRINT>/export

GET

* Description: Download a public/cached image from the host
e Return: raw image or error
* Access: Requires security.devlxd.images set to true

Return value:

[See /1.0/images/<FINGERPRINT>/export in the daemon API.

/1.0/meta-data

GET

* Description: Container meta-data compatible with cloud-init
* Return: cloud-init meta-data

Return value:

274 Chapter 2.

Project and community




LXD

#cloud-config
instance-id: af6a01c7-£847-4688-a2a4-37£fddd744625
local-hostname: abc

2.9.5 Events

Introduction

Events are messages about actions that have occurred over LXD. Using the API endpoint /1.0/events directly or via
1xc monitor will connect to a WebSocket through which logs and life-cycle messages will be streamed.

Event types

LXD Currently supports three event types.
* logging: Shows all logging messages regardless of the server logging level.

e operation: Shows all ongoing operations from creation to completion (including updates to their state and
progress metadata).

e lifecycle: Shows an audit trail for specific actions occurring over LXD.

Event structure

Example

location: cluster_name

metadata:
action: network-updated
requestor:

protocol: unix
username: root
source: /1.0/networks/lxdbr®
timestamp: "2021-03-14T00:00:00Z"
type: lifecycle

¢ location: The cluster member name (if clustered).
e timestamp: Time that the event occurred in RFC3339 format.
» type: The type of event this is (one of 1logging, operation, or lifecycle).

* metadata: Information about the specific event type.

2.9. REST API 275



LXD

Logging event structure

* message: The log message.
* level: The log-level of the log.

e context: Additional information included in the event.

Operation event structure

e id: The UUID of the operation.

* class: The type of operation (task, token, or websocket).
* description: A description of the operation.

e created_at: The operation’s creation date.

* updated_at: The operation’s date of last change.

e status: The current state of the operation.

* status_code: The operation status code.

* resources: Resources affected by this operation.

* metadata: Operation specific metadata.

* may_cancel: Whether the operation may be canceled.
e err: Error message of the operation.

¢ location: The cluster member name (if clustered).

Life-cycle event structure

e action: The life-cycle action that occurred.
e requestor: Information about who is making the request (if applicable).
* source: Path to what is being acted upon.

e context: Additional information included in the event.

Supported life-cycle events

Name Description

certificate-created A new certificate has been added to the server trust store.
certificate-deleted The certificate has been deleted from the trust store.
certificate-updated The certificate’s configuration has been updated.
cluster-certificate-updated The certificate for the whole cluster has changed.
cluster-disabled Clustering has been disabled for this machine.
cluster-enabled Clustering has been enabled for this machine.
cluster-group-created A new cluster group has been created.
cluster-group-deleted A cluster group has been deleted.
cluster-group-renamed A cluster group has been renamed.
cluster-group-updated A cluster group has been updated.

276 Chapter 2. Project and community



L

XD

Table 3 — continued from previous page

Name Description Additiona
cluster-member-added A new machine has joined the cluster.

cluster-member-removed The cluster member has been removed from the cluster.
cluster-member-renamed The cluster member has been renamed. old_name
cluster-member-updated The cluster member’s configuration been edited.

cluster-token-created A join token for adding a cluster member has been created.

config-updated The server configuration has changed.

image-alias-created An alias has been created for an existing image. target: t
image-alias-deleted An alias has been deleted for an existing image. target: t
image-alias-renamed The alias for an existing image has been renamed. old_name
image-alias-updated The configuration for an image alias has changed. target: t
image-created A new image has been added to the image store. type: cor
image-deleted The image has been deleted from the image store.

image-refreshed The local image copy has updated to the current source image version.
image-retrieved The raw image file has been downloaded from the server. target: d
image-secret-created A one-time key to fetch this image has been created.

image-updated The image’s configuration has changed.

instance-backup-created A backup of the instance has been created.

instance-backup-deleted The instance backup has been deleted.

instance-backup-renamed The instance backup has been renamed. old_name
instance-backup-retrieved The raw instance backup file has been downloaded.

instance-console Connected to the console of the instance. type: cor
instance-console-reset The console buffer has been reset.

instance-console-retrieved The console log has been downloaded.

instance-created A new instance has been created.

instance-deleted The instance has been deleted.

instance-exec A command has been executed on the instance. command:
instance-file-deleted A file on the instance has been deleted. file: patl
instance-file-pushed The file has been pushed to the instance. file-sou
instance-file-retrieved The file has been downloaded from the instance. file-sou
instance-log-deleted The instance’s specified log file has been deleted.

instance-log-retrieved The instance’s specified log file has been downloaded.
instance-metadata-retrieved The instance’s image metadata has been downloaded.
instance-metadata-template-created A new image template file for the instance has been created. path: rela
instance-metadata-template-deleted The image template file for the instance has been deleted. path: rela
instance-metadata-template-retrieved The image template file for the instance has been downloaded. path: rela
instance-metadata-updated The instance’s image metadata has changed.

instance-paused The instance has been put in a paused state.

instance-renamed The instance has been renamed. old_name
instance-restarted The instance has restarted.

instance-restored The instance has been restored from a snapshot. snapshot
instance-resumed The instance has resumed after being paused.

instance-shutdown The instance has shut down.

instance-snapshot-created A snapshot of the instance has been created.

instance-snapshot-deleted The instance snapshot has been deleted.

instance-snapshot-renamed The instance snapshot has been renamed. old_name

instance-snapshot-updated

instance-started
instance-stopped
instance-updated
network-acl-created

The instance snapshot’s configuration has changed.
The instance has started.

The instance has stopped.

The instance’s configuration has changed.

A new network ACL has been created.

2.9. REST API

277



LXD

Table 3 — continued from previous page

Name Description Additiona
network-acl-deleted The network ACL has been deleted.

network-acl-renamed The network ACL has been renamed. old_name
network-acl-updated The network ACL configuration has changed.

network-created A network device has been created.

network-deleted The network device has been deleted.

network-forward-created A new network forward has been created.

network-forward-deleted The network forward has been deleted.

network-forward-updated The network forward has been updated.

network-peer-created A new network peer has been created.

network-peer-deleted The network peer has been deleted.

network-peer-updated The network peer has been updated.

network-renamed The network device has been renamed. old_name
network-updated The network device’s configuration has changed.

network-zone-created A new network zone has been created.

network-zone-deleted The network zone has been deleted.

network-zone-record-created A new network zone record has been created.

network-zone-record-deleted The network zone record has been deleted.

network-zone-record-updated The network zone record has been updated.

network-zone-updated The network zone has been updated.

operation-cancelled The operation has been canceled.

profile-created A new profile has been created.

profile-deleted The profile has been deleted.

profile-renamed The profile has been renamed . old_name
profile-updated The profile’s configuration has changed.

project-created A new project has been created.

project-deleted The project has been deleted.

project-renamed The project has been renamed. old_name
project-updated The project’s configuration has changed.

storage-pool-created A new storage pool has been created. target: c
storage-pool-deleted The storage pool has been deleted.

storage-pool-updated The storage pool’s configuration has changed. target: c
storage-volume-backup-created A new backup for the storage volume has been created. type: con
storage-volume-backup-deleted The storage volume’s backup has been deleted.
storage-volume-backup-renamed The storage volume’s backup has been renamed. old_name
storage-volume-backup-retrieved The storage volume’s backup has been downloaded.

storage-volume-created A new storage volume has been created. type: cor
storage-volume-deleted The storage volume has been deleted.

storage-volume-renamed The storage volume has been renamed. old_name
storage-volume-restored The storage volume has been restored from a snapshot. snapshot
storage-volume-snapshot-created A new storage volume snapshot has been created. type: con
storage-volume-snapshot-deleted The storage volume’s snapshot has been deleted.
storage-volume-snapshot-renamed The storage volume’s snapshot has been renamed. old_name

storage-volume-snapshot-updated

storage-volume-updated
warning-acknowledged
warning-deleted
warning-reset

The configuration for the storage volume’s snapshot has changed.

The storage volume’s configuration has changed.

The warning’s status has been set to “acknowledged”.
The warning has been deleted.

The warning’s status has been set to “new”.

278

Chapter 2. Project and community



LXD

2.9.6 Metrics

LXD collects metrics for all running instances. These metrics cover the CPU, memory, network, disk and process
usage. They are meant to be consumed by Prometheus, and you can use Grafana to display the metrics as graphs.

In cluster environments, LXD will only return the values for instances running on the server being accessed. It’s
expected that each cluster member will be scraped separately.

The instance metrics are updated when calling the /1.0/metrics endpoint. They are cached for 8s to handle multiple
scrapers. Fetching metrics is a relatively expensive operation for LXD to perform so consider scraping at a higher than
default interval if the impact is too high.

Create metrics certificate

The /1.0/metrics endpoint is a special one as it also accepts a metrics type certificate. This kind of certificate is
meant for metrics only, and won’t work for interaction with instances or any other LXD entities.

Here’s how to create a new certificate (this is not specific to metrics):

openssl req -x509 -newkey ec -pkeyopt ec_paramgen_curve:secp384rl -sha384 -keyout.
—metrics.key -nodes -out metrics.crt -days 3650 -subj "/CN=metrics.local"

Note: OpenSSL version 1.1.0+ is required for the above command to generate a proper certificate.

Now, this certificate needs to be added to the list of trusted clients:

[1xc config trust add metrics.crt --type=metrics

Add target to Prometheus

In order for Prometheus to scrape from LXD, it has to be added to the targets.

First, one needs to ensure that core.https_address is set so LXD can be reached over the network. This can be
done by running:

[lxc config set core.https_address ":8443"

Alternatively, one can use core.metrics_address which is intended for metrics only.

Second, the newly created certificate and key, as well as the LXD server certificate need to be accessible to Prometheus.
For this, these three files can be copied to /etc/prometheus/tls:

# Create new tls directory
mkdir /etc/prometheus/tls

# Copy newly created certificate and key to tls directory
cp metrics.crt metrics.key /etc/prometheus/tls

# Copy LXD server certificate to tls directory
cp /var/snap/lxd/common/lxd/server.crt /etc/prometheus/tls

# Make sure Prometheus can read these files (usually, Prometheus is run as user
— "prometheus")
chown -R prometheus:prometheus /etc/prometheus/tls

2.9. REST API 279



LXD

Lastly, LXD has to be added as target. For this, /etc/prometheus/prometheus.yaml needs to be edited. Here’s
what the configuration needs to look like:

scrape_configs:
- job_name: 1xd

metrics_path: '/1.0/metrics'’

scheme: 'https'

static_configs:
- targets: ['foo.example.com:8443']

tls_config:
ca_file: 'tls/server.crt'
cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
# XXX: server_name is required if the target name
# is not covered by the certificate (not in the SAN 1list)
server_name: 'foo'

In the above example, /etc/prometheus/tls/server.crt looks like:

user@host:~$ openssl x509 -noout -text -in /etc/prometheus/tls/server.crt ... X509v3
Subject Alternative Name: DNS:foo, IP Address:127.0.0.1, IP Address:0:0:0:0:0:0:0:1..

Since the Subject Alternative Name (SAN) list doesn’t include the host name provided in the targets list, it is
required to override the name used for comparison using the server_name directive.

Here is an example of a prometheus.yaml configuration where multiple jobs are used to scrape the metrics of multiple
LXD servers:

scrape_configs:

# abydos, langara and orilla are part of a single cluster (called “hdc" here)
initially bootstrapped by abydos which is why all 3 targets
share the same ‘ca_file  and ‘server_name . That ‘ca_file corresponds
to the ‘/var/snap/lxd/common/lxd/cluster.crt’ file found on every member of
the LXD cluster.

Note: the ‘project’ param is are provided when not using the ‘default” project
or when multiple projects are used.

Note: each member of the cluster only provide metrics for instances it runs locally
this is why the ‘lxd-hdc' cluster lists 3 targets
job_name: "lxd-hdc"
metrics_path: '/1.0/metrics'’
params:
project: ['jdoe']
scheme: 'https'
static_configs:
- targets:
- 'abydos.hosts.example.net:8444"'
- 'langara.hosts.example.net:8444"'
- 'orilla.hosts.example.net:8444"'
tls_config:
ca_file: 'tls/abydos.crt'
cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
server_name: 'abydos'

HoH R W W W W W R W

(continues on next page)

280 Chapter 2. Project and community




LXD

(continued from previous page)

# jupiter, mars and saturn are 3 standalone LXD servers.
# Note: only the ‘default’ project is used on them, so it is not specified.
- job_name: "l1xd-jupiter"
metrics_path: '/1.0/metrics'’
scheme: 'https'
static_configs:
- targets: ['jupiter.example.com:9101']
tls_config:
ca_file: 'tls/jupiter.crt'
cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
server_name: 'jupiter'

- job_name: "lxd-mars"

metrics_path: '/1.0/metrics'’

scheme: 'https'

static_configs:
- targets: ['mars.example.com:9101']

tls_config:
ca_file: 'tls/mars.crt'
cert_file: 'tls/metrics.crt’
key_file: 'tls/metrics.key'
server_name: 'mars'

- job_name: "lxd-saturn"
metrics_path: '/1.0/metrics'
scheme: 'https'
static_configs:
- targets: ['saturn.example.com:9101']
tls_config:
ca_file: 'tls/saturn.crt'
cert_file: 'tls/metrics.crt’
key_file: 'tls/metrics.key'
server_name: 'saturn'

Provided instance metrics

The following instance metrics are provided:
¢ 1xd_cpu_seconds_total{cpu="<cpu>", mode="<mode>"}
e 1xd_disk_read_bytes_total{device="<dev>"}
e 1xd_disk_reads_completed_total{device="<dev>"}
e 1xd_disk written_bytes_total{device="<dev>"}
e 1xd_disk writes_completed_total{device="<dev>"}
e 1xd_filesystem_avail_bytes{device="<dev>", fstype="<type>"}
e 1xd_filesystem_free_bytes{device="<dev>", fstype="<type>"}
e 1xd_filesystem_size_bytes{device="<dev>", fstype="<type>"}

¢ 1xd_memory_Active_anon_bytes

2.9. REST API 281




LXD

e 1xd_memory_Active_bytes

e 1xd_memory_Active_file_bytes

¢ 1xd_memory_Cached_bytes

e 1xd_memory_Dirty_bytes

¢ 1xd_memory_HugepagesFree_bytes

¢ 1xd_memory_HugepagesTotal_bytes

¢ 1xd_memory_Inactive_anon_bytes

e 1xd_memory_Inactive_bytes

e 1xd_memory_Inactive_file_bytes

¢ 1xd_memory_Mapped_bytes

e 1xd_memory_MemAvailable_bytes

e 1xd_memory_MemFree_bytes

e 1xd_memory_MemTotal_bytes

e 1xd_memory_OOM_kills_total

e 1xd_memory_RSS_bytes

¢ 1xd_memory_Shmem_bytes

¢ 1xd_memory_Swap_bytes

¢ 1xd_memory_Unevictable_bytes

¢ 1xd_memory_Writeback_bytes

e 1xd_network_receive_bytes_total{device="<dev>"}
¢ 1xd_network_receive_drop_total{device="<dev>"}

e 1xd_network_receive_errs_total{device="<dev>"}

e 1xd_network_receive_packets_total{device="<dev>"}
¢ 1xd_network_transmit_bytes_total{device="<dev>"}
¢ 1xd_network_transmit_drop_total{device="<dev>"}
e 1xd_network_transmit_errs_total{device="<dev>"}
e 1xd_network_transmit_packets_total{device="<dev>"}

e 1xd_procs_total

2.10 Internals & debugging

2.10.1 Container runtime environment

LXD attempts to present a consistent environment to all containers it runs.

The exact environment will differ slightly based on kernel features and user configuration, but otherwise, it is identical
for all containers.

282 Chapter 2. Project and community



LXD

File system

LXD assumes that any image it uses to create a new container comes with at least the following root-level directories:
* /dev (empty)
* /proc (empty)
e /sbin/init (executable)

* /sys (empty)

Devices
LXD containers have a minimal and ephemeral /dev based on a tmpf£s file system. Since this is a tmpfs and not a
devtmpfs file system, device nodes appear only if manually created.
The following standard set of device nodes is set up automatically:
e /dev/console
* /dev/fd
e /dev/full
e /dev/log
e /dev/null
e /dev/ptmx
e /dev/random
e /dev/stdin
* /dev/stderr
e /dev/stdout
o /dev/tty
e /dev/urandom
» /dev/zero
In addition to the standard set of devices, the following devices are also set up for convenience:
e /dev/fuse
e /dev/net/tun

e /dev/mqueue

Network

LXD containers may have any number of network devices attached to them. The naming for those (unless overridden
by the user) is ethX, where X is an incrementing number.

2.10. Internals & debugging 283



LXD

Container-to-host communication

LXD sets up a socket at /dev/1xd/sock that the root user in the container can use to communicate with LXD on the
host.

See Communication between instance and host for the API documentation.

Mounts

The following mounts are set up by default:

* /proc ()

¢ /sys (sysfs)

* /sys/fs/cgroup/* (cgroupfs) (only on kernels that lack cgroup namespace support)
If they are present on the host, the following paths will also automatically be mounted:

e /proc/sys/fs/binfmt_misc

e /sys/firmware/efi/efivars

e /sys/fs/fuse/connections

e /sys/fs/pstore

¢ /sys/kernel/debug

e /sys/kernel/security

The reason for passing all of those paths is that legacy init systems require them to be mounted, or be mountable, inside
the container.

The majority of those paths will not be writable (or even readable) from inside an unprivileged container. In privileged
containers, they will be blocked by the AppArmor policy.

LXCFS

If LXCEFS is present on the host, it is automatically set up for the container.

This normally results in a number of /proc files being overridden through bind-mounts. On older kernels, a virtual
version of /sys/fs/cgroup might also be set up by LXCFS.

PID1
LXD spawns whatever is located at /sbin/init as the initial process of the container (PID 1). This binary should act
as a proper init system, including handling re-parented processes.
LXD’s communication with PID1 in the container is limited to two signals:
» SIGINT to trigger a reboot of the container
e SIGPWR (or alternatively SIGRTMIN+3) to trigger a clean shutdown of the container

The initial environment of PID1 is blank except for container=1xc, which can be used by the init system to detect
the runtime.

All file descriptors above the default three are closed prior to PID1 being spawned.

284 Chapter 2. Project and community



LXD

2.10.2 Daemon behavior

Introduction

This specification covers some of the daemon’s behavior, such as reaction to given signals, crashes, ...

Startup
On every start, LXD checks that its directory structure exists. If it doesn’t, it’ll create the required directories, generate
a key pair and initialize the database.

Once the daemon is ready for work, LXD will scan the instances table for any instance for which the stored power state
differs from the current one. If an instance’s power state was recorded as running and the instance isn’t running, LXD
will start it.

Signal handling

SIGINT, SIGQUIT, SIGTERM

For those signals, LXD assumes that it’s being temporarily stopped and will be restarted at a later time to continue
handling the instances.

The instances will keep running and LXD will close all connections and exit cleanly.

SIGPWR

Indicates to LXD that the host is going down.
LXD will attempt a clean shutdown of all the instances. After 30s, it will kill any remaining instance.

The instance power_state in the instances table is kept as it was so that LXD after the host is done rebooting can
restore the instances as they were.

SIGUSR1

Write a memory profile dump to the file specified with --memprofile.

2.10.3 Database

Introduction

So first of all, why a database?

Rather than keeping the configuration and state within each instance’s directory as is traditionally done by LXC, LXD
has an internal database which stores all of that information. This allows very quick queries against all instances
configuration.

An example is the rather obvious question “what instances are using br®?”. To answer that question without a database,
LXD would have to iterate through every single instance, load and parse its configuration and then look at what network
devices are defined in there.

While that may be quick with a few instance, imagine how many file system access would be required for 2000 instances.
Instead with a database, it’s only a matter of accessing the already cached database with a pretty simple query.

2.10. Internals & debugging 285



LXD

Database engine

Since LXD supports clustering, and all members of the cluster must share the same database state, the database engine
is based on a distributed version of SQLite, which provides replication, fault-tolerance and automatic failover without
the need of external database processes. We refer to this database as the “global” LXD database.

Even when using LXD as single non-clustered node, the global database will still be used, although in that case it
effectively behaves like a regular SQLite database.

The files of the global database are stored under the . /database/global sub-directory of your LXD data directory
(e.g. /var/lib/1xd/database/global or /var/snap/lxd/common/lxd/database/global for snap users).

Since each member of the cluster also needs to keep some data which is specific to that member, LXD also uses a plain
SQLite database (the “local” database), which you can find in . /database/local.db.

Backups of the global database directory and of the local database file are made before upgrades, and are tagged with
the .bak suffix. You can use those if you need to revert the state as it was before the upgrade.

Dumping the database content or schema

If you want to get a SQL text dump of the content or the schema of the databases, use the 1xd sql <local|global>
[.dump| .schema] command, which produces the equivalent output of the .dump or .schema directives of the
sqlite3 command line tool.

Running custom queries from the console
If you need to perform SQL queries (e.g. SELECT, INSERT, UPDATE) against the local or global database, you can use
the 1xd sql command (run 1xd sql --help for details).

You should only need to do that in order to recover from broken updates or bugs. Please consult the LXD team first
(creating a GitHub issue or forum post).

Running custom queries at LXD daemon startup
In case the LXD daemon fails to start after an upgrade because of SQL data migration bugs or similar problems, it’s
possible to recover the situation by creating .sql files containing queries that repair the broken update.

To perform repairs against the local database, write a ./database/patch.local.sql file containing the relevant
queries, and similarly a . /database/patch.global.sql for global database repairs.

Those files will be loaded very early in the daemon startup sequence and deleted if the queries were successful (if they
fail, no state will change as they are run in a SQL transaction).

As above, please consult the LXD team first.
Syncing the cluster database to disk
If you want to flush the content of the cluster database to disk, use the 1xd sql global .sync command, that will

write a plain SQLite database file into . /database/global/db.bin, which you can then inspect with the sqlite3
command line tool.

286 Chapter 2. Project and community


https://github.com/canonical/dqlite
https://github.com/canonical/lxd/issues/new
https://discourse.ubuntu.com/c/lxd/

LXD

2.10.4 Debugging

For information on debugging instance issues, see How fo troubleshoot failing instances.

Debugging 1xc and 1xd
Here are different ways to help troubleshooting 1xc and 1xd code.
1xc --debug

Adding --debug flag to any client command will give extra information about internals. If there is no useful info, it
can be added with the logging call:

[logger .Debugf("Hello: %s", "Debug")

1xc monitor

This command will monitor messages as they appear on remote server.

REST API through local socket

On server side the most easy way is to communicate with LXD through local socket. This command accesses GET
/1.0 and formats JSON into human readable form using jq utility:

[curl --unix-socket /var/lib/lxd/unix.socket 1xd/1.0 | jq .

or for snap users:

[curl --unix-socket /var/snap/lxd/common/lxd/unix.socket 1xd/1.0 | jq . ]

See the RESTful API for available API.

REST API through HTTPS
HTTPS connection to LXD requires valid client certificate that is generated on first 1xc remote add. This certificate
should be passed to connection tools for authentication and encryption.

If desired, openss]1 can be used to examine the certificate (~/.config/1xc/client.crt or ~/snap/1lxd/common/
config/client.crt for snap users):

[openssl x509 -text -noout -in client.crt

Among the lines you should see:

Certificate purposes:
SSL client : Yes

2.10. Internals & debugging 287


https://stedolan.github.io/jq/tutorial/

LXD

With command line tools

wget --no-check-certificate --certificate=$HOME/.config/lxc/client.crt --private-key=
—$HOME/.config/lxc/client.key -qO0 - https://127.0.0.1:8443/1.0

# or for snap users
wget --no-check-certificate --certificate=$HOME/snap/lxd/common/config/client.crt --
—private-key=$HOME/snap/1xd/common/config/client.key -qO0 - https://127.0.0.1:8443/1.0

With browser

Some browser plugins provide convenient interface to create, modify and replay web requests. To authenticate against
LXD server, convert 1xc client certificate into importable format and import it into browser.

For example this produces client.pfx in Windows-compatible format:

[openssl pkcsl12 -clcerts -inkey client.key -in client.crt -export -out client.pfx ]

After that, opening https://127.0.0.1:8443/1.0 should work as expected.

2.10.5 Environment variables

Introduction

The LXD client and daemon respect some environment variables to adapt to the user’s environment and to turn some
advanced features on and off.

Common
Name Description
LXD_DIR The LXD data directory

LXD_INSECUR If set to true, allows all default Go ciphers both for client <-> server communication and server <->
image servers (server <-> server and clustering are not affected)

PATH List of paths to look into when resolving binaries

http_proxy Proxy server URL for HTTP

https_proxy Proxy server URL for HTTPS

no_proxy List of domains, IP addresses or CIDR ranges that don’t require the use of a proxy

Client environment variable

Name Description

EDITOR What text editor to use

VISUAL What text editor to use (if EDITOR isn’t set)

LXD_CONF Path to the LXC configuration directory

LXD_GLOBAL_CONF  Path to the global LXC configuration directory

LXC_REMOTE Name of the remote to use (overrides configured default remote)

288 Chapter 2. Project and community



https://127.0.0.1:8443/1.0

LXD

Server environment variable

Name Description

LXD_EXEC_P; Full path to the LXD binary (used when forking subcommands)

LXD_LXC_TE! Path to the LXC template configuration directory

LXD_SECURTI" If set to false, forces AppArmor off

LXD_UNPRIV:. If set to true, enforces that only unprivileged containers can be created. Note that any privileged
containers that have been created before setting LXD_UNPRIVILEGED_ONLY will continue to be
privileged. To use this option effectively it should be set when the LXD daemon is first set up.

LXD_OVMF_P; Path to an OVMF build including OVMF_CODE. fd and OVMF_VARS.ms. fd

LXD_SHIFTF: Disable shiftfs support (useful when testing traditional UID shifting)

LXD_IDMAPP] Disable idmapped mounts support (useful when testing traditional UID shifting)

LXD_DEVMON: Path to be monitored by the device monitor. This is primarily for testing.

2.10.6 System call interception
LXD supports intercepting some specific system calls from unprivileged containers and if they’re considered to be safe,
will executed with elevated privileges on the host.

Doing so comes with a performance impact for the syscall in question and will cause some work for LXD to evaluate
the request and if allowed, process it with elevated privileges.

Enabling of specific system call interception options is done on a per-container basis through container configuration
options.

Available system calls

mknod / mknodat

The mknod and mknodat system calls can be used to create a variety of special files.

Most commonly inside containers, they may be called to create block or character devices. Creating such devices isn’t
allowed in unprivileged containers as this is a very easy way to escalate privileges by allowing direct write access to
resources like disks or memory.

But there are files which are safe to create. For those, intercepting this syscall may unblock some specific workloads
and allow them to run inside an unprivileged containers.

The devices which are currently allowed are:
* overlayfs whiteout (char 0:0)
e /dev/console (char 5:1)
e /dev/full (char 1:7)
e /dev/null (char 1:3)
e /dev/random (char 1:8)
e /dev/tty (char 5:0)
¢ /dev/urandom (char 1:9)
e /dev/zero (char 1:5)

2.10. Internals & debugging 289



LXD

All file types other than character devices are currently sent to the kernel as usual, so enabling this feature doesn’t
change their behavior at all.

This can be enabled by setting security.syscalls.intercept.mknod to true.

bpf

The bpf system call is used to manage eBPF programs in the kernel. Those can be attached to a variety of kernel
subsystems.

In general, loading of eBPF programs that are not trusted can be problematic as it can facilitate timing based attacks.

LXD’s eBPF support is currently restricted to programs managing devices cgroup entries. To enable it, you need to set
both security.syscalls.intercept.bpf and security.syscalls.intercept.bpf.devices to true.

mount

The mount system call allows for mounting both physical and virtual file systems. By default, unprivileged containers
are restricted by the kernel to just a handful of virtual and network file systems.

To allow mounting physical file systems, system call interception can be used. LXD offers a variety of options to handle
this.

security.syscalls.intercept.mount is used to control the entire feature and needs to be turned on for any of the
other options to work.

security.syscalls.intercept.mount.allowed allows specifying a list of file systems which can be directly
mounted in the container. This is the most dangerous option as it allows the user to feed data that is not trusted at
the kernel. This can easily be used to crash the host system or to attack it. It should only ever be used in trusted
environments.

security.syscalls.intercept.mount.shift can be set on top of that so the resulting mount is shifted to the
UID/GID map used by the container. This is needed to avoid everything showing up as nobody/nogroup inside of
unprivileged containers.

The much safer alternative to those is security.syscalls.intercept.mount. fuse which can be set to pairs of
file-system name and FUSE handler. When this is set, an attempt at mounting one of the configured file systems will
be transparently redirected to instead calling the FUSE equivalent of that file system.

As this is all running as the caller, it avoids the entire issue around the kernel attack surface and so is generally considered
to be safe, though you should keep in mind that any kind of system call interception makes for an easy way to overload
the host system.

sched_setscheduler

The sched_setscheduler system call is used to manage process priority.

Granting this may allow a user to significantly increase the priority of their processes, potentially taking a lot of system
resources.

It also allows access to schedulers like SCHED_FIFO which are generally considered to be flawed and can significantly
impact overall system stability. This is why under normal conditions, only the real root user (or global CAP_SYS_NICE)
would allow its use.

290 Chapter 2. Project and community



LXD

setxattr

The setxattr system call is used to set extended attributes on files.
The attributes which are handled by this currently are:
* trusted.overlay.opaque (overlayfs directory whiteout)

Note that because the mediation must happen on a number of character strings, there is no easy way at present to only
intercept the few attributes we care about. As we only allow the attributes above, this may result in breakage for other
attributes that would have been previously allowed by the kernel.

This can be enabled by setting security.syscalls.intercept.setxattr to true.

2.10.7 Idmaps for user namespace

Introduction

LXD runs safe containers. This is achieved mostly through the use of user namespaces which make it possible to run
containers unprivileged, greatly limiting the attack surface.

User namespaces work by mapping a set of UIDs and GIDs on the host to a set of UIDs and GIDs in the container.

For example, we can define that the host UIDs and GIDs from 100000 to 165535 may be used by LXD and should be
mapped to UID/GID 0 through 65535 in the container.

As aresult a process running as UID 0 in the container will actually be running as UID 100000.

Allocations should always be of at least 65536 UIDs and GIDs to cover the POSIX range including root (0) and nobody
(65534).

Kernel support

User namespaces require a kernel >= 3.12, LXD will start even on older kernels but will refuse to start containers.

Allowed ranges

On most hosts, LXD will check /etc/subuid and /etc/subgid for allocations for the 1xd user and on first start, set
the default profile to use the first 65536 UIDs and GIDs from that range.

If the range is shorter than 65536 (which includes no range at all), then LXD will fail to create or start any container
until this is corrected.

If some but not all of /etc/subuid, /etc/subgid, newuidmap (path lookup) and newgidmap (path lookup) can be
found on the system, LXD will fail the startup of any container until this is corrected as this shows a broken shadow
setup.

If none of those files can be found, then LXD will assume a 1000000000 UID/GID range starting at a base UID/GID
of 1000000.

This is the most common case and is usually the recommended setup when not running on a system which also hosts
fully unprivileged containers (where the container runtime itself runs as a user).

2.10. Internals & debugging 291



LXD

Varying ranges between hosts

The source map is sent when moving containers between hosts so that they can be remapped on the receiving host.

Different idmaps per container
LXD supports using different idmaps per container, to further isolate containers from each other. This is controlled
with two per-container configuration keys, security.idmap.isolated and security.idmap.size.

Containers with security.idmap.isolated will have a unique ID range computed for them among the other con-
tainers with security.idmap.isolated set (if none is available, setting this key will simply fail).

Containers with security.idmap.size set will have their ID range set to this size. Isolated containers without this
property set default to a ID range of size 65536; this allows for POSIX compliance and a nobody user inside the
container.

To select a specific map, the security.idmap.base key will let you override the auto-detection mechanism and tell
LXD what host UID/GID you want to use as the base for the container.

These properties require a container reboot to take effect.
Custom idmaps
LXD also supports customizing bits of the idmap, e.g. to allow users to bind mount parts of the host’s file system into a

container without the need for any UID-shifting file system. The per-container configuration key for this is raw. idmap,
and looks like:

both 1000 1000
uid 50-60 500-510
gid 100000-110000 10000-20000

The first line configures both the UID and GID 1000 on the host to map to UID 1000 inside the container (this can be
used for example to bind mount a user’s home directory into a container).

The second and third lines map only the UID or GID ranges into the container, respectively. The second entry per line
is the source ID, i.e. the ID on the host, and the third entry is the range inside the container. These ranges must be the
same size.

This property requires a container reboot to take effect.

2.11 External resources

292 Chapter 2. Project and community



	Security
	Project and community
	Getting started
	About containers and VMs
	Application containers vs. system containers
	Virtual machines vs. system containers

	Requirements
	Go
	Kernel requirements
	LXC
	QEMU
	Additional libraries (and development headers)

	How to install LXD
	Choose your release
	Install LXD from a package
	Linux
	Snap package
	Other installation options

	Other operating systems

	Install LXD from source
	From source: Build the latest version
	From source: Build a release
	Start the build
	From source: Install
	Machine setup

	Manage access to LXD
	Upgrade LXD

	How to initialize LXD
	Interactive configuration
	Minimal setup

	Non-interactive configuration
	Re-configuring an existing LXD installation
	Rollback

	Default profile
	Configuration format


	Frequently asked questions
	Why do my instances not have network access?
	How to enable the LXD server for remote access?
	When I do a lxc remote add, it asks for a password or token?
	Why should I not run privileged containers?
	Can I bind-mount my home directory in a container?
	How can I run Docker inside a LXD container?
	Where does the LXD client (lxc) store its configuration?
	Why can I not ping my LXD instance from another host?
	How can I monitor what LXD is doing?
	Why does LXD stall when creating an instance?

	Contributing
	Pull requests
	Commit structure
	License and copyright
	Developer Certificate of Origin
	Code of Conduct
	Getting Started Developing
	Building Dependencies
	Adding Your Fork Remote
	Building LXD
	Important Notes for New LXD Contributors


	Support
	Support and community
	Bug reports
	Forum
	IRC
	Commercial support

	Documentation


	Security
	About security
	Supported versions
	Access to the LXD daemon
	Local access to the LXD daemon
	Access to the remote API

	Container security
	Container name leakage

	Network security
	Bridged NIC security
	Routed NIC security


	Remote API authentication
	TLS client certificates
	Communication protocol
	Trusted TLS clients
	Adding trusted certificates to the server
	Adding client certificates using a trust password
	Adding client certificates using tokens

	Using a PKI system

	Candid-based authentication
	Role Based Access Control (RBAC)
	Failure scenarios
	Server certificate changed
	Server trust relationship revoked


	How to expose LXD to the network
	Authenticate with the LXD server


	Instances
	About instances
	How to create instances
	Usage
	Pass a configuration file
	Examples
	Launch a container
	Launch a virtual machine
	Launch a container with specific configuration options
	Launch a VM on a specific cluster member
	Launch a container with a specific instance type


	How to manage instances
	Show information about an instance
	Start an instance
	Stop an instance
	Delete an instance
	Prevent accidental deletion of instances


	How to configure instances
	Configure instance options
	Configure instance properties
	Configure devices
	Display instance configuration
	Edit the full instance configuration

	How to create instance snapshots
	Create a snapshot
	View, edit or delete snapshots
	Schedule instance snapshots
	Restore an instance snapshot

	How to use profiles
	View profiles
	Create an empty profile
	Edit a profile
	Set specific options for a profile
	Edit the full profile

	Apply a profile to an instance
	Remove a profile from an instance

	How to use cloud-init
	cloud-init support in images
	Configuration options
	Vendor data and user data

	How to configure cloud-init
	YAML format for cloud-init configuration

	How to check the cloud-init status
	How to specify user or vendor data
	Examples
	Upgrade packages
	Install packages
	Set the time zone
	Run commands
	Add a user account


	How to specify network configuration data
	Example


	How to run commands in an instance
	Run commands inside your instance
	Execution mode
	User, groups and working directory
	Environment

	Get shell access to your instance

	How to access the console
	Access the graphical console (for virtual machines)

	How to access files in an instance
	Edit instance files
	Delete files from the instance
	Pull files from the instance to the local machine
	Push files from the local machine to the instance
	Mount a file system from the instance
	Set up an SSH SFTP listener


	How to add a routed NIC device to a virtual machine
	How to troubleshoot failing instances
	Troubleshooting example

	Instance configuration
	Instance properties
	Instance name requirements

	Instance options
	Miscellaneous options
	Boot-related options
	cloud-init configuration
	Resource limits
	CPU limits
	CPU pinning
	CPU limits for virtual machines
	Allowance and priority (container only)
	Huge page limits
	Kernel resource limits

	Migration options
	NVIDIA and CUDA configuration
	Raw instance configuration overrides
	Override QEMU configuration

	Security policies
	Snapshot scheduling and configuration
	Automatic snapshot names

	Volatile internal data

	Devices
	Standard devices
	Type: none
	Type: nic
	nictype vs. network
	Available NIC types
	nictype: bridged
	Device options
	nictype: macvlan
	Device options
	nictype: sriov
	Device options
	nictype: ovn
	Device options
	nictype: physical
	Device options
	nictype: ipvlan
	Device options
	nictype: p2p
	Device options
	nictype: routed
	Device options
	bridged, macvlan or ipvlan for connection to physical network
	MAAS integration

	Type: disk
	Types of disk devices
	Device options

	Type: unix-char
	Device options
	Hotplugging

	Type: unix-block
	Device options
	Hotplugging

	Type: usb
	Device options

	Type: gpu
	gputype: physical
	Device options
	gputype: mdev
	Device options
	gputype: mig
	Device options
	gputype: sriov
	Device options

	Type: infiniband
	Device options

	Type: proxy
	NAT mode
	Specifying IP addresses
	Device options

	Type: unix-hotplug
	Device options

	Type: tpm
	Device options

	Type: pci
	Device options


	Units for storage and network limits


	Images
	About images
	Caching
	Auto-update
	Special image properties

	How to use remote images
	List configured remotes
	List available images on a remote
	Add a remote server
	Add a simple streams server
	Add a remote LXD server

	Reference an image
	Select a default remote

	How to manage images
	List available images
	Filter available images

	View image information
	Edit image properties
	Delete an image
	Configure image aliases
	Export an image to a file

	How to copy and import images
	Copy an image from a remote
	Import an image from files
	Import from the local file system
	Import from a file on a remote web server
	Custom HTTP headers



	How to create images
	Publish an image from an instance or snapshot
	Prepare the instance for publishing

	Build an image

	How to associate profiles with an image
	Remote image servers
	Remote server types

	Image format
	Content
	Metadata
	Root file system
	Templates (optional)
	Template rules
	Template files


	Image tarballs
	Unified tarball
	Split tarballs



	Storage
	About storage pools and storage volumes
	Storage pools
	Data storage location
	Shared with the host
	Dedicated disk or partition
	Loop disk
	Remote storage

	Default storage pool

	Storage volumes
	Storage volume types
	Content types


	How to manage storage pools
	Create a storage pool
	Examples
	Create a storage pool in a cluster

	Configure storage pool settings
	View storage pools
	Resize a storage pool

	How to create an instance in a specific storage pool
	Move instance storage volumes to another pool

	How to manage storage volumes
	Create a custom storage volume
	Create the volume
	Attach the volume to an instance
	Attach the volume as a device
	Configure I/O limits

	Use the volume for backups or images

	Configure storage volume settings
	Configure default values for storage volumes

	View storage volumes
	Resize a storage volume

	How to move or copy storage volumes
	Copy custom storage volumes
	Move or rename custom storage volumes
	Copy or move between cluster members
	Copy or move between projects
	Copy or move between LXD servers
	Move instance storage volumes to another pool

	How to back up custom storage volumes
	Use snapshots for backup
	Create a snapshot of a custom storage volume
	View, edit or delete snapshots
	Schedule snapshots of a custom storage volume
	Restore a snapshot of a custom storage volume

	Use export files for backup
	Export a custom storage volume
	Restore a custom storage volume from an export file


	Storage drivers
	Directory - dir
	dir driver in LXD
	Quotas

	Configuration options
	Storage pool configuration
	Storage volume configuration


	Btrfs - btrfs
	Terminology
	btrfs driver in LXD
	Quotas

	Configuration options
	Storage pool configuration
	Storage volume configuration


	LVM - lvm
	Terminology
	lvm driver in LXD
	Configuration options
	Storage pool configuration
	Storage volume configuration


	ZFS - zfs
	Terminology
	zfs driver in LXD
	Limitations
	Quotas

	Configuration options
	Storage pool configuration
	Storage volume configuration


	Ceph RBD - ceph
	Terminology
	ceph driver in LXD
	Limitations

	Configuration options
	Storage pool configuration
	Storage volume configuration


	CephFS - cephfs
	Terminology
	cephfs driver in LXD
	Configuration options
	Storage pool configuration
	Storage volume configuration


	Feature comparison
	Optimized image storage
	Optimized volume transfer

	Recommended setup
	Security considerations


	Networking
	About networking
	Network devices
	Managed networks
	Fully controlled networks
	External networks

	Recommendations

	How to create and configure a network
	Network types
	Create a network
	Create a network in a cluster

	Attach a network to an instance
	Attach the network as a device

	Configure a network

	How to configure network ACLs
	Create an ACL
	ACL properties

	Add or remove rules
	Rule ordering and priorities
	Rule properties
	Use selectors in rules
	ACL groups
	Network selectors

	Log traffic

	Edit an ACL
	Assign an ACL
	Configure default actions
	Bridge limitations

	How to configure network forwards
	Create a network forward
	Forward properties
	Requirements for listen addresses

	Configure ports
	Port properties

	Edit a network forward
	Delete a network forward

	How to configure network zones
	Project views
	Generated records
	Forward records
	Reverse records

	Enable the built-in DNS server
	Create and configure a network zone
	Configuration options

	Add a network zone to a network
	Add custom records
	Create a record
	Record properties

	Add or remove entries


	How to configure LXD as a BGP server
	Configure the BGP server
	Configure next-hop (bridge only)
	Configure BGP peers for OVN networks


	How to display IPAM information of a LXD deployment
	Bridge network
	IPv6 prefix size
	Configuration options
	Supported features
	How to integrate with systemd-resolved
	Configure resolved
	Make the resolved configuration persistent

	How to configure your firewall
	xtables vs. nftables
	Use LXD’s firewall
	Use another firewall
	Disable LXD’s firewall rules
	firewalld: Add the bridge to the trusted zone
	UFW: Add rules for the bridge
	Prevent connectivity issues with LXD and Docker



	OVN network
	Configuration options
	Supported features
	How to set up OVN with LXD
	Set up a standalone OVN network
	Set up a LXD cluster on OVN

	How to create peer routing relationships
	Create a routing relationship between networks
	Peering properties
	List routing relationships
	Edit a routing relationship



	External networks
	Macvlan network
	Configuration options

	SR-IOV network
	Configuration options

	Physical network
	Configuration options
	Supported features



	Clustering
	About clustering
	Cluster members
	Member roles
	Offline members and fault tolerance
	Failure domains

	Member configuration

	Images
	Cluster groups
	Automatic placement of instances

	How to form a cluster
	Configure the cluster interactively
	Initialize the bootstrap server
	Join additional servers

	Configure the cluster through preseed files
	Initialize the bootstrap server
	Join additional servers

	Use MicroCloud

	How to manage a cluster
	Configure your cluster
	Assign member roles
	Edit the cluster member configuration

	Evacuate and restore cluster members
	Automatic evacuation

	Delete cluster members
	Deal with offline cluster members

	Upgrade cluster members
	Update the cluster certificate

	How to recover a cluster
	Recover from quorum loss
	Recover cluster members with changed addresses
	Manually alter Raft membership

	How to manage instances in a cluster
	Launch an instance on a specific cluster member
	Check where an instance is located
	Move an instance

	How to configure storage for a cluster
	View member-specific pool configuration
	Create storage volumes

	How to configure networks for a cluster
	Separate REST API and clustering networks

	How to set up cluster groups
	Launch an instance on a cluster group member

	Cluster member configuration

	Manage LXD
	Server configuration
	Core configuration
	Candid and RBAC configuration
	Cluster configuration
	Images configuration
	Miscellaneous options

	Projects
	Project limits
	Project restrictions

	Remotes
	Introduction
	Static
	Default
	Global (per-system)
	Local (per-user)


	Performance tuning
	Run benchmarks
	Monitor instance metrics
	Tune server settings
	Tune the network bandwidth
	How to benchmark performance
	Get the tool
	Run the tool
	Select an image
	Create and launch containers
	Delete containers

	How to increase the network bandwidth
	Increase the network bandwidth on the LXD host
	Increase the transmit queue length on the instances

	Server settings for a LXD production setup
	/etc/security/limits.conf
	/etc/sysctl.conf



	Backing up a LXD server
	What to back up
	Full backup
	Secondary backup LXD server
	Instance backups
	Disaster recovery

	Migration
	How to move existing LXD instances between servers
	Live migration
	Live migration for virtual machines
	Live migration for containers


	How to import physical or virtual machines to LXD instances
	How to migrate containers from LXC to LXD
	Get the tool
	Prepare your LXC containers
	Start the migration process
	Check the configuration


	Architectures

	REST API
	REST API
	API versioning
	Return values
	Standard return value
	Background operation
	Error

	Status codes
	List of current status codes

	Recursion
	Filtering
	Asynchronous operations
	Notifications
	PUT vs PATCH
	Instances, containers and virtual-machines
	API structure

	Main API specification
	API extensions
	storage_zfs_remove_snapshots
	container_host_shutdown_timeout
	container_stop_priority
	container_syscall_filtering
	auth_pki
	container_last_used_at
	etag
	patch
	usb_devices
	https_allowed_credentials
	image_compression_algorithm
	directory_manipulation
	container_cpu_time
	storage_zfs_use_refquota
	storage_lvm_mount_options
	network
	profile_usedby
	container_push
	container_exec_recording
	certificate_update
	container_exec_signal_handling
	gpu_devices
	container_image_properties
	migration_progress
	id_map
	network_firewall_filtering
	network_routes
	storage
	file_delete
	file_append
	network_dhcp_expiry
	storage_lvm_vg_rename
	storage_lvm_thinpool_rename
	network_vlan
	image_create_aliases
	container_stateless_copy
	container_only_migration
	storage_zfs_clone_copy
	unix_device_rename
	storage_rsync_bwlimit
	network_vxlan_interface
	storage_btrfs_mount_options
	entity_description
	image_force_refresh
	storage_lvm_lv_resizing
	id_map_base
	file_symlinks
	container_push_target
	network_vlan_physical
	storage_images_delete
	container_edit_metadata
	container_snapshot_stateful_migration
	storage_driver_ceph
	storage_ceph_user_name
	instance_types
	storage_volatile_initial_source
	storage_ceph_force_osd_reuse
	storage_block_filesystem_btrfs
	resources
	kernel_limits
	storage_api_volume_rename
	macaroon_authentication
	network_sriov
	console
	restrict_devlxd
	migration_pre_copy
	infiniband
	maas_network
	devlxd_events
	proxy
	network_dhcp_gateway
	file_get_symlink
	network_leases
	unix_device_hotplug
	storage_api_local_volume_handling
	operation_description
	clustering
	event_lifecycle
	storage_api_remote_volume_handling
	nvidia_runtime
	container_mount_propagation
	container_backup
	devlxd_images
	container_local_cross_pool_handling
	proxy_unix
	proxy_udp
	clustering_join
	proxy_tcp_udp_multi_port_handling
	network_state
	proxy_unix_dac_properties
	container_protection_delete
	proxy_priv_drop
	pprof_http
	proxy_haproxy_protocol
	network_hwaddr
	proxy_nat
	network_nat_order
	container_full
	candid_authentication
	backup_compression
	candid_config
	nvidia_runtime_config
	storage_api_volume_snapshots
	storage_unmapped
	projects
	candid_config_key
	network_vxlan_ttl
	container_incremental_copy
	usb_optional_vendorid
	snapshot_scheduling
	snapshots_schedule_aliases
	container_copy_project
	clustering_server_address
	clustering_image_replication
	container_protection_shift
	snapshot_expiry
	snapshot_expiry_creation
	network_leases_location
	resources_cpu_socket
	resources_gpu
	resources_numa
	kernel_features
	id_map_current
	event_location
	storage_api_remote_volume_snapshots
	network_nat_address
	container_nic_routes
	rbac
	cluster_internal_copy
	seccomp_notify
	lxc_features
	container_nic_ipvlan
	network_vlan_sriov
	storage_cephfs
	container_nic_ipfilter
	resources_v2
	container_exec_user_group_cwd
	container_syscall_intercept
	container_disk_shift
	storage_shifted
	resources_infiniband
	daemon_storage
	instances
	image_types
	resources_disk_sata
	clustering_roles
	images_expiry
	resources_network_firmware
	backup_compression_algorithm
	ceph_data_pool_name
	container_syscall_intercept_mount
	compression_squashfs
	container_raw_mount
	container_nic_routed
	container_syscall_intercept_mount_fuse
	container_disk_ceph
	virtual-machines
	image_profiles
	clustering_architecture
	resources_disk_id
	storage_lvm_stripes
	vm_boot_priority
	unix_hotplug_devices
	api_filtering
	instance_nic_network
	clustering_sizing
	firewall_driver
	storage_lvm_vg_force_reuse
	container_syscall_intercept_hugetlbfs
	limits_hugepages
	container_nic_routed_gateway
	projects_restrictions
	custom_volume_snapshot_expiry
	volume_snapshot_scheduling
	trust_ca_certificates
	snapshot_disk_usage
	clustering_edit_roles
	container_nic_routed_host_address
	container_nic_ipvlan_gateway
	resources_usb_pci
	resources_cpu_threads_numa
	resources_cpu_core_die
	api_os
	container_nic_routed_host_table
	container_nic_ipvlan_host_table
	container_nic_ipvlan_mode
	resources_system
	images_push_relay
	network_dns_search
	container_nic_routed_limits
	instance_nic_bridged_vlan
	network_state_bond_bridge
	resources_cpu_isolated
	usedby_consistency
	custom_block_volumes
	clustering_failure_domains
	container_syscall_filtering_allow_deny_syntax
	resources_gpu_mdev
	console_vga_type
	projects_limits_disk
	network_type_macvlan
	network_type_sriov
	container_syscall_intercept_bpf_devices
	network_type_ovn
	projects_networks
	projects_networks_restricted_uplinks
	custom_volume_backup
	backup_override_name
	storage_rsync_compression
	network_type_physical
	network_ovn_external_subnets
	network_ovn_nat
	network_ovn_external_routes_remove
	tpm_device_type
	storage_zfs_clone_copy_rebase
	gpu_mdev
	resources_pci_iommu
	resources_network_usb
	resources_disk_address
	network_physical_ovn_ingress_mode
	network_ovn_dhcp
	network_physical_routes_anycast
	projects_limits_instances
	network_state_vlan
	instance_nic_bridged_port_isolation
	instance_bulk_state_change
	network_gvrp
	instance_pool_move
	gpu_sriov
	pci_device_type
	storage_volume_state
	network_acl
	migration_stateful
	disk_state_quota
	storage_ceph_features
	projects_compression
	projects_images_remote_cache_expiry
	certificate_project
	network_ovn_acl
	projects_images_auto_update
	projects_restricted_cluster_target
	images_default_architecture
	network_ovn_acl_defaults
	gpu_mig
	project_usage
	network_bridge_acl
	warnings
	projects_restricted_backups_and_snapshots
	clustering_join_token
	clustering_description
	server_trusted_proxy
	clustering_update_cert
	storage_api_project
	server_instance_driver_operational
	server_supported_storage_drivers
	event_lifecycle_requestor_address
	resources_gpu_usb
	clustering_evacuation
	network_ovn_nat_address
	network_bgp
	network_forward
	custom_volume_refresh
	network_counters_errors_dropped
	metrics
	image_source_project
	clustering_config
	network_peer
	linux_sysctl
	network_dns
	ovn_nic_acceleration
	certificate_self_renewal
	instance_project_move
	storage_volume_project_move
	cloud_init
	network_dns_nat
	database_leader
	instance_all_projects
	clustering_groups
	ceph_rbd_du
	instance_get_full
	qemu_metrics
	gpu_mig_uuid
	event_project
	clustering_evacuation_live
	instance_allow_inconsistent_copy
	network_state_ovn
	storage_volume_api_filtering
	image_restrictions
	storage_zfs_export
	network_dns_records
	storage_zfs_reserve_space
	network_acl_log
	storage_zfs_blocksize
	metrics_cpu_seconds
	instance_snapshot_never
	certificate_token
	instance_nic_routed_neighbor_probe
	event_hub
	agent_nic_config
	projects_restricted_intercept
	metrics_authentication
	images_target_project
	cluster_migration_inconsistent_copy
	cluster_ovn_chassis
	container_syscall_intercept_sched_setscheduler
	storage_lvm_thinpool_metadata_size
	storage_volume_state_total
	instance_file_head
	resources_pci_vpd
	qemu_raw_conf
	storage_cephfs_fscache
	vsock_api
	storage_volumes_all_projects
	projects_networks_restricted_access
	cluster_join_token_expiry
	remote_token_expiry
	cpu_hotplug
	storage_pool_source_wipe
	zfs_block_mode
	instance_generation_id
	disk_io_cache
	storage_pool_loop_resize
	migration_vm_live
	auth_user
	instances_state_total
	numa_cpu_placement
	network_allocations
	storage_api_remote_volume_snapshot_copy
	zfs_delegate
	operations_get_query_all_projects
	event_lifecycle_name_and_project
	instances_nic_limits_priority
	operation_wait
	cluster_internal_custom_volume_copy
	instance_move_config
	server_instance_type_info
	server_version_lts
	instances_files_modify_permissions
	image_restriction_nesting

	Communication between instance and host
	Implementation details
	Authentication
	Protocol
	REST-API
	API structure
	API details
	/
	GET
	/1.0
	GET
	/1.0/config
	GET
	/1.0/config/<KEY>
	GET
	/1.0/devices
	GET
	/1.0/events
	GET
	/1.0/images/<FINGERPRINT>/export
	GET
	/1.0/meta-data
	GET



	Events
	Introduction
	Event types
	Event structure
	Example
	Logging event structure
	Operation event structure
	Life-cycle event structure

	Supported life-cycle events

	Metrics
	Create metrics certificate
	Add target to Prometheus
	Provided instance metrics


	Internals & debugging
	Container runtime environment
	File system
	Devices
	Network
	Container-to-host communication

	Mounts
	LXCFS

	PID1

	Daemon behavior
	Introduction
	Startup
	Signal handling
	SIGINT, SIGQUIT, SIGTERM
	SIGPWR
	SIGUSR1


	Database
	Introduction
	Database engine
	Dumping the database content or schema
	Running custom queries from the console
	Running custom queries at LXD daemon startup
	Syncing the cluster database to disk

	Debugging
	Debugging lxc and lxd
	lxc --debug
	lxc monitor

	REST API through local socket
	REST API through HTTPS
	With command line tools
	With browser


	Environment variables
	Introduction
	Common
	Client environment variable
	Server environment variable

	System call interception
	Available system calls
	mknod / mknodat
	bpf
	mount
	sched_setscheduler
	setxattr


	Idmaps for user namespace
	Introduction
	Kernel support
	Allowed ranges
	Varying ranges between hosts
	Different idmaps per container
	Custom idmaps


	External resources


