
Canonical LXD

LXD contributors

May 08, 2024

CONTENTS

1 In this documentation 3

2 Project and community 5

Configuration options 749

i

ii

Canonical LXD

LXD ([lks'di:]) is a modern, secure and powerful system container and virtual machine manager.

It provides a unified experience for running and managing full Linux systems inside containers or virtual machines.
LXD supports images for a large number of Linux distributions (official Ubuntu images and images provided by the
community) and is built around a very powerful, yet pretty simple, REST API. LXD scales from one instance on a
single machine to a cluster in a full data center rack, making it suitable for running workloads both for development
and in production.

LXD allows you to easily set up a system that feels like a small private cloud. You can run any type of workload in an
efficient way while keeping your resources optimized.

You should consider using LXD if you want to containerize different environments or run virtual machines, or in general
run and manage your infrastructure in a cost-effective way.

CONTENTS 1

Canonical LXD

2 CONTENTS

CHAPTER

ONE

IN THIS DOCUMENTATION

Tutorial Start here: a hands-on introduction to LXD for new users, guiding you through your First steps with LXD

How-to guides Step-by-step guides covering key operations and common tasks

• Get started

• Work with LXD

• Get ready for production

Reference Technical information

• General information

• Configuration options

• Production setup

• REST API

• Man pages

• Implementation details

Explanation Discussion and clarification of key topics

• Important concepts

• Entities in LXD

• Access management

• Production setup (including Security)

3

Canonical LXD

4 Chapter 1. In this documentation

CHAPTER

TWO

PROJECT AND COMMUNITY

LXD is free software and released under AGPL-3.0-only (it may contain some contributions that are licensed under
the Apache-2.0 license, see License and copyright). It’s an open source project that warmly welcomes community
projects, contributions, suggestions, fixes and constructive feedback.

The LXD project is sponsored by Canonical Ltd.

• Code of Conduct

• Contribute to the project

• Release announcements

• Release tarballs

• Get support

• Watch tutorials and announcements on YouTube

• Discuss on IRC (see Getting started with IRC if needed)

• Ask and answer questions on the forum

2.1 First steps with LXD

This tutorial guides you through the first steps with LXD. It covers installing and initializing LXD, creating and con-
figuring some instances, interacting with the instances, and creating snapshots.

After going through these steps, you will have a general idea of how to use LXD, and you can start exploring more
advanced use cases!

Note: Ensure that you have 20 GiB free disk space before starting this tutorial.

2.1.1 Install and initialize LXD

The easiest way to install LXD is to install the snap package. If you prefer a different installation method, or use a
Linux distribution that is not supported by the snap package, see How to install LXD.

1. Install snapd:

1. Run snap version to find out if snap is installed on your system:

user@host:~$ snap version snap 2.59.4snapd 2.59.4series 16ubuntu 22.04kernel 5.
15.0-73-generic If you see a table of version numbers, snap is installed and you can continue with the
next step of installing LXD.

5

https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.canonical.com
https://github.com/canonical/lxd/blob/main/CODE_OF_CONDUCT.md
https://discourse.ubuntu.com/c/lxd/news/
https://github.com/canonical/lxd/releases/
https://www.youtube.com/c/LXDvideos
https://web.libera.chat/#lxd
https://discourse.ubuntu.com/t/getting-started-with-irc/37907
https://discourse.ubuntu.com/c/lxd/

Canonical LXD

2. If the command returns an error, run the following commands to install the latest version of snapd on
Ubuntu:

sudo apt update
sudo apt install snapd

Note: For other Linux distributions, see the installation instructions in the Snapcraft documentation.

2. Enter the following command to install LXD:

sudo snap install lxd

If you get an error message that the snap is already installed, run the following command to refresh it and ensure
that you are running an up-to-date version:

sudo snap refresh lxd

3. Enter the following command to add the current user to the lxd group (the group was automatically created
during the previous step):

getent group lxd | grep -qwF "$USER" || sudo usermod -aG lxd "$USER"

This is needed to be granted permission to interact with LXD.

4. Enter the following command to initialize LXD:

lxd init --minimal

This will create a minimal setup with default options. If you want to tune the initialization options, see How to
initialize LXD for more information.

2.1.2 Launch and inspect instances

LXD is image based and can load images from different image servers. In this tutorial, we will use the official ubuntu:
image server.

You can list all images (long list) that are available on this image server with:

lxc image list ubuntu:

You can list the images used in this tutorial with:

lxc image list ubuntu: 24.04 architecture=$(uname -m)

See Images for more information about the images that LXD uses.

Now, let’s start by launching a few instances. With instance, we mean either a container or a virtual machine. See
About containers and VMs for information about the difference between the two instance types.

For managing instances, we use the LXD command line client lxc. See About lxd and lxc if you are confused about
when to use the lxc command and when to use the lxd command.

1. Launch a container called first using the Ubuntu 24.04 image:

lxc launch ubuntu:24.04 first

6 Chapter 2. Project and community

https://snapcraft.io/docs/core/install
https://cloud-images.ubuntu.com/releases/

Canonical LXD

Note: Launching this container takes a few seconds, because the image must be downloaded and unpacked first.

2. Launch a container called second using the same image:

lxc launch ubuntu:24.04 second

Note: Launching this container is quicker than launching the first, because the image is already available.

3. Copy the first container into a container called third:

lxc copy first third

4. Launch a VM called ubuntu-vm using the Ubuntu 24.04 image:

lxc launch ubuntu:24.04 ubuntu-vm --vm

Note: Even though you are using the same image name to launch the instance, LXD downloads a slightly
different image that is compatible with VMs.

5. Check the list of instances that you launched:

lxc list

You will see that all but the third container are running. This is because you created the third container by copying
the first, but you didn’t start it.

You can start the third container with:

lxc start third

6. Query more information about each instance with:

lxc info first
lxc info second
lxc info third
lxc info ubuntu-vm

7. We don’t need all of these instances for the remainder of the tutorial, so let’s clean some of them up:

1. Stop the second container:

lxc stop second

2. Delete the second container:

lxc delete second

3. Delete the third container:

lxc delete third

Since this container is running, you get an error message that you must stop it first. Alternatively, you can
force-delete it:

2.1. First steps with LXD 7

Canonical LXD

lxc delete third --force

See How to create instances and How to manage instances for more information.

2.1.3 Configure instances

There are several limits and configuration options that you can set for your instances. See Instance options for an
overview.

Let’s create another container with some resource limits:

1. Launch a container and limit it to one vCPU and 192 MiB of RAM:

lxc launch ubuntu:24.04 limited --config limits.cpu=1 --config limits.memory=192MiB

2. Check the current configuration and compare it to the configuration of the first (unlimited) container:

lxc config show limited
lxc config show first

3. Check the amount of free and used memory on the parent system and on the two containers:

free -m
lxc exec first -- free -m
lxc exec limited -- free -m

Note: The total amount of memory is identical for the parent system and the first container, because by default,
the container inherits the resources from its parent environment. The limited container, on the other hand, has
only 192 MiB available.

4. Check the number of CPUs available on the parent system and on the two containers:

nproc
lxc exec first -- nproc
lxc exec limited -- nproc

Note: Again, the number is identical for the parent system and the first container, but reduced for the limited
container.

5. You can also update the configuration while your container is running:

1. Configure a memory limit for your container:

lxc config set limited limits.memory=128MiB

2. Check that the configuration has been applied:

lxc config show limited

3. Check the amount of memory that is available to the container:

8 Chapter 2. Project and community

Canonical LXD

lxc exec limited -- free -m

Note that the number has changed.

6. Depending on the instance type and the storage drivers that you use, there are more configuration options that
you can specify. For example, you can configure the size of the root disk device for a VM:

1. Check the current size of the root disk device of the Ubuntu VM:

user@host:~$ lxc exec ubuntu-vm -- df -h Filesystem Size Used Avail Use% Mounted
on/dev/root 9.6G 1.4G 8.2G 15% /tmpfs 483M 0 483M 0% /dev/shmtmpfs 193M 604K
193M 1% /runtmpfs 5.0M 0 5.0M 0% /run/locktmpfs 50M 14M 37M 27% /run/lxd_agent/
dev/sda15 105M 6.1M 99M 6% /boot/efi

2. Override the size of the root disk device:

lxc config device override ubuntu-vm root size=30GiB

3. Restart the VM:

lxc restart ubuntu-vm

4. Check the size of the root disk device again:

user@host:~$ lxc exec ubuntu-vm -- df -h Filesystem Size Used Avail Use% Mounted
on/dev/root 29G 1.4G 28G 5% /tmpfs 483M 0 483M 0% /dev/shmtmpfs 193M 588K 193M
1% /runtmpfs 5.0M 0 5.0M 0% /run/locktmpfs 50M 14M 37M 27% /run/lxd_agent/dev/
sda15 105M 6.1M 99M 6% /boot/efi

See How to configure instances and Instance configuration for more information.

2.1.4 Interact with instances

You can interact with your instances by running commands in them (including an interactive shell) or accessing the
files in the instance.

Start by launching an interactive shell in your instance:

1. Run the bash command in your container:

lxc exec first -- bash

2. Enter some commands, for example, display information about the operating system:

cat /etc/*release

3. Exit the interactive shell:

exit

Instead of logging on to the instance and running commands there, you can run commands directly from the host.

For example, you can install a command line tool on the instance and run it:

lxc exec first -- apt-get update
lxc exec first -- apt-get install sl -y
lxc exec first -- /usr/games/sl

2.1. First steps with LXD 9

Canonical LXD

See How to run commands in an instance for more information.

You can also access the files from your instance and interact with them:

1. Pull a file from the container:

lxc file pull first/etc/hosts .

2. Add an entry to the file:

echo "1.2.3.4 my-example" >> hosts

3. Push the file back to the container:

lxc file push hosts first/etc/hosts

4. Use the same mechanism to access log files:

lxc file pull first/var/log/syslog - | less

Note: Press q to exit the less command.

See How to access files in an instance for more information.

2.1.5 Manage snapshots

You can create a snapshot of your instance, which makes it easy to restore the instance to a previous state.

1. Create a snapshot called “clean”:

lxc snapshot first clean

2. Confirm that the snapshot has been created:

lxc list first
lxc info first

Note: lxc list shows the number of snapshots. lxc info displays information about each snapshot.

3. Break the container:

lxc exec first -- rm /usr/bin/bash

4. Confirm the breakage:

lxc exec first -- bash

Note: You do not get a shell, because you deleted the bash command.

5. Restore the container to the state of the snapshot:

10 Chapter 2. Project and community

Canonical LXD

lxc restore first clean

6. Confirm that everything is back to normal:

lxc exec first -- bash
exit

7. Delete the snapshot:

lxc delete first/clean

See Use snapshots for instance backup for more information.

2.1.6 Next steps

Now that you’ve done your first experiments with LXD, check out the information in the Getting started section!

2.2 How-to guides

These how-to guides cover key operations and processes in LXD.

2.2.1 Get started

To get started with LXD, install and initialize it. Then do some basic configuration of the server and the command-line
client.

Getting started

To get started with LXD, see the documentation in this section.

How to install and initialize LXD:

How to install LXD

The easiest way to install LXD is to install one of the available packages, but you can also install LXD from the sources.

After installing LXD, make sure you have a lxd group on your system. Users in this group can interact with LXD. See
Manage access to LXD for instructions.

Choose your release

LXD maintains different release branches in parallel.

Long term support (LTS) releases
The current LTS releases are LXD 5.21.x (snap channel 5.21/stable - this is the default channel), LXD 5.0.x
(snap channel 5.0/stable) and LXD 4.0.x (snap channel 4.0/stable).

The LTS releases follow the Ubuntu release schedule and are released every two years:

2.2. How-to guides 11

Canonical LXD

• LXD 5.21 is supported until June 2029. It gets frequent bugfix and security updates, but does not receive
any feature additions. Updates to this release happen approximately every six months, but this schedule
should be seen as a rough estimation that can change based on priorities and discovered bugs.

• LXD 5.0 is supported until June 2027.

• LXD 4.0 is supported until June 2025.

Feature releases
After LXD 5.21 is released, the next feature release will be LXD 6.x (starting with 6.1). It is available through the
snap channels latest/stable, latest/candidate, and latest/edge, in addition to channels for the most
recent specific releases (for example, 6.1/stable). See snap info lxd for a full list of available channels.

Feature releases are pushed out about every month and contain new features as well as bugfixes. The normal
support length for those releases is until the next release comes out. Some Linux distributions might offer longer
support for particular feature releases that they decided to ship.

LTS releases are recommended for production environments, because they benefit from regular bugfix and security
updates. However, there are no new features added to an LTS release, nor any kind of behavioral change.

To get all the latest features and monthly updates to LXD, use the feature release branch instead.

Install LXD from a package

The LXD daemon only works on Linux. The client tool (lxc) is available on most platforms.

Linux

The easiest way to install LXD on Linux is to install the Snap package, which is available for different Linux distribu-
tions.

If this option does not work for you, see the Other installation options.

Snap package

LXD publishes and tests snap packages that work for a number of Linux distributions (for example, Ubuntu, Arch
Linux, Debian, Fedora, and OpenSUSE).

Complete the following steps to install the snap:

1. Check the LXD snap page on Snapcraft to see if a snap is available for your Linux distribution. If it is not, use
one of the Other installation options.

2. Install snapd. See the installation instructions in the Snapcraft documentation.

3. Install the snap package. For the latest feature release, use:

sudo snap install lxd --channel=latest/stable

For the LXD 5.21 LTS release, use:

sudo snap install lxd --channel=5.21/stable

For the LXD 5.0 LTS release, use:

sudo snap install lxd --channel=5.0/stable

12 Chapter 2. Project and community

https://snapcraft.io/lxd
https://snapcraft.io/lxd
https://snapcraft.io/docs/installing-snapd

Canonical LXD

For more information about LXD snap packages (regarding more versions, update management etc.), see Managing
the LXD snap.

Note: On Ubuntu 18.04, if you previously had the LXD deb package installed, you can migrate all your existing data
over by installing the 5.0 snap and running the following commands:

sudo install lxd --channel=5.0/stable
sudo lxd.migrate

After successfully running the lxd.migrate command, you can then switch to a newer snap channel if desired, like
the latest one:

sudo refresh lxd --channel=latest/stable

If you want the current user to be able to interact with the LXD daemon, add it to the lxd group as the installation
process does not add it for you:

getent group lxd | grep -qwF "$USER" || sudo usermod -aG lxd "$USER"

Other installation options

Some Linux distributions provide installation options other than the snap package.

Alpine Linux

Arch Linux

Fedora

Gentoo

To install the feature branch of LXD on Alpine Linux, run:

apk add lxd

To install the feature branch of LXD on Arch Linux, run:

pacman -S lxd

Fedora RPM packages for LXC/LXD are available in the COPR repository.

To install the LXD package for the feature branch, run:

dnf copr enable ganto/lxc4
dnf install lxd

See the Installation Guide for more detailed installation instructions.

To install the feature branch of LXD on Gentoo, run:

emerge --ask lxd

2.2. How-to guides 13

https://discuss.linuxcontainers.org/t/managing-the-lxd-snap/8178
https://discuss.linuxcontainers.org/t/managing-the-lxd-snap/8178
https://copr.fedorainfracloud.org/coprs/ganto/lxc4/
https://github.com/ganto/copr-lxc4/wiki

Canonical LXD

Other operating systems

Important: The builds for other operating systems include only the client, not the server.

macOS

Windows

LXD publishes builds of the LXD client for macOS through Homebrew.

To install the feature branch of LXD, run:

brew install lxc

The LXD client on Windows is provided as a Chocolatey package. To install it:

1. Install Chocolatey by following the installation instructions.

2. Install the LXD client:

choco install lxc

You can also find native builds of the LXD client on GitHub:

• LXD client for Linux: bin.linux.lxc.aarch64, bin.linux.lxc.x86_64

• LXD client for Windows: bin.windows.lxc.aarch64.exe, bin.windows.lxc.x86_64.exe

• LXD client for macOS: bin.macos.lxc.aarch64, bin.macos.lxc.x86_64

To download a specific build:

1. Make sure that you are logged into your GitHub account.

2. Filter for the branch or tag that you are interested in (for example, the latest release tag or main).

3. Select the latest build and download the suitable artifact.

Install LXD from source

Follow these instructions if you want to build and install LXD from the source code.

We recommend having the latest versions of liblxc (see LXC requirements) available for LXD development. Addi-
tionally, LXD requires a modern Golang (see Go) version to work. On Ubuntu, you can get those with:

sudo apt update
sudo apt install acl attr autoconf automake dnsmasq-base git libacl1-dev libcap-dev␣
→˓liblxc1 liblxc-dev libsqlite3-dev libtool libudev-dev liblz4-dev libuv1-dev make pkg-
→˓config rsync squashfs-tools tar tcl xz-utils ebtables
command -v snap >/dev/null || sudo apt-get install snapd
sudo snap install --classic go

Note: If you use the liblxc-dev package and get compile time errors when building the go-lxc module, ensure that
the value for LXC_DEVEL is 0 for your liblxc build. To check that, look at /usr/include/lxc/version.h. If the
LXC_DEVEL value is 1, replace it with 0 to work around the problem. It’s a packaging bug that is now fixed, see LP:
#2039873.

14 Chapter 2. Project and community

https://brew.sh/
https://community.chocolatey.org/packages/lxc
https://docs.chocolatey.org/en-us/choco/setup
https://github.com/canonical/lxd/actions
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxc.aarch64
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxc.x86_64
https://github.com/canonical/lxd/releases/latest/download/bin.windows.lxc.aarch64.exe
https://github.com/canonical/lxd/releases/latest/download/bin.windows.lxc.x86_64.exe
https://github.com/canonical/lxd/releases/latest/download/bin.macos.lxc.aarch64
https://github.com/canonical/lxd/releases/latest/download/bin.macos.lxc.x86_64
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/2039873
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/2039873

Canonical LXD

There are a few storage drivers for LXD besides the default dir driver. Installing these tools adds a bit to initramfs and
may slow down your host boot, but are needed if you’d like to use a particular driver:

sudo apt install lvm2 thin-provisioning-tools
sudo apt install btrfs-progs

To run the test suite, you’ll also need:

sudo apt install busybox-static curl gettext jq sqlite3 socat bind9-dnsutils

From source: Build the latest version

These instructions for building from source are suitable for individual developers who want to build the latest version
of LXD, or build a specific release of LXD which may not be offered by their Linux distribution. Source builds for
integration into Linux distributions are not covered here and may be covered in detail in a separate document in the
future.

git clone https://github.com/canonical/lxd
cd lxd

This will download the current development tree of LXD and place you in the source tree. Then proceed to the instruc-
tions below to actually build and install LXD.

From source: Build a release

The LXD release tarballs bundle a complete dependency tree as well as a local copy libdqlite for LXD’s database
setup.

tar zxvf lxd-4.18.tar.gz
cd lxd-4.18

This will unpack the release tarball and place you inside of the source tree. Then proceed to the instructions below to
actually build and install LXD.

Start the build

The actual building is done by two separate invocations of the Makefile: make deps – which builds libraries required
by LXD – and make, which builds LXD itself. At the end of make deps, a message will be displayed which will
specify environment variables that should be set prior to invoking make. As new versions of LXD are released, these
environment variable settings may change, so be sure to use the ones displayed at the end of the make deps process,
as the ones below (shown for example purposes) may not exactly match what your version of LXD requires:

We recommend having at least 2GiB of RAM to allow the build to complete.

user@host:~$ make deps ...make[1]: Leaving directory '/root/go/deps/dqlite'#
environment Please set the following in your environment (possibly ~/.bashrc)#
export CGO_CFLAGS="${CGO_CFLAGS} -I$(go env GOPATH)/deps/dqlite/include/"# export
CGO_LDFLAGS="${CGO_LDFLAGS} -L$(go env GOPATH)/deps/dqlite/.libs/"# export
LD_LIBRARY_PATH="$(go env GOPATH)/deps/dqlite/.libs/${LD_LIBRARY_PATH}"# export
CGO_LDFLAGS_ALLOW="(-Wl,-wrap,pthread_create)|(-Wl,-z,now)" user@host:~$ make

2.2. How-to guides 15

Canonical LXD

From source: Install

Once the build completes, you simply keep the source tree, add the directory referenced by $(go env GOPATH)/bin
to your shell path, and set the LD_LIBRARY_PATH variable printed by make deps to your environment. This might
look something like this for a ~/.bashrc file:

export PATH="${PATH}:$(go env GOPATH)/bin"
export LD_LIBRARY_PATH="$(go env GOPATH)/deps/dqlite/.libs/:${LD_LIBRARY_PATH}"

Now, the lxd and lxc binaries will be available to you and can be used to set up LXD. The binaries will automati-
cally find and use the dependencies built in $(go env GOPATH)/deps thanks to the LD_LIBRARY_PATH environment
variable.

Machine setup

You’ll need sub{u,g}ids for root, so that LXD can create the unprivileged containers:

echo "root:1000000:1000000000" | sudo tee -a /etc/subuid /etc/subgid

By default, only users added to the lxd group can interact with the LXD daemon. Installing from source doesn’t
guarantee that the lxd group exists in the system. If you want the current user (or any other user) to be able to interact
with the LXD daemon, add it to the lxd group:

getent group lxd >/dev/null || sudo groupadd --system lxd # create the group if needed
getent group lxd | grep -qwF "$USER" || sudo usermod -aG lxd "$USER"

Now you can run the daemon (the --group sudo bit allows everyone in the sudo group to talk to LXD; you can create
your own group if you want):

sudo -E PATH=${PATH} LD_LIBRARY_PATH=${LD_LIBRARY_PATH} $(go env GOPATH)/bin/lxd --group␣
→˓sudo

Note: If newuidmap/newgidmap tools are present on your system and /etc/subuid, etc/subgid exist, they must
be configured to allow the root user a contiguous range of at least 10M UID/GID.

Manage access to LXD

Access control for LXD is based on group membership. The root user and all members of the lxd group can interact
with the local daemon. See Access to the LXD daemon for more information.

On Ubuntu images, the lxd group already exists and the main user is automatically added to it. The group is also
created during installation if you installed LXD from the snap. If the lxd group is missing on your system (as might be
the case if you installed LXD from the sources), create it and restart the LXD daemon:

getent group lxd >/dev/null || sudo groupadd --system lxd

No users are added to the group on installation. You must add trusted users to the group so they can use LXD:

getent group lxd | grep -qwF "$USER" || sudo usermod -aG lxd "$USER" # adding current␣
→˓user as an example

16 Chapter 2. Project and community

Canonical LXD

Anyone added to this group will have full control over LXD. See Access to the LXD daemon to better understand access
control for LXD.

Because group membership is normally only applied at login, you might need to either re-open your user session or
use the newgrp lxd command in the shell you’re using to talk to LXD.

Important: Local access to LXD through the Unix socket always grants full access to LXD. This includes the ability
to attach file system paths or devices to any instance as well as tweak the security features on any instance.

Therefore, you should only give such access to users who you’d trust with root access to your system.

Upgrade LXD

After upgrading LXD to a newer version, LXD might need to update its database to a new schema. This update happens
automatically when the daemon starts up after a LXD upgrade. A backup of the database before the update is stored
in the same location as the active database (for example, at /var/snap/lxd/common/lxd/database for the snap
installation).

Important: After a schema update, older versions of LXD might regard the database as invalid. That means that
downgrading LXD might render your LXD installation unusable.

In that case, if you need to downgrade, restore the database backup before starting the downgrade.

How to initialize LXD

Before you can create a LXD instance, you must configure and initialize LXD.

Interactive configuration

Run the following command to start the interactive configuration process:

lxd init

Note: For simple configurations, you can run this command as a normal user. However, some more advanced opera-
tions during the initialization process (for example, joining an existing cluster) require root privileges. In this case, run
the command with sudo or as root.

The tool asks a series of questions to determine the required configuration. The questions are dynamically adapted to
the answers that you give. They cover the following areas:

Clustering (see About clustering and How to form a cluster)
A cluster combines several LXD servers. The cluster members share the same distributed database and can be
managed uniformly using the LXD client (lxc) or the REST API.

The default answer is no, which means clustering is not enabled. If you answer yes, you can either connect to
an existing cluster or create one.

MAAS support (see maas.io and MAAS - Setting up LXD for VMs)
MAAS is an open-source tool that lets you build a data center from bare-metal servers.

2.2. How-to guides 17

https://maas.io/
https://maas.io/docs/setting-up-lxd-for-vms

Canonical LXD

The default answer is no, which means MAAS support is not enabled. If you answer yes, you can connect to an
existing MAAS server and specify the name, URL and API key.

Networking (see About networking and Network devices)
Provides network access for the instances.

You can let LXD create a new bridge (recommended) or use an existing network bridge or interface.

You can create additional bridges and assign them to instances later.

Storage pools (see About storage pools, volumes and buckets and Storage drivers)
Instances (and other data) are stored in storage pools.

For testing purposes, you can create a loop-backed storage pool. For production use, however, you should use
an empty partition (or full disk) instead of loop-backed storage (because loop-backed pools are slower and their
size can’t be reduced).

The recommended backends are zfs and btrfs.

You can create additional storage pools later.

Remote access (see Access to the remote API and Remote API authentication)
Allows remote access to the server over the network.

The default answer is no, which means remote access is not allowed. If you answer yes, you can connect to the
server over the network.

You can choose to add client certificates to the server (manually or through tokens, the recommended way) or
set a trust password.

Automatic image update (see About images)
You can download images from image servers. In this case, images can be updated automatically.

The default answer is yes, which means that LXD will update the downloaded images regularly.

YAML lxd init preseed (see Non-interactive configuration)
If you answer yes, the command displays a summary of your chosen configuration options in the terminal.

Minimal setup

To create a minimal setup with default options, you can skip the configuration steps by adding the --minimal flag to
the lxd init command:

lxd init --minimal

Note: The minimal setup provides a basic configuration, but the configuration is not optimized for speed or function-
ality. Especially the dir storage driver, which is used by default, is slower than other drivers and doesn’t provide fast
snapshots, fast copy/launch, quotas and optimized backups.

If you want to use an optimized setup, go through the interactive configuration process instead.

18 Chapter 2. Project and community

Canonical LXD

Non-interactive configuration

The lxd init command supports a --preseed command line flag that makes it possible to fully configure the LXD
daemon settings, storage pools, network devices and profiles, in a non-interactive way through a preseed YAML file.

For example, starting from a brand new LXD installation, you could configure LXD with the following command:

cat <<EOF | lxd init --preseed
config:
core.https_address: 192.0.2.1:9999
images.auto_update_interval: 15

networks:
- name: lxdbr0
type: bridge
config:
ipv4.address: auto
ipv6.address: none

EOF

This preseed configuration initializes the LXD daemon to listen for HTTPS connections on port 9999 of the 192.0.2.1
address, to automatically update images every 15 hours and to create a network bridge device named lxdbr0, which
gets assigned an IPv4 address automatically.

Re-configuring an existing LXD installation

If you are configuring a new LXD installation, the preseed command applies the configuration as specified (as long
as the given YAML contains valid keys and values). There is no existing state that might conflict with the specified
configuration.

However, if you are re-configuring an existing LXD installation using the preseed command, the provided YAML
configuration might conflict with the existing configuration. To avoid such conflicts, the following rules are in place:

• The provided YAML configuration overwrites existing entities. This means that if you are re-configuring an
existing entity, you must provide the full configuration for the entity and not just the different keys.

• If the provided YAML configuration contains entities that do not exist, they are created.

This is the same behavior as for a PUT request in the REST API .

Rollback

If some parts of the new configuration conflict with the existing state (for example, they try to change the driver of a
storage pool from dir to zfs), the preseed command fails and automatically attempts to roll back any changes that
were applied so far.

For example, it deletes entities that were created by the new configuration and reverts overwritten entities back to their
original state.

Failure modes when overwriting entities are the same as for the PUT requests in the REST API .

Note: The rollback process might potentially fail, although rarely (typically due to backend bugs or limitations). You
should therefore be careful when trying to reconfigure a LXD daemon via preseed.

2.2. How-to guides 19

Canonical LXD

Default profile

Unlike the interactive initialization mode, the lxd init --preseed command does not modify the default profile,
unless you explicitly express that in the provided YAML payload.

For instance, you will typically want to attach a root disk device and a network interface to your default profile. See
the following section for an example.

Configuration format

The supported keys and values of the various entities are the same as the ones documented in the REST API , but
converted to YAML for convenience. However, you can also use JSON, since YAML is a superset of JSON.

The following snippet gives an example of a preseed payload that contains most of the possible configurations. You
can use it as a template for your own preseed file and add, change or remove what you need:

Daemon settings
config:
core.https_address: 192.0.2.1:9999
core.trust_password: sekret
images.auto_update_interval: 6

Storage pools
storage_pools:
- name: data
driver: zfs
config:
source: my-zfs-pool/my-zfs-dataset

Storage volumes
storage_volumes:
- name: my-vol
pool: data

Network devices
networks:
- name: lxd-my-bridge
type: bridge
config:
ipv4.address: auto
ipv6.address: none

Profiles
profiles:
- name: default
devices:
root:
path: /
pool: data
type: disk

- name: test-profile
description: "Test profile"
config:

(continues on next page)

20 Chapter 2. Project and community

Canonical LXD

(continued from previous page)

limits.memory: 2GiB
devices:
test0:
name: test0
nictype: bridged
parent: lxd-my-bridge
type: nic

See Preseed YAML file fields for the complete fields of the preseed YAML file.

How to manage the LXD snap

Among other options, LXD is distributed as a snap. The benefit of packaging LXD as a snap is that it makes it possible
to include all of LXD’s dependencies in one package, and that it allows LXD to be installed on many different Linux
distributions. The snap ensures that LXD runs in a consistent environment.

Control updates of the snap

When running LXD in a production environment, you must make sure to have a suitable version of the snap installed
on all machines of your LXD cluster.

Choose the right channel and track

Snaps come with different channels that define which release of a snap is installed and tracked for updates. See Channels
and tracks in the snap documentation for detailed information.

Feature releases of LXD are available on the latest track. In addition, LXD provides tracks for the supported feature
releases. See Choose your release for more information.

On all tracks, the stable risk level contains all fixes and features for the respective track, but it is only updated when
the LXD team decides that a feature is ready and no issues have been revealed by users running the same revision on
higher risk levels (edge and candidate).

When installing a snap, specify the channel as follows:

sudo snap install <snap_name> --channel=<channel>

For example:

sudo snap install lxd --channel=latest/stable

If you do not specify a channel, snap will choose the default channel (the latest LTS release).

To see all available channels of the LXD snap, run the following command:

snap info lxd

2.2. How-to guides 21

https://snapcraft.io/docs
https://snapcraft.io/docs/channels
https://snapcraft.io/docs/channels

Canonical LXD

Hold and schedule updates

By default, snaps are updated automatically. In the case of LXD, this can be problematic because all machines of a
cluster must use the same version of the LXD snap.

Therefore, you should schedule your updates and make sure that all cluster members are in sync regarding the snap
version that they use.

Schedule updates

There are two methods for scheduling when your snaps should be updated:

• You can hold snap updates for a specific time, either for specific snaps or for all snaps on your system. After the
duration of the hold, or when you remove the hold, your snaps are automatically refreshed.

• You can specify a system-wide refresh window, so that snaps are automatically refreshed only within this time
frame. Such a refresh window applies to all snaps.

Hold updates
You can hold snap updates for a specific time or forever, for all snaps or only for the LXD snap. If you want
to fully control updates to your LXD deployment, you should put a hold on the LXD snap until you decide to
update it.

Enter the following command to indefinitely hold all updates for the LXD snap:

sudo snap refresh --hold lxd

When you choose to update your installation, use the following commands to remove the hold, update the snap,
and hold the updates again:

sudo snap refresh --unhold lxd
sudo snap refresh lxd --cohort="+"
sudo snap refresh --hold lxd

See Hold refreshes in the snap documentation for detailed information about holding snap updates.

Specify a refresh window
Depending on your setup, you might want your snaps to update regularly, but only at specific times that don’t
disturb normal operation.

You can achieve this by specifying a refresh timer. This option defines a refresh window for all snaps that are
installed on the system.

For example, to configure your system to update snaps only between 8:00 am and 9:00 am on Mondays, set the
following option:

sudo snap set system refresh.timer=mon,8:00-9:00

You can use a similar mechanism (setting refresh.hold) to hold snap updates as well. However, in this case
the snaps will be refreshed after 90 days, irrespective of the value of refresh.hold.

See Control updates with system options in the snap documentation for detailed information.

22 Chapter 2. Project and community

https://snapcraft.io/docs/managing-updates#heading--hold
https://snapcraft.io/docs/managing-updates#heading--refresh-hold

Canonical LXD

Keep cluster members in sync

The cluster members that are part of the LXD deployment must always run the same version of the LXD snap. This
means that when the snap on one of the cluster members is refreshed, it must also be refreshed on all other cluster
members before the LXD cluster is operational again.

Snap updates are delivered as progressive releases, which means that updated snap versions are made available to
different machines at different times. This method can cause a problem for cluster updates if some cluster members are
refreshed to a version that is not available to other cluster members yet.

To avoid this problem, use the --cohort="+" flag when refreshing your snaps:

sudo snap refresh lxd --cohort="+"

This flag ensures that all machines in a cluster see the same snap revision and are therefore not affected by a progressive
rollout.

Use a Snap Store Proxy

If you manage a large LXD cluster and you need absolute control over when updates are applied, consider installing a
Snap Store Proxy.

The Snap Store Proxy is a separate application that sits between the snap client command on your machines and the
snap store. You can configure the Snap Store Proxy to make only specific snap revisions available for installation.

See the Snap Store Proxy documentation for information about how to install and register the Snap Store Proxy.

After setting it up, configure the snap clients on all cluster members to use the proxy. See Configuring snap devices for
instructions.

You can then configure the Snap Store Proxy to override the revision for the LXD snap:

sudo snap-proxy override lxd <channel>=<revision>

For example:

sudo snap-proxy override lxd stable=25846

Configure the snap

The LXD snap has several configuration options that control the behavior of the installed LXD server. For example,
you can define a LXD user group to achieve a multi-user environment for LXD (see Confine projects to specific LXD
users for more information).

See the LXD snap page for a list of available configuration options.

To set any of these options, use the following command:

sudo snap set lxd <key>=<value>

For example:

sudo snap set lxd daemon.user.group=lxd-users

To see all configuration options that are set on the snap, use the following command:

2.2. How-to guides 23

https://snapcraft.io/docs/progressive-releases
https://docs.ubuntu.com/snap-store-proxy/
https://docs.ubuntu.com/snap-store-proxy/en/devices
https://snapcraft.io/lxd

Canonical LXD

sudo snap get lxd

Note: This command returns only configuration options that have been explicitly set.

See Configure snaps in the snap documentation for more information about snap configuration options.

Start and stop the daemon

To start and stop the LXD daemon, you can use the start and stop commands of the snap:

sudo snap stop lxd
sudo snap start lxd

These commands are equivalent to running the corresponding systemctl commands:

sudo systemctl stop snap.lxd.daemon.service snap.lxd.daemon.unix.socket
sudo systemctl start snap.lxd.daemon.unix.socket; lxc list

Stopping the daemon also stops all running instances.

To restart the LXD daemon, use the following command:

sudo systemctl restart snap.lxd.daemon

Restarting the daemon stops all running instances. If you want to keep the instances running, reload the daemon instead:

sudo systemctl reload snap.lxd.daemon

Note: To restart the daemon, you can also use the snap commands. To stop all running instances and restart:

sudo snap restart lxd

To keep the instances running and reload:

sudo snap restart --reload lxd

However, there is currently a bug in snapd that causes undesired side effects when using the snap restart command.
Therefore, we recommend using the systemctl commands instead.

How to enable access to the UI and the documentation:

How to access the LXD web UI

Note: The LXD web UI is available as part of the LXD snap.

See the LXD-UI GitHub repository for the source code.

24 Chapter 2. Project and community

https://snapcraft.io/docs/configuration-in-snaps
https://bugs.launchpad.net/snapd/+bug/2028141
https://github.com/canonical/lxd-ui

Canonical LXD

Fig. 1: Graphical console of an instance in the LXD web UI

2.2. How-to guides 25

Canonical LXD

The LXD web UI provides you with a graphical interface to manage your LXD server and instances. It does not provide
full functionality yet, but it is constantly evolving, already covering many of the features of the LXD command-line
client.

Complete the following steps to access the LXD web UI:

1. Make sure that your LXD server is exposed to the network. You can expose the server during initialization, or
afterwards by setting the core.https_address server configuration option.

2. Access the UI in your browser by entering the server address (for example, https://192.0.2.10:8443).

If you have not set up a secure TLS server certificate, LXD uses a self-signed certificate, which will cause a
security warning in your browser. Use your browser’s mechanism to continue despite the security warning.

3. Set up the certificates that are required for the UI client to authenticate with the LXD server by following the
steps presented in the UI. These steps include creating a set of certificates, adding the private key to your browser,
and adding the public key to the server’s trust store.

See Remote API authentication for more information.

After setting up the certificates, you can start creating instances, editing profiles, or configuring your server.

26 Chapter 2. Project and community

Canonical LXD

Enable or disable the UI

The snap configuration option lxd ui.enable controls whether the UI is enabled for LXD.

Starting with LXD 5.21, the UI is enabled by default. If you want to disable it, set the option to false:

sudo snap set lxd ui.enable=false
sudo systemctl reload snap.lxd.daemon

To enable it again, or to enable it for older LXD versions (that include the UI), set the option to true:

sudo snap set lxd ui.enable=true
sudo systemctl reload snap.lxd.daemon

How to access the local LXD documentation

The latest version of the LXD documentation is available at documentation.ubuntu.com/lxd.

Alternatively, you can access a local version of the LXD documentation that is embedded in the LXD snap. This version
of the documentation exactly matches the version of your LXD deployment, but might be missing additions, fixes, or
clarifications that were added after the release of the snap.

Complete the following steps to access the local LXD documentation:

1. Make sure that your LXD server is exposed to the network. You can expose the server during initialization, or
afterwards by setting the core.https_address server configuration option.

2. Access the documentation in your browser by entering the server address followed by /documentation/ (for
example, https://192.0.2.10:8443/documentation/).

2.2. How-to guides 27

https://documentation.ubuntu.com/lxd/

Canonical LXD

If you have not set up a secure TLS server certificate, LXD uses a self-signed certificate, which will cause a
security warning in your browser. Use your browser’s mechanism to continue despite the security warning.

How to get support and contribute:

How to get support

LXD maintains different release branches in parallel.

Long term support (LTS) releases
The current LTS releases are LXD 5.21.x (snap channel 5.21/stable - this is the default channel), LXD 5.0.x
(snap channel 5.0/stable) and LXD 4.0.x (snap channel 4.0/stable).

The LTS releases follow the Ubuntu release schedule and are released every two years:

• LXD 5.21 is supported until June 2029. It gets frequent bugfix and security updates, but does not receive
any feature additions. Updates to this release happen approximately every six months, but this schedule
should be seen as a rough estimation that can change based on priorities and discovered bugs.

• LXD 5.0 is supported until June 2027.

• LXD 4.0 is supported until June 2025.

Feature releases
After LXD 5.21 is released, the next feature release will be LXD 6.x (starting with 6.1). It is available through the
snap channels latest/stable, latest/candidate, and latest/edge, in addition to channels for the most
recent specific releases (for example, 6.1/stable). See snap info lxd for a full list of available channels.

Feature releases are pushed out about every month and contain new features as well as bugfixes. The normal
support length for those releases is until the next release comes out. Some Linux distributions might offer longer
support for particular feature releases that they decided to ship.

Support and community

The following channels are available for you to interact with the LXD community.

Bug reports

You can file bug reports and feature requests at: https://github.com/canonical/lxd/issues/new

Forum

A discussion forum is available at: https://discourse.ubuntu.com/c/lxd/

28 Chapter 2. Project and community

https://github.com/canonical/lxd/issues/new
https://discourse.ubuntu.com/c/lxd/

Canonical LXD

IRC

If you prefer live discussions, you can find us in #lxd on irc.libera.chat. See Getting started with IRC if needed.

Commercial support

Commercial support for LXD is available through Ubuntu Pro (Ubuntu Pro (Infra-only) or full Ubuntu Pro). The
support covers all LTS versions for five years starting from the day of the release.

See the full service description for detailed information about what support Ubuntu Pro provides.

Documentation

The official documentation is available at: https://documentation.ubuntu.com/lxd/en/latest/

You can find additional resources on the website, on YouTube and in the Tutorials section in the forum.

How to contribute to LXD

The LXD team appreciates contributions to the project, through pull requests, issues on the GitHub repository, or
discussions or questions on the forum.

Check the following guidelines before contributing to the project.

Code of Conduct

When contributing, you must adhere to the Code of Conduct, which is available at: https://github.com/
canonical/lxd/blob/main/CODE_OF_CONDUCT.md

License and copyright

All contributors must sign the Canonical contributor license agreement, which gives Canonical permission to use the
contributions. The author of a change remains the copyright holder of their code (no copyright assignment).

By default, any contribution to this project is licensed out under the project license: AGPL-3.0-only.

By exception, Canonical may import code under licenses compatible with AGPL-3.0-only, such as Apache-2.0. Such
code will remain under its original license and will be identified as such in the commit message or its file header.

Some files and commits are licensed out under Apache-2.0 rather than AGPL-3.0-only. These are marked as Apache-2.0
in their package-level COPYING file, file header or commit message.

2.2. How-to guides 29

https://web.libera.chat/#lxd
https://discourse.ubuntu.com/t/getting-started-with-irc/37907
https://ubuntu.com/support
https://ubuntu.com/legal/ubuntu-pro-description
https://documentation.ubuntu.com/lxd/en/latest/
https://canonical.com/lxd
https://www.youtube.com/channel/UCuP6xPt0WTeZu32CkQPpbvA
https://discourse.ubuntu.com/c/lxd/tutorials/
https://github.com/canonical/lxd/issues
https://discourse.ubuntu.com/c/lxd/126
https://github.com/canonical/lxd/blob/main/CODE_OF_CONDUCT.md
https://github.com/canonical/lxd/blob/main/CODE_OF_CONDUCT.md
https://ubuntu.com/legal/contributors

Canonical LXD

Pull requests

Changes to this project should be proposed as pull requests on GitHub at: https://github.com/canonical/lxd

Proposed changes will then go through review there and once approved, be merged in the main branch.

Commit structure

Separate commits should be used for:

• API extension (api: Add XYZ extension, contains doc/api-extensions.md and shared/version/
api.go)

• Documentation (doc: Update XYZ for files in doc/)

• API structure (shared/api: Add XYZ for changes to shared/api/)

• Go client package (client: Add XYZ for changes to client/)

• CLI (lxc/<command>: Change XYZ for changes to lxc/)

• Scripts (scripts: Update bash completion for XYZ for changes to scripts/)

• LXD daemon (lxd/<package>: Add support for XYZ for changes to lxd/)

• Tests (tests: Add test for XYZ for changes to tests/)

The same kind of pattern extends to the other tools in the LXD code tree and depending on complexity, things may be
split into even smaller chunks.

When updating strings in the CLI tool (lxc/), you may need a commit to update the templates:

make i18n
git commit -a -s -m "i18n: Update translation templates" po/

When updating API (shared/api), you may need a commit to update the swagger YAML:

make update-api
git commit -s -m "doc/rest-api: Refresh swagger YAML" doc/rest-api.yaml

This structure makes it easier for contributions to be reviewed and also greatly simplifies the process of back-porting
fixes to stable branches.

Developer Certificate of Origin

To improve tracking of contributions to this project we use the DCO 1.1 and use a “sign-off” procedure for all changes
going into the branch.

The sign-off is a simple line at the end of the explanation for the commit which certifies that you wrote it or otherwise
have the right to pass it on as an open-source contribution.

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA

(continues on next page)

30 Chapter 2. Project and community

https://github.com/canonical/lxd

Canonical LXD

(continued from previous page)

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

An example of a valid sign-off line is:

Signed-off-by: Random J Developer <random@developer.org>

Use a known identity and a valid e-mail address. Sorry, no anonymous contributions are allowed.

We also require each commit be individually signed-off by their author, even when part of a larger set. You may find
git commit -s useful.

2.2. How-to guides 31

Canonical LXD

Contribute to the code

Follow the steps below to set up your development environment to get started working on new features for LXD.

Install LXD from source

To build the dependencies, follow the instructions in Install LXD from source.

Add your fork as a remote

After setting up your build environment, add your GitHub fork as a remote:

git remote add myfork git@github.com:<your_username>/lxd.git
git remote update

Then switch to it:

git checkout myfork/main

Build LXD

Finally, you should be able to run make inside the repository and build your fork of the project.

At this point, you most likely want to create a new branch for your changes on your fork:

git checkout -b [name_of_your_new_branch]
git push myfork [name_of_your_new_branch]

Important notes for new LXD contributors

• Persistent data is stored in the LXD_DIR directory, which is generated by lxd init. The LXD_DIR defaults to
/var/lib/lxd, or /var/snap/lxd/common/lxd for snap users.

• As you develop, you may want to change the LXD_DIR for your fork of LXD so as to avoid version conflicts.

• Binaries compiled from your source will be generated in the $(go env GOPATH)/bin directory by default.

– You will need to explicitly invoke these binaries (not the global lxd you may have installed) when testing
your changes.

– You may choose to create an alias in your ~/.bashrc to call these binaries with the appropriate flags more
conveniently.

• If you have a systemd service configured to run the LXD daemon from a previous installation of LXD, you may
want to disable it to avoid version conflicts.

32 Chapter 2. Project and community

Canonical LXD

Contribute to the documentation

We want LXD to be as easy and straight-forward to use as possible. Therefore, we aim to provide documentation that
contains the information that users need to work with LXD, that covers all common use cases, and that answers typical
questions.

You can contribute to the documentation in various different ways. We appreciate your contributions!

Typical ways to contribute are:

• Add or update documentation for new features or feature improvements that you contribute to the code. We’ll
review the documentation update and merge it together with your code.

• Add or update documentation that clarifies any doubts you had when working with the product. Such contribu-
tions can be done through a pull request or through a post in the Tutorials section on the forum. New tutorials
will be considered for inclusion in the docs (through a link or by including the actual content).

• To request a fix to the documentation, open a documentation issue on GitHub. We’ll evaluate the issue and update
the documentation accordingly.

• Post a question or a suggestion on the forum. We’ll monitor the posts and, if needed, update the documentation
accordingly.

• Ask questions or provide suggestions in the #lxd channel on IRC. Given the dynamic nature of IRC, we cannot
guarantee answers or reactions to IRC posts, but we monitor the channel and try to improve our documentation
based on the received feedback.

If images are added (doc/images), prioritize either SVG or PNG format and make sure to optimize PNG images for
smaller size using a service like TinyPNG or similar.

Documentation framework

LXD’s documentation is built with Sphinx and hosted on Read the Docs.

It is written in Markdown with MyST extensions. For syntax help and guidelines, see the documentation cheat sheet
(source).

For structuring, the documentation uses the Diátaxis approach.

Build the documentation

To build the documentation, run make doc from the root directory of the repository. This command installs the required
tools and renders the output to the doc/html/ directory. To update the documentation for changed files only (without
re-installing the tools), run make doc-incremental.

Before opening a pull request, make sure that the documentation builds without any warnings (warnings are treated as
errors). To preview the documentation locally, run make doc-serve and go to http://localhost:8001 to view
the rendered documentation.

When you open a pull request, a preview of the documentation output is built automatically. To see the output, view
the details for the docs/readthedocs.com:canonical-lxd check on the pull request.

2.2. How-to guides 33

https://discourse.ubuntu.com/c/lxd/tutorials/146
https://github.com/canonical/lxd/issues
https://discourse.ubuntu.com/c/lxd/126
https://web.libera.chat/#lxd
https://tinypng.com/
https://www.sphinx-doc.org/en/master/index.html
https://about.readthedocs.com/
https://commonmark.org/
https://myst-parser.readthedocs.io/
https://documentation.ubuntu.com/lxd/en/latest/doc-cheat-sheet/
https://raw.githubusercontent.com/canonical/lxd/main/doc/doc-cheat-sheet.md
https://diataxis.fr/
http://localhost:8001

Canonical LXD

Automatic documentation checks

GitHub runs automatic checks on the documentation to verify the spelling, the validity of links, correct formatting of
the Markdown files, and the use of inclusive language.

You can (and should!) run these tests locally as well with the following commands:

• Check the spelling: make doc-spellcheck

• Check the validity of links: make doc-linkcheck

• Check the Markdown formatting: make doc-lint

• Check for inclusive language: make doc-woke

Document configuration options

Note: We are currently in the process of moving the documentation of configuration options to code comments. At
the moment, not all configuration options follow this approach.

The documentation of configuration options is extracted from comments in the Go code. Look for comments that start
with lxdmeta:generate in the code.

When you add or change a configuration option, make sure to include the required documentation comment for it. See
the lxd-metadata README file for information about the format.

Then run make generate-config to re-generate the doc/config_options.txt file. The updated file should be
checked in.

The documentation includes sections from the doc/config_options.txt to display a group of configuration options.
For example, to include the core server options:

% Include content from config_options.txt
```{include} config_options.txt

:start-after: <!-- config group server-core start -->
:end-before: <!-- config group server-core end -->

```

If you add a configuration option to an existing group, you don’t need to do any updates to the documentation files.
The new option will automatically be picked up. You only need to add an include to a documentation file if you are
defining a new group.

In addition, the following clip gives a quick and easy introduction for standard use cases:

You can also find a series of demos and tutorials on YouTube:

34 Chapter 2. Project and community

https://github.com/canonical/lxd/blob/main/lxd/lxd-metadata/README.md

Canonical LXD

Related topics

Tutorials:

• First steps with LXD

Explanation:

• About containers and VMs

Reference:

• Requirements

LXD server and client

The following how-to guides cover common operations related to the LXD server:

How to expose LXD to the network

By default, LXD can be used only by local users through a Unix socket and is not accessible over the network.

To expose LXD to the network, you must configure it to listen to addresses other than the local Unix socket. To do so,
set the core.https_address server configuration option.

For example, allow access to the LXD server on port 8443:

CLI

API

lxc config set core.https_address :8443

lxc query --request PATCH /1.0 --data '{
"config": {
"core.https_address": ":8443"

}
}'

To allow access through a specific IP address, use ip addr to find an available address and then set it. For example:

user@host:~$ ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/
128 scope host valid_lft forever preferred_lft forever2: enp5s0: <BROADCAST,
MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000 link/ether
00:16:3e:e3:f3:3f brd ff:ff:ff:ff:ff:ff inet 10.68.216.12/24 metric 100 brd 10.68.
216.255 scope global dynamic enp5s0 valid_lft 3028sec preferred_lft 3028sec inet6
fd42:e819:7a51:5a7b:216:3eff:fee3:f33f/64 scope global mngtmpaddr noprefixroute valid_lft
forever preferred_lft forever inet6 fe80::216:3eff:fee3:f33f/64 scope link valid_lft
forever preferred_lft forever3: lxdbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu
1500 qdisc noqueue state DOWN group default qlen 1000 link/ether 00:16:3e:8d:f3:72 brd
ff:ff:ff:ff:ff:ff inet 10.64.82.1/24 scope global lxdbr0 valid_lft forever preferred_lft
forever inet6 fd42:f4ab:4399:e6eb::1/64 scope global valid_lft forever preferred_lft
forever user@host:~$ lxc config set core.https_address 10.68.216.12 All remote clients can then
connect to LXD and access any image that is marked for public use.

2.2. How-to guides 35

Canonical LXD

Authenticate with the LXD server

To be able to access the remote API, clients must authenticate with the LXD server. There are several authentication
methods; see Remote API authentication for detailed information.

The recommended method is to add the client’s TLS certificate to the server’s trust store through a trust token. To
authenticate a client using a trust token, complete the following steps:

1. On the server, generate a trust token.

CLI

API

To generate a trust token, enter the following command on the server:

lxc config trust add

Enter the name of the client that you want to add. The command generates and prints a token that can be used to
add the client certificate.

To generate a trust token, send a POST request to the /1.0/certificates endpoint:

lxc query --request POST /1.0/certificates --data '{
"name": "<client_name>",
"token": true,
"type": "client"

}'

See POST /1.0/certificates for more information.

The return value of this query contains an operation that has the information that is required to generate the trust
token:

{
"class": "token",
...
"metadata": {

"addresses": [
"<server_address>"

],
"fingerprint": "<fingerprint>",
...
"secret": "<secret>"

},
...
}

Use this information to generate the trust token:

echo -n '{"client_name":"<client_name>","fingerprint":"<fingerprint>",'\
'"addresses":["<server_address>"],'\
'"secret":"<secret>","expires_at":"0001-01-01T00:00:00Z"}' | base64 -w0

2. Authenticate the client.

CLI

API

36 Chapter 2. Project and community

Canonical LXD

On the client, add the server with the following command:

lxc remote add <remote_name> <token>

Note: If your LXD server is behind NAT, you must specify its external public address when adding it as a
remote for a client:

lxc remote add <name> <IP_address>

When you are prompted for the admin password, specify the generated token.

When generating the token on the server, LXD includes a list of IP addresses that the client can use to access
the server. However, if the server is behind NAT, these addresses might be local addresses that the client cannot
connect to. In this case, you must specify the external address manually.

On the client, generate a certificate to use for the connection:

openssl req -x509 -newkey rsa:2048 -keyout "<keyfile_name>" -nodes \
-out "<crtfile_name>" -subj "/CN=<client_name>"

Then send a POST request to the /1.0/certificates?public endpoint to authenticate:

curl -k -s --key "<keyfile_name>" --cert "<crtfile_name>" \
-X POST https://<server_address>/1.0/certificates \
--data '{ "password": "<trust_token>" }'

See POST /1.0/certificates?public for more information.

See Remote API authentication for detailed information and other authentication methods.

How to configure the LXD server

See Server configuration for all configuration options that are available for the LXD server.

If the LXD server is part of a cluster, some of the options apply to the cluster, while others apply only to the local server,
thus the cluster member. In the Server configuration option tables, options that apply to the cluster are marked with a
global scope, while options that apply to the local server are marked with a local scope.

Configure server options

CLI

API

You can configure a server option with the following command:

lxc config set <key> <value>

For example, to allow remote access to the LXD server on port 8443, enter the following command:

lxc config set core.https_address :8443

In a cluster setup, to configure a server option for a cluster member only, add the --target flag. For example, to
configure where to store image tarballs on a specific cluster member, enter a command similar to the following:

2.2. How-to guides 37

Canonical LXD

lxc config set storage.images_volume my-pool/my-volume --target member02

Send a PATCH request to the /1.0 endpoint to update one or more server options:

lxc query --request PATCH /1.0 --data '{
"config": {
"<key>": "<value>",
"<key>": "<value>"

}
}'

For example, to allow remote access to the LXD server on port 8443, send the following request:

lxc query --request PATCH /1.0 --data '{
"config": {
"core.https_address": ":8443"

}
}'

In a cluster setup, to configure a server option for a cluster member only, add the target parameter to the query. For
example, to configure where to store image tarballs on a specific cluster member, send a request similar to the following:

lxc query --request PATCH /1.0?target=member02 --data '{
"config": {
"storage.images_volume": "my-pool/my-volume"

}
}'

See PATCH /1.0 for more information.

Display the server configuration

CLI

API

To display the current server configuration, enter the following command:

lxc config show

In a cluster setup, to show the local configuration for a specific cluster member, add the --target flag.

Send a GET request to the /1.0 endpoint to display the current server environment and configuration:

lxc query --request GET /1.0

In a cluster setup, to show the local environment and configuration for a specific cluster member, add the target
parameter to the query:

lxc query --request GET /1.0?target=<cluster_member>

See GET /1.0 for more information.

38 Chapter 2. Project and community

Canonical LXD

Edit the full server configuration

CLI

API

To edit the full server configuration as a YAML file, enter the following command:

lxc config edit

In a cluster setup, to edit the local configuration for a specific cluster member, add the --target flag.

To update the full server configuration, send a PUT request to the /1.0 endpoint:

lxc query --request PUT /1.0 --data '<server_configuration>'

In a cluster setup, to update the full server configuration for a specific cluster member, add the target parameter to
the query:

lxc query --request PUT /1.0?target=<cluster_member> '<server_configuration>'

See PUT /1.0 for more information.

The following how-to guides cover common operations related to the LXD client (lxc):

How to add remote servers

Remote servers are a concept in the LXD command-line client. By default, the command-line client interacts with the
local LXD daemon, but you can add other servers or clusters to interact with.

If you are using the API, you can interact with different remotes by using their exposed API addresses.

One use case for remote servers is to distribute images that can be used to create instances on local servers. See Remote
image servers for more information.

You can also add a full LXD server as a remote server to your client. In this case, you can interact with the remote server
in the same way as with your local daemon. For example, you can manage instances or update the server configuration
on the remote server.

Authentication

To be able to add a LXD server as a remote server, the server’s API must be exposed, which means that its core.
https_address server configuration option must be set.

When adding the server, you must then authenticate with it using the chosen method for Remote API authentication.

See How to expose LXD to the network for more information.

2.2. How-to guides 39

Canonical LXD

List configured remotes

To see all configured remote servers, enter the following command:

lxc remote list

Remote servers that use the simple streams format are pure image servers. Servers that use the lxd format are LXD
servers, which either serve solely as image servers or might provide some images in addition to serving as regular LXD
servers. See Remote server types for more information.

Add a remote LXD server

To add a LXD server as a remote, enter the following command:

lxc remote add <remote_name> <IP|FQDN|URL> [flags]

Some authentication methods require specific flags (for example, use lxc remote add <remote_name>
<IP|FQDN|URL> --auth-type=oidc for OIDC authentication). See Authenticate with the LXD server and Remote
API authentication for more information.

For example, enter the following command to add a remote through an IP address:

lxc remote add my-remote 192.0.2.10

You are prompted to confirm the remote server fingerprint and then asked for the password or token, depending on the
authentication method used by the remote.

Select a default remote

The LXD command-line client is pre-configured with the local remote, which is the local LXD daemon.

To select a different remote as the default remote, enter the following command:

lxc remote switch <remote_name>

To see which server is configured as the default remote, enter the following command:

lxc remote get-default

Configure a global remote

You can configure remotes on a global, per-system basis. These remotes are available for every user of the LXD server
for which you add the configuration.

Users can override these system remotes (for example, by running lxc remote rename or lxc remote set-url),
which results in the remote and its associated certificates being copied to the user configuration.

To configure a global remote, edit the config.yml file that is located in one of the following directories:

• the directory specified by LXD_GLOBAL_CONF (if defined)

• /var/snap/lxd/common/global-conf/ (if you use the snap)

• /etc/lxd/ (otherwise)

40 Chapter 2. Project and community

https://git.launchpad.net/simplestreams/tree/

Canonical LXD

Certificates for the remotes must be stored in the servercerts directory in the same location (for example, /etc/
lxd/servercerts/). They must match the remote name (for example, foo.crt).

See the following example configuration:

remotes:
foo:
addr: https://192.0.2.4:8443
auth_type: tls
project: default
protocol: lxd
public: false

bar:
addr: https://192.0.2.5:8443
auth_type: tls
project: default
protocol: lxd
public: false

How to add command aliases

The LXD command-line client supports adding aliases for commands that you use frequently. You can use aliases as
shortcuts for longer commands, or to automatically add flags to existing commands.

To manage command aliases, you use the lxc alias command.

For example, to always ask for confirmation when deleting an instance, create an alias for lxc delete that always
runs lxc delete -i:

lxc alias add delete "delete -i"

To see all configured aliases, run lxc alias list. Run lxc alias --help to see all available subcommands.

Related topics

Explanation:

• About lxd and lxc

• About the LXD database

Reference:

• Architectures

• Server configuration

• REST API

2.2. How-to guides 41

Canonical LXD

2.2.2 Work with LXD

After the initial setup, you can start working with LXD by creating instances. You’ll also need to set up and configure
other entities.

Instances

The following how-to guides cover common operations related to instances.

How to create and manage instances:

How to create instances

When creating an instance, you must specify the image on which the instance should be based.

Images contain a basic operating system (for example, a Linux distribution) and some LXD-related information. Images
for various operating systems are available on the built-in remote image servers. See Images for more information.

If you don’t specify a name for the instance, LXD will automatically generate one. Instance names must be unique
within a LXD deployment (also within a cluster). See Instance name requirements for additional requirements.

CLI

API

UI

To create an instance, you can use either the lxc init or the lxc launch command. The lxc init command only
creates the instance, while the lxc launch command creates and starts it.

Enter the following command to create a container:

lxc launch|init <image_server>:<image_name> <instance_name> [flags]

Unless the image is available locally, you must specify the name of the image server and the name of the image (for
example, ubuntu:24.04 for the official 24.04 Ubuntu image).

See lxc launch --help or lxc init --help for a full list of flags. The most common flags are:

• --config to specify a configuration option for the new instance

• --device to override device options for a device provided through a profile, or to specify an initial configuration
for the root disk device (syntax: --device <device_name>,<device_option>=<value>)

• --profile to specify a profile to use for the new instance

• --network or --storage to make the new instance use a specific network or storage pool

• --target to create the instance on a specific cluster member

• --vm to create a virtual machine instead of a container

Instead of specifying the instance configuration as flags, you can pass it to the command as a YAML file.

For example, to launch a container with the configuration from config.yaml, enter the following command:

lxc launch ubuntu:24.04 ubuntu-config < config.yaml

42 Chapter 2. Project and community

Canonical LXD

Tip: Check the contents of an existing instance configuration (lxc config show <instance_name>
--expanded) to see the required syntax of the YAML file.

To create an instance, send a POST request to the /1.0/instances endpoint:

lxc query --request POST /1.0/instances --data '{
"name": "<instance_name>",
"source": {
"alias": "<image_alias>",
"protocol": "simplestreams",
"server": "<server_URL>",
"type": "image"

}
}'

The return value of this query contains an operation ID, which you can use to query the status of the operation:

lxc query --request GET /1.0/operations/<operation_ID>

Use the following query to monitor the state of the instance:

lxc query --request GET /1.0/instances/<instance_name>/state

See POST /1.0/instances and GET /1.0/instances/{name}/state for more information.

The request creates the instance, but does not start it. To start an instance, send a PUT request to change the instance
state:

lxc query --request PUT /1.0/instances/<instance_name>/state --data '{"action": "start"}'

See Start an instance for more information.

To create an instance, go to the Instances section and click Create instance.

On the resulting screen, optionally enter a name and description for the instance. Then click Browse images to select
the image to be used for the instance. Depending on the selected image, you might be able to select the instance type
(container or virtual machine). You can also specify one or more profiles to use for the instance.

To further tweak the instance configuration or add devices to the instance, go to any of the tabs under Advanced. You
can also edit the full instance configuration on the YAML configuration tab.

Finally, click Create or Create and start to create the instance.

Examples

The following CLI and API examples create the instances, but don’t start them. If you are using the CLI client, you can
use lxc launch instead of lxc init to automatically start them after creation.

In the UI, you can choose between Create and Create and start when you are ready to create the instance.

2.2. How-to guides 43

Canonical LXD

Create a container

To create a container with an Ubuntu 24.04 image from the ubuntu server using the instance name
ubuntu-container:

CLI

API

UI

lxc init ubuntu:24.04 ubuntu-container

lxc query --request POST /1.0/instances --data '{
"name": "ubuntu-container",
"source": {
"alias": "24.04",
"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases",
"type": "image"

}
}'

44 Chapter 2. Project and community

Canonical LXD

Create a virtual machine

To create a virtual machine with an Ubuntu 24.04 image from the ubuntu server using the instance name ubuntu-vm:

CLI

API

UI

lxc init ubuntu:24.04 ubuntu-vm --vm

lxc query --request POST /1.0/instances --data '{
"name": "ubuntu-vm",
"source": {
"alias": "24.04",
"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases",
"type": "image"

},
"type": "virtual-machine"

}'

Or with a bigger disk:

CLI

API

UI

lxc init ubuntu:24.04 ubuntu-vm-big --vm --device root,size=30GiB

2.2. How-to guides 45

Canonical LXD

lxc query --request POST /1.0/instances --data '{
"devices": {
"root": {
"path": "/",
"pool": "default",
"size": "30GiB",
"type": "disk"

}
},
"name": "ubuntu-vm-big",
"source": {
"alias": "24.04",
"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases",
"type": "image"

},
"type": "virtual-machine"

}'

Create a container with specific configuration options

To create a container and limit its resources to one vCPU and 8 GiB of RAM:

CLI

API

UI

lxc init ubuntu:24.04 ubuntu-limited --config limits.cpu=1 --config limits.memory=8GiB

46 Chapter 2. Project and community

Canonical LXD

lxc query --request POST /1.0/instances --data '{
"config": {
"limits.cpu": "1",
"limits.memory": "8GiB"

},
"name": "ubuntu-limited",
"source": {
"alias": "24.04",
"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases",
"type": "image"

}
}'

Create a VM on a specific cluster member

To create a virtual machine on the cluster member micro2, enter the following command:

CLI

API

UI

lxc init ubuntu:24.04 ubuntu-vm-server2 --vm --target micro2

lxc query --request POST /1.0/instances?target=micro2 --data '{
"name": "ubuntu-vm-server2",
"source": {
"alias": "24.04",

(continues on next page)

2.2. How-to guides 47

Canonical LXD

(continued from previous page)

"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases",
"type": "image"

},
"type": "virtual-machine"

}'

Create a container with a specific instance type

LXD supports simple instance types for clouds. Those are represented as a string that can be passed at instance creation
time.

The list of supported clouds and instance types can be found at images.lxd.canonical.com/meta/
instance-types/.

The syntax allows the three following forms:

• <instance type>

• <cloud>:<instance type>

• c<CPU>-m<RAM in GiB>

For example, the following three instance types are equivalent:

• t2.micro

• aws:t2.micro

• c1-m1

To create a container with this instance type:

CLI

48 Chapter 2. Project and community

https://images.lxd.canonical.com/meta/instance-types/
https://images.lxd.canonical.com/meta/instance-types/

Canonical LXD

API

UI

lxc init ubuntu:24.04 my-instance --type t2.micro

lxc query --request POST /1.0/instances --data '{
"instance_type": "t2.micro",
"name": "my-instance",
"source": {
"alias": "24.04",
"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases",
"type": "image"

}
}'

Creating an instance with a specific cloud instance type is currently not possible through the UI. Configure the corre-
sponding options manually or through a profile.

Create a VM that boots from an ISO

To create a VM that boots from an ISO:

CLI

API

UI

First, create an empty VM that we can later install from the ISO image:

lxc init iso-vm --empty --vm

The second step is to import an ISO image that can later be attached to the VM as a storage volume:

lxc storage volume import <pool> <path-to-image.iso> iso-volume --type=iso

Lastly, attach the custom ISO volume to the VM using the following command:

lxc config device add iso-vm iso-volume disk pool=<pool> source=iso-volume boot.
→˓priority=10

The boot.priority configuration key ensures that the VM will boot from the ISO first. Start the VM and connect to
the console as there might be a menu you need to interact with:

lxc start iso-vm --console

Once you’re done in the serial console, disconnect from the console using Ctrl+a q and connect to the VGA console
using the following command:

lxc console iso-vm --type=vga

You should now see the installer. After the installation is done, detach the custom ISO volume:

2.2. How-to guides 49

Canonical LXD

lxc storage volume detach <pool> iso-volume iso-vm

Now the VM can be rebooted, and it will boot from disk.

First, create an empty VM that we can later install from the ISO image:

lxc query --request POST /1.0/instances --data '{
"name": "iso-vm",
"source": {
"type": "none"

},
"type": "virtual-machine"

}'

The second step is to import an ISO image that can later be attached to the VM as a storage volume:

curl -X POST -H "Content-Type: application/octet-stream" -H "X-LXD-name: iso-volume" \
-H "X-LXD-type: iso" --data-binary @<path-to-image.iso> --unix-socket /var/snap/lxd/
→˓common/lxd/unix.socket \
lxd/1.0/storage-pools/<pool>/volumes/custom

Note: When importing an ISO image, you must send both binary data from a file and additional headers. The lxc
query command cannot do this, so you need to use curl or another tool instead.

Lastly, attach the custom ISO volume to the VM using the following command:

lxc query --request PATCH /1.0/instances/iso-vm --data '{
"devices": {
"iso-volume": {
"boot.priority": "10",
"pool": "<pool>",
"source": "iso-volume",
"type": "disk"

}
}

}'

The boot.priority configuration key ensures that the VM will boot from the ISO first. Start the VM and connect to
the console as there might be a menu you need to interact with:

lxc query --request PUT /1.0/instances/iso-vm/state --data '{"action": "start"}'
lxc query --request POST /1.0/instances/iso-vm/console --data '{
"height": 24,
"type": "console",
"width": 80

}'

Once you’re done in the serial console, disconnect from the console using Ctrl+a q and connect to the VGA console
using the following command:

lxc query --request POST /1.0/instances/iso-vm/console --data '{
"height": 24,
"type": "vga",

(continues on next page)

50 Chapter 2. Project and community

Canonical LXD

(continued from previous page)

"width": 80
}'

You should now see the installer. After the installation is done, detach the custom ISO volume:

lxc query --request GET /1.0/instances/iso-vm
lxc query --request PUT /1.0/instances/iso-vm --data '{
[...]
"devices": {}
[...]

}'

Note: You cannot remove the device through a PATCH request, but you must use a PUT request. Therefore, get
the current configuration first and then provide the relevant configuration with an empty devices list through the PUT
request.

Now the VM can be rebooted, and it will boot from disk.

In the Create instance dialog, click Use custom ISO instead of Browse images. You can then upload your ISO file and
install a VM from it.

How to configure instances

You can configure instances by setting Instance properties, Instance options, or by adding and configuring Devices.

See the following sections for instructions.

Note: To store and reuse different instance configurations, use profiles.

Configure instance options

You can specify instance options when you create an instance. Alternatively, you can update the instance options after
the instance is created.

CLI

API

UI

Use the lxc config set command to update instance options. Specify the instance name and the key and value of
the instance option:

lxc config set <instance_name> <option_key>=<option_value> <option_key>=<option_value> ..
→˓.

Send a PATCH request to the instance to update instance options. Specify the instance name and the key and value of
the instance option:

2.2. How-to guides 51

Canonical LXD

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"config": {
"<option_key>": "<option_value>",
"<option_key>": "<option_value>"

}
}'

See PATCH /1.0/instances/{name} for more information.

To update instance options, go to the Configuration tab of the instance detail page and click Edit instance.

Find the configuration option that you want to update and change its value. Click Save changes to save the updated
configuration.

To configure instance options that are not displayed in the UI, follow the instructions in Edit the full instance configu-
ration.

See Instance options for a list of available options and information about which options are available for which instance
type.

For example, change the memory limit for your container:

CLI

API

UI

To set the memory limit to 8 GiB, enter the following command:

lxc config set my-container limits.memory=8GiB

To set the memory limit to 8 GiB, send the following request:

lxc query --request PATCH /1.0/instances/my-container --data '{
"config": {
"limits.memory": "8GiB"

}
}'

To set the memory limit to 8 GiB, go to the Configuration tab of the instance detail page and select Advanced > Resource
limits. Then click Edit instance.

Select Override for the Memory limit and enter 8 GiB as the absolute value.

Note: Some of the instance options are updated immediately while the instance is running. Others are updated only
when the instance is restarted.

See the “Live update” information in the Instance options reference for information about which options are applied
immediately while the instance is running.

52 Chapter 2. Project and community

Canonical LXD

Configure instance properties

CLI

API

UI

To update instance properties after the instance is created, use the lxc config set command with the --property
flag. Specify the instance name and the key and value of the instance property:

lxc config set <instance_name> <property_key>=<property_value> <property_key>=<property_
→˓value> ... --property

Using the same flag, you can also unset a property just like you would unset a configuration option:

lxc config unset <instance_name> <property_key> --property

You can also retrieve a specific property value with:

lxc config get <instance_name> <property_key> --property

To update instance properties through the API, use the same mechanism as for configuring instance options. The only
difference is that properties are on the root level of the configuration, while options are under the config field.

Therefore, to set an instance property, send a PATCH request to the instance:

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"<property_key>": "<property_value>",
"<property_key>": "property_value>"
}

}'

To unset an instance property, send a PUT request that contains the full instance configuration that you want except for
the property that you want to unset.

See PATCH /1.0/instances/{name} and PUT /1.0/instances/{name} for more information.

The LXD UI does not distinguish between instance options and instance properties. Therefore, you can configure
instance properties in the same way as you configure instance options.

2.2. How-to guides 53

Canonical LXD

Configure devices

Generally, devices can be added or removed for a container while it is running. VMs support hotplugging for some
device types, but not all.

See Devices for a list of available device types and their options.

Note: Every device entry is identified by a name unique to the instance.

Devices from profiles are applied to the instance in the order in which the profiles are assigned to the instance. Devices
defined directly in the instance configuration are applied last. At each stage, if a device with the same name already
exists from an earlier stage, the whole device entry is overridden by the latest definition.

Device names are limited to a maximum of 64 characters.

CLI

API

UI

To add and configure an instance device for your instance, use the lxc config device add command.

Specify the instance name, a device name, the device type and maybe device options (depending on the device type):

lxc config device add <instance_name> <device_name> <device_type> <device_option_key>=
→˓<device_option_value> <device_option_key>=<device_option_value> ...

For example, to add the storage at /share/c1 on the host system to your instance at path /opt, enter the following
command:

lxc config device add my-container disk-storage-device disk source=/share/c1 path=/opt

To configure instance device options for a device that you have added earlier, use the lxc config device set com-
mand:

lxc config device set <instance_name> <device_name> <device_option_key>=<device_option_
→˓value> <device_option_key>=<device_option_value> ...

Device options for a device inherited from a profile cannot be updated within the instance. Use the lxc config
device override command to create a copy of the profile device with updated device options. The newly created
instance device will override the inherited device.

Specify the instance name, device name and the device options that should be overridden:

lxc config device override <instance_name> <device_name> <device_option_key>=<device_
→˓option_value> <device_option_key>=<device_option_value> ...

Note: You can also specify device options by using the --device flag when creating an instance. This is useful if
you want to override device options for a device that is provided through a profile.

To remove a device, use the lxc config device remove command. See lxc config device --help for a full
list of available commands.

To add and configure an instance device for your instance, use the same mechanism of patching the instance configu-
ration. The device configuration is located under the devices field of the configuration.

54 Chapter 2. Project and community

Canonical LXD

Specify the instance name, a device name, the device type and maybe device options (depending on the device type):

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"devices": {
"<device_name>": {
"type": "<device_type>",
"<device_option_key>": "<device_option_value>",
"<device_option_key>": "device_option_value>"

}
}

}'

For example, to add the storage at /share/c1 on the host system to your instance at path /opt, enter the following
command:

lxc query --request PATCH /1.0/instances/my-container --data '{
"devices": {
"disk-storage-device": {
"type": "disk",
"source": "/share/c1",
"path": "/opt"

}
}

}'

See PATCH /1.0/instances/{name} for more information.

The UI does not support all device types yet, but you can configure disk and network devices for your instances.

To attach a device to your instance, or modify an existing device, update your instance configuration (in the same way as
you configure instance options). Select Advanced > Disk devices > Attach disk device or Advanced > Network devices
> Attach network to create a device and attach it to your instance.

Note: Some of the devices that are displayed in the instance configuration are inherited from a profile or defined
through a project. Depending on the type of device, it might not be possible to edit these devices for an instance.

To add and configure devices that are not currently supported in the UI, follow the instructions in Edit the full instance
configuration.

Display instance configuration

CLI

API

UI

To display the current configuration of your instance, including writable instance properties, instance options, devices
and device options, enter the following command:

lxc config show <instance_name> --expanded

To retrieve the current configuration of your instance, including writable instance properties, instance options, devices
and device options, send a GET request to the instance:

2.2. How-to guides 55

Canonical LXD

lxc query --request GET /1.0/instances/<instance_name>

See GET /1.0/instances/{name} for more information.

To view the current configuration of your instance, go to Instances, select your instance, and then switch to the Con-
figuration tab.

To see the full configuration including instance properties, instance options, devices and device options (also the ones
that aren’t yet supported by the UI), select YAML configuration. This view shows the full YAML of the instance
configuration.

Edit the full instance configuration

CLI

API

UI

To edit the full instance configuration, including writable instance properties, instance options, devices and device
options, enter the following command:

lxc config edit <instance_name>

Note: For convenience, the lxc config edit command displays the full configuration including read-only instance
properties. However, you cannot edit those properties. Any changes are ignored.

To update the full instance configuration, including writable instance properties, instance options, devices and device
options, send a PUT request to the instance:

lxc query --request PUT /1.0/instances/<instance_name> --data '<instance_configuration>'

See PUT /1.0/instances/{name} for more information.

Note: If you include changes to any read-only instance properties in the configuration you provide, they are ignored.

Instead of using the UI forms to configure your instance, you can choose to edit the YAML configuration of the instance.
You must use this method if you need to update any configurations that are not available in the UI.

Important: When doing updates, do not navigate away from the YAML configuration without saving your changes.
If you do, your updates are lost.

To edit the YAML configuration of your instance, go to the instance detail page, switch to the Configuration tab and
select YAML configuration. Then click Edit instance.

Edit the YAML configuration as required. Then click Save changes to save the updated configuration.

Note: For convenience, the YAML contains the full configuration including read-only instance properties. However,
you cannot edit those properties. Any changes are ignored.

56 Chapter 2. Project and community

Canonical LXD

How to manage instances

When listing the existing instances, you can see their type, status, and location (if applicable). You can filter the
instances and display only the ones that you are interested in.

CLI

API

UI

Enter the following command to list all instances:

lxc list

You can filter the instances that are displayed, for example, by type, status or the cluster member where the instance is
located:

lxc list type=container
lxc list status=running
lxc list location=server1

You can also filter by name. To list several instances, use a regular expression for the name. For example:

lxc list ubuntu.*

Enter lxc list --help to see all filter options.

Query the /1.0/instances endpoint to list all instances. You can use Recursion to display more information about
the instances:

lxc query --request GET /1.0/instances?recursion=2

You can filter the instances that are displayed, by name, type, status or the cluster member where the instance is located:

lxc query --request GET /1.0/instances?filter=name+eq+ubuntu
lxc query --request GET /1.0/instances?filter=type+eq+container
lxc query --request GET /1.0/instances?filter=status+eq+running
lxc query --request GET /1.0/instances?filter=location+eq+server1

To list several instances, use a regular expression for the name. For example:

lxc query --request GET /1.0/instances?filter=name+eq+ubuntu.*

See GET /1.0/instances for more information.

Go to Instances to see a list of all instances.

You can filter the instances that are displayed by status, instance type, or the profile they use by selecting the corre-
sponding filter.

In addition, you can search for instances by entering a search text. The text you enter is matched against the name, the
description, and the name of the base image.

2.2. How-to guides 57

Canonical LXD

Show information about an instance

CLI

API

UI

Enter the following command to show detailed information about an instance:

lxc info <instance_name>

Add --show-log to the command to show the latest log lines for the instance:

lxc info <instance_name> --show-log

Query the following endpoint to show detailed information about an instance:

lxc query --request GET /1.0/instances/<instance_name>

See GET /1.0/instances/{name} for more information.

Clicking an instance line in the overview will show a summary of the instance information right next to the instance
list.

Click the instance name to go to the instance detail page, which contains detailed information about the instance.

Start an instance

CLI

API

UI

Enter the following command to start an instance:

lxc start <instance_name>

You will get an error if the instance does not exist or if it is running already.

To immediately attach to the console when starting, pass the --console flag. For example:

lxc start <instance_name> --console

See How to access the console for more information.

To start an instance, send a PUT request to change the instance state:

lxc query --request PUT /1.0/instances/<instance_name>/state --data '{"action": "start"}'

The return value of this query contains an operation ID, which you can use to query the status of the operation:

lxc query --request GET /1.0/operations/<operation_ID>

Use the following query to monitor the state of the instance:

lxc query --request GET /1.0/instances/<instance_name>/state

58 Chapter 2. Project and community

Canonical LXD

See GET /1.0/instances/{name}/state and PUT /1.0/instances/{name}/statefor more information.

To start an instance, go to the instance list or the respective instance and click the Start button ().

You can also start several instances at the same time by selecting them in the instance list and clicking the Start button
at the top.

On the instance detail page, select the Console tab to see the boot log with information about the instance starting up.
Once it is running, you can select the Terminal tab to access the instance.

Stop an instance

CLI

API

UI

Enter the following command to stop an instance:

lxc stop <instance_name>

You will get an error if the instance does not exist or if it is not running.

To stop an instance, send a PUT request to change the instance state:

lxc query --request PUT /1.0/instances/<instance_name>/state --data '{"action": "stop"}'

The return value of this query contains an operation ID, which you can use to query the status of the operation:

lxc query --request GET /1.0/operations/<operation_ID>

Use the following query to monitor the state of the instance:

lxc query --request GET /1.0/instances/<instance_name>/state

See GET /1.0/instances/{name}/state and PUT /1.0/instances/{name}/statefor more information.

To stop an instance, go to the instance list or the respective instance and click the Stop button (). You are then prompted
to confirm.

Tip: To skip the confirmation prompt, hold the Shift key while clicking.

You can choose to force-stop the instance. If stopping the instance takes a long time or the instance is not responding to
the stop request, click the spinning stop button to go back to the confirmation prompt, where you can select to force-stop
the instance.

You can also stop several instances at the same time by selecting them in the instance list and clicking the Stop button
at the top.

2.2. How-to guides 59

Canonical LXD

Delete an instance

If you don’t need an instance anymore, you can remove it. The instance must be stopped before you can delete it.

CLI

API

UI

Enter the following command to delete an instance:

lxc delete <instance_name>

To delete an instance, send a DELETE request to the instance:

lxc query --request DELETE /1.0/instances/<instance_name>

See DELETE /1.0/instances/{name} for more information.

To delete an instance, go to its instance detail page and click Delete instance. You are then prompted to confirm.

Tip: To skip the confirmation prompt, hold the Shift key while clicking.

You can also delete several instances at the same time by selecting them in the instance list and clicking the Delete
button at the top.

Caution: This command permanently deletes the instance and all its snapshots.

Prevent accidental deletion of instances

There are different ways to prevent accidental deletion of instances:

• To protect a specific instance from being deleted, set security.protection.delete to true for the instance.
See How to configure instances for instructions.

• In the CLI client, you can create an alias to be prompted for approval every time you use the lxc delete
command:

lxc alias add delete "delete -i"

Rebuild an instance

If you want to wipe and re-initialize the root disk of your instance but keep the instance configuration, you can rebuild
the instance.

Rebuilding is only possible for instances that do not have any snapshots.

Stop your instance before rebuilding it.

CLI

API

UI

60 Chapter 2. Project and community

Canonical LXD

Enter the following command to rebuild the instance with a different image:

lxc rebuild <image_name> <instance_name>

Enter the following command to rebuild the instance with an empty root disk:

lxc rebuild <instance_name> --empty

For more information about the rebuild command, see lxc rebuild --help.

To rebuild the instance with a different image, send a POST request to the instance’s rebuild endpoint. For example:

lxc query --request POST /1.0/instances/<instance_name>/rebuild --data '{
"source": {
"alias": "<image_alias>",
"protocol": "simplestreams",
"server": "<server_URL>"

}
}'

To rebuild the instance with an empty root disk, specify the source type as none:

lxc query --request POST /1.0/instances/<instance_name>/rebuild --data '{
"source": {
"type": "none"

}
}'

See POST /1.0/instances/{name}/rebuild for more information.

Rebuilding an instance is not yet supported in the UI.

How to use profiles

Profiles store a set of configuration options. They can contain Instance options, Devices, and device options.

You can apply any number of profiles to an instance. They are applied in the order they are specified, so the last profile
to specify a specific key takes precedence. However, instance-specific configuration always overrides the configuration
coming from the profiles.

Note: Profiles can be applied to containers and virtual machines. Therefore, they might contain options and devices
that are valid for either type.

When applying a profile that contains configuration that is not suitable for the instance type, this configuration is ignored
and does not result in an error.

If you don’t specify any profiles when launching a new instance, the default profile is applied automatically. This
profile defines a network interface and a root disk. The default profile cannot be renamed or removed.

2.2. How-to guides 61

Canonical LXD

View profiles

CLI

API

UI

Enter the following command to display a list of all available profiles:

lxc profile list

Enter the following command to display the contents of a profile:

lxc profile show <profile_name>

To display all available profiles, send a request to the /1.0/profiles endpoint:

lxc query --request GET /1.0/profiles?recursion=1

To display a specific profile, send a request to that profile:

lxc query --request GET /1.0/profiles/<profile_name>

See GET /1.0/profiles and GET /1.0/profiles/{name} for more information.

Go to the Profiles section to view all available profiles.

To view information about a specific profile, click its line in the overview. To display the full information about a
profile, including its configuration, click the profile name to go to the profile detail page.

Create an empty profile

CLI

API

UI

Enter the following command to create an empty profile:

lxc profile create <profile_name>

To create an empty profile, send a POST request to the /1.0/profiles endpoint:

lxc query --request POST /1.0/profiles --data '{"name": "<profile_name>"}'

See POST /1.0/profiles for more information.

To create a profile, go to the Profiles section and click Create profile.

Enter at least a profile name and click Create to save the new profile.

62 Chapter 2. Project and community

Canonical LXD

Edit a profile

You can either set specific configuration options for a profile or edit the full profile. See Instance configuration (and
its subpages) for the available options.

Set specific options for a profile

CLI

API

UI

To set an instance option for a profile, use the lxc profile set command. Specify the profile name and the key and
value of the instance option:

lxc profile set <profile_name> <option_key>=<option_value> <option_key>=<option_value> ..
→˓.

To add and configure an instance device for your profile, use the lxc profile device add command. Specify the
profile name, a device name, the device type and maybe device options (depending on the device type):

lxc profile device add <profile_name> <device_name> <device_type> <device_option_key>=
→˓<device_option_value> <device_option_key>=<device_option_value> ...

To configure instance device options for a device that you have added to the profile earlier, use the lxc profile
device set command:

lxc profile device set <profile_name> <device_name> <device_option_key>=<device_option_
→˓value> <device_option_key>=<device_option_value> ...

To set an instance option for a profile, send a PATCH request to the profile. Specify the key and value of the instance
option under the "config" field:

lxc query --request PATCH /1.0/profiles/<profile_name> --data '{
"config": {
"<option_key>": "<option_value>",
"<option_key>": "<option_value>"

}
}'

To add and configure an instance device for your profile, specify the device name, the device type and maybe device
options (depending on the device type) under the "devices" field:

lxc query --request PATCH /1.0/profiles/<profile_name> --data '{
"devices": {
"<device_name>": {
"type": "<device_type>",
"<device_option_key>": "<device_option_value>",
"<device_option_key>": "<device_option_value>"

}
}

}'

2.2. How-to guides 63

Canonical LXD

See PATCH /1.0/profiles/{name} for more information.

To configure a profile, select it from the Profiles overview, switch to the Configuration tab and click Edit profile. You
can then configure options for the profile in the same way as you configure instance options.

Edit the full profile

Instead of setting each configuration option separately, you can provide all options at once.

Check the contents of an existing profile or instance configuration for the required fields. For example, the default
profile might look like this:

config: {}
description: Default LXD profile
devices:
eth0:
name: eth0
network: lxdbr0
type: nic

root:
path: /
pool: default
type: disk

name: default
used_by:

Instance options are provided as an array under config. Instance devices and instance device options are provided
under devices.

CLI

API

UI

To edit a profile using your standard terminal editor, enter the following command:

lxc profile edit <profile_name>

Alternatively, you can create a YAML file (for example, profile.yaml) with the configuration and write the config-
uration to the profile with the following command:

lxc profile edit <profile_name> < profile.yaml

To update the entire profile configuration, send a PUT request to the profile:

lxc query --request PUT /1.0/profiles/<profile_name> --data '{
"config": { ... },
"description": "<description>",
"devices": { ... }

}'

See PUT /1.0/profiles/{name} for more information.

To edit the YAML configuration of a profile, go to the profile detail page, switch to the Configuration tab and select
YAML configuration. Then click Edit profile.

Edit the YAML configuration as required. Then click Save changes to save the updated configuration.

64 Chapter 2. Project and community

Canonical LXD

Important: When doing updates, do not navigate away from the YAML configuration without saving your changes.
If you do, your updates are lost.

Apply a profile to an instance

CLI

API

UI

Enter the following command to apply a profile to an instance:

lxc profile add <instance_name> <profile_name>

Tip: Check the configuration after adding the profile: lxc config show <instance_name>

You will see that your profile is now listed under profiles. However, the configuration options from the profile are
not shown under config (unless you add the --expanded flag). The reason for this behavior is that these options are
taken from the profile and not the configuration of the instance.

This means that if you edit a profile, the changes are automatically applied to all instances that use the profile.

You can also specify profiles when launching an instance by adding the --profile flag:

lxc launch <image> <instance_name> --profile <profile> --profile <profile> ...

To apply a profile to an instance, add it to the profile list in the instance configuration:

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"profiles": ["default", "<profile_name>"]

}'

See PATCH /1.0/instances/{name} for more information.

You can also specify profiles when creating an instance:

lxc query --request POST /1.0/instances --data '{
"name": "<instance_name>",
"profiles": ["default", "<profile_name>"],
"source": {
"alias": "<image_alias>",
"protocol": "simplestreams",
"server": "<server_URL>",
"type": "image"

}
}'

To apply a profile to an instance, select the instance from the Instances overview, switch to the Configuration tab and
click Edit instance. You can then select a profile from the drop-down list, or click Add profile to attach another profile
in addition to the one (or more) that are already attached to the instance.

If you attach more than one profile to an instance, you can specify the order in which the profiles are applied by moving
each profile up or down the list.

2.2. How-to guides 65

Canonical LXD

You can also apply profiles in the same way when creating an instance.

Remove a profile from an instance

CLI

API

UI

Enter the following command to remove a profile from an instance:

lxc profile remove <instance_name> <profile_name>

To remove a profile from an instance, send a PATCH request to the instance configuration with the new profile list. For
example, to revert back to using only the default profile:

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"profiles": ["default"]

}'

See PATCH /1.0/instances/{name} for more information.

To remove a profile from an instance, select the instance from the Instances overview, switch to the Configuration tab
and click Edit instance. Click the Delete link next to a profile to remove it from the instance.

How to troubleshoot failing instances

If your instance fails to start and ends up in an error state, this usually indicates a bigger issue related to either the image
that you used to create the instance or the server configuration.

To troubleshoot the problem, complete the following steps:

1. Save the relevant log files and debug information:

Instance log
Display the instance log:

CLI

API

UI

lxc info <instance_name> --show-log

lxc query --request GET /1.0/instances/<instance_name>/logs/lxc.log

Navigate to the instance detail page and switch to the Logs tab to view the available log files.

Console log
Display the console log:

CLI

API

UI

66 Chapter 2. Project and community

Canonical LXD

lxc console <instance_name> --show-log

This command is available only for containers.

lxc query --request GET /1.0/instances/<instance_name>/console

This endpoint is available only for containers.

Navigate to the instance detail page and switch to the Console tab to view the console. The console is
displayed only when the instance is running.

Detailed server information
The LXD snap includes a tool that collects the relevant server information for debugging. Enter the follow-
ing command to run it:

sudo lxd.buginfo

2. Reboot the machine that runs your LXD server.

3. Try starting your instance again. If the error occurs again, compare the logs to check if it is the same error.

If it is, and if you cannot figure out the source of the error from the log information, open a question in the forum.
Make sure to include the log files you collected.

Troubleshooting example

In this example, let’s investigate a RHEL 7 system in which systemd cannot start.

user@host:~$ lxc console --show-log systemd Console log: Failed to insert module
'autofs4'Failed to insert module 'unix'Failed to mount sysfs at /sys: Operation not
permittedFailed to mount proc at /proc: Operation not permitted[!!!!!!] Failed to mount
API filesystems, freezing. The errors here say that /sys and /proc cannot be mounted - which is correct in
an unprivileged container. However, LXD mounts these file systems automatically if it can.

The container requirements specify that every container must come with an empty /dev, /proc and /sys directory,
and that /sbin/init must exist. If those directories don’t exist, LXD cannot mount them, and systemd will then try
to do so. As this is an unprivileged container, systemd does not have the ability to do this, and it then freezes.

So you can see the environment before anything is changed, and you can explicitly change the init system in a con-
tainer using the raw.lxc configuration parameter. This is equivalent to setting init=/bin/bash on the Linux kernel
command line.

lxc config set systemd raw.lxc 'lxc.init.cmd = /bin/bash'

Here is what it looks like:

user@host:~$ lxc config set systemd raw.lxc 'lxc.init.cmd = /bin/bash' user@host:~$ lxc
start systemd user@host:~$ lxc console --show-log systemd Console log: [root@systemd /]#
Now that the container has started, you can check it and see that things are not running as well as expected:

user@host:~$ lxc exec systemd -- bash [root@systemd ~]# ls[root@systemd ~]# mountmount:
failed to read mtab: No such file or directory[root@systemd ~]# cd /[root@systemd /]# ls
/proc/sys[root@systemd /]# exit Because LXD tries to auto-heal, it created some of the directories when it
was starting up. Shutting down and restarting the container fixes the problem, but the original cause is still there - the
template does not contain the required files.

How to work with instances:

2.2. How-to guides 67

https://discourse.ubuntu.com/c/lxd/

Canonical LXD

How to access files in an instance

You can manage files inside an instance using the LXD client or the API without needing to access the instance through
the network. Files can be individually edited or deleted, pushed from or pulled to the local machine. Alternatively, if
you’re using the LXD client, you can mount the instance’s file system onto the local machine.

Note: The UI does not currently support accessing files in an instance.

For containers, these file operations always work and are handled directly by LXD. For virtual machines, the lxd-agent
process must be running inside of the virtual machine for them to work.

Edit instance files

CLI

API

To edit an instance file from your local machine, enter the following command:

lxc file edit <instance_name>/<path_to_file>

For example, to edit the /etc/hosts file in the instance, enter the following command:

lxc file edit my-instance/etc/hosts

Note: The file must already exist on the instance. You cannot use the edit command to create a file on the instance.

There is no API endpoint that lets you edit files directly on an instance. Instead, you need to pull the content of the file
from the instance, edit it, and then push the modified content back to the instance.

Delete files from the instance

CLI

API

To delete a file from your instance, enter the following command:

lxc file delete <instance_name>/<path_to_file>

Send the following DELETE request to delete a file from your instance:

lxc query --request DELETE /1.0/instances/<instance_name>/files?path=<path_to_file>

See DELETE /1.0/instances/{name}/files for more information.

68 Chapter 2. Project and community

Canonical LXD

Pull files from the instance to the local machine

CLI

API

To pull a file from your instance to your local machine, enter the following command:

lxc file pull <instance_name>/<path_to_file> <local_file_path>

For example, to pull the /etc/hosts file to the current directory, enter the following command:

lxc file pull my-instance/etc/hosts .

Instead of pulling the instance file into a file on the local system, you can also pull it to stdout and pipe it to stdin of
another command. This can be useful, for example, to check a log file:

lxc file pull my-instance/var/log/syslog - | less

To pull a directory with all contents, enter the following command:

lxc file pull -r <instance_name>/<path_to_directory> <local_location>

Send the following request to pull the contents of a file from your instance to your local machine:

lxc query --request GET /1.0/instances/<instance_name>/files?path=<path_to_file>

You can then write the contents to a local file, or pipe them to stdin of another command.

For example, to pull the contents of the /etc/hosts file and write them to a my-instance-hosts file in the current
directory, enter the following command:

lxc query --request GET /1.0/instances/my-instance/files?path=/etc/hosts > my-instance-
→˓hosts

To examine a log file, enter the following command:

lxc query --request GET /1.0/instances/<instance_name>/files?path=<file_path> | less

To pull the contents of a directory, send the following request:

lxc query --request GET /1.0/instances/<instance_name>/files?path=<path_to_directory>

This request returns a list of files in the directory, and you can then pull the contents of each file.

See GET /1.0/instances/{name}/files for more information.

Push files from the local machine to the instance

CLI

API

To push a file from your local machine to your instance, enter the following command:

lxc file push <local_file_path> <instance_name>/<path_to_file>

2.2. How-to guides 69

Canonical LXD

You can specify the file permissions by adding the --gid, --uid, and --mode flags.

To push a directory with all contents, enter the following command:

lxc file push -r <local_location> <instance_name>/<path_to_directory>

Send the following request to write content to a file on your instance:

lxc query --request POST /1.0/instances/<instance_name>/files?path=<path_to_file> --data
→˓<content>

See POST /1.0/instances/{name}/files for more information.

To push content directly from a file, you must use a tool that can send raw data from a file, which lxc query does not
support. For example, with curl:

curl -X POST -H "Content-Type: application/octet-stream" --data @<local_file_path> \
--unix-socket /var/snap/lxd/common/lxd/unix.socket \
lxd/1.0/instances/<instance_name>/files?path=<path_to_file>

Mount a file system from the instance

CLI

API

You can mount an instance file system into a local path on your client.

To do so, make sure that you have sshfs installed. Then run the following command (note that if you’re using the
snap, the command requires root permissions):

lxc file mount <instance_name>/<path_to_directory> <local_location>

You can then access the files from your local machine.

Set up an SSH SFTP listener

Alternatively, you can set up an SSH SFTP listener. This method allows you to connect with any SFTP client and with
a dedicated user name. Also, if you’re using the snap, it does not require root permission.

To do so, first set up the listener by entering the following command:

lxc file mount <instance_name> [--listen <address>:<port>]

For example, to set up the listener on a random port on the local machine (for example, 127.0.0.1:45467):

lxc file mount my-instance

If you want to access your instance files from outside your local network, you can pass a specific address and port:

lxc file mount my-instance --listen 192.0.2.50:2222

Caution: Be careful when doing this, because it exposes your instance remotely.

To set up the listener on a specific address and a random port:

70 Chapter 2. Project and community

Canonical LXD

lxc file mount my-instance --listen 192.0.2.50:0

The command prints out the assigned port and a user name and password for the connection.

Tip: You can specify a user name by passing the --auth-user flag.

Use this information to access the file system. For example, if you want to use sshfs to connect, enter the following
command:

sshfs <user_name>@<address>:<path_to_directory> <local_location> -p <port>

For example:

sshfs xFn8ai8c@127.0.0.1:/home my-instance-files -p 35147

You can then access the file system of your instance at the specified location on the local machine.

Mounting a file system is not directly supported through the API, but requires additional processing logic on the client
side.

How to access the console

You can access the instance console to log in to the instance and see log messages. The console is available at boot
time already, so you can use it to see boot messages and, if necessary, debug startup issues of a container or VM.

CLI

API

UI

Use the lxc console command to attach to instance consoles. To get an interactive console, enter the following
command:

lxc console <instance_name>

To show new log messages (only for containers), pass the --show-log flag:

lxc console <instance_name> --show-log

You can also immediately attach to the console when you start your instance:

lxc start <instance_name> --console
lxc start <instance_name> --console=vga

Tip: To exit the console, enter Ctrl+a q.

To start an interactive console, send a POST request to the console endpoint:

lxc query --request POST /1.0/instances/<instance_name>/console --data '{
"height": 24,
"type": "console",

(continues on next page)

2.2. How-to guides 71

Canonical LXD

(continued from previous page)

"width": 80
}'

This query sets up two WebSockets that you can use for connection. One WebSocket is used for control, and the other
transmits the actual console data.

See POST /1.0/instances/{name}/console for more information.

To access the WebSockets, you need the operation ID and the secrets for each socket. This information is available in
the operation started by the query, for example:

{
"class": "websocket",
"created_at": "2024-01-31T10:11:48.135150288Z",
"description": "Showing console",
"err": "",
"id": "<operation_ID>",
"location": "none",
"may_cancel": false,
"metadata": {
"fds": {
"0": "<data_socket_secret>",
"control": "<control_socket_secret>"

}
}

[...]
}

How to connect to the WebSockets depends on the tooling that you use (see GET /1.0/operations/{id}/
websocket for general information). To quickly check whether the connection is successful and you can read from the
socket, you can use a tool like websocat:

websocat --text \
--ws-c-uri=ws://unix.socket/1.0/operations/<operation_ID>/websocket?secret=<data_socket_
→˓secret> \
- ws-c:unix:/var/snap/lxd/common/lxd/unix.socket

Alternatively, if you just want to retrieve new log messages from the console instead of connecting through a WebSocket,
you can send a GET request to the console endpoint:

lxc query --request GET /1.0/instances/<instance_name>/console

See GET /1.0/instances/{name}/console for more information. Note that this operation is supported only for
containers, not for VMs.

Navigate to the instance detail page and switch to the Console tab to view the console.

72 Chapter 2. Project and community

https://github.com/vi/websocat

Canonical LXD

Access the graphical console (for virtual machines)

On virtual machines, log on to the console to get graphical output. Using the console you can, for example, install an
operating system using a graphical interface or run a desktop environment.

An additional advantage is that the console is available even if the lxd-agent process is not running. This means that
you can access the VM through the console before the lxd-agent starts up, and also if the lxd-agent is not available
at all.

CLI

API

UI

To start the VGA console with graphical output for your VM, you must install a SPICE client (for example,
virt-viewer or spice-gtk-client). Then enter the following command:

lxc console <vm_name> --type vga

To start the VGA console with graphical output for your VM, send a POST request to the console endpoint:

lxc query --request POST /1.0/instances/<instance_name>/console --data '{
"height": 0,
"type": "vga",
"width": 0

}'

See POST /1.0/instances/{name}/console for more information.

Navigate to the instance detail page and switch to the Console tab to view the console.

For virtual machines, you can switch between the graphic console and the text console.

How to run commands in an instance

LXD allows to run commands inside an instance using the LXD client or the API, without needing to access the instance
through the network.

For containers, this always works and is handled directly by LXD. For virtual machines, the lxd-agent process must
be running inside of the virtual machine for this to work.

Note: The UI does not currently support sending commands to an instance. However, it provides a terminal that gives
you shell access to your instance.

Run commands inside your instance

CLI

API

To run a single command from the terminal of the host machine, use the lxc exec command:

lxc exec <instance_name> -- <command>

For example, enter the following command to update the package list on your container:

2.2. How-to guides 73

Canonical LXD

lxc exec my-instance -- apt-get update

Send a POST request to the instance’s exec endpoint to run a single command from the terminal of the host machine:

lxc query --request POST /1.0/instances/<instance_name>/exec --data '{
"command": ["<command>"]

}'

For example, enter the following command to update the package list on your container:

lxc query --request POST /1.0/instances/my-instance/exec --data '{
"command": ["apt-get", "update"]

}'

See POST /1.0/instances/{name}/exec for more information.

Execution mode

LXD can execute commands either interactively or non-interactively.

CLI

API

In interactive mode, a pseudo-terminal device (PTS) is used to handle input (stdin) and output (stdout, stderr). This
mode is automatically selected by the CLI if connected to a terminal emulator (and not run from a script). To force
interactive mode, add either --force-interactive or --mode interactive to the command.

In non-interactive mode, pipes are allocated instead (one for each of stdin, stdout and stderr). This method allows
running a command and properly getting separate stdin, stdout and stderr as required by many scripts. To force non-
interactive mode, add either --force-noninteractive or --mode non-interactive to the command.

In both modes, the operation creates a control socket that can be used for out-of-band communication with LXD. You
can send signals and window sizing information through this socket.

Interactive mode
In interactive mode, the operation creates an additional single bi-directional WebSocket. To force interactive
mode, add "interactive": true and "wait-for-websocket": true to the request data. For example:

lxc query --request POST /1.0/instances/my-instance/exec --data '{
"command": ["/bin/bash"],
"interactive": true,
"wait-for-websocket": true

}'

Non-interactive mode
In non-interactive mode, the operation creates three additional WebSockets: one each for stdin, stdout, and stderr.
To force non-interactive mode, add "interactive": false to the request data.

When running a command in non-interactive mode, you can instruct LXD to record the output of the command.
To do so, add "record-output": true to the request data. You can then send a request to the exec-output
endpoint to retrieve the list of files that contain command output:

lxc query --request GET /1.0/instances/<instance_name>/logs/exec-output

To display the output of one of the files, send a request to one of the files:

74 Chapter 2. Project and community

Canonical LXD

lxc query --request GET /1.0/instances/<instance_name>/logs/exec-output/<record-
→˓output-file>

When you don’t need the command output anymore, you can delete it:

lxc query --request DELETE /1.0/instances/<instance_name>/logs/exec-output/<record-
→˓output-file>

See GET /1.0/instances/{name}/logs/exec-output, GET /1.0/instances/{name}/logs/
exec-output/{filename}, and DELETE /1.0/instances/{name}/logs/exec-output/{filename} for
more information.

User, groups and working directory

LXD has a policy not to read data from within the instances or trust anything that can be found in the instance. There-
fore, LXD does not parse files like /etc/passwd, /etc/group or /etc/nsswitch.conf to handle user and group
resolution.

As a result, LXD doesn’t know the home directory for the user or the supplementary groups the user is in.

By default, LXD runs commands as root (UID 0) with the default group (GID 0) and the working directory set to
/root. You can override the user, group and working directory by specifying absolute values.

CLI

API

You can override the default settings by adding the following flags to the lxc exec command:

• --user - the user ID for running the command

• --group - the group ID for running the command

• --cwd - the directory in which the command should run

You can override the default settings by adding the following fields to the request data:

• "user": <user_ID> - the user ID for running the command

• "group": <group_ID> - the group ID for running the command

• "cwd": "<directory>" - the directory in which the command should run

Environment

You can pass environment variables to an exec session in the following two ways:

Set environment variables as instance options
CLI

API

UI

To set the <ENVVAR> environment variable to <value> in the instance, set the environment.<ENVVAR> instance
option (see environment.*):

lxc config set <instance_name> environment.<ENVVAR>=<value>

2.2. How-to guides 75

Canonical LXD

To set the <ENVVAR> environment variable to <value> in the instance, set the environment.<ENVVAR> instance
option (see environment.*):

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"config": {
"environment.<ENVVAR>": "<value>"

}
}'

To set the <ENVVAR> environment variable to <value> in the instance, go to the instance detail page, switch to
the Configuration tab and select YAML configuration. Then click Edit instance.

Add the environment.<ENVVAR> configuration under the config section. For example:

config:
environment.<ENVVAR>: "<value>"

Click Save changes.

Pass environment variables to the exec command
CLI

API

To pass an environment variable to the exec command, use the --env flag. For example:

lxc exec <instance_name> --env <ENVVAR>=<value> -- <command>

To pass an environment variable to the exec command, add an environment field to the request data. For
example:

lxc query --request POST /1.0/instances/<instance_name>/exec --data '{
"command": ["<command>"],
"environment": {
"<ENVVAR>": "<value>"

}
}'

In addition, LXD sets the following default values (unless they are passed in one of the ways described above):

Variable name Condition Value
PATH - Concatenation of:

• /usr/local/sbin
• /usr/local/bin
• /usr/sbin
• /usr/bin
• /sbin
• /bin
• /snap (if applicable)
• /etc/NIXOS (if applicable)

LANG - C.UTF-8
HOME running as root (UID 0) /root
USER running as root (UID 0) root

76 Chapter 2. Project and community

Canonical LXD

Get shell access to your instance

If you want to run commands directly in your instance, run a shell command inside it.

CLI

API

UI

Enter the following command (assuming that the /bin/bash command exists in your instance):

lxc exec <instance_name> -- /bin/bash

Enter the following command (assuming that the /bin/bash command exists in your instance):

lxc query --request POST /1.0/instances/<instance_name>/exec --data '{
"command": ["/bin/bash"]

}'

Navigate to the instance detail page and switch to the Terminal tab to access the shell.

By default, you are logged in as the root user. If you want to log in as a different user, enter the following command:

CLI

API

UI

lxc exec <instance_name> -- su --login <user_name>

To exit the instance shell, enter exit or press Ctrl+d.

lxc query --request POST /1.0/instances/<instance_name>/exec --data '{
"command": ["su", "--login", "<user_name>"]

}'

su --login <user_name>

To exit the user shell and go back to the root shell, enter exit or press Ctrl+d.

Note: Depending on the operating system that you run in your instance, you might need to create a user first.

How to use cloud-init

cloud-init is a tool for automatically initializing and customizing an instance of a Linux distribution.

By adding cloud-init configuration to your instance, you can instruct cloud-init to execute specific actions at the
first start of an instance. Possible actions include, for example:

• Updating and installing packages

• Applying certain configurations

• Adding users

• Enabling services

2.2. How-to guides 77

https://cloud-init.io/

Canonical LXD

• Running commands or scripts

• Automatically growing the file system of a VM to the size of the disk

See the Cloud-init documentation for detailed information.

Note: The cloud-init actions are run only once on the first start of the instance. Rebooting the instance does not
re-trigger the actions.

cloud-init support in images

To use cloud-init, you must base your instance on an image that has cloud-init installed:

• All images from the ubuntu and ubuntu-daily image servers have cloud-init support. However, images
for Ubuntu releases prior to 20.04 require special handling to integrate properly with cloud-init, so that lxc
exec works correctly with virtual machines that use those images. Refer to VM cloud-init.

• Images from the images remote have cloud-init-enabled variants, which are usually bigger in size than the
default variant. The cloud variants use the /cloud suffix, for example, images:alpine/edge/cloud.

Configuration options

LXD supports two different sets of configuration options for configuring cloud-init: cloud-init.* and user.*.
Which of these sets you must use depends on the cloud-init support in the image that you use. As a rule of thumb,
newer images support the cloud-init.* configuration options, while older images support user.*. However, there
might be exceptions to that rule.

The following configuration options are supported:

• cloud-init.vendor-data or user.vendor-data (see Vendor data)

• cloud-init.user-data or user.user-data (see User data formats)

• cloud-init.network-config or user.network-config (see Network configuration)

For more information about the configuration options, see the cloud-init instance options, and the documentation
for the LXD data source in the cloud-init documentation.

Vendor data and user data

Both vendor-data and user-data are used to provide cloud configuration data to cloud-init.

The main idea is that vendor-data is used for the general default configuration, while user-data is used for instance-
specific configuration. This means that you should specify vendor-data in a profile and user-data in the instance
configuration. LXD does not enforce this method, but allows using both vendor-data and user-data in profiles and
in the instance configuration.

If both vendor-data and user-data are supplied for an instance, cloud-init merges the two configurations. How-
ever, if you use the same keys in both configurations, merging might not be possible. In this case, configure how
cloud-init should merge the provided data. See Merging user data sections for instructions.

78 Chapter 2. Project and community

https://cloudinit.readthedocs.io/en/latest/index.html#index
https://images.lxd.canonical.com/
https://cloudinit.readthedocs.io/en/latest/explanation/vendordata.html#vendordata
https://cloudinit.readthedocs.io/en/latest/explanation/format.html#user-data-formats
https://cloudinit.readthedocs.io/en/latest/reference/network-config.html#network-config
https://cloudinit.readthedocs.io/en/latest/reference/datasources/lxd.html#datasource-lxd
https://cloudinit.readthedocs.io/en/latest/explanation/format.html#cloud-config-data
https://cloudinit.readthedocs.io/en/latest/reference/merging.html#merging-user-data

Canonical LXD

How to configure cloud-init

To configure cloud-init for an instance, add the corresponding configuration options to a profile that the instance
uses or directly to the instance configuration.

When configuring cloud-init directly for an instance, keep in mind that cloud-init runs only on the first start of
the instance. That means that you must configure cloud-init before you start the instance. If you are using the CLI
client, create the instance with lxc init instead of lxc launch , and then start it after completing the configuration.

YAML format for cloud-init configuration

The cloud-init options require YAML’s literal style format. You use a pipe symbol (|) to indicate that all indented
text after the pipe should be passed to cloud-init as a single string, with new lines and indentation preserved.

The vendor-data and user-data options usually start with #cloud-config.

For example:

config:
cloud-init.user-data: |
#cloud-config
package_upgrade: true
packages:
- package1
- package2

Tip: See How to validate user data for information on how to check whether the syntax is correct.

Configure cloud-init through the API

If you are using the API to configure your instance, provide the cloud-init configuration as a string with escaped
newline characters.

For example:

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"config": {
"cloud-init.user-data": "#cloud-config\npackage_upgrade: true\npackages:\n -␣

→˓package1\n - package2"
}

}'

Alternatively, to avoid mistakes, write the configuration to a file and include that in your request. For example, create
cloud-init.txt with the following content:

#cloud-config
package_upgrade: true
packages:
- package1
- package2

Then send the following request:

2.2. How-to guides 79

https://yaml.org/spec/1.2.2/#812-literal-style
https://cloudinit.readthedocs.io/en/latest/howto/debug_user_data.html#check-user-data-cloud-config

Canonical LXD

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"config": {
"cloud-init.user-data": "'"$(awk -v ORS='\\n' '1' cloud-init.txt)"'"
}

}'

How to check the cloud-init status

cloud-init runs automatically on the first start of an instance. Depending on the configured actions, it might take a
while until it finishes.

To check the cloud-init status, log on to the instance and enter the following command:

cloud-init status

If the result is status: running, cloud-init is still working. If the result is status: done, it has finished.

Alternatively, use the --wait flag to be notified only when cloud-init is finished:

root@instance:~# cloud-init status --waitstatus:
done

How to specify user or vendor data

The user-data and vendor-data configuration can be used to, for example, upgrade or install packages, add users,
or run commands.

The provided values must have a first line that indicates what type of user data format is being passed to cloud-init.
For activities like upgrading packages or setting up a user, #cloud-config is the data format to use.

The configuration data is stored in the following files in the instance’s root file system:

• /var/lib/cloud/instance/cloud-config.txt

• /var/lib/cloud/instance/user-data.txt

Examples

See the following sections for the user data (or vendor data) configuration for different example use cases.

You can find more advanced examples in the cloud-init documentation.

Upgrade packages

To trigger a package upgrade from the repositories for the instance right after the instance is created, use the
package_upgrade key:

config:
cloud-init.user-data: |
#cloud-config
package_upgrade: true

80 Chapter 2. Project and community

https://cloudinit.readthedocs.io/en/latest/explanation/format.html#user-data-formats
https://cloudinit.readthedocs.io/en/latest/reference/examples.html#yaml-examples

Canonical LXD

Install packages

To install specific packages when the instance is set up, use the packages key and specify the package names as a list:

config:
cloud-init.user-data: |
#cloud-config
packages:
- git
- openssh-server

Set the time zone

To set the time zone for the instance on instance creation, use the timezone key:

config:
cloud-init.user-data: |
#cloud-config
timezone: Europe/Rome

Run commands

To run a command (such as writing a marker file), use the runcmd key and specify the commands as a list:

config:
cloud-init.user-data: |
#cloud-config
runcmd:
- [touch, /run/cloud.init.ran]

Add a user account

To add a user account, use the user key. See the Including users and groups example in the cloud-init documentation
for details about default users and which keys are supported.

config:
cloud-init.user-data: |
#cloud-config
user:
- name: documentation_example

2.2. How-to guides 81

https://cloudinit.readthedocs.io/en/latest/reference/examples.html#including-users-and-groups

Canonical LXD

How to specify network configuration data

By default, cloud-init configures a DHCP client on an instance’s eth0 interface. You can define your own network
configuration using the network-config option to override the default configuration (this is due to how the template
is structured).

cloud-init then renders the relevant network configuration on the system using either ifupdown or netplan, de-
pending on the Ubuntu release.

The configuration data is stored in the following files in the instance’s root file system:

• /var/lib/cloud/seed/nocloud-net/network-config

• /etc/network/interfaces.d/50-cloud-init.cfg (if using ifupdown)

• /etc/netplan/50-cloud-init.yaml (if using netplan)

Example

To configure a specific network interface with a static IPv4 address and also use a custom name server, use the following
configuration:

config:
cloud-init.network-config: |
version: 1
config:
- type: physical
name: eth1
subnets:
- type: static
ipv4: true
address: 10.10.101.20
netmask: 255.255.255.0
gateway: 10.10.101.1
control: auto

- type: nameserver
address: 10.10.10.254

How to add a routed NIC device to a virtual machine

When adding a routed NIC device to an instance, you must configure the instance to use the link-local gateway IPs as
default routes. For containers, this is configured for you automatically. For virtual machines, the gateways must be
configured manually or via a mechanism like cloud-init.

To configure the gateways with cloud-init, firstly initialize an instance:

CLI

API

UI

lxc init ubuntu:24.04 my-vm --vm

82 Chapter 2. Project and community

Canonical LXD

lxc query --request POST /1.0/instances --data '{
"name": "my-vm",
"source": {
"alias": "24.04",
"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases",
"type": "image"

},
"type": "virtual-machine"

}'

Then add the routed NIC device:

CLI

API

UI

lxc config device add my-vm eth0 nic nictype=routed parent=my-parent ipv4.address=192.0.
→˓2.2 ipv6.address=2001:db8::2

2.2. How-to guides 83

Canonical LXD

lxc query --request PATCH /1.0/instances/my-vm --data '{
"devices": {
"eth0": {
"ipv4.address": "192.0.2.2",
"ipv6.address": "2001:db8::2",
"nictype": "routed",
"parent": "my-parent",
"type": "nic"

}
}

}'

You cannot add a routed NIC device through the UI directly. Therefore, go to the instance detail page, switch to the
Configuration tab and select YAML configuration. Then click Edit instance and add the routed NIC device to the
devices section. For example:

devices:
eth0:
ipv4.address: 192.0.2.2
ipv6.address: 2001:db8::2
nictype: routed
parent: my-parent
type: nic

In this configuration, my-parent-network is your parent network, and the IPv4 and IPv6 addresses are within the
subnet of the parent.

Next we will add some netplan configuration to the instance using the cloud-init.network-config configuration
key:

CLI

API

UI

cat <<EOF | lxc config set my-vm cloud-init.network-config -
network:
version: 2
ethernets:
enp5s0:
routes:
- to: default
via: 169.254.0.1
on-link: true

- to: default
via: fe80::1
on-link: true

addresses:
- 192.0.2.2/32
- 2001:db8::2/128

EOF

cat > cloud-init.txt <<EOF
network:

(continues on next page)

84 Chapter 2. Project and community

Canonical LXD

(continued from previous page)

version: 2
ethernets:
enp5s0:
routes:
- to: default
via: 169.254.0.1
on-link: true

- to: default
via: fe80::1
on-link: true

addresses:
- 192.0.2.2/32
- 2001:db8::2/128

EOF

lxc query --request PATCH /1.0/instances/my-vm --data '{
"config": {
"cloud-init.network-config": "'"$(awk -v ORS='\\n' '1' cloud-init.txt)"'"

}
}'

On the instance detail page, switch to the Advanced > Cloud-init tab and click Edit instance.

Click the Create override icon for the Network config and enter the following configuration:

network:
version: 2
ethernets:
enp5s0:
routes:
- to: default
via: 169.254.0.1
on-link: true

- to: default
via: fe80::1
on-link: true

addresses:
- 192.0.2.2/32
- 2001:db8::2/128

This netplan configuration adds the static link-local next-hop addresses (169.254.0.1 and fe80::1) that are re-
quired. For each of these routes we set on-link to true, which specifies that the route is directly connected to the
interface. We also add the addresses that we configured in our routed NIC device. For more information on netplan,
see their documentation.

Note: This netplan configuration does not include a name server. To enable DNS within the instance, you must set
a valid DNS IP address. If there is a lxdbr0 network on the host, the name server can be set to that IP instead.

Before you start your instance, make sure that you have configured the parent network to enable proxy ARP/NDP.

Then start your instance:

CLI

2.2. How-to guides 85

https://netplan.readthedocs.io/en/latest/

Canonical LXD

API

UI

lxc start my-vm

lxc query --request PUT /1.0/instances/my-vm/state --data '{"action": "start"}'

Go to the instance list or the respective instance and click the Start button ().

How to export and move instances:

How to back up instances

There are different ways of backing up your instances:

• Use snapshots for instance backup

• Use export files for instance backup

• Copy an instance to a backup server

Which method to choose depends both on your use case and on the storage driver you use.

In general, snapshots are quick and space efficient (depending on the storage driver), but they are stored in the same
storage pool as the instance and therefore not too reliable. Export files can be stored on different disks and are therefore
more reliable. They can also be used to restore the instance into a different storage pool. If you have a separate, network-
connected LXD server available, regularly copying instances to this other server gives high reliability as well, and this
method can also be used to back up snapshots of the instance.

Note: Custom storage volumes might be attached to an instance, but they are not part of the instance. Therefore, the
content of a custom storage volume is not stored when you back up your instance. You must back up the data of your
storage volume separately. See How to back up custom storage volumes for instructions.

Use snapshots for instance backup

You can save your instance at a point in time by creating an instance snapshot, which makes it easy to restore the
instance to a previous state.

Instance snapshots are stored in the same storage pool as the instance volume itself.

Most storage drivers support optimized snapshot creation (see Feature comparison). For these drivers, creating snap-
shots is both quick and space-efficient. For the dir driver, snapshot functionality is available but not very efficient. For
the lvm driver, snapshot creation is quick, but restoring snapshots is efficient only when using thin-pool mode.

86 Chapter 2. Project and community

Canonical LXD

Create a snapshot

CLI

API

UI

Use the following command to create a snapshot of an instance:

lxc snapshot <instance_name> [<snapshot name>]

The snapshot name is optional. If you don’t specify one, the name follows the naming pattern defined in snapshots.
pattern.

Add the --reuse flag in combination with a snapshot name to replace an existing snapshot.

By default, snapshots are kept forever, unless the snapshots.expiry configuration option is set. To retain a specific
snapshot even if a general expiry time is set, use the --no-expiry flag.

For virtual machines, you can add the --stateful flag to capture not only the data included in the instance volume
but also the running state of the instance. Note that this feature is not fully supported for containers because of CRIU
limitations.

To create a snapshot of an instance, send a POST request to the snapshots endpoint:

lxc query --request POST /1.0/instances/<instance_name>/snapshots --data '{"name": "
→˓<snapshot_name>"}'

The snapshot name is optional. If you set it to an empty string, the name follows the naming pattern defined in
snapshots.pattern.

By default, snapshots are kept forever, unless the snapshots.expiry configuration option is set. To set an expiration
date, add theexpires_at field to the request data. To retain a specific snapshot even if a general expiry time is set, set
the expires_at field to "0001-01-01T00:00:00Z".

If you want to replace an existing snapshot, delete it first and then create another snapshot with the same name.

For virtual machines, you can add "stateful": true to the request data to capture not only the data included in the
instance volume but also the running state of the instance. Note that this feature is not fully supported for containers
because of CRIU limitations.

See POST /1.0/instances/{name}/snapshots for more information.

To create a snapshot of an instance, go to the instance detail page and switch to the Snapshots tab. Click Create snapshot
to open the dialog to create a snapshot.

The snapshot name is optional. If you don’t specify one, the name follows the naming pattern defined in snapshots.
pattern. You can check and update this option by switching to the Configuration tab and selecting Advanced >
Snapshots, or simply by clicking See configuration.

By default, snapshots are kept forever, unless you specify an expiry date and time, or the snapshots.expiry config-
uration option is set for the instance.

For virtual machines, you can choose to create a stateful snapshot to capture not only the data included in the instance
volume but also the running state of the instance. Note that this feature requires migration.stateful to be enabled.

2.2. How-to guides 87

Canonical LXD

View, edit or delete snapshots

CLI

API

UI

Use the following command to display the snapshots for an instance:

lxc info <instance_name>

You can view or modify snapshots in a similar way to instances, by referring to the snapshot with <instance_name>/
<snapshot_name>.

To show configuration information about a snapshot, use the following command:

lxc config show <instance_name>/<snapshot_name>

To change the expiry date of a snapshot, use the following command:

lxc config edit <instance_name>/<snapshot_name>

Note: In general, snapshots cannot be edited, because they preserve the state of the instance. The only exception is
the expiry date. Other changes to the configuration are silently ignored.

To delete a snapshot, use the following command:

lxc delete <instance_name>/<snapshot_name>

To retrieve the snapshots for an instance, send a GET request to the snapshots endpoint:

lxc query --request GET /1.0/instances/<instance_name>/snapshots

To show configuration information about a snapshot, send the following request:

lxc query --request GET /1.0/instances/<instance_name>/snapshots/<snapshot_name>

To change the expiry date of a snapshot, send a PATCH request:

lxc query --request PATCH /1.0/instances/<instance_name>/snapshots/<snapshot_name> --
→˓data '{
"expires_at": "2029-03-23T17:38:37.753398689-04:00"

}'

Note: In general, snapshots cannot be modified, because they preserve the state of the instance. The only exception is
the expiry date. Other changes to the configuration are silently ignored.

To delete a snapshot, send a DELETE request:

lxc query --request DELETE /1.0/instances/<instance_name>/snapshots/<snapshot_name>

See GET /1.0/instances/{name}/snapshots, GET /1.0/instances/{name}/snapshots/{snapshot},
PATCH /1.0/instances/{name}/snapshots/{snapshot}, and DELETE /1.0/instances/{name}/
snapshots/{snapshot} for more information.

88 Chapter 2. Project and community

Canonical LXD

To see all snapshots for an instance, go to the instance detail page and switch to the Snapshots tab.

From the snapshot list, you can choose to edit the name or expiry date of a specific snapshot, create an image based on
the snapshot, restore it to the instance, or delete it.

Schedule instance snapshots

You can configure an instance to automatically create snapshots at specific times (at most once every minute). To do
so, set the snapshots.schedule instance option.

For example, to configure daily snapshots:

CLI

API

UI

lxc config set <instance_name> snapshots.schedule @daily

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"config": {
"snapshots.schedule": "@daily"

}
}'

To configure taking a snapshot every day at 6 am:

CLI

2.2. How-to guides 89

Canonical LXD

API

UI

lxc config set <instance_name> snapshots.schedule "0 6 * * *"

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"config": {
"snapshots.schedule": "0 6 * * *"

}
}'

When scheduling regular snapshots, consider setting an automatic expiry (snapshots.expiry) and a naming pattern
for snapshots (snapshots.pattern). You should also configure whether you want to take snapshots of instances that
are not running (snapshots.schedule.stopped).

Restore an instance snapshot

You can restore an instance to any of its snapshots.

CLI

API

UI

To restore an instance to a snapshot, use the following command:

lxc restore <instance_name> <snapshot_name>

90 Chapter 2. Project and community

Canonical LXD

If the snapshot is stateful (which means that it contains information about the running state of the instance), you can
add the --stateful flag to restore the state.

To restore an instance to a snapshot, send a PUT request to the instance:

lxc query --request PUT /1.0/instances/<instance_name> --data '{
"restore": "<instance_name>/<snapshot_name>"

}'

If the snapshot is stateful (which means that it contains information about the running state of the instance), you can
add "stateful": true to the request data:

lxc query --request PUT /1.0/instances/<instance_name> --data '{
"restore": "<instance_name>/<snapshot_name>",
"stateful": true

}'

See PUT /1.0/instances/{name} for more information.

To restore an instance to a snapshot, click the Restore snapshot button () next to the snapshot that you want to restore.

If the snapshot is stateful (which means that it contains information about the running state of the instance), select
Restore the instance state if you want to restore the state.

Use export files for instance backup

You can export the full content of your instance to a standalone file that can be stored at any location. For highest
reliability, store the backup file on a different file system to ensure that it does not get lost or corrupted.

Note: The UI does not currently support exporting and importing instances.

Export an instance

CLI

API

Use the following command to export an instance to a compressed file (for example, /path/to/my-instance.tgz):

lxc export <instance_name> [<file_path>]

If you do not specify a file path, the export file is saved as <instance_name>.<extension> in the working directory
(for example, my-container.tar.gz).

Warning: If the output file (<instance_name>.<extension> or the specified file path) already exists, the
command overwrites the existing file without warning.

You can add any of the following flags to the command:

--compression
By default, the output file uses gzip compression. You can specify a different compression algorithm (for
example, bzip2) or turn off compression with --compression=none.

2.2. How-to guides 91

Canonical LXD

--optimized-storage
If your storage pool uses the btrfs or the zfs driver, add the --optimized-storage flag to store the data as a
driver-specific binary blob instead of an archive of individual files. In this case, the export file can only be used
with pools that use the same storage driver.

Exporting a volume in optimized mode is usually quicker than exporting the individual files. Snapshots are
exported as differences from the main volume, which decreases their size and makes them easily accessible.

--instance-only
By default, the export file contains all snapshots of the instance. Add this flag to export the instance without its
snapshots.

To create a backup of an instance, send a POST request to the backups endpoint:

lxc query --request POST /1.0/instances/<instance_name>/backups --data '{"name": ""}'

You can specify a name for the backup, or use the default (backup0, backup1 and so on).

You can add any of the following fields to the request data:

"compression_algorithm": "bzip2"
By default, the output file uses gzip compression. You can specify a different compression algorithm (for
example, bzip2) or turn off compression with none.

"optimized-storage": true
If your storage pool uses the btrfs or the zfs driver, set the "optimized-storage" field to true to store the
data as a driver-specific binary blob instead of an archive of individual files. In this case, the backup can only be
used with pools that use the same storage driver.

Exporting a volume in optimized mode is usually quicker than exporting the individual files. Snapshots are
exported as differences from the main volume, which decreases their size and makes them easily accessible.

"instance-only": true
By default, the backup contains all snapshots of the instance. Set this field to true to back up the instance without
its snapshots.

After creating the backup, you can download it with the following request:

lxc query --request GET /1.0/instances/<instance_name>/backups/<backup_name>/export >
→˓<file_name>

Remember to delete the backup when you don’t need it anymore:

lxc query --request DELETE /1.0/instances/<instance_name>/backups/<backup_name>

See POST /1.0/instances/{name}/backups, GET /1.0/instances/{name}/backups/{backup}/export,
and DELETE /1.0/instances/{name}/backups/{backup} for more information.

Restore an instance from an export file

You can import an export file (for example, /path/to/my-backup.tgz) as a new instance.

CLI

API

To import an export file, use the following command:

lxc import <file_path> [<instance_name>]

92 Chapter 2. Project and community

Canonical LXD

If you do not specify an instance name, the original name of the exported instance is used for the new instance. If an
instance with that name already (or still) exists in the specified storage pool, the command returns an error. In that case,
either delete the existing instance before importing the backup or specify a different instance name for the import.

Add the --storage flag to specify which storage pool to use, or the --device flag to override the device configuration
(syntax: --device <device_name>,<device_option>=<value>).

To import an export file, post it to the /1.0/instances endpoint:

curl -X POST -H "Content-Type: application/octet-stream" -T <file_path> \
--unix-socket /var/snap/lxd/common/lxd/unix.socket lxd/1.0/instances

If an instance with that name already (or still) exists in the specified storage pool, the command returns an error. In this
case, delete the existing instance before importing the backup.

See POST /1.0/instances for more information.

Copy an instance to a backup server

You can copy an instance to a secondary backup server to back it up.

See Secondary backup LXD server for more information, and How to move existing LXD instances between servers for
instructions.

How to move existing LXD instances between servers

If you use the LXD client, you can move or copy instances from one LXD server (remote or local) to another.

Note: Remote servers are a concept of the LXD client. Therefore, there is no direct equivalent for moving instances
in the API or the UI.

However, you can export an instance from one server and import it to another server.

To move an instance from one LXD server to another, use the lxc move command:

lxc move [<source_remote>:]<source_instance_name> <target_remote>:[<target_instance_name>
→˓]

Note: When moving a container, you must stop it first. See Live migration for containers for more information.

When moving a virtual machine, you must either enable Live migration for virtual machines or stop it first.

Alternatively, you can use the lxc copy command if you want to duplicate the instance:

lxc copy [<source_remote>:]<source_instance_name> <target_remote>:[<target_instance_name>
→˓]

Tip: If the volume already exists in the target location, use the --refresh flag to update the copy (see Optimized
volume transfer for the benefits).

2.2. How-to guides 93

Canonical LXD

In both cases, you don’t need to specify the source remote if it is your default remote, and you can leave out the target
instance name if you want to use the same instance name. If you want to move the instance to a specific cluster member,
specify it with the --target flag. In this case, do not specify the source and target remote.

You can add the --mode flag to choose a transfer mode, depending on your network setup:

pull (default)
Instruct the target server to connect to the source server and pull the respective instance.

push
Instruct the source server to connect to the target server and push the instance.

relay
Instruct the client to connect to both the source and the target server and transfer the data through the client.

If you need to adapt the configuration for the instance to run on the target server, you can either specify the new
configuration directly (using --config, --device, --storage or --target-project) or through profiles (using
--no-profiles or --profile). See lxc move --help for all available flags.

Live migration

Live migration means migrating an instance while it is running. This method is supported for virtual machines. For
containers, there is limited support.

Live migration for virtual machines

Virtual machines can be moved to another server while they are running, thus without any downtime.

To allow for live migration, you must enable support for stateful migration. To do so, ensure the following configuration:

• Set migration.stateful to true on the instance.

• Set size.state of the virtual machine’s root disk device to at least the size of the virtual machine’s limits.
memory setting.

Note: If you are using a shared storage pool like Ceph RBD to back your instance, you don’t need to set size.state
to perform live migration.

Note: When migration.stateful is enabled in LXD, virtiofs shares are disabled, and files are only shared via the
9P protocol. Consequently, guest OSes lacking 9P support, such as CentOS 8, cannot share files with the host unless
stateful migration is disabled. Additionally, the lxd-agent will not function for these guests under these conditions.

Live migration for containers

For containers, there is limited support for live migration using CRIU (Checkpoint/Restore in Userspace). However,
because of extensive kernel dependencies, only very basic containers (non-systemd containers without a network
device) can be migrated reliably. In most real-world scenarios, you should stop the container, move it over and then
start it again.

If you want to use live migration for containers, you must enable CRIU on both the source and the target server. If you
are using the snap, use the following commands to enable CRIU:

94 Chapter 2. Project and community

https://criu.org/

Canonical LXD

snap set lxd criu.enable=true
sudo systemctl reload snap.lxd.daemon

Otherwise, make sure you have CRIU installed on both systems.

To optimize the memory transfer for a container, set the migration.incremental.memory property to true to make
use of the pre-copy features in CRIU. With this configuration, LXD instructs CRIU to perform a series of memory
dumps for the container. After each dump, LXD sends the memory dump to the specified remote. In an ideal scenario,
each memory dump will decrease the delta to the previous memory dump, thereby increasing the percentage of memory
that is already synced. When the percentage of synced memory is equal to or greater than the threshold specified via
migration.incremental.memory.goal, or the maximum number of allowed iterations specified via migration.
incremental.memory.iterations is reached, LXD instructs CRIU to perform a final memory dump and transfers
it.

How to import instances:

How to import physical or virtual machines to LXD instances

If you have an existing machine, either physical or virtual (VM or container), you can use the lxd-migrate tool to
create a LXD instance based on your existing disk or image.

The tool copies the provided partition, disk or image to the LXD storage pool of the provided LXD server, sets up an
instance using that storage and allows you to configure additional settings for the new instance.

Note: If you want to configure your new instance during the migration process, set up the entities that you want your
instance to use before starting the migration process.

By default, the new instance will use the entities specified in the default profile. You can specify a different profile
(or a profile list) to customize the configuration. See How to use profiles for more information. You can also override
Instance options, the storage pool to be used and the size for the storage volume, and the network to be used.

Alternatively, you can update the instance configuration after the migration is complete.

The tool can create both containers and virtual machines:

• When creating a container, you must provide a disk or partition that contains the root file system for the container.
For example, this could be the / root disk of the machine or container where you are running the tool.

• When creating a virtual machine, you must provide a bootable disk, partition or image. This means that just
providing a file system is not sufficient, and you cannot create a virtual machine from a container that you are
running. It is also not possible to create a virtual machine from the physical machine that you are using to do
the migration, because the migration tool would be using the disk that it is copying. Instead, you could provide
a bootable image, or a bootable partition or disk that is currently not in use.

Tip: If you want to convert a Windows VM from a foreign hypervisor (not from QEMU/KVM with
Q35/virtio-scsi), you must install the virtio-win drivers to your Windows. Otherwise, your VM won’t
boot.

1. Install virt-v2v version >= 2.3.4 (this is the minimal version that supports the --block-driver option).

2. Install the virtio-win package, or download the virtio-win.iso image and put it into the /usr/
share/virtio-win folder.

3. You might also need to install rhsrvany.

2.2. How-to guides 95

https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://github.com/rwmjones/rhsrvany

Canonical LXD

Now you can use virt-v2v to convert images from a foreign hypervisor to raw images for LXD and include the
required drivers:

Example 1. Convert a vmdk disk image to a raw image suitable for lxd-migrate
sudo virt-v2v --block-driver virtio-scsi -o local -of raw -os ./os -i vmx ./test-vm.
→˓vmx
Example 2. Convert a QEMU/KVM qcow2 image and integrate virtio-scsi driver
sudo virt-v2v --block-driver virtio-scsi -o local -of raw -os ./os -if qcow2 -i␣
→˓disk test-vm-disk.qcow2

You can find the resulting image in the os directory and use it with lxd-migrate on the next steps.

Complete the following steps to migrate an existing machine to a LXD instance:

1. Download the bin.linux.lxd-migrate tool (bin.linux.lxd-migrate.aarch64 or bin.linux.
lxd-migrate.x86_64) from the Assets section of the latest LXD release.

2. Place the tool on the machine that you want to use to create the instance. Make it executable (usually by running
chmod u+x bin.linux.lxd-migrate).

3. Make sure that the machine has rsync installed. If it is missing, install it (for example, with sudo apt install
rsync).

4. Run the tool:

sudo ./bin.linux.lxd-migrate

The tool then asks you to provide the information required for the migration.

Tip: As an alternative to running the tool interactively, you can provide the configuration as parameters to the
command. See ./bin.linux.lxd-migrate --help for more information.

1. Specify the LXD server URL, either as an IP address or as a DNS name.

Note: The LXD server must be exposed to the network. If you want to import to a local LXD server, you
must still expose it to the network. You can then specify 127.0.0.1 as the IP address to access the local
server.

2. Check and confirm the certificate fingerprint.

3. Choose a method for authentication (see Remote API authentication).

For example, if you choose using a certificate token, log on to the LXD server and create a token for
the machine on which you are running the migration tool with lxc config trust add . Then use the
generated token to authenticate the tool.

4. Choose whether to create a container or a virtual machine. See About containers and VMs.

5. Specify a name for the instance that you are creating.

6. Provide the path to a root file system (for containers) or a bootable disk, partition or image file (for virtual
machines).

7. For containers, optionally add additional file system mounts.

8. For virtual machines, specify whether secure boot is supported.

96 Chapter 2. Project and community

https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-migrate.aarch64
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-migrate.x86_64
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-migrate.x86_64
https://github.com/canonical/lxd/releases

Canonical LXD

9. Optionally, configure the new instance. You can do so by specifying profiles, directly setting configuration
options or changing storage or network settings.

Alternatively, you can configure the new instance after the migration.

10. When you are done with the configuration, start the migration process.

user@host:~$ sudo ./bin.linux.lxd-migrate Please provide LXD server URL: https:/
/192.0.2.7:8443Certificate fingerprint: xxxxxxxxxxxxxxxxxok (y/n)? y 1) Use a
certificate token2) Use an existing TLS authentication certificate3) Generate a
temporary TLS authentication certificatePlease pick an authentication mechanism
above: 1Please provide the certificate token: xxxxxxxxxxxxxxxx Remote LXD
server: Hostname: bar Version: 5.4 Would you like to create a container (1) or
virtual-machine (2)?: 1Name of the new instance: fooPlease provide the path to a
root filesystem: /Do you want to add additional filesystem mounts? [default=no]:
Instance to be created: Name: foo Project: default Type: container Source:
/ Additional overrides can be applied at this stage:1) Begin the migration with
the above configuration2) Override profile list3) Set additional configuration
options4) Change instance storage pool or volume size5) Change instance network
Please pick one of the options above [default=1]: 3Please specify config keys and
values (key=value ...): limits.cpu=2 Instance to be created: Name: foo Project:
default Type: container Source: / Config: limits.cpu: "2" Additional overrides
can be applied at this stage:1) Begin the migration with the above configuration2)
Override profile list3) Set additional configuration options4) Change instance
storage pool or volume size5) Change instance network Please pick one of the options
above [default=1]: 4Please provide the storage pool to use: defaultDo you want to
change the storage size? [default=no]: yesPlease specify the storage size: 20GiB
Instance to be created: Name: foo Project: default Type: container Source:
/ Storage pool: default Storage pool size: 20GiB Config: limits.cpu: "2"
Additional overrides can be applied at this stage:1) Begin the migration with the
above configuration2) Override profile list3) Set additional configuration options4)
Change instance storage pool or volume size5) Change instance network Please pick
one of the options above [default=1]: 5Please specify the network to use for
the instance: lxdbr0 Instance to be created: Name: foo Project: default Type:
container Source: / Storage pool: default Storage pool size: 20GiB Network
name: lxdbr0 Config: limits.cpu: "2" Additional overrides can be applied at this
stage:1) Begin the migration with the above configuration2) Override profile list3)
Set additional configuration options4) Change instance storage pool or volume size5)
Change instance network Please pick one of the options above [default=1]: 1Instance
foo successfully created

user@host:~$ sudo ./bin.linux.lxd-migrate Please provide LXD server URL: https:/
/192.0.2.7:8443Certificate fingerprint: xxxxxxxxxxxxxxxxxok (y/n)? y 1) Use a
certificate token2) Use an existing TLS authentication certificate3) Generate a
temporary TLS authentication certificatePlease pick an authentication mechanism
above: 1Please provide the certificate token: xxxxxxxxxxxxxxxx Remote LXD
server: Hostname: bar Version: 5.4 Would you like to create a container (1)
or virtual-machine (2)?: 2Name of the new instance: fooPlease provide the path
to a root filesystem: ./virtual-machine.imgDoes the VM support UEFI Secure Boot?
[default=no]: no Instance to be created: Name: foo Project: default Type:
virtual-machine Source: ./virtual-machine.img Config: security.secureboot:
"false" Additional overrides can be applied at this stage:1) Begin the migration
with the above configuration2) Override profile list3) Set additional configuration
options4) Change instance storage pool or volume size5) Change instance network
Please pick one of the options above [default=1]: 3Please specify config keys and
values (key=value ...): limits.cpu=2 Instance to be created: Name: foo Project:

2.2. How-to guides 97

Canonical LXD

default Type: virtual-machine Source: ./virtual-machine.img Config: limits.
cpu: "2" security.secureboot: "false" Additional overrides can be applied at this
stage:1) Begin the migration with the above configuration2) Override profile list3)
Set additional configuration options4) Change instance storage pool or volume size5)
Change instance network Please pick one of the options above [default=1]: 4Please
provide the storage pool to use: defaultDo you want to change the storage size?
[default=no]: yesPlease specify the storage size: 20GiB Instance to be created:
Name: foo Project: default Type: virtual-machine Source: ./virtual-machine.
img Storage pool: default Storage pool size: 20GiB Config: limits.cpu: "2"
security.secureboot: "false" Additional overrides can be applied at this stage:1)
Begin the migration with the above configuration2) Override profile list3) Set
additional configuration options4) Change instance storage pool or volume size5)
Change instance network Please pick one of the options above [default=1]: 5Please
specify the network to use for the instance: lxdbr0 Instance to be created: Name:
foo Project: default Type: virtual-machine Source: ./virtual-machine.img Storage
pool: default Storage pool size: 20GiB Network name: lxdbr0 Config: limits.
cpu: "2" security.secureboot: "false" Additional overrides can be applied at this
stage:1) Begin the migration with the above configuration2) Override profile list3)
Set additional configuration options4) Change instance storage pool or volume size5)
Change instance network Please pick one of the options above [default=1]: 1Instance
foo successfully created

5. When the migration is complete, check the new instance and update its configuration to the new environment.
Typically, you must update at least the storage configuration (/etc/fstab) and the network configuration.

How to migrate containers from LXC to LXD

If you are using LXC and want to migrate all or some of your LXC containers to a LXD installation on the same
machine, you can use the lxc-to-lxd tool. The LXC containers must exist on the same machine as the LXD server.

The tool analyzes the LXC configuration and copies the data and configuration of your existing LXC containers into
new LXD containers.

Note: Alternatively, you can use the lxd-migrate tool within a LXC container to migrate it to LXD (see How to
import physical or virtual machines to LXD instances). However, this tool does not migrate any of the LXC container
configuration.

Get the tool

If you’re using the snap, the lxc-to-lxd is automatically installed. It is available as lxd.lxc-to-lxd.

Note: The lxd.lxc-to-lxd command was last included in the 5.0 snap which should be installed to do the conversion
from lxc to lxd:

sudo install lxd --channel=5.0/stable
sudo lxd.lxc-to-lxd --all

After successfully running the lxd.lxc-to-lxd command, you can then switch to a newer snap channel if desired,
like the latest one:

98 Chapter 2. Project and community

Canonical LXD

sudo refresh lxd --channel=latest/stable

Otherwise, make sure that you have go (Go) installed and get the tool with the following command:

go install github.com/canonical/lxd/lxc-to-lxd@latest

Prepare your LXC containers

You can migrate one container at a time or all of your LXC containers at the same time.

Note: Migrated containers use the same name as the original containers. You cannot migrate containers with a name
that already exists as an instance name in LXD.

Therefore, rename any LXC containers that might cause name conflicts before you start the migration process.

Before you start the migration process, stop the LXC containers that you want to migrate.

Start the migration process

Run sudo lxd.lxc-to-lxd [flags] to migrate the containers. (This command assumes that you are using the
snap; otherwise, replace lxd.lxc-to-lxd with lxc-to-lxd, also in the following examples.)

For example, to migrate all containers:

sudo lxd.lxc-to-lxd --all

To migrate only the lxc1 container:

sudo lxd.lxc-to-lxd --containers lxc1

To migrate two containers (lxc1 and lxc2) and use the my-storage storage pool in LXD:

sudo lxd.lxc-to-lxd --containers lxc1,lxc2 --storage my-storage

To test the migration of all containers without actually running it:

sudo lxd.lxc-to-lxd --all --dry-run

To migrate all containers but limit the rsync bandwidth to 5000 KB/s:

sudo lxd.lxc-to-lxd --all --rsync-args --bwlimit=5000

Run sudo lxd.lxc-to-lxd --help to check all available flags.

Note: If you get an error that the linux64 architecture isn’t supported, either update the tool to the latest version or
change the architecture in the LXC container configuration from linux64 to either amd64 or x86_64.

2.2. How-to guides 99

Canonical LXD

Check the configuration

The tool analyzes the LXC configuration and the configuration of the container (or containers) and migrates as much
of the configuration as possible. You will see output similar to the following:

user@host:~$ sudo lxd.lxc-to-lxd --containers lxc1 Parsing LXC configurationChecking
for unsupported LXC configuration keysChecking for existing containersChecking whether
container has already been migratedValidating whether incomplete AppArmor support
is enabledValidating whether mounting a minimal /dev is enabledValidating container
rootfsProcessing network configurationProcessing storage configurationProcessing
environment configurationProcessing container boot configurationProcessing container
apparmor configurationProcessing container seccomp configurationProcessing container
SELinux configurationProcessing container capabilities configurationProcessing container
architecture configurationCreating containerTransferring container: lxc1: ...Container
'lxc1' successfully created After the migration process is complete, you can check and, if necessary, update
the configuration in LXD before you start the migrated LXD container.

Related topics

Explanation:

• Instance types in LXD

Reference:

• Container runtime environment

• Instance configuration

Images

The following how-to guides cover common operations related to images.

How to work with existing images:

How to use remote images

The lxc CLI command is pre-configured with several remote image servers. See Remote image servers for an overview.

Note:

• If you are using the API, you can interact with different LXD servers by using their exposed API addresses. See
Authenticate with the LXD server for instructions on how to authenticate with the servers.

How to manage images describes how to interact with images on any LXD server through the API.

• The UI is pre-configured with several remote image servers, but does not currently support adding other servers
or managing remote images.

You can see the available remote images (and which server they are hosted on) when you select the base image
for a new instance.

100 Chapter 2. Project and community

Canonical LXD

List configured remotes

To see all configured remote servers, enter the following command:

lxc remote list

Remote servers that use the simple streams format are pure image servers. Servers that use the lxd format are LXD
servers, which either serve solely as image servers or might provide some images in addition to serving as regular LXD
servers. See Remote server types for more information.

List available images on a remote

To list all remote images on a server, enter the following command:

lxc image list <remote>:

You can filter the results. See Filter available images for instructions.

Add a remote server

How to add a remote depends on the protocol that the server uses.

Add a simple streams server

To add a simple streams server as a remote, enter the following command:

lxc remote add <remote_name> <URL> --protocol=simplestreams

The URL must use HTTPS.

Add a remote LXD server

To add a LXD server as a remote, enter the following command:

lxc remote add <remote_name> <IP|FQDN|URL> [flags]

Some authentication methods require specific flags (for example, use lxc remote add <remote_name>
<IP|FQDN|URL> --auth-type=oidc for OIDC authentication). See Authenticate with the LXD server and Remote
API authentication for more information.

For example, enter the following command to add a remote through an IP address:

lxc remote add my-remote 192.0.2.10

You are prompted to confirm the remote server fingerprint and then asked for the password or token, depending on the
authentication method used by the remote.

2.2. How-to guides 101

https://git.launchpad.net/simplestreams/tree/

Canonical LXD

Reference an image

To reference an image, specify its remote and its alias or fingerprint, separated with a colon. For example:

ubuntu:24.04
ubuntu-minimal:24.04
images:alpine/edge
local:ed7509d7e83f

Select a default remote

If you specify an image name without the name of the remote, the default image server is used.

To see which server is configured as the default image server, enter the following command:

lxc remote get-default

To select a different remote as the default image server, enter the following command:

lxc remote switch <remote_name>

How to manage images

When working with images, you can inspect various information about the available images, view and edit their prop-
erties and configure aliases to refer to specific images. You can also export an image to a file, which can be useful to
copy or import it on another machine.

List available images

CLI

API

UI

To list all images on a server, enter the following command:

lxc image list [<remote>:]

If you do not specify a remote, the default remote is used.

Query the /1.0/images endpoint to list all images on the server:

lxc query --request GET /1.0/images

To include information about each image, add recursion=1:

lxc query --request GET /1.0/images?recursion=1

See GET /1.0/images and GET /1.0/images?recursion=1 for more information.

Note: The /1.0/images endpoint is available on LXD servers, but not on simple streams servers (see Remote server
types). Public image servers, like the official Ubuntu image server, use the simple streams format.

102 Chapter 2. Project and community

https://cloud-images.ubuntu.com/releases/
https://git.launchpad.net/simplestreams/tree/

Canonical LXD

To retrieve the list of images from a simple streams server, start at the streams/v1/index.sjson index (for example,
https://cloud-images.ubuntu.com/releases/streams/v1/index.sjson).

Go to Images to view all images on the local server.

Filter available images

CLI

API

UI

To filter the results that are displayed, specify a part of the alias or fingerprint after the command. For example, to show
all Ubuntu 24.04 images, enter the following command:

lxc image list ubuntu: 24.04

You can specify several filters as well. For example, to show all Arm 64-bit Ubuntu 24.04 images, enter the following
command:

lxc image list ubuntu: 24.04 arm64

To filter for properties other than alias or fingerprint, specify the filter in <key>=<value> format. For example:

lxc image list ubuntu: 24.04 architecture=x86_64

You can filter the images that are displayed by any of their fields.

For example, to show all Ubuntu images, or all images for version 24.04:

lxc query --request GET /1.0/images?filter=properties.os+eq+ubuntu
lxc query --request GET /1.0/images?filter=properties.version+eq+24.04

You can specify several filters as well. For example, to show all Arm 64-bit images for virtual machines, enter the
following command:

lxc query --request GET /1.0/images?filter=architecture+eq+arm64+and+type+eq+virtual-
→˓machine

You can also use a regular expression:

lxc query --request GET "/1.0/images?filter=fingerprint+eq+be25.*"

See GET /1.0/images and Filtering for more information.

To filter the images that are displayed, use the search box.

For example, to show all Ubuntu images, search for ubuntu. To display only images for version 24.04, search for
24.04.

2.2. How-to guides 103

https://cloud-images.ubuntu.com/releases/streams/v1/index.sjson

Canonical LXD

View image information

CLI

API

UI

To view information about an image, enter the following command:

lxc image info <image_ID>

As the image ID, you can specify either the image’s alias or its fingerprint. For a remote image, remember to include
the remote server (for example, ubuntu:24.04).

To display only the image properties, enter the following command:

lxc image show <image_ID>

You can also display a specific image property (located under the properties key) with the following command:

lxc image get-property <image_ID> <key>

For example, to show the release name of the official Ubuntu 24.04 image, enter the following command:

lxc image get-property ubuntu:24.04 release

To view all information about an image, query it using its fingerprint:

lxc query --request GET /1.0/images/<fingerprint>

See GET /1.0/images/{fingerprint} for more information.

If you don’t know the fingerprint but the alias, you can retrieve the fingerprint by querying the /1.0/images/aliases/
{alias} endpoint:

lxc query --request GET /1.0/images/aliases/<alias>

See GET /1.0/images/aliases/{name} for more information.

The UI does not currently support viewing detailed image information.

Edit image properties

CLI

API

UI

To set a specific image property that is located under the properties key, enter the following command:

lxc image set-property <image_ID> <key> <value>

Note: These properties can be used to convey information about the image. They do not configure LXD’s behavior in
any way.

104 Chapter 2. Project and community

Canonical LXD

To edit the full image properties, including the top-level properties, enter the following command:

lxc image edit <image_ID>

To set a specific image property that is located under the properties key, send a PATCH request to the image:

lxc query --request PATCH /1.0/images/<fingerprint> --data '{
"properties": {
"<key>": "<value>"

}
}'

See PATCH /1.0/images/{fingerprint} for more information.

Note: These properties can be used to convey information about the image. They do not configure LXD’s behavior in
any way.

To update the full image properties, including the top-level properties, send a PUT request with the full image data:

lxc query --request PUT /1.0/images/<fingerprint> --data '<image_configuration>'

See PUT /1.0/images/{fingerprint} for more information.

The UI does not currently support editing image properties.

Delete an image

CLI

API

UI

To delete a local copy of an image, enter the following command:

lxc image delete <image_ID>

To delete a local copy of an image, send a DELETE request:

lxc query --request DELETE /1.0/images/<fingerprint>

See DELETE /1.0/images/{fingerprint} for more information.

In the images list, click the Delete button () next to an image to delete it.

You can also select several images and click the Delete images button at the top to delete all selected images.

Deleting an image won’t affect running instances that are already using it, but it will remove the image locally.

After deletion, if the image was downloaded from a remote server, it will be removed from local cache and downloaded
again on next use. However, if the image was manually created (not cached), the image will be deleted.

2.2. How-to guides 105

Canonical LXD

Configure image aliases

Configuring an alias for an image can be useful to make it easier to refer to an image, since remembering an alias
is usually easier than remembering a fingerprint. Most importantly, however, you can change an alias to point to a
different image, which allows creating an alias that always provides a current image (for example, the latest version of
a release).

CLI

API

UI

You can see some of the existing aliases in the image list. To see the full list, enter the following command:

lxc image alias list

You can directly assign an alias to an image when you copy or import or publish it. Alternatively, enter the following
command:

lxc image alias create <alias_name> <image_fingerprint>

You can also delete an alias:

lxc image alias delete <alias_name>

To rename an alias, enter the following command:

lxc image alias rename <alias_name> <new_alias_name>

If you want to keep the alias name, but point the alias to a different image (for example, a newer version), you must
delete the existing alias and then create a new one.

To retrieve a list of all defined aliases, query the /1.0/images/aliases endpoint:

lxc query --request GET /1.0/images/aliases

To include information about each alias, add recursion=1:

lxc query --request GET /1.0/images/aliases?recursion=1

See GET /1.0/images/aliases and GET /1.0/images/aliases?recursion=1 for more information.

You can directly assign an alias to an image when you copy or import or publish it. Alternatively, send a POST request
to the /1.0/images/aliases endpoint to create an alias:

lxc query --request POST /1.0/images/aliases --data '{
"name": "<alias_name>",
"target": "<image_fingerprint>"

}'

See POST /1.0/images/aliases for more information.

You can also delete an alias:

lxc query --request DELETE /1.0/images/aliases/<alias_name>

To rename an alias, send a POST request to the alias:

106 Chapter 2. Project and community

Canonical LXD

lxc query --request POST /1.0/images/aliases/<alias_name> --data '{
"name": "<new_alias_name>"

}'

If you want to keep the alias name, but point the alias to a different image (for example, a newer version), send a PATCH
request to the alias:

lxc query --request PATCH /1.0/images/aliases/<alias_name> --data '{
"target": "<new_fingerprint>"

}'

See DELETE /1.0/images/aliases/{name}, POST /1.0/images/aliases/{name}, and PATCH /1.0/
images/aliases/{name} for more information.

The UI displays configured aliases in the images list, but it does not currently support configuring image aliases.

Export an image to a set of files

Images are located in the image store of your local server or a remote LXD server. You can export them to a file or
a set of files though (see Image tarballs). This method can be useful to back up image files or to transfer them to an
air-gapped environment.

CLI

API

UI

To export a container image to a set of files, enter the following command:

lxc image export [<remote>:]<image> [<output_directory_path>]

To export a virtual machine image to a set of files, add the --vm flag:

lxc image export [<remote>:]<image> [<output_directory_path>] --vm

Send a query to the export endpoint of the image to retrieve it:

curl -X GET --unix-socket /var/snap/lxd/common/lxd/unix.socket lxd/1.0/images/
→˓<fingerprint>/export \
-H "Content-Type: multipart/form-data" -o <output-file>

If the image is a split image, the output file contains two separate tarballs in multipart format.

See GET /1.0/images/{fingerprint}/export for more information.

The UI does not currently support exporting images.

See Image format for a description of the file structure used for the image.

2.2. How-to guides 107

Canonical LXD

How to associate profiles with an image

You can associate one or more profiles with a specific image. Instances that are created from the image will then
automatically use the associated profiles in the order they were specified.

To associate a list of profiles with an image, add the profiles to the image configuration in the profiles section (see
Edit image properties).

CLI

API

UI

Use the lxc image edit command to edit the profiles section:

profiles:
- default

To update the full image properties, including the profiles section, send a PUT request with the full image data:

lxc query --request PUT /1.0/images/<fingerprint> --data '<image_configuration>'

See PUT /1.0/images/{fingerprint} for more information.

The UI does not currently support editing the image configuration. Therefore, you cannot associate profiles with an
image through the UI.

Most provided images come with a profile list that includes only the default profile. To prevent any profile (including
the default profile) from being associated with an image, pass an empty list.

Note: Passing an empty list is different than passing nil. If you pass nil as the profile list, only the default profile
is associated with the image.

You can override the associated profiles for an image when creating an instance by adding the --profile or the
--no-profiles flag to the launch or init command (when using the CLI), or by specifying a list of profiles in the
request data (when using the API).

How to import and create images:

How to copy and import images

To add images to an image store, you can either copy them from another server or import them from files (either local
files or files on a web server).

Note: The UI does not currently support copying or importing images.

There is support for importing custom ISO files, but these ISO files are different from images. When you create an
instance from a custom ISO file, the ISO file is mounted as a storage volume in a new empty VM, and you can then
install the VM from the ISO file. See Content type iso and Create a VM that boots from an ISO for more information.

108 Chapter 2. Project and community

Canonical LXD

Copy an image from a remote

CLI

API

To copy an image from one server to another, enter the following command:

lxc image copy [<source_remote>:]<image> <target_remote>:

Note: To copy the image to your local image store, specify local: as the target remote.

See lxc image copy --help for a list of all available flags. The most relevant ones are:

--alias
Assign an alias to the copy of the image.

--copy-aliases
Copy the aliases that the source image has.

--auto-update
Keep the copy up-to-date with the original image.

--vm
When copying from an alias, copy the image that can be used to create virtual machines.

To copy an image from one server to another, export it to your local machine and then import it to the other server.

Import an image from files

If you have image files that use the required Image format, you can import them into your image store.

There are several ways of obtaining such image files:

• Exporting an existing image (see Export an image to a set of files)

• Building your own image using distrobuilder (see Build an image)

• Downloading image files from a remote image server (note that it is usually easier to use the remote image directly
instead of downloading it to a file and importing it)

Import from the local file system

CLI

API

To import an image from the local file system, use the lxc image import command. This command supports both
unified images (compressed file or directory) and split images (two files).

To import a unified image from one file or directory, enter the following command:

lxc image import <image_file_or_directory_path> [<target_remote>:]

To import a split image, enter the following command:

lxc image import <metadata_tarball_path> <rootfs_tarball_path> [<target_remote>:]

2.2. How-to guides 109

Canonical LXD

In both cases, you can assign an alias with the --alias flag. See lxc image import --help for all available flags.

To import an image from the local file system, send a POST request to the /1.0/images endpoint.

For example, to import a unified image from one file:

curl -X POST --unix-socket /var/snap/lxd/common/lxd/unix.socket lxd/1.0/images \
--data-binary @<image_file_path>

To import a split image from a metadata file and a rootfs file:

curl -X POST --unix-socket /var/snap/lxd/common/lxd/unix.socket lxd/1.0/images \
--form metadata=@<metadata_tarball_path> --form rootfs.img=<rootfs_tarball_path>

See POST /1.0/images for more information.

Import from a file on a remote web server

You can import image files from a remote web server by URL. This method is an alternative to running a LXD server
for the sole purpose of distributing an image to users. It only requires a basic web server with support for custom
headers (see Custom HTTP headers).

The image files must be provided as unified images (see Unified tarball).

CLI

API

To import an image file from a remote web server, enter the following command:

lxc image import <URL>

You can assign an alias to the local image with the --alias flag.

To import an image file from a remote web server, send a POST request with the image URL to the /1.0/images
endpoint:

lxc query --request POST /1.0/images --data '{
"source": {
"type": "url",
"url": "<URL>"

}
}'

See POST /1.0/images for more information.

Custom HTTP headers

LXD requires the following custom HTTP headers to be set by the web server:

LXD-Image-Hash
The SHA256 of the image that is being downloaded.

LXD-Image-URL
The URL from which to download the image.

LXD sets the following headers when querying the server:

110 Chapter 2. Project and community

Canonical LXD

LXD-Server-Architectures
A comma-separated list of architectures that the client supports.

LXD-Server-Version
The version of LXD in use.

How to create images

If you want to create and share your own images, you can do this either based on an existing instance or snapshot or by
building your own image from scratch.

Publish an image from an instance or snapshot

If you want to be able to use an instance or an instance snapshot as the base for new instances, you should create and
publish an image from it.

When publishing an image from an instance, make sure that the instance is stopped.

CLI

API

UI

To publish an image from an instance, enter the following command:

lxc publish <instance_name> [<remote>:]

To publish an image from a snapshot, enter the following command:

lxc publish <instance_name>/<snapshot_name> [<remote>:]

In both cases, you can specify an alias for the new image with the --alias flag, set an expiration date with --expire
and make the image publicly available with --public. If an image with the same name already exists, add the --reuse
flag to overwrite it. See lxc publish --help for a full list of available flags.

To publish an image from an instance or a snapshot, send a POST request with the suitable source type to the /1.0/
images endpoint.

To publish an image from an instance:

lxc query --request POST /1.0/images --data '{
"source": {
"name": "<instance_name>",
"type": "instance"

}
}'

To publish an image from a snapshot:

lxc query --request POST /1.0/images --data '{
"source": {
"name": "<instance_name>/<snapshot_name>",
"type": "snapshot"

}
}'

2.2. How-to guides 111

Canonical LXD

In both cases, you can include additional configuration (for example, you can include aliases, set a custom expiration
date, or make the image publicly available). For example:

lxc query --request POST /1.0/images --data '{
"aliases": [{ "name": "<alias>" }],
"expires_at": "2025-03-23T20:00:00-04:00",
"public": true,
"source": {
"name": "<instance_name>",
"type": "instance"

}
}'

See POST /1.0/images for more information.

The UI does not currently support publishing an image from an instance, but you can publish from a snapshot.

To do so, go to the instance detail page and switch to the Snapshots tab. Then click the Create image button () and
optionally enter an alias for the new image. You can also choose whether the image should be publicly available.

Publishing the image might take a few minutes. You can check the status under Operations.

The publishing process can take quite a while because it generates a tarball from the instance or snapshot and then
compresses it. As this can be particularly I/O and CPU intensive, publish operations are serialized by LXD.

Prepare the instance for publishing

Before you publish an image from an instance, clean up all data that should not be included in the image. Usually, this
includes the following data:

• Instance metadata (use lxc config metadata or PATCH /1.0/instances/{name}/metadata/PUT /1.0/
instances/{name}/metadata to edit)

• File templates (use lxc config template or POST /1.0/instances/{name}/metadata/templates to
edit)

• Instance-specific data inside the instance itself (for example, host SSH keys and dbus/systemd machine-id)

Build an image

For building your own images, you can use distrobuilder.

See the distrobuilder documentation for instructions for installing and using the tool.

Related topics

Explanation:

• About images

Reference:

• Image format

• Remote image servers

112 Chapter 2. Project and community

https://github.com/lxc/distrobuilder
https://linuxcontainers.org/distrobuilder/docs/latest/

Canonical LXD

Projects

The following how-to guides cover common operations related to projects:

How to create and configure projects

You can configure projects at creation time or later. However, note that it is not possible to modify the features that are
enabled for a project when the project contains instances.

Create a project

To create a project, use the lxc project create command.

You can specify configuration options by using the --config flag. See Project configuration for the available config-
uration options.

For example, to create a project called my-project that isolates instances, but allows access to the default project’s
images and profiles, enter the following command:

lxc project create my-project --config features.images=false --config features.
→˓profiles=false

To create a project called my-restricted-project that blocks access to security-sensitive features (for example,
container nesting) but allows backups, enter the following command:

lxc project create my-restricted-project --config restricted=true --config restricted.
→˓backups=allow

Tip: When you create a project without specifying configuration options, features.profiles is set to true, which
means that profiles are isolated in the project.

Consequently, the new project does not have access to the default profile of the default project and therefore
misses required configuration for creating instances (like the root disk). To fix this, use the lxc profile device
add command to add a root disk device to the project’s default profile.

Configure a project

To configure a project, you can either set a specific configuration option or edit the full project.

Some configuration options can only be set for projects that do not contain any instances.

2.2. How-to guides 113

Canonical LXD

Set specific configuration options

To set a specific configuration option, use the lxc project set command.

For example, to limit the number of containers that can be created in my-project to five, enter the following command:

lxc project set my-project limits.containers=5

To unset a specific configuration option, use the lxc project unset command.

Note: If you unset a configuration option, it is set to its default value. This default value might differ from the initial
value that is set when the project is created.

Edit the project

To edit the full project configuration, use the lxc project edit command. For example:

lxc project edit my-project

How to work with different projects

If you have more projects than just the default project, you must make sure to use or address the correct project when
working with LXD.

Note: If you have projects that are confined to specific users, only users with full access to LXD can see all projects.

Users without full access can only see information for the projects to which they have access.

List projects

To list all projects (that you have permission to see), enter the following command:

lxc project list

By default, the output is presented as a list:

user@host:~$ lxc project list +----------------------+--------+----------+-----------------+-----------------+----------+---------------+---------------------+---------+|
NAME | IMAGES | PROFILES | STORAGE VOLUMES | STORAGE BUCKETS | NETWORKS | NETWORK ZONES |
DESCRIPTION | USED BY |+----------------------+--------+----------+-----------------+-----------------+----------+---------------+---------------------+---------+|
default | YES | YES | YES | YES | YES | YES | Default LXD project | 19
|+----------------------+--------+----------+-----------------+-----------------+----------+---------------+---------------------+---------+|
my-project (current) | YES | NO | NO | NO | YES | YES | | 0 |+----------------------+--------+----------+-----------------+-----------------+----------+---------------+---------------------+---------+
You can request a different output format by adding the --format flag. See lxc project list --help for more
information.

114 Chapter 2. Project and community

Canonical LXD

Switch projects

By default, all commands that you issue in LXD affect the project that you are currently using. To see which project
you are in, use the lxc project list command.

To switch to a different project, enter the following command:

lxc project switch <project_name>

Target a project

Instead of switching to a different project, you can target a specific project when running a command. Many LXD
commands support the --project flag to run an action in a different project.

Note: You can target only projects that you have permission for.

The following sections give some typical examples where you would typically target a project instead of switching to
it.

List instances in a project

To list the instances in a specific project, add the --project flag to the lxc list command. For example:

lxc list --project my-project

Move an instance to another project

To move an instance from one project to another, enter the following command:

lxc move <instance_name> <new_instance_name> --project <source_project> --target-project
→˓<target_project>

You can keep the same instance name if no instance with that name exists in the target project.

For example, to move the instance my-instance from the default project to my-project and keep the instance
name, enter the following command:

lxc move my-instance my-instance --project default --target-project my-project

Copy a profile to another project

If you create a project with the default settings, profiles are isolated in the project (features.profiles is set to
true). Therefore, the project does not have access to the default profile (which is part of the default project), and
you will see an error similar to the following when trying to create an instance:

user@host:~$ lxc launch ubuntu:24.04 my-instance Creating my-instanceError: Failed
instance creation: Failed creating instance record: Failed initialising instance:
Failed getting root disk: No root device could be found To fix this, you can copy the contents
of the default project’s default profile into the current project’s default profile. To do so, enter the following
command:

2.2. How-to guides 115

Canonical LXD

lxc profile show default --project default | lxc profile edit default

How to confine projects to specific users

You can use projects to confine the activities of different users or clients. See Confined projects in a multi-user envi-
ronment for more information.

How to confine a project to a specific user depends on the authentication method you choose.

Confine projects to specific TLS clients

You can confine access to specific projects by restricting the TLS client certificate that is used to connect to the LXD
server. See TLS client certificates for detailed information.

To confine the access from the time the client certificate is added, you must either use token authentication or add the
client certificate to the server directly. If you use password authentication, you can restrict the client certificate only
after it has been added.

Use the following command to add a restricted client certificate:

Token authentication

Add client certificate

lxc config trust add --projects <project_name> --restricted

lxc config trust add <certificate_file> --projects <project_name> --restricted

The client can then add the server as a remote in the usual way (lxc remote add <server_name> <token> or
lxc remote add <server_name> <server_address>) and can only access the project or projects that have been
specified.

To confine access for an existing certificate (either because the access restrictions change or because the certificate was
added with a trust password), use the following command:

lxc config trust edit <fingerprint>

Make sure that restricted is set to true and specify the projects that the certificate should give access to under
projects.

Note: You can specify the --project flag when adding a remote. This configuration pre-selects the specified project.
However, it does not confine the client to this project.

116 Chapter 2. Project and community

Canonical LXD

Confine projects to specific LXD users

If you use the LXD snap, you can configure the multi-user LXD daemon contained in the snap to dynamically create
projects for all users in a specific user group.

To do so, set the daemon.user.group configuration option to the corresponding user group:

sudo snap set lxd daemon.user.group=<user_group>

Make sure that all user accounts that you want to be able to use LXD are a member of this group.

Once a member of the group issues a LXD command, LXD creates a confined project for this user and switches to this
project. If LXD has not been initialized at this point, it is automatically initialized (with the default settings).

If you want to customize the project settings, for example, to impose limits or restrictions, you can do so after the project
has been created. To modify the project configuration, you must have full access to LXD, which means you must be
part of the lxd group and not only the group that you configured as the LXD user group.

Related topics

Explanation:

• About projects

Reference:

• Project configuration

Storage

The following how-to guides cover common operations related to storage.

How to create, manage, and use storage:

How to manage storage pools

See the following sections for instructions on how to create, configure, view and resize Storage pools.

Create a storage pool

LXD creates a storage pool during initialization. You can add more storage pools later, using the same driver or different
drivers.

To create a storage pool, use the following command:

lxc storage create <pool_name> <driver> [configuration_options...]

Unless specified otherwise, LXD sets up loop-based storage with a sensible default size (20% of the free disk space,
but at least 5 GiB and at most 30 GiB).

See the Storage drivers documentation for a list of available configuration options for each driver.

2.2. How-to guides 117

https://snapcraft.io/lxd

Canonical LXD

Examples

See the following examples for how to create a storage pool using different storage drivers.

Directory

Btrfs

LVM

ZFS

Ceph RBD

CephFS

Ceph Object

Create a directory pool named pool1:

lxc storage create pool1 dir

Use the existing directory /data/lxd for pool2:

lxc storage create pool2 dir source=/data/lxd

Create a loop-backed pool named pool1:

lxc storage create pool1 btrfs

Use the existing Btrfs file system at /some/path for pool2:

lxc storage create pool2 btrfs source=/some/path

Create a pool named pool3 on /dev/sdX:

lxc storage create pool3 btrfs source=/dev/sdX

Create a loop-backed pool named pool1 (the LVM volume group will also be called pool1):

lxc storage create pool1 lvm

Use the existing LVM volume group called my-pool for pool2:

lxc storage create pool2 lvm source=my-pool

Use the existing LVM thin pool called my-pool in volume group my-vg for pool3:

lxc storage create pool3 lvm source=my-vg lvm.thinpool_name=my-pool

Create a pool named pool4 on /dev/sdX (the LVM volume group will also be called pool4):

lxc storage create pool4 lvm source=/dev/sdX

Create a pool named pool5 on /dev/sdX with the LVM volume group name my-pool:

lxc storage create pool5 lvm source=/dev/sdX lvm.vg_name=my-pool

Create a loop-backed pool named pool1 (the ZFS zpool will also be called pool1):

118 Chapter 2. Project and community

Canonical LXD

lxc storage create pool1 zfs

Create a loop-backed pool named pool2 with the ZFS zpool name my-tank:

lxc storage create pool2 zfs zfs.pool_name=my-tank

Use the existing ZFS zpool my-tank for pool3:

lxc storage create pool3 zfs source=my-tank

Use the existing ZFS dataset my-tank/slice for pool4:

lxc storage create pool4 zfs source=my-tank/slice

Use the existing ZFS dataset my-tank/zvol for pool5 and configure it to use ZFS block mode:

lxc storage create pool5 zfs source=my-tank/zvol volume.zfs.block_mode=yes

Create a pool named pool6 on /dev/sdX (the ZFS zpool will also be called pool6):

lxc storage create pool6 zfs source=/dev/sdX

Create a pool named pool7 on /dev/sdX with the ZFS zpool name my-tank:

lxc storage create pool7 zfs source=/dev/sdX zfs.pool_name=my-tank

Create an OSD storage pool named pool1 in the default Ceph cluster (named ceph):

lxc storage create pool1 ceph

Create an OSD storage pool named pool2 in the Ceph cluster my-cluster:

lxc storage create pool2 ceph ceph.cluster_name=my-cluster

Create an OSD storage pool named pool3 with the on-disk name my-osd in the default Ceph cluster:

lxc storage create pool3 ceph ceph.osd.pool_name=my-osd

Use the existing OSD storage pool my-already-existing-osd for pool4:

lxc storage create pool4 ceph source=my-already-existing-osd

Use the existing OSD erasure-coded pool ecpool and the OSD replicated pool rpl-pool for pool5:

lxc storage create pool5 ceph source=rpl-pool ceph.osd.data_pool_name=ecpool

Note: Each CephFS file system consists of two OSD storage pools, one for the actual data and one for the file metadata.

Use the existing CephFS file system my-filesystem for pool1:

lxc storage create pool1 cephfs source=my-filesystem

Use the sub-directory my-directory from the my-filesystem file system for pool2:

2.2. How-to guides 119

Canonical LXD

lxc storage create pool2 cephfs source=my-filesystem/my-directory

Create a CephFS file system my-filesystem with a data pool called my-data and a metadata pool called
my-metadata for pool3:

lxc storage create pool3 cephfs source=my-filesystem cephfs.create_missing=true cephfs.
→˓data_pool=my-data cephfs.meta_pool=my-metadata

Note: When using the Ceph Object driver, you must have a running Ceph Object Gateway radosgw URL available
beforehand.

Use the existing Ceph Object Gateway https://www.example.com/radosgw to create pool1:

lxc storage create pool1 cephobject cephobject.radosgw.endpoint=https://www.example.com/
→˓radosgw

Create a storage pool in a cluster

If you are running a LXD cluster and want to add a storage pool, you must create the storage pool for each cluster
member separately. The reason for this is that the configuration, for example, the storage location or the size of the
pool, might be different between cluster members.

Therefore, you must first create a pending storage pool on each member with the --target=<cluster_member> flag
and the appropriate configuration for the member. Make sure to use the same storage pool name for all members. Then
create the storage pool without specifying the --target flag to actually set it up.

For example, the following series of commands sets up a storage pool with the name my-pool at different locations
and with different sizes on three cluster members:

user@host:~$ lxc storage create my-pool zfs source=/dev/sdX size=10GiB --target=vm01
Storage pool my-pool pending on member vm01 user@host:~$ lxc storage create my-pool zfs
source=/dev/sdX size=15GiB --target=vm02 Storage pool my-pool pending on member vm02
user@host:~$ lxc storage create my-pool zfs source=/dev/sdY size=10GiB --target=vm03
Storage pool my-pool pending on member vm03 user@host:~$ lxc storage create my-pool zfs
Storage pool my-pool created Also see How to configure storage for a cluster.

Note: For most storage drivers, the storage pools exist locally on each cluster member. That means that if you create
a storage volume in a storage pool on one member, it will not be available on other cluster members.

This behavior is different for Ceph-based storage pools (ceph, cephfs and cephobject) where each storage pool
exists in one central location and therefore, all cluster members access the same storage pool with the same storage
volumes.

120 Chapter 2. Project and community

https://docs.ceph.com/en/latest/radosgw/

Canonical LXD

Configure storage pool settings

See the Storage drivers documentation for the available configuration options for each storage driver.

General keys for a storage pool (like source) are top-level. Driver-specific keys are namespaced by the driver name.

Use the following command to set configuration options for a storage pool:

lxc storage set <pool_name> <key> <value>

For example, to turn off compression during storage pool migration for a dir storage pool, use the following command:

lxc storage set my-dir-pool rsync.compression false

You can also edit the storage pool configuration by using the following command:

lxc storage edit <pool_name>

View storage pools

You can display a list of all available storage pools and check their configuration.

Use the following command to list all available storage pools:

lxc storage list

The resulting table contains the storage pool that you created during initialization (usually called default or local)
and any storage pools that you added.

To show detailed information about a specific pool, use the following command:

lxc storage show <pool_name>

To see usage information for a specific pool, run the following command:

lxc storage info <pool_name>

Resize a storage pool

If you need more storage, you can increase the size of your storage pool by changing the size configuration key:

lxc storage set <pool_name> size=<new_size>

This will only work for loop-backed storage pools that are managed by LXD. You can only grow the pool (increase its
size), not shrink it.

2.2. How-to guides 121

Canonical LXD

How to manage storage volumes

See the following sections for instructions on how to create, configure, view and resize Storage volumes.

Create a custom storage volume

When you create an instance, LXD automatically creates a storage volume that is used as the root disk for the instance.

You can add custom storage volumes to your instances. Such custom storage volumes are independent of the instance,
which means that they can be backed up separately and are retained until you delete them. Custom storage volumes
with content type filesystem can also be shared between different instances.

See Storage volumes for detailed information.

Create the volume

Use the following command to create a custom storage volume of type block or filesystem in a storage pool:

lxc storage volume create <pool_name> <volume_name> [configuration_options...]

See the Storage drivers documentation for a list of available storage volume configuration options for each driver.

By default, custom storage volumes use the filesystem content type. To create a custom storage volume with the
content type block, add the --type flag:

lxc storage volume create <pool_name> <volume_name> --type=block [configuration_options..
→˓.]

To add a custom storage volume on a cluster member, add the --target flag:

lxc storage volume create <pool_name> <volume_name> --target=<cluster_member>␣
→˓[configuration_options...]

Note: For most storage drivers, custom storage volumes are not replicated across the cluster and exist only on the
member for which they were created. This behavior is different for Ceph-based storage pools (ceph and cephfs),
where volumes are available from any cluster member.

To create a custom storage volume of type iso, use the import command instead of the create command:

lxc storage volume import <pool_name> <iso_path> <volume_name> --type=iso

Attach the volume to an instance

After creating a custom storage volume, you can add it to one or more instances as a disk device.

The following restrictions apply:

• Custom storage volumes of content type block or iso cannot be attached to containers, but only to virtual
machines.

• To avoid data corruption, storage volumes of content type block should never be attached to more than one
virtual machine at a time.

122 Chapter 2. Project and community

Canonical LXD

• Storage volumes of content type iso are always read-only, and can therefore be attached to more than one virtual
machine at a time without corrupting data.

• File system storage volumes can’t be attached to virtual machines while they’re running.

For custom storage volumes with the content type filesystem, use the following command, where <location> is
the path for accessing the storage volume inside the instance (for example, /data):

lxc storage volume attach <pool_name> <filesystem_volume_name> <instance_name> <location>

Custom storage volumes with the content type block do not take a location:

lxc storage volume attach <pool_name> <block_volume_name> <instance_name>

By default, the custom storage volume is added to the instance with the volume name as the device name. If you want
to use a different device name, you can add it to the command:

lxc storage volume attach <pool_name> <filesystem_volume_name> <instance_name> <device_
→˓name> <location>
lxc storage volume attach <pool_name> <block_volume_name> <instance_name> <device_name>

Attach the volume as a device

The lxc storage volume attach command is a shortcut for adding a disk device to an instance. Alternatively, you
can add a disk device for the storage volume in the usual way:

lxc config device add <instance_name> <device_name> disk pool=<pool_name> source=<volume_
→˓name> [path=<location>]

When using this way, you can add further configuration to the command if needed. See disk device for all available
device options.

Configure I/O limits

When you attach a storage volume to an instance as a disk device, you can configure I/O limits for it. To do so, set the
limits.read , limits.write or limits.max properties to the corresponding limits. See the Type: disk reference
for more information.

The limits are applied through the Linux blkio cgroup controller, which makes it possible to restrict I/O at the disk
level (but nothing finer grained than that).

Note: Because the limits apply to a whole physical disk rather than a partition or path, the following restrictions apply:

• Limits will not apply to file systems that are backed by virtual devices (for example, device mapper).

• If a file system is backed by multiple block devices, each device will get the same limit.

• If two disk devices that are backed by the same disk are attached to the same instance, the limits of the two
devices will be averaged.

All I/O limits only apply to actual block device access. Therefore, consider the file system’s own overhead when setting
limits. Access to cached data is not affected by the limit.

2.2. How-to guides 123

Canonical LXD

Use the volume for backups or images

Instead of attaching a custom volume to an instance as a disk device, you can also use it as a special kind of volume to
store backups or images.

To do so, you must set the corresponding server configuration:

• To use a custom volume to store the backup tarballs:

lxc config set storage.backups_volume <pool_name>/<volume_name>

• To use a custom volume to store the image tarballs:

lxc config set storage.images_volume <pool_name>/<volume_name>

Configure storage volume settings

See the Storage drivers documentation for the available configuration options for each storage driver.

Use the following command to set configuration options for a storage volume:

lxc storage volume set <pool_name> [<volume_type>/]<volume_name> <key> <value>

The default storage volume type is custom, so you can leave out the <volume_type>/ when configuring a custom
storage volume.

For example, to set the size of your custom storage volume my-volume to 1 GiB, use the following command:

lxc storage volume set my-pool my-volume size=1GiB

To set the snapshot expiry time for your virtual machine my-vm to one month, use the following command:

lxc storage volume set my-pool virtual-machine/my-vm snapshots.expiry 1M

You can also edit the storage volume configuration by using the following command:

lxc storage volume edit <pool_name> [<volume_type>/]<volume_name>

Configure default values for storage volumes

You can define default volume configurations for a storage pool. To do so, set a storage pool configuration with a
volume prefix, thus volume.<VOLUME_CONFIGURATION>=<VALUE>.

This value is then used for all new storage volumes in the pool, unless it is set explicitly for a volume or an instance. In
general, the defaults set on a storage pool level (before the volume was created) can be overridden through the volume
configuration, and the volume configuration can be overridden through the instance configuration (for storage volumes
of type container or virtual-machine).

For example, to set a default volume size for a storage pool, use the following command:

lxc storage set [<remote>:]<pool_name> volume.size <value>

124 Chapter 2. Project and community

Canonical LXD

View storage volumes

You can display a list of all available storage volumes and check their configuration.

To list all available storage volumes, use the following command:

lxc storage volume list

To display the storage volumes for all projects (not only the default project), add the --all-projects flag.

You can also display the storage volumes in a specific storage pool by specifying the pool name:

lxc storage volume list <pool_name>

The resulting table contains, among other information, the storage volume type and the content type for each storage
volume.

Note: Custom storage volumes might use the same name as instance volumes (for example, you might have a container
named c1with a container storage volume named c1 and a custom storage volume named c1). Therefore, to distinguish
between instance storage volumes and custom storage volumes, all instance storage volumes must be referred to as
<volume_type>/<volume_name> (for example, container/c1 or virtual-machine/vm) in commands.

To show detailed configuration information about a specific volume, use the following command:

lxc storage volume show <pool_name> [<volume_type>/]<volume_name>

To show state information about a specific volume, use the following command:

lxc storage volume info <pool_name> [<volume_type>/]<volume_name>

In both commands, the default storage volume type is custom, so you can leave out the <volume_type>/ when dis-
playing information about a custom storage volume.

Resize a storage volume

If you need more storage in a volume, you can increase the size of your storage volume. In some cases, it is also possible
to reduce the size of a storage volume.

To resize a storage volume, set its size configuration:

lxc storage volume set <pool_name> <volume_name> size <new_size>

Important:

• Growing a storage volume usually works (if the storage pool has sufficient storage).

• Shrinking a storage volume is only possible for storage volumes with content type filesystem. It is not guar-
anteed to work though, because you cannot shrink storage below its current used size.

• Shrinking a storage volume with content type block is not possible.

2.2. How-to guides 125

Canonical LXD

How to manage storage buckets and keys

See the following sections for instructions on how to create, configure, view and resize Storage buckets and how to
manage storage bucket keys.

Install requirements for local storage buckets

LXD uses MinIO to set up local storage buckets. To use this feature with LXD, you must install both the server and
client binaries.

• MinIO Server:

– Source:

∗ MinIO Server on GitHub

– Direct download for various architectures:

∗ MinIO Server pre-built for amd64

∗ MinIO Server pre-built for arm64

∗ MinIO Server pre-built for arm

∗ MinIO Server pre-built for ppc64le

∗ MinIO Server pre-built for s390x

• MinIO Client:

– Source:

∗ MinIO Client on GitHub

– Direct download for various architectures:

∗ MinIO Client pre-built for amd64

∗ MinIO Client pre-built for arm64

∗ MinIO Client pre-built for arm

∗ MinIO Client pre-built for ppc64le

∗ MinIO Client pre-built for s390x

If LXD is installed from a Snap, you must configure the snap environment to detect the binaries, and restart LXD. Note
that the path to the directory containing the binaries must not be under the home directory of any user.

snap set lxd minio.path=/path/to/directory/containing/both/binaries
snap restart lxd

If LXD is installed from another source, both binaries must be included in the $PATH that LXD was started with.

126 Chapter 2. Project and community

https://min.io
https://github.com/minio/minio
https://dl.min.io/server/minio/release/linux-amd64/minio
https://dl.min.io/server/minio/release/linux-arm64/minio
https://dl.min.io/server/minio/release/linux-arm/minio
https://dl.min.io/server/minio/release/linux-ppc64le/minio
https://dl.min.io/server/minio/release/linux-s390x/minio
https://github.com/minio/mc
https://dl.min.io/client/mc/release/linux-amd64/mc
https://dl.min.io/client/mc/release/linux-arm64/mc
https://dl.min.io/client/mc/release/linux-arm/mc
https://dl.min.io/client/mc/release/linux-ppc64le/mc
https://dl.min.io/client/mc/release/linux-s390x/mc

Canonical LXD

Configure the S3 address

If you want to use storage buckets on local storage (thus in a dir, btrfs, lvm, or zfs pool), you must configure the S3
address for your LXD server. This is the address that you can then use to access the buckets through the S3 protocol.

To configure the S3 address, set the core.storage_buckets_address server configuration option. For example:

lxc config set core.storage_buckets_address :8555

Manage storage buckets

Storage buckets provide access to object storage exposed using the S3 protocol.

Unlike custom storage volumes, storage buckets are not added to an instance, but applications can instead access them
directly via their URL.

See Storage buckets for detailed information.

Create a storage bucket

Use the following command to create a storage bucket in a storage pool:

lxc storage bucket create <pool_name> <bucket_name> [configuration_options...]

See the Storage drivers documentation for a list of available storage bucket configuration options for each driver that
supports object storage.

To add a storage bucket on a cluster member, add the --target flag:

lxc storage bucket create <pool_name> <bucket_name> --target=<cluster_member>␣
→˓[configuration_options...]

Note: For most storage drivers, storage buckets are not replicated across the cluster and exist only on the member for
which they were created. This behavior is different for cephobject storage pools, where buckets are available from
any cluster member.

Configure storage bucket settings

See the Storage drivers documentation for the available configuration options for each storage driver that supports
object storage.

Use the following command to set configuration options for a storage bucket:

lxc storage bucket set <pool_name> <bucket_name> <key> <value>

For example, to set the quota size of a bucket, use the following command:

lxc storage bucket set my-pool my-bucket size 1MiB

You can also edit the storage bucket configuration by using the following command:

2.2. How-to guides 127

Canonical LXD

lxc storage bucket edit <pool_name> <bucket_name>

Use the following command to delete a storage bucket and its keys:

lxc storage bucket delete <pool_name> <bucket_name>

View storage buckets

You can display a list of all available storage buckets in a storage pool and check their configuration.

To list all available storage buckets in a storage pool, use the following command:

lxc storage bucket list <pool_name>

To show detailed information about a specific bucket, use the following command:

lxc storage bucket show <pool_name> <bucket_name>

Resize a storage bucket

By default, storage buckets do not have a quota applied.

To set or change a quota for a storage bucket, set its size configuration:

lxc storage bucket set <pool_name> <bucket_name> size <new_size>

Important:

• Growing a storage bucket usually works (if the storage pool has sufficient storage).

• You cannot shrink a storage bucket below its current used size.

Manage storage bucket keys

To access a storage bucket, applications must use a set of S3 credentials made up of an access key and a secret key.
You can create multiple sets of credentials for a specific bucket.

Each set of credentials is given a key name. The key name is used only for reference and does not need to be provided
to the application that uses the credentials.

Each set of credentials has a role that specifies what operations they can perform on the bucket.

The roles available are:

• admin - Full access to the bucket

• read-only - Read-only access to the bucket (list and get files only)

If the role is not specified when creating a bucket key, the role used is read-only.

128 Chapter 2. Project and community

Canonical LXD

Create storage bucket keys

Use the following command to create a set of credentials for a storage bucket:

lxc storage bucket key create <pool_name> <bucket_name> <key_name> [configuration_
→˓options...]

Use the following command to create a set of credentials for a storage bucket with a specific role:

lxc storage bucket key create <pool_name> <bucket_name> <key_name> --role=admin␣
→˓[configuration_options...]

These commands will generate and display a random set of credential keys.

Edit or delete storage bucket keys

Use the following command to edit an existing bucket key:

lxc storage bucket key edit <pool_name> <bucket_name> <key_name>

Use the following command to delete an existing bucket key:

lxc storage bucket key delete <pool_name> <bucket_name> <key_name>

View storage bucket keys

Use the following command to see the keys defined for an existing bucket:

lxc storage bucket key list <pool_name> <bucket_name>

Use the following command to see a specific bucket key:

lxc storage bucket key show <pool_name> <bucket_name> <key_name>

How to create an instance in a specific storage pool

Instance storage volumes are created in the storage pool that is specified by the instance’s root disk device. This
configuration is normally provided by the profile or profiles applied to the instance. See Default storage pool for
detailed information.

To use a different storage pool when creating or launching an instance, add the --storage flag. This flag overrides
the root disk device from the profile. For example:

lxc launch <image> <instance_name> --storage <storage_pool>

2.2. How-to guides 129

Canonical LXD

Move instance storage volumes to another pool

To move an instance storage volume to another storage pool, make sure the instance is stopped. Then use the following
command to move the instance to a different pool:

lxc move <instance_name> --storage <target_pool_name>

How to export and move custom storage volumes:

How to back up custom storage volumes

There are different ways of backing up your custom storage volumes:

• Use snapshots for volume backup

• Use export files for volume backup

• Copy custom storage volumes

Which method to choose depends both on your use case and on the storage driver you use.

In general, snapshots are quick and space efficient (depending on the storage driver), but they are stored in the same
storage pool as the volume and therefore not too reliable. Export files can be stored on different disks and are therefore
more reliable. They can also be used to restore the volume into a different storage pool. If you have a separate, network-
connected LXD server available, regularly copying volumes to this other server gives high reliability as well, and this
method can also be used to back up snapshots of the volume.

Note: Custom storage volumes might be attached to an instance, but they are not part of the instance. Therefore, the
content of a custom storage volume is not stored when you back up your instance. You must back up the data of your
storage volume separately.

Use snapshots for volume backup

A snapshot saves the state of the storage volume at a specific time, which makes it easy to restore the volume to a
previous state. It is stored in the same storage pool as the volume itself.

Most storage drivers support optimized snapshot creation (see Feature comparison). For these drivers, creating snap-
shots is both quick and space-efficient. For the dir driver, snapshot functionality is available but not very efficient. For
the lvm driver, snapshot creation is quick, but restoring snapshots is efficient only when using thin-pool mode.

Create a snapshot of a custom storage volume

Use the following command to create a snapshot for a custom storage volume:

lxc storage volume snapshot <pool_name> <volume_name> [<snapshot_name>]

The snapshot name is optional. If you don’t specify one, the name follows the naming pattern defined in snapshots.
pattern.

Add the --reuse flag in combination with a snapshot name to replace an existing snapshot.

By default, snapshots are kept forever, unless the snapshots.expiry configuration option is set. To retain a specific
snapshot even if a general expiry time is set, use the --no-expiry flag.

130 Chapter 2. Project and community

Canonical LXD

View, edit or delete snapshots

Use the following command to display the snapshots for a storage volume:

lxc storage volume info <pool_name> <volume_name>

You can view or modify snapshots in a similar way to custom storage volumes, by referring to the snapshot with
<volume_name>/<snapshot_name>.

To show information about a snapshot, use the following command:

lxc storage volume show <pool_name> <volume_name>/<snapshot_name>

To edit a snapshot (for example, to add a description or change the expiry date), use the following command:

lxc storage volume edit <pool_name> <volume_name>/<snapshot_name>

To delete a snapshot, use the following command:

lxc storage volume delete <pool_name> <volume_name>/<snapshot_name>

Schedule snapshots of a custom storage volume

You can configure a custom storage volume to automatically create snapshots at specific times. To do so, set the
snapshots.schedule configuration option for the storage volume (see Configure storage volume settings).

For example, to configure daily snapshots, use the following command:

lxc storage volume set <pool_name> <volume_name> snapshots.schedule @daily

To configure taking a snapshot every day at 6 am, use the following command:

lxc storage volume set <pool_name> <volume_name> snapshots.schedule "0 6 * * *"

When scheduling regular snapshots, consider setting an automatic expiry (snapshots.expiry) and a naming pat-
tern for snapshots (snapshots.pattern). See the Storage drivers documentation for more information about those
configuration options.

Restore a snapshot of a custom storage volume

You can restore a custom storage volume to the state of any of its snapshots.

To do so, you must first stop all instances that use the storage volume. Then use the following command:

lxc storage volume restore <pool_name> <volume_name> <snapshot_name>

You can also restore a snapshot into a new custom storage volume, either in the same storage pool or in a different one
(even a remote storage pool). To do so, use the following command:

lxc storage volume copy <source_pool_name>/<source_volume_name>/<source_snapshot_name>
→˓<target_pool_name>/<target_volume_name>

2.2. How-to guides 131

Canonical LXD

Use export files for volume backup

You can export the full content of your custom storage volume to a standalone file that can be stored at any location.
For highest reliability, store the backup file on a different file system to ensure that it does not get lost or corrupted.

Export a custom storage volume

Use the following command to export a custom storage volume to a compressed file (for example, /path/to/
my-backup.tgz):

lxc storage volume export <pool_name> <volume_name> [<file_path>]

If you do not specify a file path, the export file is saved as backup.tar.gz in the working directory.

Warning: If the output file already exists, the command overwrites the existing file without warning.

You can add any of the following flags to the command:

--compression
By default, the output file uses gzip compression. You can specify a different compression algorithm (for
example, bzip2) or turn off compression with --compression=none.

--optimized-storage
If your storage pool uses the btrfs or the zfs driver, add the --optimized-storage flag to store the data as a
driver-specific binary blob instead of an archive of individual files. In this case, the export file can only be used
with pools that use the same storage driver.

Exporting a volume in optimized mode is usually quicker than exporting the individual files. Snapshots are
exported as differences from the main volume, which decreases their size and makes them easily accessible.

--volume-only
By default, the export file contains all snapshots of the storage volume. Add this flag to export the volume without
its snapshots.

Restore a custom storage volume from an export file

You can import an export file (for example, /path/to/my-backup.tgz) as a new custom storage volume. To do so,
use the following command:

lxc storage volume import <pool_name> <file_path> [<volume_name>]

If you do not specify a volume name, the original name of the exported storage volume is used for the new volume. If
a volume with that name already (or still) exists in the specified storage pool, the command returns an error. In that
case, either delete the existing volume before importing the backup or specify a different volume name for the import.

132 Chapter 2. Project and community

Canonical LXD

How to move or copy storage volumes

You can copy or move custom storage volumes from one storage pool to another, or copy or rename them within the
same storage pool.

To move instance storage volumes from one storage pool to another, move the corresponding instance to another pool.

When copying or moving a volume between storage pools that use different drivers, the volume is automatically con-
verted.

Copy custom storage volumes

Use the following command to copy a custom storage volume:

lxc storage volume copy <source_pool_name>/<source_volume_name> <target_pool_name>/
→˓<target_volume_name>

Add the --volume-only flag to copy only the volume and skip any snapshots that the volume might have. If the
volume already exists in the target location, use the --refresh flag to update the copy (see Optimized volume transfer
for the benefits).

Specify the same pool as the source and target pool to copy the volume within the same storage pool. You must specify
different volume names for source and target in this case.

When copying from one storage pool to another, you can either use the same name for both volumes or rename the new
volume.

Move or rename custom storage volumes

Before you can move or rename a custom storage volume, all instances that use it must be stopped.

Use the following command to move or rename a storage volume:

lxc storage volume move <source_pool_name>/<source_volume_name> <target_pool_name>/
→˓<target_volume_name>

Specify the same pool as the source and target pool to rename the volume while keeping it in the same storage pool.
You must specify different volume names for source and target in this case.

When moving from one storage pool to another, you can either use the same name for both volumes or rename the new
volume.

Copy or move between cluster members

For most storage drivers (except for ceph and ceph-fs), storage volumes exist only on the cluster member for which
they were created.

To copy or move a custom storage volume from one cluster member to another, add the --target and
--destination-target flags to specify the source cluster member and the target cluster member, respectively.

2.2. How-to guides 133

Canonical LXD

Copy or move between projects

Add the --target-project to copy or move a custom storage volume to a different project.

Copy or move between LXD servers

You can copy or move custom storage volumes between different LXD servers by specifying the remote for each pool:

lxc storage volume copy <source_remote>:<source_pool_name>/<source_volume_name> <target_
→˓remote>:<target_pool_name>/<target_volume_name>
lxc storage volume move <source_remote>:<source_pool_name>/<source_volume_name> <target_
→˓remote>:<target_pool_name>/<target_volume_name>

You can add the --mode flag to choose a transfer mode, depending on your network setup:

pull (default)
Instruct the target server to pull the respective storage volume.

push
Push the storage volume from the source server to the target server.

relay
Pull the storage volume from the source server to the local client, and then push it to the target server.

If the volume already exists in the target location, use the --refresh flag to update the copy (see Optimized volume
transfer for the benefits).

Move instance storage volumes to another pool

To move an instance storage volume to another storage pool, make sure the instance is stopped. Then use the following
command to move the instance to a different pool:

lxc move <instance_name> --storage <target_pool_name>

Related topics

Explanation:

• About storage pools, volumes and buckets

Reference:

• Storage drivers

134 Chapter 2. Project and community

Canonical LXD

Networking

The following how-to guides cover common operations related to networking.

How to create and configure a network:

How to create a network

To create a managed network, use the lxc network command and its subcommands. Append --help to any command
to see more information about its usage and available flags.

Network types

The following network types are available:

Network type Documentation Configuration options
bridge Bridge network Configuration options
ovn OVN network Configuration options
macvlan Macvlan network Configuration options
sriov SR-IOV network Configuration options
physical Physical network Configuration options

Create a network

Use the following command to create a network:

lxc network create <name> --type=<network_type> [configuration_options...]

See Network types for a list of available network types and links to their configuration options.

If you do not specify a --type argument, the default type of bridge is used.

Create a network in a cluster

If you are running a LXD cluster and want to create a network, you must create the network for each cluster member
separately. The reason for this is that the network configuration, for example, the name of the parent network interface,
might be different between cluster members.

Therefore, you must first create a pending network on each member with the --target=<cluster_member> flag and
the appropriate configuration for the member. Make sure to use the same network name for all members. Then create
the network without specifying the --target flag to actually set it up.

For example, the following series of commands sets up a physical network with the name UPLINK on three cluster
members:

user@host:~$ lxc network create UPLINK --type=physical parent=br0 --target=vm01 Network
UPLINK pending on member vm01 user@host:~$ lxc network create UPLINK --type=physical
parent=br0 --target=vm02 Network UPLINK pending on member vm02 user@host:~$ lxc network
create UPLINK --type=physical parent=br0 --target=vm03 Network UPLINK pending on member
vm03 user@host:~$ lxc network create UPLINK --type=physical Network UPLINK created Also see
How to configure networks for a cluster.

2.2. How-to guides 135

Canonical LXD

Attach a network to an instance

After creating a managed network, you can attach it to an instance as a NIC device.

To do so, use the following command:

lxc network attach <network_name> <instance_name> [<device_name>] [<interface_name>]

The device name and the interface name are optional, but we recommend specifying at least the device name. If
not specified, LXD uses the network name as the device name, which might be confusing and cause problems. For
example, LXD images perform IP auto-configuration on the eth0 interface, which does not work if the interface is
called differently.

For example, to attach the network my-network to the instance my-instance as eth0 device, enter the following
command:

lxc network attach my-network my-instance eth0

Attach the network as a device

The lxc network attach command is a shortcut for adding a NIC device to an instance. Alternatively, you can add
a NIC device based on the network configuration in the usual way:

lxc config device add <instance_name> <device_name> nic network=<network_name>

When using this way, you can add further configuration to the command to override the default settings for the network
if needed. See NIC device for all available device options.

How to configure a network

To configure an existing network, use either the lxc network set and lxc network unset commands (to configure
single settings) or the lxc network edit command (to edit the full configuration). To configure settings for specific
cluster members, add the --target flag.

For example, the following command configures a DNS server for a physical network:

lxc network set UPLINK dns.nameservers=8.8.8.8

The available configuration options differ depending on the network type. See Network types for links to the configu-
ration options for each network type.

There are separate commands to configure advanced networking features. See the following documentation:

• How to configure network ACLs

• How to configure network forwards

• How to configure network load balancers

• How to configure network zones

• How to create OVN peer routing relationships (OVN only)

How to configure specific networking features:

136 Chapter 2. Project and community

Canonical LXD

How to configure LXD as a BGP server

Note: The BGP server feature is available for the Bridge network and the Physical network.

BGP (Border Gateway Protocol) is a protocol that allows exchanging routing information between autonomous systems.

If you want to directly route external addresses to specific LXD servers or instances, you can configure LXD as a BGP
server. LXD will then act as a BGP peer and advertise relevant routes and next hops to external routers, for example,
your network router. It automatically establishes sessions with upstream BGP routers and announces the addresses and
subnets that it’s using.

The BGP server feature can be used to allow a LXD server or cluster to directly use internal/external address space
by getting the specific subnets or addresses routed to the correct host. This way, traffic can be forwarded to the target
instance.

For bridge networks, the following addresses and networks are being advertised:

• Network ipv4.address or ipv6.address subnets (if the matching nat property isn’t set to true)

• Network ipv4.nat.address or ipv6.nat.address subnets (if the matching nat property is set to true)

• Network forward addresses

• Addresses or subnets specified in ipv4.routes.external or ipv6.routes.external on an instance NIC
that is connected to the bridge network

Make sure to add your subnets to the respective configuration options. Otherwise, they won’t be advertised.

For physical networks, no addresses are advertised directly at the level of the physical network. Instead, the networks,
forwards and routes of all downstream networks (the networks that specify the physical network as their uplink network
through the network option) are advertised in the same way as for bridge networks.

Note: At this time, it is not possible to announce only some specific routes/addresses to particular peers. If you need
this, filter prefixes on the upstream routers.

Configure the BGP server

To configure LXD as a BGP server, set the following server configuration options on all cluster members:

• core.bgp_address - the IP address for the BGP server

• core.bgp_asn - the ASN (Autonomous System Number) for the local server

• core.bgp_routerid - the unique identifier for the BGP server

For example, set the following values:

lxc config set core.bgp_address=192.0.2.50:179
lxc config set core.bgp_asn=65536
lxc config set core.bgp_routerid=192.0.2.50

Once these configuration options are set, LXD starts listening for BGP sessions.

2.2. How-to guides 137

Canonical LXD

Configure next-hop (bridge only)

For bridge networks, you can override the next-hop configuration. By default, the next-hop is set to the address used
for the BGP session.

To configure a different address, set bgp.ipv4.nexthop or bgp.ipv6.nexthop.

Configure BGP peers for OVN networks

If you run an OVN network with an uplink network (physical or bridge), the uplink network is the one that holds
the list of allowed subnets and the BGP configuration. Therefore, you must configure BGP peers on the uplink network
that contain the information that is required to connect to the BGP server.

Set the following configuration options on the uplink network:

• bgp.peers.<name>.address - the peer address to be used by the downstream networks

• bgp.peers.<name>.asn - the ASN for the local server

• bgp.peers.<name>.password - an optional password for the peer session

• bgp.peers.<name>.holdtime - an optional hold time for the peer session (in seconds)

Once the uplink network is configured, downstream OVN networks will get their external subnets and addresses an-
nounced over BGP. The next-hop is set to the address of the OVN router on the uplink network.

How to configure network ACLs

Note: Network ACLs are available for the OVN NIC type, the OVN network and the Bridge network (with some
exceptions, see Bridge limitations).

Network ACLs (Access Control Lists) define traffic rules that allow controlling network access between different in-
stances connected to the same network, and access to and from other networks.

Network ACLs can be assigned directly to the NIC (Network Interface Controller) of an instance or to a network. When
assigned to a network, the ACL applies to all NICs connected to the network.

The instance NICs that have a particular ACL applied (either explicitly or implicitly through a network) make up a log-
ical group, which can be referenced from other rules as a source or destination. See ACL groups for more information.

Create an ACL

Use the following command to create an ACL:

lxc network acl create <ACL_name> [configuration_options...]

This command creates an ACL without rules. As a next step, add rules to the ACL.

Valid network ACL names must adhere to the following rules:

• Names must be between 1 and 63 characters long.

• Names must be made up exclusively of letters, numbers and dashes from the ASCII table.

• Names must not start with a digit or a dash.

• Names must not end with a dash.

138 Chapter 2. Project and community

Canonical LXD

ACL properties

ACLs have the following properties: config User-provided free-form key/value pairs

Key: config
Type: string set
Required: no

The only supported keys are user.* custom keys.

description Description of the network ACL

Key: description
Type: string
Required: no

egress Egress traffic rules

Key: egress
Type: rule list
Required: no

ingress Ingress traffic rules

Key: ingress
Type: rule list
Required: no

name Unique name of the network ACL in the project

Key: name
Type: string
Required: yes

Add or remove rules

Each ACL contains two lists of rules:

• Ingress rules apply to inbound traffic going towards the NIC.

• Egress rules apply to outbound traffic leaving the NIC.

To add a rule to an ACL, use the following command, where <direction> can be either ingress or egress:

lxc network acl rule add <ACL_name> <direction> [properties...]

This command adds a rule to the list for the specified direction.

You cannot edit a rule (except if you edit the full ACL), but you can delete rules with the following command:

2.2. How-to guides 139

Canonical LXD

lxc network acl rule remove <ACL_name> <direction> [properties...]

You must either specify all properties needed to uniquely identify a rule or add --force to the command to delete all
matching rules.

Rule ordering and priorities

Rules are provided as lists. However, the order of the rules in the list is not important and does not affect filtering.

LXD automatically orders the rules based on the action property as follows:

• drop

• reject

• allow

• Automatic default action for any unmatched traffic (defaults to reject, see Configure default actions).

This means that when you apply multiple ACLs to a NIC, there is no need to specify a combined rule ordering. If one
of the rules in the ACLs matches, the action for that rule is taken and no other rules are considered.

Rule properties

ACL rules have the following properties: action Action to take for matching traffic

Key: action
Type: string
Required: yes

Possible values are allow, reject, and drop.

description Description of the rule

Key: description
Type: string
Required: no

destination Comma-separated list of destinations

Key: destination
Type: string
Required: no

Destinations can be specified as CIDR or IP ranges, destination subject name selectors (for egress rules), or be left
empty for any.

destination_port Destination ports or port ranges

Key: destination_port
Type: string
Required: no

140 Chapter 2. Project and community

Canonical LXD

This option is valid only if the protocol is udp or tcp. Specify a comma-separated list of ports or port ranges (start-end
inclusive), or leave the value empty for any.

icmp_code ICMP message code

Key: icmp_code
Type: string
Required: no

This option is valid only if the protocol is icmp4 or icmp6. Specify the ICMP code number, or leave the value empty
for any.

icmp_type Type of ICMP message

Key: icmp_type
Type: string
Required: no

This option is valid only if the protocol is icmp4 or icmp6. Specify the ICMP type number, or leave the value empty
for any.

protocol Protocol to match

Key: protocol
Type: string
Required: no

Possible values are icmp4, icmp6, tcp, and udp. Leave the value empty to match any protocol.

source Comma-separated list of sources

Key: source
Type: string
Required: no

Sources can be specified as CIDR or IP ranges, source subject name selectors (for ingress rules), or be left empty for
any.

source_port Source ports or port ranges

Key: source_port
Type: string
Required: no

This option is valid only if the protocol is udp or tcp. Specify a comma-separated list of ports or port ranges (start-end
inclusive), or leave the value empty for any.

state State of the rule

2.2. How-to guides 141

Canonical LXD

Key: state
Type: string
Default: enabled
Required: yes

Possible values are enabled, disabled, and logged.

Use selectors in rules

Note: This feature is supported only for the OVN NIC type and the OVN network.

The source field (for ingress rules) and the destination field (for egress rules) support using selectors instead of
CIDR or IP ranges.

With this method, you can use ACL groups or network selectors to define rules for groups of instances without needing
to maintain IP lists or create additional subnets.

ACL groups

Instance NICs that are assigned a particular ACL (either explicitly or implicitly through a network) make up a logical
port group.

Such ACL groups are called subject name selectors, and they can be referenced with the name of the ACL in other
ACL groups.

For example, if you have an ACL with the name foo, you can specify the group of instance NICs that are assigned this
ACL as source with source=foo.

Network selectors

You can use network subject selectors to define rules based on the network that the traffic is coming from or going to.

There are two special network subject selectors called @internal and @external. They represent network local and
external traffic, respectively. For example:

source=@internal

If your network supports network peers, you can reference traffic to or from the peer connection by using a network
subject selector in the format @<network_name>/<peer_name>. For example:

source=@ovn1/mypeer

When using a network subject selector, the network that has the ACL applied to it must have the specified peer con-
nection. Otherwise, the ACL cannot be applied to it.

142 Chapter 2. Project and community

Canonical LXD

Log traffic

Generally, ACL rules are meant to control the network traffic between instances and networks. However, you can also
use them to log specific network traffic, which can be useful for monitoring, or to test rules before actually enabling
them.

To add a rule for logging, create it with the state=logged property. You can then display the log output for all logging
rules in the ACL with the following command:

lxc network acl show-log <ACL_name>

Edit an ACL

Use the following command to edit an ACL:

lxc network acl edit <ACL_name>

This command opens the ACL in YAML format for editing. You can edit both the ACL configuration and the rules.

Assign an ACL

After configuring an ACL, you must assign it to a network or an instance NIC.

To do so, add it to the security.acls list of the network or NIC configuration. For networks, use the following
command:

lxc network set <network_name> security.acls="<ACL_name>"

For instance NICs, use the following command:

lxc config device set <instance_name> <device_name> security.acls="<ACL_name>"

Configure default actions

When one or more ACLs are applied to a NIC (either explicitly or implicitly through a network), a default reject rule
is added to the NIC. This rule rejects all traffic that doesn’t match any of the rules in the applied ACLs.

You can change this behavior with the network and NIC level security.acls.default.ingress.action and
security.acls.default.egress.action settings. The NIC level settings override the network level settings.

For example, to set the default action for inbound traffic to allow for all instances connected to a network, use the
following command:

lxc network set <network_name> security.acls.default.ingress.action=allow

To configure the same default action for an instance NIC, use the following command:

lxc config device set <instance_name> <device_name> security.acls.default.ingress.
→˓action=allow

2.2. How-to guides 143

Canonical LXD

Bridge limitations

When using network ACLs with a bridge network, be aware of the following limitations:

• Unlike OVN ACLs, bridge ACLs are applied only on the boundary between the bridge and the LXD host. This
means they can only be used to apply network policies for traffic going to or from external networks. They cannot
be used for to create firewalls, thus firewalls that control traffic between instances connected to the same bridge.

• ACL groups and network selectors are not supported.

• When using the iptables firewall driver, you cannot use IP range subjects (for example, 192.0.2.1-192.0.
2.10).

• Baseline network service rules are added before ACL rules (in their respective INPUT/OUTPUT chains), because
we cannot differentiate between INPUT/OUTPUT and FORWARD traffic once we have jumped into the ACL
chain. Because of this, ACL rules cannot be used to block baseline service rules.

How to configure network forwards

Note: Network forwards are available for the OVN network and the Bridge network.

Network forwards allow an external IP address (or specific ports on it) to be forwarded to an internal IP address (or
specific ports on it) in the network that the forward belongs to.

This feature can be useful if you have limited external IP addresses and want to share a single external address between
multiple instances. There are two different ways how you can use network forwards in this case:

• Forward all traffic from the external address to the internal address of one instance. This method makes it easy
to move the traffic destined for the external address to another instance by simply reconfiguring the network
forward.

• Forward traffic from different port numbers of the external address to different instances (and optionally different
ports on those instances). This method allows to “share” your external IP address and expose more than one
instance at a time.

Tip: Network forwards are very similar to using a proxy device in NAT mode.

The difference is that network forwards are applied on a network level, while a proxy device is added for an instance.
In addition, proxy devices can be used to proxy traffic between different connection types (for example, TCP and Unix
sockets).

Create a network forward

Use the following command to create a network forward:

lxc network forward create <network_name> [<listen_address>] [--allocate=ipv{4,6}]␣
→˓[configuration_options...]

Each forward is assigned to a network. Specify a single external listen address (see Requirements for listen addresses
for more information about which addresses can be forwarded, depending on the network that you are using). If the
network type supports IP allocation, you don’t need to specify a listen address. If you leave it out, you must provide
the --allocate flag.

144 Chapter 2. Project and community

Canonical LXD

You can specify an optional default target address by adding the target_address=<IP_address> configuration
option. If you do, any traffic that does not match a port specification is forwarded to this address. Note that this target
address must be within the same subnet as the network that the forward is associated to.

Forward properties

Network forwards have the following properties: config User-provided free-form key/value pairs

Key: config
Type: string set
Required: no

The only supported keys are target_address and user.* custom keys.

description Description of the network forward

Key: description
Type: string
Required: yes

listen_address IP address to listen on

Key: listen_address
Type: string
Required: no

ports List of port specifications

Key: ports
Type: port list
Required: no

See Configure ports.

Requirements for listen addresses

The requirements for valid listen addresses vary depending on which network type the forward is associated to.

Bridge network

• Any non-conflicting listen address is allowed.

• The listen address must not overlap with a subnet that is in use with another network.

• The --allocate flag is not supported.

OVN network

• Allowed listen addresses must be defined in the uplink network’s ipv{n}.routes settings or the project’s
restricted.networks.subnets setting (if set).

• The listen address must not overlap with a subnet that is in use with another network.

2.2. How-to guides 145

Canonical LXD

• The --allocate flag is supported. If used, the OVN network driver will allocate an IP address from the
uplink network’s ipv{n}.routes or the project’s restricted.networks.subnets setting (if set).

Configure ports

You can add port specifications to the network forward to forward traffic from specific ports on the listen address to
specific ports on the target address. This target address must be different from the default target address. It must be
within the same subnet as the network that the forward is associated to.

Use the following command to add a port specification:

lxc network forward port add <network_name> <listen_address> <protocol> <listen_ports>
→˓<target_address> [<target_ports>]

You can specify a single listen port or a set of ports. If you want to forward the traffic to different ports, you have two
options:

• Specify a single target port to forward traffic from all listen ports to this target port.

• Specify a set of target ports with the same number of ports as the listen ports to forward traffic from the first
listen port to the first target port, the second listen port to the second target port, and so on.

Port properties

Network forward ports have the following properties: description Description of the port or ports

Key: description
Type: string
Required: no

listen_port Listen port or ports

Key: listen_port
Type: string
Required: yes

For example: 80,90-100

protocol Protocol for the port or ports

Key: protocol
Type: string
Required: yes

Possible values are tcp and udp.

target_address IP address to forward to

Key: target_address
Type: string
Required: yes

146 Chapter 2. Project and community

Canonical LXD

target_port Target port or ports

Key: target_port
Type: string
Default: same as listen_port
Required: no

For example: 70,80-90 or 90

Edit a network forward

Use the following command to edit a network forward:

lxc network forward edit <network_name> <listen_address>

This command opens the network forward in YAML format for editing. You can edit both the general configuration
and the port specifications.

Delete a network forward

Use the following command to delete a network forward:

lxc network forward delete <network_name> <listen_address>

How to configure network zones

Note: Network zones are available for the OVN network and the Bridge network.

Network zones can be used to serve DNS records for LXD networks.

You can use network zones to automatically maintain valid forward and reverse records for all your instances. This can
be useful if you are operating a LXD cluster with multiple instances across many networks.

Having DNS records for each instance makes it easier to access network services running on an instance. It is also
important when hosting, for example, an outbound SMTP service. Without correct forward and reverse DNS entries
for the instance, sent mail might be flagged as potential spam.

Each network can be associated to different zones:

• Forward DNS records - multiple comma-separated zones (no more than one per project)

• IPv4 reverse DNS records - single zone

• IPv6 reverse DNS records - single zone

LXD will then automatically manage forward and reverse records for all instances, network gateways and downstream
network ports and serve those zones for zone transfer to the operator’s production DNS servers.

2.2. How-to guides 147

Canonical LXD

Project views

Projects have a features.networks.zones feature, which is disabled by default. This controls which project new
networks zones are created in. When this feature is enabled new zones are created in the project, otherwise they are
created in the default project.

This allows projects that share a network in the default project (i.e those with features.networks=false) to have
their own project level DNS zones that give a project oriented “view” of the addresses on that shared network (which
only includes addresses from instances in their project).

Generated records

Forward records

If you configure a zone with forward DNS records for lxd.example.net for your network, it generates records that
resolve the following DNS names:

• For all instances in the network: <instance_name>.lxd.example.net

• For the network gateway: <network_name>.gw.lxd.example.net

• For downstream network ports (for network zones set on an uplink network with a downstream OVN network):
<project_name>-<downstream_network_name>.uplink.lxd.example.net

• Manual records added to the zone.

You can check the records that are generated with your zone setup with the dig command.

This assumes that core.dns_address was set to <DNS_server_IP>:<DNS_server_PORT>. (Setting that configu-
ration option causes the backend to immediately start serving on that address.)

In order for the dig request to be allowed for a given zone, you must set the peers.NAME.address configuration
option for that zone. NAME can be anything random. The value must match the IP address where your dig is calling
from. You must leave peers.NAME.key for that same random NAME unset.

For example: lxc network zone set lxd.example.net peers.whatever.address=192.0.2.1.

Note: It is not enough for the address to be of the same machine that dig is calling from; it needs to match as a string
with what the DNS server in lxd thinks is the exact remote address. dig binds to 0.0.0.0, therefore the address you
need is most likely the same that you provided to core.dns_address.

For example, running dig @<DNS_server_IP> -p <DNS_server_PORT> axfr lxd.example.netmight give the
following output:

user@host:~$ dig @192.0.2.200 -p 1053 axfr lxd.example.net lxd.example.net. 3600 IN
SOA lxd.example.net. ns1.lxd.example.net. 1669736788 120 60 86400 30lxd.example.
net. 300 IN NS ns1.lxd.example.net.lxdtest.gw.lxd.example.net. 300 IN A 192.0.2.
1lxdtest.gw.lxd.example.net. 300 IN AAAA fd42:4131:a53c:7211::1default-ovntest.
uplink.lxd.example.net. 300 IN A 192.0.2.20default-ovntest.uplink.lxd.example.net.
300 IN AAAA fd42:4131:a53c:7211:216:3eff:fe4e:b794c1.lxd.example.net. 300 IN AAAA
fd42:4131:a53c:7211:216:3eff:fe19:6edec1.lxd.example.net. 300 IN A 192.0.2.125manualtest.
lxd.example.net. 300 IN A 8.8.8.8lxd.example.net. 3600 IN SOA lxd.example.net. ns1.lxd.
example.net. 1669736788 120 60 86400 30

148 Chapter 2. Project and community

Canonical LXD

Reverse records

If you configure a zone for IPv4 reverse DNS records for 2.0.192.in-addr.arpa for a network using 192.0.2.0/
24, it generates reverse PTR DNS records for addresses from all projects that are referencing that network via one of
their forward zones.

For example, running dig @<DNS_server_IP> -p <DNS_server_PORT> axfr 2.0.192.in-addr.arpa might
give the following output:

user@host:~$ dig @192.0.2.200 -p 1053 axfr 2.0.192.in-addr.arpa 2.0.192.in-addr.arpa. 3600
IN SOA 2.0.192.in-addr.arpa. ns1.2.0.192.in-addr.arpa. 1669736828 120 60 86400 302.0.
192.in-addr.arpa. 300 IN NS ns1.2.0.192.in-addr.arpa.1.2.0.192.in-addr.arpa. 300 IN PTR
lxdtest.gw.lxd.example.net.20.2.0.192.in-addr.arpa. 300 IN PTR default-ovntest.uplink.
lxd.example.net.125.2.0.192.in-addr.arpa. 300 IN PTR c1.lxd.example.net.2.0.192.in-addr.
arpa. 3600 IN SOA 2.0.192.in-addr.arpa. ns1.2.0.192.in-addr.arpa. 1669736828 120 60 86400
30

Enable the built-in DNS server

To make use of network zones, you must enable the built-in DNS server.

To do so, set the core.dns_address configuration option to a local address on the LXD server. To avoid conflicts
with an existing DNS we suggest not using the port 53. This is the address on which the DNS server will listen. Note
that in a LXD cluster, the address may be different on each cluster member.

Note: The built-in DNS server supports only zone transfers through AXFR. It cannot be directly queried for DNS
records. Therefore, the built-in DNS server must be used in combination with an external DNS server (bind9, nsd,
. . .), which will transfer the entire zone from LXD, refresh it upon expiry and provide authoritative answers to DNS
requests.

Authentication for zone transfers is configured on a per-zone basis, with peers defined in the zone configuration and a
combination of IP address matching and TSIG-key based authentication.

Create and configure a network zone

Use the following command to create a network zone:

lxc network zone create <network_zone> [configuration_options...]

The following examples show how to configure a zone for forward DNS records, one for IPv4 reverse DNS records and
one for IPv6 reverse DNS records, respectively:

lxc network zone create lxd.example.net
lxc network zone create 2.0.192.in-addr.arpa
lxc network zone create 1.0.0.0.1.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa

Note: Zones must be globally unique, even across projects. If you get a creation error, it might be due to the zone
already existing in another project.

You can either specify the configuration options when you create the network or configure them afterwards with the
following command:

2.2. How-to guides 149

Canonical LXD

lxc network zone set <network_zone> <key>=<value>

Use the following command to edit a network zone in YAML format:

lxc network zone edit <network_zone>

Configuration options

The following configuration options are available for network zones: dns.nameservers Comma-separated list of
DNS server FQDNs (for NS records)

Key: dns.nameservers
Type: string set
Required: no

network.nat Whether to generate records for NAT-ed subnets

Key: network.nat
Type: bool
Default: true
Required: no

peers.NAME.address IP address of a DNS server

Key: peers.NAME.address
Type: string
Required: no

peers.NAME.key TSIG key for the server

Key: peers.NAME.key
Type: string
Required: no

user.* User-provided free-form key/value pairs

Key: user.*
Type: string
Required: no

Note: When generating the TSIG key using tsig-keygen, the key name must follow the format
<zone_name>_<peer_name>.. For example, if your zone name is lxd.example.net and the peer name is bind9,
then the key name must be lxd.example.net_bind9.. If this format is not followed, zone transfer might fail.

150 Chapter 2. Project and community

Canonical LXD

Add a network zone to a network

To add a zone to a network, set the corresponding configuration option in the network configuration:

• For forward DNS records: dns.zone.forward

• For IPv4 reverse DNS records: dns.zone.reverse.ipv4

• For IPv6 reverse DNS records: dns.zone.reverse.ipv6

For example:

lxc network set <network_name> dns.zone.forward="lxd.example.net"

Zones belong to projects and are tied to the networks features of projects. You can restrict projects to specific domains
and sub-domains through the restricted.networks.zones project configuration key.

Add custom records

A network zone automatically generates forward and reverse records for all instances, network gateways and down-
stream network ports. If required, you can manually add custom records to a zone.

To do so, use the lxc network zone record command.

Create a record

Use the following command to create a record:

lxc network zone record create <network_zone> <record_name>

This command creates an empty record without entries and adds it to a network zone.

Record properties

Records have the following properties: config User-provided free-form key/value pairs

Key: config
Type: string set
Required: no

The only supported keys are user.* custom keys.

description Description of the record

Key: description
Type: string
Required: no

entries List of DNS entries

2.2. How-to guides 151

Canonical LXD

Key: entries
Type: entry list
Required: no

name Unique name of the record

Key: name
Type: string
Required: yes

Add or remove entries

To add an entry to the record, use the following command:

lxc network zone record entry add <network_zone> <record_name> <type> <value> [--ttl
→˓<TTL>]

This command adds a DNS entry with the specified type and value to the record.

For example, to create a dual-stack web server, add a record with two entries similar to the following:

lxc network zone record entry add <network_zone> <record_name> A 1.2.3.4
lxc network zone record entry add <network_zone> <record_name> AAAA 1234::1234

You can use the --ttl flag to set a custom time-to-live (in seconds) for the entry. Otherwise, the default of 300 seconds
is used.

You cannot edit an entry (except if you edit the full record with lxc network zone record edit), but you can
delete entries with the following command:

lxc network zone record entry remove <network_zone> <record_name> <type> <value>

How to configure specific networking features (managed bridge networks only):

How to configure your firewall

Important: This guide applies to managed bridge networks only.

Linux firewalls are based on netfilter. LXD uses the same subsystem, which can lead to connectivity issues.

If you run a firewall on your system, you might need to configure it to allow network traffic between the managed LXD
bridge and the host. Otherwise, some network functionality (DHCP, DNS and external network access) might not work
as expected.

You might also see conflicts between the rules defined by your firewall (or another application) and the firewall rules
that LXD adds. For example, your firewall might erase LXD rules if it is started after the LXD daemon, which might
interrupt network connectivity to the instance.

152 Chapter 2. Project and community

Canonical LXD

xtables vs. nftables

There are different userspace commands to add rules to netfilter: xtables (iptables for IPv4 and ip6tables
for IPv6) and nftables.

xtables provides an ordered list of rules, which might cause issues if multiple systems add and remove entries from
the list. nftables adds the ability to separate rules into namespaces, which helps to separate rules from different
applications. However, if a packet is blocked in one namespace, it is not possible for another namespace to allow it.
Therefore, rules in one namespace can still affect rules in another namespace, and firewall applications can still impact
LXD network functionality.

If your system supports and uses nftables, LXD detects this and switches to nftables mode. In this mode, LXD
adds its rules into the nftables, using its own nftables namespace.

Use LXD’s firewall

By default, managed LXD bridges add firewall rules to ensure full functionality. If you do not run another firewall on
your system, you can let LXD manage its firewall rules.

To enable or disable this behavior, use the ipv4.firewall or ipv6.firewall configuration options.

Use another firewall

Firewall rules added by other applications might interfere with the firewall rules that LXD adds. Therefore, if you use
another firewall, you should disable LXD’s firewall rules. You must also configure your firewall to allow network traffic
between the instances and the LXD bridge, so that the LXD instances can access the DHCP and DNS server that LXD
runs on the host.

See the following sections for instructions on how to disable LXD’s firewall rules and how to properly configure
firewalld and UFW, respectively.

Disable LXD’s firewall rules

Run the following commands to prevent LXD from setting firewall rules for a specific network bridge (for example,
lxdbr0):

lxc network set <network_bridge> ipv6.firewall false
lxc network set <network_bridge> ipv4.firewall false

firewalld: Add the bridge to the trusted zone

To allow traffic to and from the LXD bridge in firewalld, add the bridge interface to the trusted zone. To do this
permanently (so that it persists after a reboot), run the following commands:

sudo firewall-cmd --zone=trusted --change-interface=<network_bridge> --permanent
sudo firewall-cmd --reload

For example:

sudo firewall-cmd --zone=trusted --change-interface=lxdbr0 --permanent
sudo firewall-cmd --reload

2.2. How-to guides 153

Canonical LXD

Warning:

The commands given above show a simple example configuration. Depending on your use case, you might need
more advanced rules and the example configuration might inadvertently introduce a security risk.

UFW: Add rules for the bridge

If UFW has a rule to drop all unrecognized traffic, it blocks the traffic to and from the LXD bridge. In this case, you
must add rules to allow traffic to and from the bridge, as well as allowing traffic forwarded to it.

To do so, run the following commands:

sudo ufw allow in on <network_bridge>
sudo ufw route allow in on <network_bridge>
sudo ufw route allow out on <network_bridge>

For example:

sudo ufw allow in on lxdbr0
sudo ufw route allow in on lxdbr0
sudo ufw route allow out on lxdbr0

Warning: The commands given above show a simple example configuration. Depending on your use case, you
might need more advanced rules and the example configuration might inadvertently introduce a security risk.

Here’s an example for more restrictive firewall rules that limit access from the guests to the host to only DHCP and
DNS and allow all outbound connections:
allow the guest to get an IP from the LXD host
sudo ufw allow in on lxdbr0 to any port 67 proto udp
sudo ufw allow in on lxdbr0 to any port 547 proto udp

allow the guest to resolve host names from the LXD host
sudo ufw allow in on lxdbr0 to any port 53

allow the guest to have access to outbound connections
CIDR4="$(lxc network get lxdbr0 ipv4.address | sed 's|\.[0-9]\+/|.0/|')"
CIDR6="$(lxc network get lxdbr0 ipv6.address | sed 's|:[0-9]\+/|:/|')"
sudo ufw route allow in on lxdbr0 from "${CIDR4}"
sudo ufw route allow in on lxdbr0 from "${CIDR6}"

Prevent connectivity issues with LXD and Docker

Running LXD and Docker on the same host can cause connectivity issues. A common reason for these issues is that
Docker sets the global FORWARD policy to drop, which prevents LXD from forwarding traffic and thus causes the
instances to lose network connectivity. See Docker on a router for detailed information.

There are different ways of working around this problem:

Uninstall Docker
The easiest way to prevent such issues is to uninstall Docker from the system that runs LXD and restart the
system. You can run Docker inside a LXD container or virtual machine instead.

154 Chapter 2. Project and community

https://docs.docker.com/network/iptables/#docker-on-a-router

Canonical LXD

See Running Docker inside of a LXD container for detailed information.

Enable IPv4 forwarding
If uninstalling Docker is not an option, enabling IPv4 forwarding before the Docker service starts will prevent
Docker from modifying the global FORWARD policy. LXD bridge networks enable this setting normally. How-
ever, if LXD starts after Docker, then Docker will already have modified the global FORWARD policy.

Warning: Enabling IPv4 forwarding can cause your Docker container ports to be reachable from any ma-
chine on your local network. Depending on your environment, this might be undesirable. See local network
container access issue for more information.

To enable IPv4 forwarding before Docker starts, ensure that the following sysctl setting is enabled:

net.ipv4.conf.all.forwarding=1

Important: You must make this setting persistent across host reboots.

One way of doing this is to add a file to the /etc/sysctl.d/ directory using the following commands:

echo "net.ipv4.conf.all.forwarding=1" > /etc/sysctl.d/99-forwarding.conf
systemctl restart systemd-sysctl

Allow egress network traffic flows
If you do not want the Docker container ports to be potentially reachable from any machine on your local network,
you can apply a more complex solution provided by Docker.

Use the following commands to explicitly allow egress network traffic flows from your LXD managed bridge
interface:

iptables -I DOCKER-USER -i <network_bridge> -j ACCEPT
iptables -I DOCKER-USER -o <network_bridge> -m conntrack --ctstate RELATED,
→˓ESTABLISHED -j ACCEPT

For example, if your LXD managed bridge is called lxdbr0, you can allow egress traffic to flow using the
following commands:

iptables -I DOCKER-USER -i lxdbr0 -j ACCEPT
iptables -I DOCKER-USER -o lxdbr0 -m conntrack --ctstate RELATED,ESTABLISHED -j␣
→˓ACCEPT

Important: You must make these firewall rules persistent across host reboots. How to do this depends on your
Linux distribution.

2.2. How-to guides 155

https://www.youtube.com/watch?v=_fCSSEyiGro
https://github.com/moby/moby/issues/14041
https://github.com/moby/moby/issues/14041

Canonical LXD

How to integrate with systemd-resolved

Important: This guide applies to managed bridge networks only.

If the system that runs LXD uses systemd-resolved to perform DNS lookups, you should notify resolved of the
domains that LXD can resolve. To do so, add the DNS servers and domains provided by a LXD network bridge to the
resolved configuration.

Note: The dns.mode option must be set to managed or dynamic if you want to use this feature.

Depending on the configured dns.domain, you might need to disable DNSSEC in resolved to allow for DNS reso-
lution. This can be done through the DNSSEC option in resolved.conf.

Configure resolved

To add a network bridge to the resolved configuration, specify the DNS addresses and domains for the respective
bridge.

DNS address
You can use the IPv4 address, the IPv6 address or both. The address must be specified without the subnet
netmask.

To retrieve the IPv4 address for the bridge, use the following command:

lxc network get <network_bridge> ipv4.address

To retrieve the IPv6 address for the bridge, use the following command:

lxc network get <network_bridge> ipv6.address

DNS domain
To retrieve the DNS domain name for the bridge, use the following command:

lxc network get <network_bridge> dns.domain

If this option is not set, the default domain name is lxd.

Use the following commands to configure resolved:

resolvectl dns <network_bridge> <dns_address>
resolvectl domain <network_bridge> ~<dns_domain>

Note: When configuring resolved with the DNS domain name, you should prefix the name with ~. The ~ tells
resolved to use the respective name server to look up only this domain.

Depending on which shell you use, you might need to include the DNS domain in quotes to prevent the ~ from being
expanded.

For example:

156 Chapter 2. Project and community

Canonical LXD

resolvectl dns lxdbr0 192.0.2.10
resolvectl domain lxdbr0 '~lxd'

Note: Alternatively, you can use the systemd-resolve command. This command has been deprecated in newer
releases of systemd, but it is still provided for backwards compatibility.

systemd-resolve --interface <network_bridge> --set-domain ~<dns_domain> --set-dns <dns_
→˓address>

The resolved configuration persists as long as the bridge exists. You must repeat the commands after each reboot and
after LXD is restarted, or make it persistent as described below.

Make the resolved configuration persistent

You can automate the systemd-resolved DNS configuration, so that it is applied on system start and takes effect
when LXD creates the network interface.

To do so, create a systemd unit file named /etc/systemd/system/lxd-dns-<network_bridge>.service with
the following content:

[Unit]
Description=LXD per-link DNS configuration for <network_bridge>
BindsTo=sys-subsystem-net-devices-<network_bridge>.device
After=sys-subsystem-net-devices-<network_bridge>.device

[Service]
Type=oneshot
ExecStart=/usr/bin/resolvectl dns <network_bridge> <dns_address>
ExecStart=/usr/bin/resolvectl domain <network_bridge> <dns_domain>
ExecStopPost=/usr/bin/resolvectl revert <network_bridge>
RemainAfterExit=yes

[Install]
WantedBy=sys-subsystem-net-devices-<network_bridge>.device

Replace <network_bridge> in the file name and content with the name of your bridge (for example, lxdbr0). Also
replace <dns_address> and <dns_domain> as described in Configure resolved.

Then enable and start the service with the following commands:

sudo systemctl daemon-reload
sudo systemctl enable --now lxd-dns-<network_bridge>

If the respective bridge already exists (because LXD is already running), you can use the following command to check
that the new service has started:

sudo systemctl status lxd-dns-<network_bridge>.service

You should see output similar to the following:

user@host:~$ sudo systemctl status lxd-dns-lxdbr0.service lxd-dns-lxdbr0.service
- LXD per-link DNS configuration for lxdbr0 Loaded: loaded (/etc/systemd/system/
lxd-dns-lxdbr0.service; enabled; vendor preset: enabled) Active: inactive (dead)

2.2. How-to guides 157

Canonical LXD

since Mon 2021-06-14 17:03:12 BST; 1min 2s ago Process: 9433 ExecStart=/usr/bin/
resolvectl dns lxdbr0 n.n.n.n (code=exited, status=0/SUCCESS) Process: 9434 ExecStart=/
usr/bin/resolvectl domain lxdbr0 ~lxd (code=exited, status=0/SUCCESS) Main PID: 9434
(code=exited, status=0/SUCCESS) To check that resolved has applied the settings, use resolvectl status
<network_bridge>:

user@host:~$ resolvectl status lxdbr0 Link 6 (lxdbr0) Current Scopes: DNSDefaultRoute
setting: no LLMNR setting: yesMulticastDNS setting: no DNSOverTLS setting: no DNSSEC
setting: no DNSSEC supported: no Current DNS Server: n.n.n.n DNS Servers: n.n.n.n DNS
Domain: ~lxd How to configure specific networking features (OVN networks only):

How to set up OVN with LXD

See the following sections for how to set up a basic OVN network, either as a standalone network or to host a small
LXD cluster.

Set up a standalone OVN network

Complete the following steps to create a standalone OVN network that is connected to a managed LXD parent bridge
network (for example, lxdbr0) for outbound connectivity.

1. Install the OVN tools on the local server:

sudo apt install ovn-host ovn-central

2. Configure the OVN integration bridge:

sudo ovs-vsctl set open_vswitch . \
external_ids:ovn-remote=unix:/var/run/ovn/ovnsb_db.sock \
external_ids:ovn-encap-type=geneve \
external_ids:ovn-encap-ip=127.0.0.1

3. Create an OVN network:

lxc network set <parent_network> ipv4.dhcp.ranges=<IP_range> ipv4.ovn.ranges=<IP_
→˓range>
lxc network create ovntest --type=ovn network=<parent_network>

4. Create an instance that uses the ovntest network:

lxc init ubuntu:24.04 c1
lxc config device override c1 eth0 network=ovntest
lxc start c1

5. Run lxc list to show the instance information:

user@host:~$ lxc list +------+---------+---------------------+--+-----------+-----------+|
NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |+------+---------+---------------------+--+-----------+-----------+|
c1 | RUNNING | 192.0.2.2 (eth0) | 2001:db8:cff3:5089:216:3eff:fef0:549f (eth0) |
CONTAINER | 0 |+------+---------+---------------------+--+-----------+-----------+

158 Chapter 2. Project and community

Canonical LXD

Set up a LXD cluster on OVN

Complete the following steps to set up a LXD cluster that uses an OVN network.

Just like LXD, the distributed database for OVN must be run on a cluster that consists of an odd number of members.
The following instructions use the minimum of three servers, which run both the distributed database for OVN and the
OVN controller. In addition, you can add any number of servers to the LXD cluster that run only the OVN controller.
See the linked YouTube video for the complete tutorial using four machines.

1. Complete the following steps on the three machines that you want to run the distributed database for OVN:

1. Install the OVN tools:

sudo apt install ovn-central ovn-host

2. Mark the OVN services as enabled to ensure that they are started when the machine boots:

systemctl enable ovn-central
systemctl enable ovn-host

3. Stop OVN for now:

systemctl stop ovn-central

4. Note down the IP address of the machine:

ip -4 a

5. Open /etc/default/ovn-central for editing.

6. Paste in one of the following configurations (replace <server_1>, <server_2> and <server_3> with the
IP addresses of the respective machines, and <local> with the IP address of the machine that you are on).

• For the first machine:

OVN_CTL_OPTS=" \
--db-nb-addr=<local> \
--db-nb-create-insecure-remote=yes \
--db-sb-addr=<local> \
--db-sb-create-insecure-remote=yes \
--db-nb-cluster-local-addr=<local> \
--db-sb-cluster-local-addr=<local> \
--ovn-northd-nb-db=tcp:<server_1>:6641,tcp:<server_2>:6641,tcp:<server_

→˓3>:6641 \
--ovn-northd-sb-db=tcp:<server_1>:6642,tcp:<server_2>:6642,tcp:<server_

→˓3>:6642"

• For the second and third machine:

OVN_CTL_OPTS=" \
--db-nb-addr=<local> \

--db-nb-cluster-remote-addr=<server_1> \
--db-nb-create-insecure-remote=yes \
--db-sb-addr=<local> \
--db-sb-cluster-remote-addr=<server_1> \
--db-sb-create-insecure-remote=yes \
--db-nb-cluster-local-addr=<local> \

(continues on next page)

2.2. How-to guides 159

Canonical LXD

(continued from previous page)

--db-sb-cluster-local-addr=<local> \
--ovn-northd-nb-db=tcp:<server_1>:6641,tcp:<server_2>:6641,tcp:<server_

→˓3>:6641 \
--ovn-northd-sb-db=tcp:<server_1>:6642,tcp:<server_2>:6642,tcp:<server_

→˓3>:6642"

7. Start OVN:

systemctl start ovn-central

2. On the remaining machines, install only ovn-host and make sure it is enabled:

sudo apt install ovn-host
systemctl enable ovn-host

3. On all machines, configure Open vSwitch (replace the variables as described above):

sudo ovs-vsctl set open_vswitch . \
external_ids:ovn-remote=tcp:<server_1>:6642,tcp:<server_2>:6642,tcp:<server_3>

→˓:6642 \
external_ids:ovn-encap-type=geneve \
external_ids:ovn-encap-ip=<local>

4. Create a LXD cluster by running lxd init on all machines. On the first machine, create the cluster. Then
join the other machines with tokens by running lxc cluster add <machine_name> on the first machine and
specifying the token when initializing LXD on the other machine.

5. On the first machine, create and configure the uplink network:

lxc network create UPLINK --type=physical parent=<uplink_interface> --target=
→˓<machine_name_1>
lxc network create UPLINK --type=physical parent=<uplink_interface> --target=
→˓<machine_name_2>
lxc network create UPLINK --type=physical parent=<uplink_interface> --target=
→˓<machine_name_3>
lxc network create UPLINK --type=physical parent=<uplink_interface> --target=
→˓<machine_name_4>
lxc network create UPLINK --type=physical \

ipv4.ovn.ranges=<IP_range> \
ipv6.ovn.ranges=<IP_range> \
ipv4.gateway=<gateway> \
ipv6.gateway=<gateway> \
dns.nameservers=<name_server>

To determine the required values:

Uplink interface
A high availability OVN cluster requires a shared layer 2 network, so that the active OVN chassis can move
between cluster members (which effectively allows the OVN router’s external IP to be reachable from a
different host).

Therefore, you must specify either an unmanaged bridge interface or an unused physical interface as the
parent for the physical network that is used for OVN uplink. The instructions assume that you are using a
manually created unmanaged bridge. See How to configure network bridges for instructions on how to set
up this bridge.

160 Chapter 2. Project and community

https://netplan.readthedocs.io/en/stable/examples/#how-to-configure-network-bridges

Canonical LXD

Gateway
Run ip -4 route show default and ip -6 route show default.

Name server
Run resolvectl.

IP ranges
Use suitable IP ranges based on the assigned IPs.

6. Still on the first machine, configure LXD to be able to communicate with the OVN DB cluster. To do so, find
the value for ovn-northd-nb-db in /etc/default/ovn-central and provide it to LXD with the following
command:

lxc config set network.ovn.northbound_connection <ovn-northd-nb-db>

7. Finally, create the actual OVN network (on the first machine):

lxc network create my-ovn --type=ovn

8. To test the OVN network, create some instances and check the network connectivity:

lxc launch ubuntu:24.04 c1 --network my-ovn
lxc launch ubuntu:24.04 c2 --network my-ovn
lxc launch ubuntu:24.04 c3 --network my-ovn
lxc launch ubuntu:24.04 c4 --network my-ovn
lxc list
lxc exec c4 -- bash
ping <IP of c1>
ping <nameserver>
ping6 -n www.example.com

Send OVN logs to LXD

Complete the following steps to have the OVN controller send its logs to LXD.

1. Enable the syslog socket:

lxc config set core.syslog_socket=true

2. Open /etc/default/ovn-host for editing.

3. Paste the following configuration:

OVN_CTL_OPTS=" \
--ovn-controller-log='-vsyslog:info --syslog-method=unix:/var/snap/lxd/

→˓common/lxd/syslog.socket'"

4. Restart the OVN controller:

systemctl restart ovn-controller.service

You can now use lxc monitor to see logs from the OVN controller:

lxc monitor --type=ovn

You can also send the logs to Loki. To do so, add the ovn value to the loki.types configuration key, for example:

2.2. How-to guides 161

Canonical LXD

lxc config set loki.types=ovn

Tip: You can include logs for OVN northd, OVN north-bound ovsdb-server, and OVN south-bound
ovsdb-server as well. To do so, edit /etc/default/ovn-central:

OVN_CTL_OPTS=" \
--ovn-northd-log='-vsyslog:info --syslog-method=unix:/var/snap/lxd/common/lxd/syslog.

→˓socket' \
--ovn-nb-log='-vsyslog:info --syslog-method=unix:/var/snap/lxd/common/lxd/syslog.

→˓socket' \
--ovn-sb-log='-vsyslog:info --syslog-method=unix:/var/snap/lxd/common/lxd/syslog.

→˓socket'"

sudo systemctl restart ovn-central.service

How to configure network load balancers

Note: Network load balancers are currently available for the OVN network.

Network load balancers are similar to forwards in that they allow specific ports on an external IP address to be forwarded
to specific ports on internal IP addresses in the network that the load balancer belongs to. The difference between load
balancers and forwards is that load balancers can be used to share ingress traffic between multiple internal backend
addresses.

This feature can be useful if you have limited external IP addresses or want to share a single external address and ports
over multiple instances.

A load balancer is made up of:

• A single external listen IP address.

• One or more named backends consisting of an internal IP and optional port ranges.

• One or more listen port ranges that are configured to forward to one or more named backends.

Create a network load balancer

Use the following command to create a network load balancer:

lxc network load-balancer create <network_name> [<listen_address>] [--allocate=ipv{4,6}]␣
→˓[configuration_options...]

Each load balancer is assigned to a network. Listen addresses are subject to restrictions (see Requirements for listen
addresses for more information about which addresses can be load-balanced). If a listen address is not given, the
--allocate flag must be provided.

162 Chapter 2. Project and community

Canonical LXD

Load balancer properties

Network load balancers have the following properties: backends List of backend specifications

Key: backends
Type: backend list
Required: no

See Configure backends.

config User-provided free-form key/value pairs

Key: config
Type: string set
Required: no

The only supported keys are user.* custom keys.

description Description of the network load balancer

Key: description
Type: string
Required: no

listen_address IP address to listen on

Key: listen_address
Type: string
Required: no

ports List of port specifications

Key: ports
Type: port list
Required: no

See Configure ports.

Requirements for listen addresses

The following requirements must be met for valid listen addresses:

• Allowed listen addresses must be defined in the uplink network’s ipv{n}.routes settings or the project’s
restricted.networks.subnets setting (if set).

• The listen address must not overlap with a subnet that is in use with another network or entity in that network.

• If the --allocate flag is provided, an IP address will be allocated from the uplink network’s ipv{n}.routes
or the project’s restricted.networks.subnets setting (if set).

2.2. How-to guides 163

Canonical LXD

Configure backends

You can add backend specifications to the network load balancer to define target addresses (and optionally ports). The
backend target address must be within the same subnet as the network that the load balancer is associated to.

Use the following command to add a backend specification:

lxc network load-balancer backend add <network_name> <listen_address> <backend_name>
→˓<listen_ports> <target_address> [<target_ports>]

The target ports are optional. If not specified, the load balancer will use the listen ports for the backend for the backend
target ports.

If you want to forward the traffic to different ports, you have two options:

• Specify a single target port to forward traffic from all listen ports to this target port.

• Specify a set of target ports with the same number of ports as the listen ports to forward traffic from the first
listen port to the first target port, the second listen port to the second target port, and so on.

Backend properties

Network load balancer backends have the following properties: description Description of the backend

Key: description
Type: string
Required: no

name Name of the backend

Key: name
Type: string
Required: yes

target_address IP address to forward to

Key: target_address
Type: string
Required: yes

target_port Target port or ports

Key: target_port
Type: string
Default: same as listen_port
Required: no

For example: 70,80-90 or 90

164 Chapter 2. Project and community

Canonical LXD

Configure ports

You can add port specifications to the network load balancer to forward traffic from specific ports on the listen address
to specific ports on one or more target backends.

Use the following command to add a port specification:

lxc network load-balancer port add <network_name> <listen_address> <protocol> <listen_
→˓ports> <backend_name>[,<backend_name>...]

You can specify a single listen port or a set of ports. The backend(s) specified must have target port(s) settings com-
patible with the port’s listen port(s) setting.

Port properties

Network load balancer ports have the following properties: description Description of the port or ports

Key: description
Type: string
Required: no

listen_port Listen port or ports

Key: listen_port
Type: string
Required: yes

For example: 80,90-100

protocol Protocol for the port or ports

Key: protocol
Type: string
Required: yes

Possible values are tcp and udp.

target_backend Backend name or names to forward to

Key: target_backend
Type: backend list
Required: yes

2.2. How-to guides 165

Canonical LXD

Edit a network load balancer

Use the following command to edit a network load balancer:

lxc network load-balancer edit <network_name> <listen_address>

This command opens the network load balancer in YAML format for editing. You can edit both the general configura-
tion, backend and the port specifications.

Delete a network load balancer

Use the following command to delete a network load balancer:

lxc network load-balancer delete <network_name> <listen_address>

How to create OVN peer routing relationships

Important: This guide applies to OVN networks only.

By default, traffic between two OVN networks goes through the uplink network. This path is inefficient, however,
because packets must leave the OVN subsystem and transit through the host’s networking stack (and, potentially, an
external network) and back into the OVN subsystem of the target network. Depending on how the host’s networking
is configured, this might limit the available bandwidth (if the OVN overlay network is on a higher bandwidth network
than the host’s external network).

Therefore, LXD allows creating peer routing relationships between two OVN networks. Using this method, traffic
between the two networks can go directly from one OVN network to the other and thus stays within the OVN subsystem,
rather than transiting through the uplink network.

Create a routing relationship between networks

To add a peer routing relationship between two networks, you must create a network peering for both networks. The
relationship must be mutual. If you set it up on only one network, the routing relationship will be in pending state, but
not active.

When creating the peer routing relationship, specify a peering name that identifies the relationship for the respective
network. The name can be chosen freely, and you can use it later to edit or delete the relationship.

Use the following commands to create a peer routing relationship between networks in the same project:

lxc network peer create <network1> <peering_name> <network2> [configuration_options]
lxc network peer create <network2> <peering_name> <network1> [configuration_options]

You can also create peer routing relationships between OVN networks in different projects:

lxc network peer create <network1> <peering_name> <project2/network2> [configuration_
→˓options] --project=<project1>
lxc network peer create <network2> <peering_name> <project1/network1> [configuration_
→˓options] --project=<project2>

166 Chapter 2. Project and community

Canonical LXD

Important: If the project or the network name is incorrect, the command will not return any error indicating that
the respective project/network does not exist, and the routing relationship will remain in pending state. This behavior
prevents users in a different project from discovering whether a project and network exists.

Peering properties

Peer routing relationships have the following properties: config User-provided free-form key/value pairs

Key: config
Type: string set
Required: no

The only supported keys are user.* custom keys.

description Description of the network peering

Key: description
Type: string
Required: no

name Name of the network peering on the local network

Key: name
Type: string
Required: yes

status Status indicating if pending or created

Key: status
Type: string
Required: –

Indicates if mutual peering exists with the target network. This property is read-only and cannot be updated.

target_network Which network to create a peering with

Key: target_network
Type: string
Required: yes

This option must be set at create time.

target_project Which project the target network exists in

Key: target_project
Type: string
Required: yes

2.2. How-to guides 167

Canonical LXD

This option must be set at create time.

List routing relationships

To list all network peerings for a network, use the following command:

lxc network peer list <network>

Edit a routing relationship

Use the following command to edit a network peering:

lxc network peer edit <network> <peering_name>

This command opens the network peering in YAML format for editing.

How to troubleshoot your networking setup:

How to display IPAM information of a LXD deployment

IPAM (IP Address Management) is a method used to plan, track, and manage the information associated with a computer
network’s IP address space. In essence, it’s a way of organizing, monitoring, and manipulating the IP space in a network.

Checking the IPAM information for your LXD setup can help you debug networking issues. You can see which IP
addresses are used for instances, network interfaces, forwards, and load balancers and use this information to track
down where traffic is lost.

To display IPAM information, enter the following command:

lxc network list-allocations

By default, this command shows the IPAM information for the default project. You can select a different project with
the --project flag, or specify --all-projects to display the information for all projects.

The resulting output will look something like this:

+----------------------+-----------------+----------+------+-------------------+
| USED BY | ADDRESS | TYPE | NAT | HARDWARE ADDRESS |
+----------------------+-----------------+----------+------+-------------------+
| /1.0/networks/lxdbr0 | 192.0.2.0/24 | network | true | |
+----------------------+-----------------+----------+------+-------------------+
| /1.0/networks/lxdbr0 | 2001:db8::/32 | network | true | |
+----------------------+-----------------+----------+------+-------------------+
| /1.0/instances/u1 | 2001:db8::1/128 | instance | true | 00:16:3e:04:f0:95 |
+----------------------+-----------------+----------+------+-------------------+
| /1.0/instances/u1 | 192.0.2.2/32 | instance | true | 00:16:3e:04:f0:95 |
+----------------------+-----------------+----------+------+-------------------+

...

Each listed entry lists the IP address (in CIDR notation) of one of the following LXD entities: network,
network-forward, network-load-balancer, and instance. An entry contains an IP address using the CIDR
notation. It also contains a LXD resource URI, the type of the entity, whether it is in NAT mode, and the hardware
address (only for the instance entity).

168 Chapter 2. Project and community

Canonical LXD

Related topics

Explanation:

• About networking

Reference:

• Networks

Troubleshooting

If you run into problems when using LXD, check the following how-to guides to see if they help resolve your issue:

Additional instructions are available in the following guides:

How to debug LXD

For information on debugging instance issues, see How to troubleshoot failing instances.

Debugging lxc and lxd

Here are different ways to help troubleshooting lxc and lxd code.

lxc --debug

Adding --debug flag to any client command will give extra information about internals. If there is no useful info, it
can be added with the logging call:

logger.Debugf("Hello: %s", "Debug")

lxc monitor

This command will monitor messages as they appear on remote server.

REST API through local socket

On server side the most easy way is to communicate with LXD through local socket. This command accesses GET
/1.0 and formats JSON into human readable form using jq utility:

curl --unix-socket /var/lib/lxd/unix.socket lxd/1.0 | jq .

or for snap users:

curl --unix-socket /var/snap/lxd/common/lxd/unix.socket lxd/1.0 | jq .

See the RESTful API for available API.

2.2. How-to guides 169

https://stedolan.github.io/jq/tutorial/

Canonical LXD

REST API through HTTPS

HTTPS connection to LXD requires valid client certificate that is generated on first lxc remote add . This certificate
should be passed to connection tools for authentication and encryption.

If desired, openssl can be used to examine the certificate (~/.config/lxc/client.crt or ~/snap/lxd/common/
config/client.crt for snap users):

openssl x509 -text -noout -in client.crt

Among the lines you should see:

Certificate purposes:
SSL client : Yes

With command line tools

wget --no-check-certificate --certificate=$HOME/.config/lxc/client.crt --private-key=
→˓$HOME/.config/lxc/client.key -qO - https://127.0.0.1:8443/1.0

or for snap users
wget --no-check-certificate --certificate=$HOME/snap/lxd/common/config/client.crt --
→˓private-key=$HOME/snap/lxd/common/config/client.key -qO - https://127.0.0.1:8443/1.0

With browser

Some browser plugins provide convenient interface to create, modify and replay web requests. To authenticate against
LXD server, convert lxc client certificate into importable format and import it into browser.

For example this produces client.pfx in Windows-compatible format:

openssl pkcs12 -clcerts -inkey client.key -in client.crt -export -out client.pfx

After that, opening https://127.0.0.1:8443/1.0 should work as expected.

Debug the LXD database

The files of the global database are stored under the ./database/global sub-directory of your LXD data directory
(e.g. /var/lib/lxd/database/global or /var/snap/lxd/common/lxd/database/global for snap users).

Since each member of the cluster also needs to keep some data which is specific to that member, LXD also uses a plain
SQLite database (the “local” database), which you can find in ./database/local.db.

Backups of the global database directory and of the local database file are made before upgrades, and are tagged with
the .bak suffix. You can use those if you need to revert the state as it was before the upgrade.

170 Chapter 2. Project and community

https://127.0.0.1:8443/1.0

Canonical LXD

Dumping the database content or schema

If you want to get a SQL text dump of the content or the schema of the databases, use the lxd sql <local|global>
[.dump|.schema] command, which produces the equivalent output of the .dump or .schema directives of the
sqlite3 command line tool.

Running custom queries from the console

If you need to perform SQL queries (e.g. SELECT, INSERT, UPDATE) against the local or global database, you can use
the lxd sql command (run lxd sql --help for details).

You should only need to do that in order to recover from broken updates or bugs. Please consult the LXD team first
(creating a GitHub issue or forum post).

Running custom queries at LXD daemon startup

In case the LXD daemon fails to start after an upgrade because of SQL data migration bugs or similar problems, it’s
possible to recover the situation by creating .sql files containing queries that repair the broken update.

To perform repairs against the local database, write a ./database/patch.local.sql file containing the relevant
queries, and similarly a ./database/patch.global.sql for global database repairs.

Those files will be loaded very early in the daemon startup sequence and deleted if the queries were successful (if they
fail, no state will change as they are run in a SQL transaction).

As above, please consult the LXD team first.

Syncing the cluster database to disk

If you want to flush the content of the cluster database to disk, use the lxd sql global .sync command, that will
write a plain SQLite database file into ./database/global/db.bin, which you can then inspect with the sqlite3
command line tool.

Frequently asked questions

The following sections give answers to frequently asked questions. They explain how to resolve common issues and
point you to more detailed information.

Why do my instances not have network access?

Most likely, your firewall blocks network access for your instances. See How to configure your firewall for more
information about the problem and how to fix it.

Another frequent reason for connectivity issues is running LXD and Docker on the same host. See Prevent connectivity
issues with LXD and Docker for instructions on how to fix such issues.

2.2. How-to guides 171

https://github.com/canonical/lxd/issues/new
https://discourse.ubuntu.com/c/lxd/

Canonical LXD

How to enable the LXD server for remote access?

By default, the LXD server is not accessible from the network, because it only listens on a local Unix socket.

You can enable it for remote access by following the instructions in How to expose LXD to the network.

When I do a lxc remote add, it asks for a password or token?

To be able to access the remote API, clients must authenticate with the LXD server. Depending on how the remote
server is configured, you must provide either a trust token issued by the server or specify a trust password (if core.
trust_password is set).

See Authenticate with the LXD server for instructions on how to authenticate using a trust token (the recommended
way), and Remote API authentication for information about other authentication methods.

Why should I not run privileged containers?

A privileged container can do things that affect the entire host - for example, it can use things in /sys to reset the network
card, which will reset it for the entire host, causing network blips. See Container security for more information.

Almost everything can be run in an unprivileged container, or - in cases of things that require unusual privileges, like
wanting to mount NFS file systems inside the container - you might need to use bind mounts.

Can I bind-mount my home directory in a container?

Yes, you can do this by using a disk device:

lxc config device add container-name home disk source=/home/${USER} path=/home/ubuntu

For unprivileged containers, you need to make sure that the user in the container has working read/write permissions.
Otherwise, all files will show up as the overflow UID/GID (65536:65536) and access to anything that’s not world-
readable will fail. Use either of the following methods to grant the required permissions:

• Pass shift=true to the lxc config device add call. This depends on the kernel and file system supporting
either idmapped mounts (see lxc info).

• Add a raw.idmap entry (see Idmaps for user namespace).

• Place recursive POSIX ACLs on your home directory.

Privileged containers do not have this issue because all UID/GID in the container are the same as outside. But that’s
also the cause of most of the security issues with such privileged containers.

How can I run Docker inside a LXD container?

To run Docker inside a LXD container, set the security.nesting option of the container to true:

lxc config set <container> security.nesting true

If you plan to use the OverlayFS storage driver in Docker, you should also set the security.syscalls.intercept.
mknod and security.syscalls.intercept.setxattr options to true. See mknod / mknodat and setxattr for
more information.

172 Chapter 2. Project and community

Canonical LXD

Note that LXD containers cannot load kernel modules, so depending on your Docker configuration, you might need to
have extra kernel modules loaded by the host. You can do so by setting a comma-separated list of kernel modules that
your container needs:

lxc config set <container_name> linux.kernel_modules <modules>

In addition, creating a /.dockerenv file in your container can help Docker ignore some errors it’s getting due to
running in a nested environment.

Where does the LXD client (lxc) store its configuration?

The lxc command stores its configuration under ~/.config/lxc, or in ~/snap/lxd/common/config for snap users.

Various configuration files are stored in that directory, for example:

• client.crt: client certificate (generated on demand)

• client.key: client key (generated on demand)

• config.yml: configuration file (info about remotes, aliases, etc.)

• servercerts/: directory with server certificates belonging to remotes

Why can I not ping my LXD instance from another host?

Many switches do not allow MAC address changes, and will either drop traffic with an incorrect MAC or disable the
port totally. If you can ping a LXD instance from the host, but are not able to ping it from a different host, this could
be the cause.

The way to diagnose this problem is to run a tcpdump on the uplink and you will see either ARP Who has `xx.xx.
xx.xx` tell `yy.yy.yy.yy` , with you sending responses but them not getting acknowledged, or ICMP packets
going in and out successfully, but never being received by the other host.

How can I monitor what LXD is doing?

To see detailed information about what LXD is doing and what processes it is running, use the lxc monitor command.

For example, to show a human-readable output of all types of messages, enter the following command:

lxc monitor --pretty

See lxc monitor --help for all options, and How to debug LXD for more information.

Why does LXD stall when creating an instance?

Check if your storage pool is out of space (by running lxc storage info <pool_name>). In that case, LXD cannot
finish unpacking the image, and the instance that you’re trying to create shows up as stopped.

To get more insight into what is happening, run lxc monitor (see How can I monitor what LXD is doing?), and check
sudo dmesg for any I/O errors.

2.2. How-to guides 173

Canonical LXD

Why does starting containers suddenly fail?

If starting containers suddenly fails with a cgroup-related error message (Failed to mount "/sys/fs/cgroup"),
this might be due to running a VPN client on the host.

This is a known issue for both Mullvad VPN and Private Internet Access VPN, but might occur for other VPN clients
as well. The problem is that the VPN client mounts the net_cls cgroup1 over cgroup2 (which LXD uses).

The easiest fix for this problem is to stop the VPN client and unmount the net_cls cgroup1 with the following com-
mand:

umount /sys/fs/cgroup/net_cls

If you need to keep the VPN client running, mount the net_cls cgroup1 in another location and reconfigure your VPN
client accordingly. See this Discourse post for instructions for Mullvad VPN.

Why does LXD not start on Ubuntu 20.04 or earlier?

If you are running LXD on Ubuntu 20.04 or earlier, you might be missing support for ZFS 2.1 in the kernel (see the
requirements).

If LXD fails to start, check the /var/snap/lxd/common/lxd/logs/lxd.log log file for the following error to see
if the reason is missing ZFS support:

Error: Required tool ‘zpool’ is missing

If you are on Ubuntu 20.04, you can resolve the issue by installing the HWE kernel and rebooting the nodes to provide
the required kernel drivers for ZFS 2.1:

sudo apt-get update
sudo apt-get install linux-generic-hwe-20.04

If you are on earlier versions of Ubuntu, you should use a compatible LTS release of LXD.

If you cannot resolve the issue on your own, see How to get support for information about where to get help.

2.2.3 Get ready for production

Once you are ready for production, consider setting up a LXD cluster to support the required load. You should also
monitor you server or servers and configure them for the expected load.

Clustering

The following how-to guides cover common operations related to clustering.

How to create and configure a cluster:

174 Chapter 2. Project and community

https://github.com/mullvad/mullvadvpn-app/issues/3651
https://github.com/pia-foss/desktop/issues/50
https://discuss.linuxcontainers.org/t/help-help-help-cgroup2-related-issue-on-ubuntu-jammy-with-mullvad-and-privateinternetaccess-vpn/14705/18

Canonical LXD

How to form a cluster

When forming a LXD cluster, you start with a bootstrap server. This bootstrap server can be an existing LXD server
or a newly installed one.

After initializing the bootstrap server, you can join additional servers to the cluster. See Cluster members for more
information.

You can form the LXD cluster interactively by providing configuration information during the initialization process or
by using preseed files that contain the full configuration.

To quickly and automatically set up a basic LXD cluster, you can use MicroCloud. Note, however, that this project is
still in an early phase.

Configure the cluster interactively

To form your cluster, you must first run lxd init on the bootstrap server. After that, run it on the other servers that
you want to join to the cluster.

When forming a cluster interactively, you answer the questions that lxd init prompts you with to configure the cluster.

Initialize the bootstrap server

To initialize the bootstrap server, run lxd init and answer the questions according to your desired configuration.

You can accept the default values for most questions, but make sure to answer the following questions accordingly:

• Would you like to use LXD clustering?

Select yes.

• What IP address or DNS name should be used to reach this server?

Make sure to use an IP or DNS address that other servers can reach.

• Are you joining an existing cluster?

Select no.

• Setup password authentication on the cluster?

Select no to use authentication tokens (recommended) or yes to use a trust password.

user@host:~$ lxd init Would you like to use LXD clustering? (yes/no) [default=no]:
yesWhat IP address or DNS name should be used to reach this server? [default=192.0.2.
101]:Are you joining an existing cluster? (yes/no) [default=no]: noWhat member name
should be used to identify this server in the cluster? [default=server1]:Setup password
authentication on the cluster? (yes/no) [default=no]: noDo you want to configure a
new local storage pool? (yes/no) [default=yes]:Name of the storage backend to use
(btrfs, dir, lvm, zfs) [default=zfs]:Create a new ZFS pool? (yes/no) [default=yes]:Would
you like to use an existing empty block device (e.g. a disk or partition)? (yes/no)
[default=no]:Size in GiB of the new loop device (1GiB minimum) [default=9GiB]:Do you
want to configure a new remote storage pool? (yes/no) [default=no]:Would you like to
connect to a MAAS server? (yes/no) [default=no]:Would you like to configure LXD to use
an existing bridge or host interface? (yes/no) [default=no]:Would you like to create a
new Fan overlay network? (yes/no) [default=yes]:What subnet should be used as the Fan
underlay? [default=auto]:Would you like stale cached images to be updated automatically?
(yes/no) [default=yes]:Would you like a YAML "lxd init" preseed to be printed? (yes/no)
[default=no]:

2.2. How-to guides 175

Canonical LXD

After the initialization process finishes, your first cluster member should be up and available on your network. You can
check this with lxc cluster list.

Join additional servers

You can now join further servers to the cluster.

Note: The servers that you add should be newly installed LXD servers. If you are using existing servers, make sure to
clear their contents before joining them, because any existing data on them will be lost.

To join a server to the cluster, run lxd init on the cluster. Joining an existing cluster requires root privileges, so make
sure to run the command as root or with sudo.

Basically, the initialization process consists of the following steps:

1. Request to join an existing cluster.

Answer the first questions that lxd init asks accordingly:

• Would you like to use LXD clustering?

Select yes.

• What IP address or DNS name should be used to reach this server?

Make sure to use an IP or DNS address that other servers can reach.

• Are you joining an existing cluster?

Select yes.

• Do you have a join token?

Select yes if you configured the bootstrap server to use authentication tokens (recommended) or no if you
configured it to use a trust password.

2. Authenticate with the cluster.

There are two alternative methods, depending on which authentication method you choose when configuring the
bootstrap server.

Authentication tokens (recommended)

Trust password

If you configured your cluster to use authentication tokens, you must generate a join token for each new member.
To do so, run the following command on an existing cluster member (for example, the bootstrap server):

lxc cluster add <new_member_name>

This command returns a single-use join token that is valid for a configurable time (see cluster.
join_token_expiry). Enter this token when lxd init prompts you for the join token.

The join token contains the addresses of the existing online members, as well as a single-use secret and the
fingerprint of the cluster certificate. This reduces the amount of questions that you must answer during lxd
init, because the join token can be used to answer these questions automatically.

If you configured your cluster to use a trust password, lxd init requires more information about the cluster
before it can start the authorization process:

1. Specify a name for the new cluster member.

176 Chapter 2. Project and community

Canonical LXD

2. Provide the address of an existing cluster member (the bootstrap server or any other server you have already
added).

3. Verify the fingerprint for the cluster.

4. If the fingerprint is correct, enter the trust password to authorize with the cluster.

3. Confirm that all local data for the server is lost when joining a cluster.

4. Configure server-specific settings (see Member configuration for more information).

You can accept the default values or specify custom values for each server.

Authentication tokens (recommended)

Trust password

user@host:~$ sudo lxd init Would you like to use LXD clustering? (yes/no) [default=no]:
yesWhat IP address or DNS name should be used to reach this server? [default=192.
0.2.102]:Are you joining an existing cluster? (yes/no) [default=no]: yesDo you
have a join token? (yes/no/[token]) [default=no]: yesPlease provide join token:
eyJzZXJ2ZXJfbmFtZSI6InJwaTAxIiwiZmluZ2VycHJpbnQiOiIyNjZjZmExZDk0ZDZiMjk2Nzk0YjU0YzJlYzdjOTMwNDA5ZjIzNjdmNmM1YjRhZWVjOGM0YjAxYTc2NjU0MjgxIiwiYWRkcmVzc2VzIjpbIjE3Mi4xNy4zMC4xODM6ODQ0MyJdLCJzZWNyZXQiOiJmZGI1OTgyNjgxNTQ2ZGQyNGE2ZGE0Mzg5MTUyOGM1ZGUxNWNmYmQ5M2M3OTU3ODNkNGI5OGU4MTQ4MWMzNmUwIn0=All
existing data is lost when joining a cluster, continue? (yes/no) [default=no] yesChoose
"size" property for storage pool "local":Choose "source" property for storage pool
"local":Choose "zfs.pool_name" property for storage pool "local":Would you like a
YAML "lxd init" preseed to be printed? (yes/no) [default=no]: user@host:~$
sudo lxd init Would you like to use LXD clustering? (yes/no) [default=no]: yesWhat
IP address or DNS name should be used to reach this server? [default=192.0.2.
102]:Are you joining an existing cluster? (yes/no) [default=no]: yesDo you have a
join token? (yes/no/[token]) [default=no]: noWhat member name should be used to
identify this server in the cluster? [default=server2]:IP address or FQDN of an
existing cluster member (may include port): 192.0.2.101:8443Cluster fingerprint:
2915dafdf5c159681a9086f732644fb70680533b0fb9005b8c6e9bca51533113You can validate this
fingerprint by running "lxc info" locally on an existing cluster member.Is this the
correct fingerprint? (yes/no/[fingerprint]) [default=no]: yesCluster trust password:All
existing data is lost when joining a cluster, continue? (yes/no) [default=no] yesChoose
"size" property for storage pool "local":Choose "source" property for storage pool
"local":Choose "zfs.pool_name" property for storage pool "local":Would you like a YAML
"lxd init" preseed to be printed? (yes/no) [default=no]:

After the initialization process finishes, your server is added as a new cluster member. You can check this with lxc
cluster list.

Configure the cluster through preseed files

To form your cluster, you must first run lxd init on the bootstrap server. After that, run it on the other servers that
you want to join to the cluster.

Instead of answering the lxd init questions interactively, you can provide the required information through preseed
files. You can feed a file to lxd init with the following command:

cat <preseed-file> | lxd init --preseed

You need a different preseed file for every server.

2.2. How-to guides 177

Canonical LXD

Initialize the bootstrap server

The required contents of the preseed file depend on whether you want to use authentication tokens (recommended) or
a trust password for authentication.

Authentication tokens (recommended)

Trust password

To enable clustering, the preseed file for the bootstrap server must contain the following fields:

config:
core.https_address: <IP_address_and_port>

cluster:
server_name: <server_name>
enabled: true

Here is an example preseed file for the bootstrap server:

config:
core.https_address: 192.0.2.101:8443
images.auto_update_interval: 15

storage_pools:
- name: default
driver: dir

- name: my-pool
driver: zfs

networks:
- name: lxdbr0
type: bridge

profiles:
- name: default
devices:
root:
path: /
pool: my-pool
type: disk

eth0:
name: eth0
nictype: bridged
parent: lxdbr0
type: nic

cluster:
server_name: server1
enabled: true

To enable clustering, the preseed file for the bootstrap server must contain the following fields:

config:
core.https_address: <IP_address_and_port>
core.trust_password: <trust_password>

cluster:
server_name: <server_name>
enabled: true

Here is an example preseed file for the bootstrap server:

178 Chapter 2. Project and community

Canonical LXD

config:
core.trust_password: the_password
core.https_address: 192.0.2.101:8443
images.auto_update_interval: 15

storage_pools:
- name: default
driver: dir

- name: my-pool
driver: zfs

networks:
- name: lxdbr0
type: bridge

profiles:
- name: default
devices:
root:
path: /
pool: my-pool
type: disk

eth0:
name: eth0
nictype: bridged
parent: lxdbr0
type: nic

cluster:
server_name: server1
enabled: true

See Preseed YAML file fields for the complete fields of the preseed YAML file.

Join additional servers

The required contents of the preseed files depend on whether you configured the bootstrap server to use authentication
tokens (recommended) or a trust password for authentication.

The preseed files for new cluster members require only a cluster section with data and configuration values that are
specific to the joining server.

Authentication tokens (recommended)

Trust password

The preseed file for additional servers must include the following fields:

cluster:
enabled: true
server_address: <IP_address_of_server>
cluster_token: <join_token>

Here is an example preseed file for a new cluster member:

cluster:
enabled: true
server_address: 192.0.2.102:8443

(continues on next page)

2.2. How-to guides 179

Canonical LXD

(continued from previous page)

cluster_token:␣
→˓eyJzZXJ2ZXJfbmFtZSI6Im5vZGUyIiwiZmluZ2VycHJpbnQiOiJjZjlmNmVhMWIzYjhiNjgxNzQ1YTY1NTY2YjM3ZGUwOTUzNjRmM2MxMDAwMGNjZWQyOTk5NDU5YzY2MGIxNWQ4IiwiYWRkcmVzc2VzIjpbIjE3Mi4xNy4zMC4xODM6ODQ0MyJdLCJzZWNyZXQiOiIxNGJmY2EzMDhkOTNhY2E3MGJmYThkMzE0NWM4NWY3YmE0ZmU1YmYyNmJiNDhmMmUwNzhhOGZhMDczZDc0YTFiIn0=
member_config:
- entity: storage-pool
name: default
key: source
value: ""

- entity: storage-pool
name: my-pool
key: source
value: ""

- entity: storage-pool
name: my-pool
key: driver
value: "zfs"

The preseed file for additional servers must include the following fields:

cluster:
server_name: <server_name>
enabled: true
cluster_address: <IP_address_of_bootstrap_server>
server_address: <IP_address_of_server>
cluster_password: <trust_password>
cluster_certificate: <certificate> # use this or cluster_certificate_path
cluster_certificate_path: <path_to-certificate_file> # use this or cluster_certificate

To create a YAML-compatible entry for the cluster_certificate key, run one the following commands on the
bootstrap server:

• When using the snap: sed ':a;N;$!ba;s/\n/\n\n/g' /var/snap/lxd/common/lxd/cluster.crt

• Otherwise: sed ':a;N;$!ba;s/\n/\n\n/g' /var/lib/lxd/cluster.crt

Alternatively, copy the cluster.crt file from the bootstrap server to the server that you want to join and specify its
path in the cluster_certificate_path key.

Here is an example preseed file for a new cluster member:

cluster:
server_name: server2
enabled: true
server_address: 192.0.2.102:8443
cluster_address: 192.0.2.101:8443
cluster_certificate: "-----BEGIN CERTIFICATE-----

opyQ1VRpAg2sV2C4W8irbNqeUsTeZZxhLqp4vNOXXBBrSqUCdPu1JXADV0kavg1l

2sXYoMobyV3K+RaJgsr1OiHjacGiGCQT3YyNGGY/n5zgT/8xI0Dquvja0bNkaf6f

...

-----END CERTIFICATE-----
"

(continues on next page)

180 Chapter 2. Project and community

Canonical LXD

(continued from previous page)

cluster_password: the_password
member_config:
- entity: storage-pool
name: default
key: source
value: ""

- entity: storage-pool
name: my-pool
key: source
value: ""

- entity: storage-pool
name: my-pool
key: driver
value: "zfs"

See Preseed YAML file fields for the complete fields of the preseed YAML file.

Use MicroCloud

Instead of setting up your LXD cluster manually, you can use MicroCloud to get a fully highly available LXD cluster
with OVN and with Ceph storage up and running.

To install the required snaps, run the following command:

snap install lxd microceph microovn microcloud

Then start the bootstrapping process with the following command:

microcloud init

During the initialization process, MicroCloud detects the other servers, sets up OVN networking and prompts you to
add disks to Ceph.

When the initialization is complete, you’ll have an OVN cluster, a Ceph cluster and a LXD cluster, and LXD itself will
have been configured with both networking and storage suitable for use in a cluster.

See the MicroCloud documentation for more information.

How to manage a cluster

After your cluster is formed, use lxc cluster list to see a list of its members and their status:

user@host:~$ lxc cluster list +---------+----------------------------+------------------+--------------+----------------+-------------+--------+-------------------+|
NAME | URL | ROLES | ARCHITECTURE | FAILURE DOMAIN | DESCRIPTION | STATE | MESSAGE
|+---------+----------------------------+------------------+--------------+----------------+-------------+--------+-------------------+|
server1 | https://192.0.2.101:8443 | database-leader | x86_64 | default | | ONLINE |
Fully operational || | | database | | | | | |+---------+----------------------------+------------------+--------------+----------------+-------------+--------+-------------------+|
server2 | https://192.0.2.102:8443 | database-standby | aarch64 | default | | ONLINE |
Fully operational |+---------+----------------------------+------------------+--------------+----------------+-------------+--------+-------------------+|
server3 | https://192.0.2.103:8443 | database-standby | aarch64 | default | | ONLINE |
Fully operational |+---------+----------------------------+------------------+--------------+----------------+-------------+--------+-------------------+
To see more detailed information about an individual cluster member, run the following command:

2.2. How-to guides 181

https://microcloud.is/
https://canonical-microcloud.readthedocs-hosted.com/en/latest/

Canonical LXD

lxc cluster show <member_name>

To see state and usage information for a cluster member, run the following command:

lxc cluster info <member_name>

Configure your cluster

To configure your cluster, use lxc config. For example:

lxc config set cluster.max_voters 5

Keep in mind that some server configuration options are global and others are local. You can configure the global
options on any cluster member, and the changes are propagated to the other cluster members through the distributed
database. The local options are set only on the server where you configure them (or alternatively on the server that you
target with --target).

In addition to the server configuration, there are a few cluster configurations that are specific to each cluster member.
See Cluster member configuration for all available configurations.

To set these configuration options, use lxc cluster set or lxc cluster edit. For example:

lxc cluster set server1 scheduler.instance manual

Assign member roles

To add or remove a member role for a cluster member, use the lxc cluster role command. For example:

lxc cluster role add server1 event-hub

Note: You can add or remove only those roles that are not assigned automatically by LXD.

Edit the cluster member configuration

To edit all properties of a cluster member, including the member-specific configuration, the member roles, the failure
domain and the cluster groups, use the lxc cluster edit command.

Evacuate and restore cluster members

There are scenarios where you might need to empty a given cluster member of all its instances (for example, for routine
maintenance like applying system updates that require a reboot, or to perform hardware changes).

To do so, use the lxc cluster evacuate command. This command migrates all instances on the given server,
moving them to other cluster members. The evacuated cluster member is then transitioned to an “evacuated” state,
which prevents the creation of any instances on it.

You can control how each instance is moved through the cluster.evacuate instance configuration key. Instances
are shut down cleanly, respecting the boot.host_shutdown_timeout configuration key.

182 Chapter 2. Project and community

Canonical LXD

When the evacuated server is available again, use the lxc cluster restore command to move the server back into
a normal running state. This command also moves the evacuated instances back from the servers that were temporarily
holding them.

Automatic evacuation

If you set the cluster.healing_threshold configuration to a non-zero value, instances are automatically evacuated
if a cluster member goes offline.

When the evacuated server is available again, you must manually restore it.

Delete cluster members

To cleanly delete a member from the cluster, use the following command:

lxc cluster remove <member_name>

You can only cleanly delete members that are online and that don’t have any instances located on them.

Deal with offline cluster members

If a cluster member goes permanently offline, you can force-remove it from the cluster. Make sure to do so as soon as
you discover that you cannot recover the member. If you keep an offline member in your cluster, you might encounter
issues when upgrading your cluster to a newer version.

To force-remove a cluster member, enter the following command on one of the cluster members that is still online:

lxc cluster remove --force <member_name>

Caution: Force-removing a cluster member will leave the member’s database in an inconsistent state (for example,
the storage pool on the member will not be removed). As a result, it will not be possible to re-initialize LXD later,
and the server must be fully reinstalled.

Upgrade cluster members

To upgrade a cluster, you must upgrade all of its members. All members must be upgraded to the same version of LXD.

Caution: Do not attempt to upgrade your cluster if any of its members are offline. Offline members cannot be
upgraded, and your cluster will end up in a blocked state.

Also note that if you are using the snap, upgrades might happen automatically, so to prevent any issues you should
always recover or remove offline members immediately.

To upgrade a single member, simply upgrade the LXD package on the host and restart the LXD daemon. For example,
if you are using the snap then refresh to the latest version and cohort in the current channel (also reloads LXD):

sudo snap refresh lxd --cohort="+"

2.2. How-to guides 183

Canonical LXD

If the new version of the daemon has database schema or API changes, the upgraded member might transition into a
“blocked” state. In this case, the member does not serve any LXD API requests (which means that lxc commands
don’t work on that member anymore), but any running instances will continue to run.

This happens if there are other cluster members that have not been upgraded and are therefore running an older version.
Run lxc cluster list on a cluster member that is not blocked to see if any members are blocked.

As you proceed upgrading the rest of the cluster members, they will all transition to the “blocked” state. When you
upgrade the last member, the blocked members will notice that all servers are now up-to-date, and the blocked members
become operational again.

Update the cluster certificate

In a LXD cluster, the API on all servers responds with the same shared certificate, which is usually a standard self-signed
certificate with an expiry set to ten years.

The certificate is stored at /var/snap/lxd/common/lxd/cluster.crt (if you use the snap) or /var/lib/lxd/
cluster.crt (otherwise) and is the same on all cluster members.

You can replace the standard certificate with another one, for example, a valid certificate obtained through ACME
services (see TLS server certificate for more information). To do so, use the lxc cluster update-certificate
command. This command replaces the certificate on all servers in your cluster.

How to configure networks for a cluster

All members of a cluster must have identical networks defined. The only configuration keys that may differ between
networks on different members are bridge.external_interfaces, parent, bgp.ipv4.nexthop, and bgp.ipv6.
nexthop. See Member configuration for more information.

Creating additional networks is a two-step process:

1. Define and configure the new network across all cluster members. For example, for a cluster that has three
members:

lxc network create --target server1 my-network
lxc network create --target server2 my-network
lxc network create --target server3 my-network

Note: You can pass only the member-specific configuration keys bridge.external_interfaces, parent,
bgp.ipv4.nexthop and bgp.ipv6.nexthop. Passing other configuration keys results in an error.

These commands define the network, but they don’t create it. If you run lxc network list, you can see that
the network is marked as “pending”.

2. Run the following command to instantiate the network on all cluster members:

lxc network create my-network

Note: You can add configuration keys that are not member-specific to this command.

If you missed a cluster member when defining the network, or if a cluster member is down, you get an error.

Also see Create a network in a cluster.

184 Chapter 2. Project and community

Canonical LXD

Separate REST API and clustering networks

You can configure different networks for the REST API endpoint of your clients and for internal traffic between the
members of your cluster. This separation can be useful, for example, to use a virtual address for your REST API, with
DNS round robin.

To do so, you must specify different addresses for cluster.https_address (the address for internal cluster traffic)
and core.https_address (the address for the REST API):

1. Create your cluster as usual, and make sure to use the address that you want to use for internal cluster traffic as
the cluster address. This address is set as the cluster.https_address configuration.

2. After joining your members, set the core.https_address configuration to the address for the REST API. For
example:

lxc config set core.https_address 0.0.0.0:8443

Note: core.https_address is specific to the cluster member, so you can use different addresses on different
members. You can also use a wildcard address to make the member listen on multiple interfaces.

How to configure storage for a cluster

All members of a cluster must have identical storage pools. The only configuration keys that may differ between pools
on different members are source, size, zfs.pool_name, lvm.thinpool_name and lvm.vg_name. See Member
configuration for more information.

LXD creates a default local storage pool for each cluster member during initialization.

Creating additional storage pools is a two-step process:

1. Define and configure the new storage pool across all cluster members. For example, for a cluster that has three
members:

lxc storage create --target server1 data zfs source=/dev/vdb1
lxc storage create --target server2 data zfs source=/dev/vdc1
lxc storage create --target server3 data zfs source=/dev/vdb1 size=10GiB

Note: You can pass only the member-specific configuration keys source, size, zfs.pool_name, lvm.
thinpool_name and lvm.vg_name. Passing other configuration keys results in an error.

These commands define the storage pool, but they don’t create it. If you run lxc storage list, you can see
that the pool is marked as “pending”.

2. Run the following command to instantiate the storage pool on all cluster members:

lxc storage create data zfs

Note: You can add configuration keys that are not member-specific to this command.

If you missed a cluster member when defining the storage pool, or if a cluster member is down, you get an error.

Also see Create a storage pool in a cluster.

2.2. How-to guides 185

Canonical LXD

View member-specific pool configuration

Running lxc storage show <pool_name> shows the cluster-wide configuration of the storage pool.

To view the member-specific configuration, use the --target flag. For example:

lxc storage show data --target server2

Create storage volumes

For most storage drivers (all except for Ceph-based storage drivers), storage volumes are not replicated across the cluster
and exist only on the member for which they were created. Run lxc storage volume list <pool_name> to see
on which member a certain volume is located.

When creating a storage volume, use the --target flag to create a storage volume on a specific cluster member.
Without the flag, the volume is created on the cluster member on which you run the command. For example, to create
a volume on the current cluster member server1:

lxc storage volume create local vol1

To create a volume with the same name on another cluster member:

lxc storage volume create local vol1 --target server2

Different volumes can have the same name as long as they live on different cluster members. Typical examples for this
are image volumes.

You can manage storage volumes in a cluster in the same way as you do in non-clustered deployments, except that you
must pass the --target flag to your commands if more than one cluster member has a volume with the given name.
For example, to show information about the storage volumes:

lxc storage volume show local vol1 --target server1
lxc storage volume show local vol1 --target server2

How to work with a cluster:

How to manage instances in a cluster

In a cluster setup, each instance lives on one of the cluster members. You can operate each instance from any cluster
member, so you do not need to log on to the cluster member on which the instance is located.

Launch an instance on a specific cluster member

When you launch an instance, you can target it to run on a specific cluster member. You can do this from any cluster
member.

For example, to launch an instance named c1 on the cluster member server2, use the following command:

lxc launch ubuntu:24.04 c1 --target server2

You can launch instances on specific cluster members or on specific cluster groups.

If you do not specify a target, the instance is assigned to a cluster member automatically. See Automatic placement of
instances for more information.

186 Chapter 2. Project and community

Canonical LXD

Check where an instance is located

To check on which member an instance is located, list all instances in the cluster:

lxc list

The location column indicates the member on which each instance is running.

Move an instance

You can move an existing instance to another cluster member. For example, to move the instance c1 to the cluster
member server1, use the following commands:

lxc stop c1
lxc move c1 --target server1
lxc start c1

See How to move existing LXD instances between servers for more information.

To move an instance to a member of a cluster group, use the group name prefixed with @ for the --target flag. For
example:

lxc move c1 --target @group1

How to set up cluster groups

Cluster members can be assigned to Cluster groups. By default, all cluster members belong to the default group.

To create a cluster group, use the lxc cluster group create command. For example:

lxc cluster group create gpu

To assign a cluster member to one or more groups, use the lxc cluster group assign command. This command
removes the specified cluster member from all the cluster groups it currently is a member of and then adds it to the
specified group or groups.

For example, to assign server1 to only the gpu group, use the following command:

lxc cluster group assign server1 gpu

To assign server1 to the gpu group and also keep it in the default group, use the following command:

lxc cluster group assign server1 default,gpu

To add a cluster member to a specific group without removing it from other groups, use the lxc cluster group add
command.

For example, to add server1 to the gpu group and also keep it in the default group, use the following command:

lxc cluster group add server1 gpu

2.2. How-to guides 187

Canonical LXD

Launch an instance on a cluster group member

With cluster groups, you can target an instance to run on one of the members of the cluster group, instead of targeting
it to run on a specific member.

Note: scheduler.instance must be set to either all (the default) or group to allow instances to be targeted to a
cluster group.

See Automatic placement of instances for more information.

To launch an instance on a member of a cluster group, follow the instructions in Launch an instance on a specific cluster
member, but use the group name prefixed with @ for the --target flag. For example:

lxc launch ubuntu:24.04 c1 --target=@gpu

How to recover a cluster:

How to recover a cluster

It might happen that one or several members of your cluster go offline or become unreachable. In that case, no operations
are possible on this member, and neither are operations that require a state change across all members. See Offline
members and fault tolerance and Automatic evacuation for more information.

If you can bring the offline cluster members back or delete them from the cluster, operation resumes as normal. If this
is not possible, there are a few ways to recover the cluster, depending on the scenario that caused the failure. See the
following sections for details.

Note: When your cluster is in a state that needs recovery, most lxc commands do not work, because the LXD client
cannot connect to the LXD daemon.

Therefore, the commands to recover the cluster are provided directly by the LXD daemon (lxd). Run lxd cluster
--help for an overview of all available commands.

Recover from quorum loss

Every LXD cluster has a specific number of members (configured through cluster.max_voters) that serve as voting
members of the distributed database. If you permanently lose a majority of these cluster members (for example, you
have a three-member cluster and you lose two members), the cluster loses quorum and becomes unavailable. However,
if at least one database member survives, it is possible to recover the cluster.

To do so, complete the following steps:

1. Log on to any surviving member of your cluster and run the following command:

sudo lxd cluster list-database

This command shows which cluster members have one of the database roles.

2. Pick one of the listed database members that is still online as the new leader. Log on to the machine (if it differs
from the one you are already logged on to).

3. Make sure that the LXD daemon is not running on the machine. For example, if you’re using the snap:

188 Chapter 2. Project and community

Canonical LXD

sudo snap stop lxd

4. Log on to all other cluster members that are still online and stop the LXD daemon.

5. On the server that you picked as the new leader, run the following command:

sudo lxd cluster recover-from-quorum-loss

6. Start the LXD daemon again on all machines, starting with the new leader. For example, if you’re using the snap:

sudo snap start lxd

The database should now be back online. No information has been deleted from the database. All information about
the cluster members that you have lost is still there, including the metadata about their instances. This can help you
with further recovery steps if you need to re-create the lost instances.

To permanently delete the cluster members that you have lost, force-remove them. See Delete cluster members.

Recover cluster members with changed addresses

If some members of your cluster are no longer reachable, or if the cluster itself is unreachable due to a change in IP
address or listening port number, you can reconfigure the cluster.

To do so, edit the cluster configuration on each member of the cluster and change the IP addresses or listening port
numbers as required. You cannot remove any members during this process. The cluster configuration must contain the
description of the full cluster, so you must do the changes for all cluster members on all cluster members.

You can edit the Member roles of the different members, but with the following limitations:

• A cluster member that does not have a database* role cannot become a voter, because it might lack a global
database.

• At least two members must remain voters (except in the case of a two-member cluster, where one voter suffices),
or there will be no quorum.

Log on to each cluster member and complete the following steps:

1. Stop the LXD daemon. For example, if you’re using the snap:

sudo snap stop lxd

2. Run the following command:

sudo lxd cluster edit

3. Edit the YAML representation of the information that this cluster member has about the rest of the cluster:

Latest dqlite segment ID: 1234

members:
- id: 1 # Internal ID of the member (Read-only)
name: server1 # Name of the cluster member (Read-only)
address: 192.0.2.10:8443 # Last known address of the member (Writeable)
role: voter # Last known role of the member (Writeable)

- id: 2 # Internal ID of the member (Read-only)
name: server2 # Name of the cluster member (Read-only)
address: 192.0.2.11:8443 # Last known address of the member (Writeable)

(continues on next page)

2.2. How-to guides 189

Canonical LXD

(continued from previous page)

role: stand-by # Last known role of the member (Writeable)
- id: 3 # Internal ID of the member (Read-only)
name: server3 # Name of the cluster member (Read-only)
address: 192.0.2.12:8443 # Last known address of the member (Writeable)
role: spare # Last known role of the member (Writeable)

You can edit the addresses and the roles.

After doing the changes on all cluster members, start the LXD daemon on all members again. For example, if you’re
using the snap:

sudo snap start lxd

The cluster should now be fully available again with all members reporting in. No information has been deleted from
the database. All information about the cluster members and their instances is still there.

Manually alter Raft membership

In some situations, you might need to manually alter the Raft membership configuration of the cluster because of some
unexpected behavior.

For example, if you have a cluster member that was removed uncleanly, it might not show up in lxc cluster list
but still be part of the Raft configuration. To see the Raft configuration, run the following command:

lxd sql local "SELECT * FROM raft_nodes"

In that case, run the following command to remove the leftover node:

lxd cluster remove-raft-node <address>

Related topics

Explanation:

• About clustering

Reference:

• Cluster member configuration

Production setup

The following how-to guides cover common operations to prepare your LXD server setup for production.

How to check and improve the performance:

190 Chapter 2. Project and community

Canonical LXD

How to benchmark performance

The performance of your LXD server or cluster depends on a lot of different factors, ranging from the hardware, the
server configuration, the selected storage driver and the network bandwidth to the overall usage patterns.

To find the optimal configuration, you should run benchmark tests to evaluate different setups.

LXD provides a benchmarking tool for this purpose. This tool allows you to initialize or launch a number of containers
and measure the time it takes for the system to create the containers. If you run this tool repeatedly with different
configurations, you can compare the performance and evaluate which is the ideal configuration.

Get the tool

To get the lxd-benchmark tool, you can download a pre-built binary:

1. Download the bin.linux.lxd-benchmark tool (bin.linux.lxd-benchmark.aarch64 or bin.linux.
lxd-benchmark.x86_64) from the Assets section of the latest LXD release.

2. Save the binary as lxd-benchmark and make it executable (usually by running chmod u+x lxd-benchmark).

If you have go (Go) installed, you can build the tool with the following command:

go install github.com/canonical/lxd/lxd-benchmark@latest

Run the tool

Run lxd-benchmark [action] to measure the performance of your LXD setup.

The benchmarking tool uses the current LXD configuration, but users of the snap must export the LXD_DIR variable
for the configuration to be found:

export LXD_DIR=/var/snap/lxd/common/lxd

If you want to use a different project, specify it with --project.

For all actions, you can specify the number of parallel threads to use (default is to use a dynamic batch size). You can
also choose to append the results to a CSV report file and label them in a certain way.

See lxd-benchmark help for all available actions and flags.

Select an image

Before you run the benchmark, select what kind of image you want to use.

Local image
If you want to measure the time it takes to create a container and ignore the time it takes to download the image,
you should copy the image to your local image store before you run the benchmarking tool.

To do so, run a command similar to the following and specify the fingerprint (for example, 2d21da400963) of
the image when you run lxd-benchmark:

lxc image copy ubuntu:24.04 local:

You can also assign an alias to the image and specify that alias (for example, ubuntu) when you run
lxd-benchmark:

2.2. How-to guides 191

https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-benchmark.aarch64
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-benchmark.x86_64
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-benchmark.x86_64
https://github.com/canonical/lxd/releases

Canonical LXD

lxc image copy ubuntu:24.04 local: --alias ubuntu

Remote image
If you want to include the download time in the overall result, specify a remote image (for example, ubuntu:24.
04). The default image that lxd-benchmark uses is the latest Ubuntu image (ubuntu:), so if you want to use
this image, you can leave out the image name when running the tool.

Create and launch containers

Run the following command to create a number of containers:

lxd-benchmark init --count <number> <image>

Add --privileged to the command to create privileged containers.

For example:

Command Description
lxd-benchmark init --count 10
--privileged

Create ten privileged containers that use the latest Ubuntu
image.

lxd-benchmark init --count 20 --parallel
4 ubuntu-minimal:24.04

Create 20 containers that use the Ubuntu Minimal 24.04
image, using four parallel threads.

lxd-benchmark init 2d21da400963 Create one container that uses the local image with the fin-
gerprint 2d21da400963.

lxd-benchmark init --count 10 ubuntu Create ten containers that use the image with the alias
ubuntu.

If you use the init action, the benchmarking containers are created but not started. To start the containers that you
created, run the following command:

lxd-benchmark start

Alternatively, use the launch action to both create and start the containers:

lxd-benchmark launch --count 10 <image>

For this action, you can add the --freeze flag to freeze each container right after it starts. Freezing a container pauses
its processes, so this flag allows you to measure the pure launch times without interference of the processes that run in
each container after startup.

Delete containers

To delete the benchmarking containers that you created, run the following command:

lxd-benchmark delete

Note: You must delete all existing benchmarking containers before you can run a new benchmark.

192 Chapter 2. Project and community

Canonical LXD

How to increase the network bandwidth

You can increase the network bandwidth of your LXD setup by configuring the transmit queue length (txqueuelen).
This change makes sense in the following scenarios:

• You have a NIC with 1 GbE or higher on a LXD host with a lot of local activity (instance-instance connections
or host-instance connections).

• You have an internet connection with 1 GbE or higher on your LXD host.

The more instances you use, the more you can benefit from this tweak.

Note: The following instructions use a txqueuelen value of 10000, which is commonly used with 10GbE NICs, and
a net.core.netdev_max_backlog value of 182757. Depending on your network, you might need to use different
values.

In general, you should use small txqueuelen values with slow devices with a high latency, and high txqueuelen
values with devices with a low latency. For the net.core.netdev_max_backlog value, a good guideline is to use
the minimum value of the net.ipv4.tcp_mem configuration.

Increase the network bandwidth on the LXD host

Complete the following steps to increase the network bandwidth on the LXD host:

1. Increase the transmit queue length (txqueuelen) of both the real NIC and the LXD NIC (for example, lxdbr0).
You can do this temporarily for testing with the following command:

ifconfig <interface> txqueuelen 10000

To make the change permanent, add the following command to your interface configuration in /etc/network/
interfaces:

up ip link set eth0 txqueuelen 10000

2. Increase the receive queue length (net.core.netdev_max_backlog). You can do this temporarily for testing
with the following command:

echo 182757 > /proc/sys/net/core/netdev_max_backlog

To make the change permanent, add the following configuration to /etc/sysctl.conf:

net.core.netdev_max_backlog = 182757

Increase the transmit queue length on the instances

You must also change the txqueuelen value for all Ethernet interfaces in your instances. To do this, use one of the
following methods:

• Apply the same changes as described above for the LXD host.

• Set the queue.tx.length device option on the instance profile or configuration.

How to monitor your server:

2.2. How-to guides 193

Canonical LXD

How to monitor metrics

LXD collects metrics for all running instances as well as some internal metrics. These metrics cover the CPU, memory,
network, disk and process usage. They are meant to be consumed by Prometheus, and you can use Grafana to display the
metrics as graphs. See Provided metrics for lists of available metrics and Set up a Grafana dashboard for instructions
on how to display the metrics in Grafana.

In a cluster environment, LXD returns only the values for instances running on the server that is being accessed.
Therefore, you must scrape each cluster member separately.

The instance metrics are updated when calling the /1.0/metrics endpoint. To handle multiple scrapers, they are
cached for 8 seconds. Fetching metrics is a relatively expensive operation for LXD to perform, so if the impact is too
high, consider scraping at a higher than default interval.

Query the raw data

To view the raw data that LXD collects, use the lxc query command to query the /1.0/metrics endpoint:

user@host:~$ lxc query /1.0/metrics # HELP lxd_cpu_seconds_total The
total number of CPU time used in seconds.# TYPE lxd_cpu_seconds_total
counterlxd_cpu_seconds_total{cpu="0",mode="system",name="u1",project="default",
type="container"} 60.304517lxd_cpu_seconds_total{cpu="0",mode="user",name="u1",
project="default",type="container"} 145.647502lxd_cpu_seconds_total{cpu="0",
mode="iowait",name="vm",project="default",type="virtual-machine"} 4614.
78lxd_cpu_seconds_total{cpu="0",mode="irq",name="vm",project="default",
type="virtual-machine"} 0lxd_cpu_seconds_total{cpu="0",mode="idle",name="vm",
project="default",type="virtual-machine"} 412762lxd_cpu_seconds_total{cpu="0",
mode="nice",name="vm",project="default",type="virtual-machine"} 35.
06lxd_cpu_seconds_total{cpu="0",mode="softirq",name="vm",project="default",
type="virtual-machine"} 2.41lxd_cpu_seconds_total{cpu="0",mode="steal",name="vm",
project="default",type="virtual-machine"} 9.84lxd_cpu_seconds_total{cpu="0",
mode="system",name="vm",project="default",type="virtual-machine"} 340.
84lxd_cpu_seconds_total{cpu="0",mode="user",name="vm",project="default",
type="virtual-machine"} 261.25# HELP lxd_cpu_effective_total The total number of
effective CPUs.# TYPE lxd_cpu_effective_total gaugelxd_cpu_effective_total{name="u1",
project="default",type="container"} 4lxd_cpu_effective_total{name="vm",project="default",
type="virtual-machine"} 0# HELP lxd_disk_read_bytes_total The total number of bytes
read.# TYPE lxd_disk_read_bytes_total counterlxd_disk_read_bytes_total{device="loop5",
name="u1",project="default",type="container"} 2048lxd_disk_read_bytes_total{device="loop3",
name="vm",project="default",type="virtual-machine"} 353280...

Set up Prometheus

To gather and store the raw metrics, you should set up Prometheus. You can then configure it to scrape the metrics
through the metrics API endpoint.

194 Chapter 2. Project and community

https://prometheus.io/

Canonical LXD

Expose the metrics endpoint

To expose the /1.0/metrics API endpoint, you must set the address on which it should be available.

To do so, you can set either the core.metrics_address server configuration option or the core.https_address
server configuration option. The core.metrics_address option is intended for metrics only, while the core.
https_address option exposes the full API. So if you want to use a different address for the metrics API than
for the full API, or if you want to expose only the metrics endpoint but not the full API, you should set the core.
metrics_address option.

For example, to expose the full API on the 8443 port, enter the following command:

lxc config set core.https_address ":8443"

To expose only the metrics API endpoint on the 8444 port, enter the following command:

lxc config set core.metrics_address ":8444"

To expose only the metrics API endpoint on a specific IP address and port, enter a command similar to the following:

lxc config set core.metrics_address "192.0.2.101:8444"

Add a metrics certificate to LXD

Authentication for the /1.0/metrics API endpoint is done through a metrics certificate. A metrics certificate (type
metrics) is different from a client certificate (type client) in that it is meant for metrics only and doesn’t work for
interaction with instances or any other LXD entities.

To create a certificate, enter the following command:

openssl req -x509 -newkey ec -pkeyopt ec_paramgen_curve:secp384r1 -sha384 -keyout␣
→˓metrics.key -nodes -out metrics.crt -days 3650 -subj "/CN=metrics.local"

Note: The command requires OpenSSL version 1.1.0 or later.

Then add this certificate to the list of trusted clients, specifying the type as metrics:

lxc config trust add metrics.crt --type=metrics

If requiring TLS client authentication isn’t possible in your environment, the /1.0/metricsAPI endpoint can be made
available to unauthenticated clients. While not recommended, this might be acceptable if you have other controls in
place to restrict who can reach that API endpoint. To disable the authentication on the metrics API:

Disable authentication (NOT RECOMMENDED)
lxc config set core.metrics_authentication false

2.2. How-to guides 195

Canonical LXD

Make the metrics certificate available for Prometheus

If you run Prometheus on a different machine than your LXD server, you must copy the required certificates to the
Prometheus machine:

• The metrics certificate (metrics.crt) and key (metrics.key) that you created

• The LXD server certificate (server.crt) located in /var/snap/lxd/common/lxd/ (if you are using the snap)
or /var/lib/lxd/ (otherwise)

Copy these files into a tls directory that is accessible to Prometheus, for example, /var/snap/prometheus/common/
tls (if you are using the snap) or /etc/prometheus/tls (otherwise). See the following example commands:

Create tls directory
mkdir /var/snap/prometheus/common/tls

Copy newly created certificate and key to tls directory
cp metrics.crt metrics.key /var/snap/prometheus/common/tls/

Copy LXD server certificate to tls directory
cp /var/snap/lxd/common/lxd/server.crt /var/snap/prometheus/common/tls/

If you are not using the snap, you must also make sure that Prometheus can read these files (usually, Prometheus is run
as user prometheus):

chown -R prometheus:prometheus /etc/prometheus/tls

Configure Prometheus to scrape from LXD

Finally, you must add LXD as a target to the Prometheus configuration.

To do so, edit /var/snap/prometheus/current/prometheus.yml (if you are using the snap) or /etc/
prometheus/prometheus.yaml (otherwise) and add a job for LXD.

Here’s what the configuration needs to look like:

global:
How frequently to scrape targets by default. The Prometheus default value is 1m.
scrape_interval: 15s

scrape_configs:
- job_name: lxd
metrics_path: '/1.0/metrics'
scheme: 'https'
static_configs:
- targets: ['foo.example.com:8443']

tls_config:
ca_file: 'tls/server.crt'
cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
XXX: server_name is required if the target name
is not covered by the certificate (not in the SAN list)
server_name: 'foo'

196 Chapter 2. Project and community

Canonical LXD

Note:

• By default, the Grafana Prometheus data source assumes the scrape_interval to be 15 seconds. If you de-
cide to use a different scrape_interval value, you must change it in both the Prometheus configuration and
the Grafana Prometheus data source configuration. Otherwise, the Grafana $__rate_interval value will be
calculated incorrectly, which might cause a no data response in queries that use it.

• The server_name must be specified if the LXD server certificate does not contain the same host name as used
in the targets list. To verify this, open server.crt and check the Subject Alternative Name (SAN) section.

For example, assume that server.crt has the following content:

user@host:~$ openssl x509 -noout -text -in /var/snap/prometheus/common/tls/
server.crt ... X509v3 Subject Alternative Name: DNS:foo, IP Address:127.0.0.1, IP
Address:0:0:0:0:0:0:0:1... Since the Subject Alternative Name (SAN) list doesn’t include the host name
provided in the targets list (foo.example.com), you must override the name used for comparison using the
server_name directive.

Here is an example of a prometheus.yml configuration where multiple jobs are used to scrape the metrics of multiple
LXD servers:

global:
How frequently to scrape targets by default. The Prometheus default value is 1m.
scrape_interval: 15s

scrape_configs:
abydos, langara and orilla are part of a single cluster (called `hdc` here)
initially bootstrapped by abydos which is why all 3 targets
share the same `ca_file` and `server_name`. That `ca_file` corresponds
to the `/var/snap/lxd/common/lxd/cluster.crt` file found on every member of
the LXD cluster.
#
Note: the `project` param is are provided when not using the `default` project
or when multiple projects are used.
#
Note: each member of the cluster only provide metrics for instances it runs locally
this is why the `lxd-hdc` cluster lists 3 targets
- job_name: "lxd-hdc"
metrics_path: '/1.0/metrics'
params:
project: ['jdoe']

scheme: 'https'
static_configs:
- targets:
- 'abydos.hosts.example.net:8444'
- 'langara.hosts.example.net:8444'
- 'orilla.hosts.example.net:8444'

tls_config:
ca_file: 'tls/abydos.crt'
cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
server_name: 'abydos'

jupiter, mars and saturn are 3 standalone LXD servers.
(continues on next page)

2.2. How-to guides 197

Canonical LXD

(continued from previous page)

Note: only the `default` project is used on them, so it is not specified.
- job_name: "lxd-jupiter"
metrics_path: '/1.0/metrics'
scheme: 'https'
static_configs:
- targets: ['jupiter.example.com:9101']

tls_config:
ca_file: 'tls/jupiter.crt'
cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
server_name: 'jupiter'

- job_name: "lxd-mars"
metrics_path: '/1.0/metrics'
scheme: 'https'
static_configs:
- targets: ['mars.example.com:9101']

tls_config:
ca_file: 'tls/mars.crt'
cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
server_name: 'mars'

- job_name: "lxd-saturn"
metrics_path: '/1.0/metrics'
scheme: 'https'
static_configs:
- targets: ['saturn.example.com:9101']

tls_config:
ca_file: 'tls/saturn.crt'
cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
server_name: 'saturn'

After editing the configuration, restart Prometheus (snap restart prometheus if using the snap, otherwise
systemctl restart prometheus) to start scraping.

How to send logs to Loki

LXD publishes information about its activity in the form of events. The lxc monitor command allows you to view
this information in your shell. There are two categories of LXD events: logs and life cycle. The lxc monitor
--type=logging --pretty command will filter and display log type events like activity of the raft cluster, for in-
stance, while lxc monitor --type=lifecycle --pretty will only display life cycle events like instances starting
or stopping.

In a production environment, you might want to keep a log of these events in a dedicated system. Loki is one such
system, and LXD provides a configuration option to forward its event stream to Loki.

198 Chapter 2. Project and community

https://grafana.com/oss/loki/

Canonical LXD

Configure LXD to send logs

See the Loki documentation for instructions on installing it:

• Install Loki

Once you have a Loki server up and running, you can instruct LXD to send logs to your Loki server by setting the
following option:

lxc config set loki.api.url=http://<loki_server_IP>:3100

Query Loki logs

Loki logs are typically viewed/queried using Grafana but Loki provides a command line utility called LogCLI allowing
to query logs from your Loki server without the need for Grafana.

See the LogCLI documentation for instructions on installing it:

• Install LogCLI

With your LogCLI utility up and running, first configure it to query the server you have installed before by setting the
appropriate environment variable:

export LOKI_ADDR=http://<loki_server_IP>:3100

You can then query the Loki server to validate that your LXD events are getting through. LXD events all have the app
key set to lxd so you can use the following logcli command to see LXD logs in Loki.

user@host:~$ logcli query -t '{app="lxd"}' 2024-02-14T21:31:20Z {app="lxd",
instance="node3", type="logging"} level="info" Updating instance types2024-02-14T21:31:20Z
{app="lxd", instance="node3", type="logging"} level="info" Expiring log
files2024-02-14T21:31:20Z {app="lxd", instance="node3", type="logging"}
level="info" Pruning resolved warnings2024-02-14T21:31:20Z {app="lxd",
instance="node3", type="logging"} level="info" Updating images2024-02-14T21:31:20Z
{app="lxd", instance="node3", type="logging"} level="info" Done pruning resolved
warnings2024-02-14T21:31:20Z {app="lxd", instance="node3", type="logging"} level="info"
Done expiring log files2024-02-14T21:31:20Z {app="lxd", instance="node3", type="logging"}
level="info" Done updating images...

Add labels

LXD pushes log entries with a set of predefined labels like app, project, instance and name. To see all existing
labels, you can use logcli labels. Some log entries might contain information in their message that you would like
to access as if they were keys. In the example below, you might want to have requester-username as a key to query.

2024-02-15T22:52:25Z {app="lxd", instance="node3", location="node3", name="c1", project=
→˓"default", type="lifecycle"} requester-username="ubuntu" action="instance-started"␣
→˓source="/1.0/instances/c1" requester-address="@" requester-protocol="unix" instance-
→˓started
...

Use the following command to instruct LXD to move all occurrences of requester-username="<user>" into the
label section:

2.2. How-to guides 199

https://grafana.com/docs/loki/latest/setup/install/
https://grafana.com/docs/loki/latest/query/logcli/

Canonical LXD

lxc config set loki.labels="requester-username"

This will transform the above log entry into:

2024-02-09T21:26:32Z {app="lxd", instance="node3", location="node3", name="c2", project=
→˓"default", requester_username="ubuntu", type="lifecycle"} action="instance-started"␣
→˓source="/1.0/instances/c2" requester-address="@" requester-protocol="unix" instance-
→˓started
...

Note the replacement of - by _, as - cannot be used in keys. As requested_username is now a key, you can query
Loki using it like this:

logcli query -t '{requester_username="ubuntu"}'

Set up a Grafana dashboard

To visualize the metrics and logs data, set up Grafana. LXD provides a Grafana dashboard that is configured to display
the LXD metrics scraped by Prometheus and events sent to Loki.

Note: The dashboard requires Grafana 8.4 or later.

See the Grafana documentation for instructions on installing and signing in:

• Install Grafana

• Sign in to Grafana

Complete the following steps to import the LXD dashboard:

1. Configure Prometheus as a data source:

1. From the Basic (quick setup) panel, choose Data Sources.

2. Select Prometheus.

200 Chapter 2. Project and community

https://grafana.com/
https://grafana.com/grafana/dashboards/19131-lxd/
https://grafana.com/docs/grafana/latest/setup-grafana/installation/
https://grafana.com/docs/grafana/latest/setup-grafana/sign-in-to-grafana/
https://grafana.com/grafana/dashboards/19131-lxd/

Canonical LXD

3. In the URL field, enter the address of your Prometheus installation (http://localhost:9090/ if running
Prometheus locally).

2.2. How-to guides 201

Canonical LXD

4. Keep the default configuration for the other fields and click Save & test.

2. Configure Loki as another data source:

1. Select Loki.

2. In the URL field, enter the address of your Loki installation (http://localhost:3100/ if running Loki
locally).

202 Chapter 2. Project and community

Canonical LXD

3. Keep the default configuration for the other fields and click Save & test.

3. Import the LXD dashboard:

1. Go back to the Basic (quick setup) panel and now choose Dashboards > Import a dashboard.

2. In the Find and import dashboards field, enter the dashboard ID 19131.

3. Click Load.

4. In the LXD drop-down menu, select the Prometheus and Loki data sources that you configured.

2.2. How-to guides 203

Canonical LXD

5. Click Import.

You should now see the LXD dashboard. You can select the project and filter by instances.

204 Chapter 2. Project and community

Canonical LXD

At the bottom of the page, you can see data for each instance.

Note: For proper operation of the Loki part of the dashboard, you need to ensure that the instance field matches the
Prometheus job name. You can change the instance field through the loki.instance configuration key.

How to back up your server and recover from failure:

2.2. How-to guides 205

Canonical LXD

How to back up a LXD server

In a production setup, you should always back up the contents of your LXD server.

The LXD server contains a variety of different entities, and when choosing your backup strategy, you must decide
which of these entities you want to back up and how frequently you want to save them.

What to back up

The various contents of your LXD server are located on your file system and, in addition, recorded in the LXD database.
Therefore, only backing up the database or only backing up the files on disk does not give you a full functional backup.

Your LXD server contains the following entities:

• Instances (database records and file systems)

• Images (database records, image files, and file systems)

• Networks (database records and state files)

• Profiles (database records)

• Storage volumes (database records and file systems)

Consider which of these you need to back up. For example, if you don’t use custom images, you don’t need to back
up your images since they are available on the image server. If you use only the default profile, or only the standard
lxdbr0 network bridge, you might not need to worry about backing them up, because they can easily be re-created.

Full backup

To create a full backup of all contents of your LXD server, back up the /var/snap/lxd/common/lxd (for snap users)
or /var/lib/lxd (otherwise) directory.

This directory contains your local storage, the LXD database, and your configuration. It does not contain separate
storage devices, however. That means that whether the directory also contains the data of your instances depends on
the storage drivers that you use.

Important: If your LXD server uses any external storage (for example, LVM volume groups, ZFS zpools, or any other
resource that isn’t directly self-contained to LXD), you must back this up separately.

See How to back up custom storage volumes for instructions.

To back up your data, create a tarball of /var/snap/lxd/common/lxd (for snap users) or /var/lib/lxd (otherwise).
If you are not using the snap package and your source system has a /etc/subuid and /etc/subgid file, you should
also back up these files. Restoring them avoids needless shifting of instance file systems.

To restore your data, complete the following steps:

1. Stop LXD on your server (for example, with sudo snap stop lxd).

2. Delete the directory (/var/snap/lxd/common/lxd for snap users or /var/lib/lxd otherwise).

3. Restore the directory from the backup.

4. Delete and restore any external storage devices.

5. If you are not using the snap, restore the /etc/subuid and /etc/subgid files.

6. Restart LXD (for example, with sudo snap start lxd or by restarting your machine).

206 Chapter 2. Project and community

Canonical LXD

Export a snapshot

If you are using the LXD snap, you can also create a full backup by exporting a snapshot of the snap:

1. Create a snapshot:

sudo snap save lxd

Note down the ID of the snapshot (shown in the Set column).

2. Export the snapshot to a file:

sudo snap export-snapshot <ID> <output_file>

See Snapshots in the Snapcraft documentation for details.

Partial backup

If you decide to only back up specific entities, you have different options for how to do this. You should consider doing
some of these partial backups even if you are doing full backups in addition. It can be easier and safer to, for example,
restore a single instance or reconfigure a profile than to restore the full LXD server.

Back up instances and volumes

Instances and storage volumes are backed up in a very similar way (because when backing up an instance, you basically
back up its instance volume, see Storage volume types).

See How to back up instances and How to back up custom storage volumes for detailed information. The following
sections give a brief summary of the options you have for backing up instances and volumes.

Secondary backup LXD server

LXD supports copying and moving instances and storage volumes between two hosts. See How to move existing LXD
instances between servers and How to move or copy storage volumes for instructions.

So if you have a spare server, you can regularly copy your instances and storage volumes to that secondary server to
back them up. Use the --refresh flag to update the copies (see Optimized volume transfer for the benefits).

If needed, you can either switch over to the secondary server or copy your instances or storage volumes back from it.

If you use the secondary server as a pure storage server, it doesn’t need to be as powerful as your main LXD server.

Export tarballs

You can use the export command to export instances and volumes to a backup tarball. By default, those tarballs
include all snapshots.

You can use an optimized export option, which is usually quicker and results in a smaller size of the tarball. However,
you must then use the same storage driver when restoring the backup tarball.

See Use export files for instance backup and Use export files for volume backup for instructions.

2.2. How-to guides 207

https://snapcraft.io/docs/snapshots

Canonical LXD

Snapshots

Snapshots save the state of an instance or volume at a specific point in time. However, they are stored in the same
storage pool and are therefore likely to be lost if the original data is deleted or lost. This means that while snapshots
are very quick and easy to create and restore, they don’t constitute a secure backup.

See Use snapshots for instance backup and Use snapshots for volume backup for more information.

Back up the database

While there is no trivial method to restore the contents of the LXD database, it can still be very convenient to keep a
backup of its content. Such a backup can make it much easier to re-create, for example, networks or profiles if the need
arises.

Use the following command to dump the content of the local database to a file:

lxd sql local .dump > <output_file>

Use the following command to dump the content of the global database to a file:

lxd sql global .dump > <output_file>

You should include these two commands in your regular LXD backup.

How to recover instances in case of disaster

LXD provides a tool for disaster recovery in case the LXD database is corrupted or otherwise lost.

The tool scans the storage pools for instances and imports the instances that it finds back into the database. You need
to re-create the required entities that are missing (usually profiles, projects, and networks).

Important: This tool should be used for disaster recovery only. Do not rely on this tool as an alternative to proper
backups; you will lose data like profiles, network definitions, or server configuration.

The tool must be run interactively and cannot be used in automated scripts.

The tool is available through the lxd recover command (note the lxd command rather than the normal lxc com-
mand).

Recovery process

When you run the tool, it scans all storage pools that still exist in the database, looking for missing volumes that can
be recovered. You can also specify the details of any unknown storage pools (those that exist on disk but do not exist
in the database), and the tool attempts to scan those too.

After mounting the specified storage pools (if not already mounted), the tool scans them for unknown volumes that
look like they are associated with LXD. LXD maintains a backup.yaml file in each instance’s storage volume, which
contains all necessary information to recover a given instance (including instance configuration, attached devices, stor-
age volume, and pool configuration). This data can be used to rebuild the instance, storage volume, and storage pool
database records. Before recovering an instance, the tool performs some consistency checks to compare what is in the
backup.yaml file with what is actually on disk (such as matching snapshots). If all checks out, the database records
are re-created.

208 Chapter 2. Project and community

Canonical LXD

If the storage pool database record also needs to be created, the tool uses the information from an instance’s backup.
yaml file as the basis of its configuration, rather than what the user provided during the discovery phase. However, if
this information is not available, the tool falls back to restoring the pool’s database record with what was provided by
the user.

The tool asks you to re-create missing entities like networks. However, the tool does not know how the instance was
configured. That means that if some configuration was specified through the default profile, you must also re-add the
required configuration to the profile. For example, if the lxdbr0 bridge is used in an instance and you are prompted to
re-create it, you must add it back to the default profile so that the recovered instance uses it.

Example

This is how a recovery process could look:

user@host:~$ lxd recover This LXD server currently has the following storage
pools:Would you like to recover another storage pool? (yes/no) [default=no]: yesName
of the storage pool: defaultName of the storage backend (btrfs, ceph, cephfs,
cephobject, dir, lvm, zfs): zfsSource of the storage pool (block device, volume group,
dataset, path, ... as applicable): /var/snap/lxd/common/lxd/storage-pools/default/
containersAdditional storage pool configuration property (KEY=VALUE, empty when done):
zfs.pool_name=defaultAdditional storage pool configuration property (KEY=VALUE, empty
when done):Would you like to recover another storage pool? (yes/no) [default=no]:The
recovery process will be scanning the following storage pools: - NEW: "default"
(backend="zfs", source="/var/snap/lxd/common/lxd/storage-pools/default/containers")Would
you like to continue with scanning for lost volumes? (yes/no) [default=yes]: yesScanning
for unknown volumes...The following unknown volumes have been found: - Container "u1"
on pool "default" in project "default" (includes 0 snapshots) - Container "u2" on pool
"default" in project "default" (includes 0 snapshots)You are currently missing the
following: - Network "lxdbr0" in project "default"Please create those missing entries
and then hit ENTER: ^Z[1]+ Stopped lxd recover user@host:~$ lxc network create lxdbr0
Network lxdbr0 created user@host:~$ fg lxd recover The following unknown volumes have been
found: - Container "u1" on pool "default" in project "default" (includes 0 snapshots)
- Container "u2" on pool "default" in project "default" (includes 0 snapshots)Would you
like those to be recovered? (yes/no) [default=no]: yesStarting recovery... user@host:~$
lxc list +------+---------+------+------+-----------+-----------+| NAME | STATE | IPV4 |
IPV6 | TYPE | SNAPSHOTS |+------+---------+------+------+-----------+-----------+| u1 |
STOPPED | | | CONTAINER | 0 |+------+---------+------+------+-----------+-----------+| u2
| STOPPED | | | CONTAINER | 0 |+------+---------+------+------+-----------+-----------+
user@host:~$ lxc profile device add default eth0 nic network=lxdbr0 name=eth0
Device eth0 added to default user@host:~$ lxc start u1 user@host:~$ lxc list
+------+---------+-------------------+---+-----------+-----------+|
NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |+------+---------+-------------------+---+-----------+-----------+|
u1 | RUNNING | 192.0.2.49 (eth0) | 2001:db8:8b6:abfe:216:3eff:fe82:918e (eth0) |
CONTAINER | 0 |+------+---------+-------------------+---+-----------+-----------+|
u2 | STOPPED | | | CONTAINER | 0 |+------+---------+-------------------+---+-----------+-----------+

2.2. How-to guides 209

Canonical LXD

Related topics

Explanation:

• About performance tuning

Reference:

• Provided metrics

• Server settings for a LXD production setup

2.3 Explanation

The explanatory guides in this section introduce you to the concepts used in LXD and help you understand how things
fit together.

2.3.1 Important concepts

Before you start working with LXD, you need to be familiar with some important concepts about LXD and the instance
types it provides.

About lxd and lxc

LXD is frequently confused with LXC, and the fact that LXD provides both a lxd command and a lxc command
doesn’t make things easier.

LXD vs. LXC

LXD and LXC are two distinct implementations of Linux containers.

LXC is a low-level user space interface for the Linux kernel containment features. It consists of tools (lxc-* com-
mands), templates, and library and language bindings.

LXD is a more intuitive and user-friendly tool aimed at making it easy to work with Linux containers. It is an alternative
to LXC’s tools and distribution template system, with the added features that come from being controllable over the
network. Under the hood, LXD uses LXC to create and manage the containers.

LXD provides a superset of the features that LXC supports, and it is easier to use. Therefore, if you are unsure which
of the tools to use, you should go for LXD. LXC should be seen as an alternative for experienced users that want to run
Linux containers on distributions that don’t support LXD.

LXD daemon

The central part of LXD is its daemon. It runs persistently in the background, manages the instances, and handles all
requests. The daemon provides a REST API that you can access directly or through a client (for example, the default
command-line client that comes with LXD).

See Daemon behavior for more information about the LXD daemon.

210 Chapter 2. Project and community

https://linuxcontainers.org/lxc/introduction/
https://canonical.com/lxd

Canonical LXD

lxd vs. lxc

To control LXD, you typically use two different commands: lxd and lxc.

LXD daemon
The lxd command controls the LXD daemon. Since the daemon is typically started automatically, you hardly
ever need to use the lxd command. An exception is the lxd init subcommand that you run to initialize LXD.

There are also some subcommands for debugging and administrating the daemon, but they are intended for
advanced users only. See lxd --help for an overview of all available subcommands.

LXD client
The lxc command is a command-line client for LXD, which you can use to interact with the LXD daemon. You
use the lxc command to manage your instances, the server settings, and overall the entities you create in LXD.
See lxc --help for an overview of all available subcommands.

The lxc tool is not the only client you can use to interact with the LXD daemon. You can also use the API, the
UI, or a custom LXD client.

About containers and VMs

LXD provides support for two different types of instances: system containers and virtual machines.

When running a system container, LXD simulates a virtual version of a full operating system. To do this, it uses the
functionality provided by the kernel running on the host system.

When running a virtual machine, LXD uses the hardware of the host system, but the kernel is provided by the virtual
machine. Therefore, virtual machines can be used to run, for example, a different operating system.

Application containers vs. system containers

Application containers (as provided by, for example, Docker) package a single process or application. System contain-
ers, on the other hand, simulate a full operating system and let you run multiple processes at the same time.

Therefore, application containers are suitable to provide separate components, while system containers provide a full
solution of libraries, applications, databases and so on. In addition, you can use system containers to create different
user spaces and isolate all processes belonging to each user space, which is not what application containers are intended
for.

Virtual machines vs. system containers

Virtual machines emulate a physical machine, using the hardware of the host system from a full and completely isolated
operating system. System containers, on the other hand, use the OS kernel of the host system instead of creating their
own environment. If you run several system containers, they all share the same kernel, which makes them faster and
more light-weight than virtual machines.

With LXD, you can create both system containers and virtual machines. You should use a system container to leverage
the smaller size and increased performance if all functionality you require is compatible with the kernel of your host
operating system. If you need functionality that is not supported by the OS kernel of your host system or you want to
run a completely different OS, use a virtual machine.

2.3. Explanation 211

Canonical LXD

Instance types in LXD

LXD supports the following types of instances:

Containers
Containers are the default type for instances. They are currently the most complete implementation of LXD
instances and support more features than virtual machines.

Containers are implemented through the use of liblxc (LXC).

Virtual machines
Virtual machines (VMs) are natively supported since version 4.0 of LXD. Thanks to a built-in agent, they can
be used almost like containers.

LXD uses qemu to provide the VM functionality.

Note: Currently, virtual machines support fewer features than containers, but the plan is to support the same set
of features for both instance types in the future.

To see which features are available for virtual machines, check the condition field in the Instance options docu-
mentation.

Related topics

How-to guides:

• Instances

Reference:

• Container runtime environment

• Instance configuration

2.3.2 Entities in LXD

When working with LXD, you should have a basic understanding of the different entities that are used in LXD. See the
How-to guides for instructions on how to work with these entities, and the following guides to understand the concepts
behind them.

About images

LXD uses an image-based workflow. Each instance is based on an image, which contains a basic operating system (for
example, a Linux distribution) and some LXD-related information.

Images are available from remote image stores (see Remote image servers for an overview), but you can also create
your own images, either based on an existing instances or a rootfs image.

You can copy images from remote servers to your local image store, or copy local images to remote servers. You can
also use a local image to create a remote instance.

Each image is identified by a fingerprint (SHA256). To make it easier to manage images, LXD allows defining one or
more aliases for each image.

212 Chapter 2. Project and community

Canonical LXD

Caching

When you create an instance using a remote image, LXD downloads the image and caches it locally. It is stored in the
local image store with the cached flag set. The image is kept locally as a private image until either:

• The image has not been used to create a new instance for the number of days set in images.
remote_cache_expiry.

• The image’s expiry date (one of the image properties; see Edit image properties for information on how to change
it) is reached.

LXD keeps track of the image usage by updating the last_used_at image property every time a new instance is
spawned from the image.

Auto-update

LXD can automatically keep images that come from a remote server up to date.

Note: Only images that are requested through an alias can be updated. If you request an image through a fingerprint,
you request an exact image version.

Whether auto-update is enabled for an image depends on how the image was downloaded:

• If the image was downloaded and cached when creating an instance, it is automatically updated if images.
auto_update_cached was set to true (the default) at download time.

• If the image was copied from a remote server using the lxc image copy command, it is automatically updated
only if the --auto-update flag was specified.

You can change this behavior for an image by editing the auto_update property.

On startup and after every images.auto_update_interval (by default, every six hours), the LXD daemon checks
for more recent versions of all the images in the store that are marked to be auto-updated and have a recorded source
server.

When a new version of an image is found, it is downloaded into the image store. Then any aliases pointing to the old
image are moved to the new one, and the old image is removed from the store.

To not delay instance creation, LXD does not check if a new version is available when creating an instance from a
cached image. This means that the instance might use an older version of an image for the new instance until the image
is updated at the next update interval.

Special image properties

Image properties that begin with the prefix requirements (for example, requirements.XYZ) are used by LXD
to determine the compatibility of the host system and the instance that is created based on the image. If these are
incompatible, LXD does not start the instance.

The following requirements are supported:

2.3. Explanation 213

Canonical LXD

Key Type De-
fault

Description

requirements.
secureboot

string - If set to false, indicates that the image cannot boot under secure
boot.

requirements.cgroup string - If set to v1, indicates that the image requires the host to run cgroup
v1.

requirements.nesting bool - If set to true, indicates that the image cannot work without nesting
enabled.

Related topics

How-to guides:

• Images

Reference:

• Image format

• Remote image servers

About storage pools, volumes and buckets

LXD stores its data in storage pools, divided into storage volumes of different content types (like images or instances).
You could think of a storage pool as the disk that is used to store data, while storage volumes are different partitions on
this disk that are used for specific purposes.

In addition to storage volumes, there are storage buckets, which use the Amazon S3 (Simple Storage Service) protocol.
Like storage volumes, storage buckets are part of a storage pool.

Storage pools

During initialization, LXD prompts you to create a first storage pool. If required, you can create additional storage
pools later (see Create a storage pool).

Each storage pool uses a storage driver. The following storage drivers are supported:

• Directory - dir

• Btrfs - btrfs

• LVM - lvm

• ZFS - zfs

• Ceph RBD - ceph

• CephFS - cephfs

• Ceph Object - cephobject

See the following how-to guides for additional information:

• How to manage storage pools

• How to create an instance in a specific storage pool

214 Chapter 2. Project and community

https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html

Canonical LXD

Data storage location

Where the LXD data is stored depends on the configuration and the selected storage driver. Depending on the storage
driver that is used, LXD can either share the file system with its host or keep its data separate.

Storage location Directory Btrfs LVM ZFS Ceph (all)
Shared with the host ✓ ✓ - ✓ -
Dedicated disk/partition - ✓ ✓ ✓ -
Loop disk - ✓ ✓ ✓ -
Remote storage - - - - ✓

Shared with the host

Sharing the file system with the host is usually the most space-efficient way to run LXD. In most cases, it is also the
easiest to manage.

This option is supported for the dir driver, the btrfs driver (if the host is Btrfs and you point LXD to a dedicated
sub-volume) and the zfs driver (if the host is ZFS and you point LXD to a dedicated dataset on your zpool).

Dedicated disk or partition

Having LXD use an empty partition on your main disk or a full dedicated disk keeps its storage completely independent
from the host.

This option is supported for the btrfs driver, the lvm driver and the zfs driver.

Loop disk

LXD can create a loop file on your main drive and have the selected storage driver use that. This method is functionally
similar to using a disk or partition, but it uses a large file on your main drive instead. This means that every write must
go through the storage driver and your main drive’s file system, which leads to decreased performance.

The loop files reside in /var/snap/lxd/common/lxd/disks/ if you are using the snap, or in /var/lib/lxd/
disks/ otherwise.

Loop files usually cannot be shrunk. They will grow up to the configured limit, but deleting instances or images will
not cause the file to shrink. You can increase their size though; see Resize a storage pool.

Remote storage

The ceph, cephfs and cephobject drivers store the data in a completely independent Ceph storage cluster that must
be set up separately.

2.3. Explanation 215

Canonical LXD

Default storage pool

There is no concept of a default storage pool in LXD.

When you create a storage volume, you must specify the storage pool to use.

When LXD automatically creates a storage volume during instance creation, it uses the storage pool that is configured
for the instance. This configuration can be set in either of the following ways:

• Directly on an instance: lxc launch <image> <instance_name> --storage <storage_pool>

• Through a profile: lxc profile device add <profile_name> root disk path=/
pool=<storage_pool> and lxc launch <image> <instance_name> --profile <profile_name>

• Through the default profile

In a profile, the storage pool to use is defined by the pool for the root disk device:

root:
type: disk
path: /
pool: default

In the default profile, this pool is set to the storage pool that was created during initialization.

Storage volumes

When you create an instance, LXD automatically creates the required storage volumes for it. You can create additional
storage volumes.

See the following how-to guides for additional information:

• How to manage storage volumes

• How to move or copy storage volumes

• How to back up custom storage volumes

Storage volume types

Storage volumes can be of the following types:

container/virtual-machine
LXD automatically creates one of these storage volumes when you launch an instance. It is used as the root disk
for the instance, and it is destroyed when the instance is deleted.

This storage volume is created in the storage pool that is specified in the profile used when launching the instance
(or the default profile, if no profile is specified). The storage pool can be explicitly specified by providing the
--storage flag to the launch command.

image
LXD automatically creates one of these storage volumes when it unpacks an image to launch one or more in-
stances from it. You can delete it after the instance has been created. If you do not delete it manually, it is deleted
automatically ten days after it was last used to launch an instance.

The image storage volume is created in the same storage pool as the instance storage volume, and only for storage
pools that use a storage driver that supports optimized image storage.

216 Chapter 2. Project and community

Canonical LXD

custom
You can add one or more custom storage volumes to hold data that you want to store separately from your
instances. Custom storage volumes can be shared between instances, and they are retained until you delete them.

You can also use custom storage volumes to hold your backups or images.

You must specify the storage pool for the custom volume when you create it.

Content types

Each storage volume uses one of the following content types:

filesystem
This content type is used for containers and container images. It is the default content type for custom storage
volumes.

Custom storage volumes of content type filesystem can be attached to both containers and virtual machines,
and they can be shared between instances.

block
This content type is used for virtual machines and virtual machine images. You can create a custom storage
volume of type block by using the --type=block flag.

Custom storage volumes of content type block can only be attached to virtual machines. They should not be
shared between instances, because simultaneous access can lead to data corruption.

iso
This content type is used for custom ISO volumes. A custom storage volume of type iso can only be created by
importing an ISO file using lxc storage volume import.

Custom storage volumes of content type iso can only be attached to virtual machines. They can be attached to
multiple machines simultaneously as they are always read-only.

Storage buckets

Storage buckets provide object storage functionality via the S3 protocol.

They can be used in a way that is similar to custom storage volumes. However, unlike storage volumes, storage buckets
are not attached to an instance. Instead, applications can access a storage bucket directly using its URL.

Each storage bucket is assigned one or more access keys, which the applications must use to access it.

Storage buckets can be located on local storage (with dir, btrfs, lvm or zfs pools) or on remote storage (with
cephobject pools).

To enable storage buckets for local storage pool drivers and allow applications to access the buckets via the S3 protocol,
you must configure the core.storage_buckets_address server setting.

See the following how-to guide for additional information:

• How to manage storage buckets and keys

2.3. Explanation 217

Canonical LXD

Related topics

How-to guides:

• Storage

Reference:

• Storage drivers

About networking

There are different ways to connect your instances to the Internet. The easiest method is to have LXD create a network
bridge during initialization and use this bridge for all instances, but LXD supports many different and advanced setups
for networking.

Network devices

To grant direct network access to an instance, you must assign it at least one network device, also called NIC. You can
configure the network device in one of the following ways:

• Use the default network bridge that you set up during the LXD initialization. Check the default profile to see the
default configuration:

lxc profile show default

This method is used if you do not specify a network device for your instance.

• Use an existing network interface by adding it as a network device to your instance. This network interface is
outside of LXD control. Therefore, you must specify all information that LXD needs to use the network interface.

Use a command similar to the following:

lxc config device add <instance_name> <device_name> nic nictype=<nic_type> ...

See Type: nic for a list of available NIC types and their configuration properties.

For example, you could add a pre-existing Linux bridge (br0) with the following command:

lxc config device add <instance_name> eth0 nic nictype=bridged parent=br0

• Create a managed network and add it as a network device to your instance. With this method, LXD has all
required information about the configured network, and you can directly attach it to your instance as a device:

lxc network attach <network_name> <instance_name> <device_name>

See Attach a network to an instance for more information.

218 Chapter 2. Project and community

Canonical LXD

Managed networks

Managed networks in LXD are created and configured with the lxc network [create|edit|set] command.

Depending on the network type, LXD either fully controls the network or just manages an external network interface.

Note that not all NIC types are supported as network types. LXD can only set up some of the types as managed networks.

Fully controlled networks

Fully controlled networks create network interfaces and provide most functionality, including, for example, the ability
to do IP management.

LXD supports the following network types:

Bridge network
A network bridge creates a virtual L2 Ethernet switch that instance NICs can connect to, making it possible for
them to communicate with each other and the host. LXD bridges can leverage underlying native Linux bridges
and Open vSwitch.

In LXD context, the bridge network type creates an L2 bridge that connects the instances that use it together
into a single network L2 segment. This makes it possible to pass traffic between the instances. The bridge can
also provide local DHCP and DNS.

This is the default network type.

OVN network
OVN (Open Virtual Network) is a software-defined networking system that supports virtual network abstraction.
You can use it to build your own private cloud. See www.ovn.org for more information.

In LXD context, the ovn network type creates a logical network. To set it up, you must install and configure the
OVN tools. In addition, you must create an uplink network that provides the network connection for OVN. As
the uplink network, you should use one of the external network types or a managed LXD bridge.

Tip: Unlike the other network types, you can create and manage an OVN network inside a project. This means
that you can create your own OVN network as a non-admin user, even in a restricted project.

External networks

External networks use network interfaces that already exist. Therefore, LXD has limited possibility to control them,
and LXD features like network ACLs, network forwards and network zones are not supported.

The main purpose for using external networks is to provide an uplink network through a parent interface. This external
network specifies the presets to use when connecting instances or other networks to a parent interface.

LXD supports the following external network types:

Macvlan network
Macvlan is a virtual LAN (Local Area Network) that you can use if you want to assign several IP addresses to
the same network interface, basically splitting up the network interface into several sub-interfaces with their own
IP addresses. You can then assign IP addresses based on the randomly generated MAC addresses.

In LXD context, the macvlan network type provides a preset configuration to use when connecting instances to
a parent macvlan interface.

2.3. Explanation 219

https://www.ovn.org/

Canonical LXD

SR-IOV network
SR-IOV (Single root I/O virtualization) is a hardware standard that allows a single network card port to appear
as several virtual network interfaces in a virtualized environment.

In LXD context, the sriov network type provides a preset configuration to use when connecting instances to a
parent SR-IOV interface.

Physical network
The physical network type connects to an existing physical network, which can be a network interface or a
bridge, and serves as an uplink network for OVN.

It provides a preset configuration to use when connecting OVN networks to a parent interface.

Recommendations

In general, if you can use a managed network, you should do so because networks are easy to configure and you can
reuse the same network for several instances without repeating the configuration.

Which network type to choose depends on your specific use case. If you choose a fully controlled network, it provides
more functionality than using a network device.

As a general recommendation:

• If you are running LXD on a single system or in a public cloud, use a Bridge network, possibly in connection
with the Ubuntu Fan.

• If you are running LXD in your own private cloud, use an OVN network.

Note: OVN requires a shared L2 uplink network for proper operation. Therefore, using OVN is usually not
possible if you run LXD in a public cloud.

• To connect an instance NIC to a managed network, use the network property rather than the parent property, if
possible. This way, the NIC can inherit the settings from the network and you don’t need to specify the nictype.

Related topics

How-to guides:

• Networking

Reference:

• Networks

About the LXD database

LXD uses a distributed database to store the server configuration and state, which allows for quicker queries than if the
configuration was stored inside each instance’s directory (as it is done by LXC, for example).

To understand the advantages, consider a query against the configuration of all instances, like “what instances are using
br0?”. To answer that question without a database, you would have to iterate through every single instance, load and
parse its configuration, and then check which network devices are defined in there. With a database, you can run a
simple query on the database to retrieve this information.

220 Chapter 2. Project and community

https://www.youtube.com/watch?v=5cwd0vZJ5bw

Canonical LXD

Dqlite

In a LXD cluster, all members of the cluster must share the same database state. Therefore, LXD uses Dqlite, a
distributed version of SQLite. Dqlite provides replication, fault-tolerance, and automatic failover without the need of
external database processes.

When using LXD as a single machine and not as a cluster, the Dqlite database effectively behaves like a regular SQLite
database.

File location

The database files are stored in the database sub-directory of your LXD data directory (thus /var/snap/lxd/
common/lxd/database/ if you use the snap, or /var/lib/lxd/database/ otherwise).

Upgrading LXD to a newer version might require updating the database schema. In this case, LXD automatically stores
a backup of the database and then runs the update. See Upgrade LXD for more information.

Backup

See Back up the database for instructions on how to back up the contents of the LXD database.

About lxc show and info

For the entities managed by LXD, the lxc command provides a list sub-command, and might provide show and
info sub-commands. The purpose of the info sub-command is to show current state information, and the purpose of
the show sub-command is to show configuration information and how the entity is used by other entities.

For example, the lxc network info command shows IP address and traffic statistics:

Name: lxdbr0
MAC address: 00:16:3e:d3:ec:41
MTU: 1500
State: up

Ips:
inet 192.0.2.1
inet6 2001:db8:f4a1:53d2::1
inet6 fe80::216:3eff:fed3:ec41

Network usage:
Bytes received: 127.66kB
Bytes sent: 15.54kB
Packets received: 1433
Packets sent: 175

The lxc network show command, on the other hand, shows how the network is configured, and which entities are
using the network:

config:
ipv4.address: 192.0.2.1/24
ipv4.nat: "true"
ipv6.address: 2001:db8:f4a1:53d2::1/64

(continues on next page)

2.3. Explanation 221

https://dqlite.io/

Canonical LXD

(continued from previous page)

ipv6.nat: "true"
description: ""
name: lxdbr0
type: bridge
used_by:
- /1.0/instances/ubuntu
- /1.0/profiles/default
managed: true
status: Created
locations:
- none

Refer to the manual pages for details of the commands for managing entities:

• Instances: lxc list, lxc info

• Images: lxc image list, lxc image info, lxc image show

• Networks: lxc network list, lxc network info, lxc network show

• Profiles: lxc profile list, lxc profile show

• Projects: lxc project list, lxc project info, lxc project show

• Storage: lxc storage list, lxc storage info, lxc storage show

2.3.3 Access management

In LXD, access to the API is controlled through TLS or OpenID Connect authentication. When using OpenID Connect,
you can grant permissions to access specific entities to different clients. You can also restrict access to LXD entities
by confining them to specific projects.

Remote API authentication

Remote communications with the LXD daemon happen using JSON over HTTPS. This requires the LXD API to be
exposed over the network; see How to expose LXD to the network for instructions.

To be able to access the remote API, clients must authenticate with the LXD server. The following authentication
methods are supported:

• TLS client certificates

• OpenID Connect authentication

TLS client certificates

When using TLS (Transport Layer Security) client certificates for authentication, both the client and the server will
generate a key pair the first time they’re launched. The server will use that key pair for all HTTPS connections to the
LXD socket. The client will use its certificate as a client certificate for any client-server communication.

To cause certificates to be regenerated, simply remove the old ones. On the next connection, a new certificate is
generated.

222 Chapter 2. Project and community

Canonical LXD

Communication protocol

The supported protocol must be TLS 1.3 or better.

It’s possible to force LXD to accept TLS 1.2 by setting the LXD_INSECURE_TLS environment variable on both client
and server. However this isn’t a supported setup and should only ever be used when forced to use an outdated corporate
proxy.

All communications must use perfect forward secrecy, and ciphers must be limited to strong elliptic curve ones (such
as ECDHE-RSA or ECDHE-ECDSA).

Any generated key should be at least 4096 bit RSA, preferably 384 bit ECDSA. When using signatures, only SHA-2
signatures should be trusted.

Since we control both client and server, there is no reason to support any backward compatibility to broken protocol or
ciphers.

Trusted TLS clients

You can obtain the list of TLS certificates trusted by a LXD server with lxc config trust list.

Trusted clients can be added in either of the following ways:

• Adding trusted certificates to the server

• Adding client certificates using a trust password

• Adding client certificates using tokens

The workflow to authenticate with the server is similar to that of SSH, where an initial connection to an unknown server
triggers a prompt:

1. When the user adds a server with lxc remote add , the server is contacted over HTTPS, its certificate is down-
loaded and the fingerprint is shown to the user.

2. The user is asked to confirm that this is indeed the server’s fingerprint, which they can manually check by con-
necting to the server or by asking someone with access to the server to run the info command and compare the
fingerprints.

3. The server attempts to authenticate the client:

• If the client certificate is in the server’s trust store, the connection is granted.

• If the client certificate is not in the server’s trust store, the server prompts the user for a token or the trust
password. If the provided token or trust password matches, the client certificate is added to the server’s
trust store and the connection is granted. Otherwise, the connection is rejected.

To revoke trust to a client, remove its certificate from the server with lxc config trust remove <fingerprint>.

TLS clients can be restricted to a subset of projects, see Restricted TLS certificates for more information.

2.3. Explanation 223

Canonical LXD

Adding trusted certificates to the server

The preferred way to add trusted clients is to directly add their certificates to the trust store on the server. To do so,
copy the client certificate to the server and register it using lxc config trust add <file>.

Adding client certificates using a trust password

To allow establishing a new trust relationship from the client side, you must set a trust password (core.
trust_password) for the server. Clients can then add their own certificate to the server’s trust store by providing
the trust password when prompted.

In a production setup, unset core.trust_password after all clients have been added. This prevents brute-force attacks
trying to guess the password.

Adding client certificates using tokens

You can also add new clients by using tokens. This is a safer way than using the trust password, because tokens expire
after a configurable time (core.remote_token_expiry) or once they’ve been used.

To use this method, generate a token for each client by calling lxc config trust add , which will prompt for the
client name. The clients can then add their certificates to the server’s trust store by providing the generated token when
prompted for the trust password.

Note: If your LXD server is behind NAT, you must specify its external public address when adding it as a remote for
a client:

lxc remote add <name> <IP_address>

When you are prompted for the admin password, specify the generated token.

When generating the token on the server, LXD includes a list of IP addresses that the client can use to access the server.
However, if the server is behind NAT, these addresses might be local addresses that the client cannot connect to. In this
case, you must specify the external address manually.

Alternatively, the clients can provide the token directly when adding the remote: lxc remote add <name> <token>.

Using a PKI system

In a PKI (Public key infrastructure) setup, a system administrator manages a central PKI that issues client certificates
for all the LXD clients and server certificates for all the LXD daemons.

To enable PKI mode, complete the following steps:

1. Add the CA (Certificate authority) certificate to all machines:

• Place the client.ca file in the clients’ configuration directories (~/.config/lxc or ~/snap/lxd/
common/config for snap users).

• Place the server.ca file in the server’s configuration directory (/var/lib/lxd or /var/snap/lxd/
common/lxd for snap users).

2. Place the certificates issued by the CA on the clients and the server, replacing the automatically generated ones.

3. Restart the server.

224 Chapter 2. Project and community

Canonical LXD

In that mode, any connection to a LXD daemon will be done using the pre-seeded CA certificate.

If the server certificate isn’t signed by the CA, the connection will simply go through the normal authentication mecha-
nism. If the server certificate is valid and signed by the CA, then the connection continues without prompting the user
for the certificate.

Note that the generated certificates are not automatically trusted. You must still add them to the server in one of the
ways described in Trusted TLS clients.

OpenID Connect authentication

LXD supports using OpenID Connect to authenticate users through an OIDC (OpenID Connect) Identity Provider.

To configure LXD to use OIDC authentication, set the oidc.* server configuration options. Your OIDC provider must
be configured to enable the Device Authorization Grant type.

To add a remote pointing to a LXD server configured with OIDC authentication, run lxc remote add
<remote_name> <remote_address>. You are then prompted to authenticate through your web browser, where you
must confirm that the device code displayed in the browser matches the device code that is displayed in the terminal
window. The LXD client then retrieves and stores an access token, which it provides to LXD for all interactions. The
identity provider might also provide a refresh token. In this case, the LXD client uses this refresh token to attempt to
retrieve another access token when the current access token has expired.

When an OIDC client initially authenticates with LXD, it does not have access to the majority of the LXD API. OIDC
clients must be granted access by an administrator, see Fine-grained authorization.

TLS server certificate

LXD supports issuing server certificates using ACME (Automatic Certificate Management Environment) services, for
example, Let’s Encrypt.

To enable this feature, set the following server configuration:

• acme.domain: The domain for which the certificate should be issued.

• acme.email: The email address used for the account of the ACME service.

• acme.agree_tos: Must be set to true to agree to the ACME service’s terms of service.

• acme.ca_url: The directory URL of the ACME service. By default, LXD uses “Let’s Encrypt”.

For this feature to work, LXD must be reachable from port 80. This can be achieved by using a reverse proxy such as
HAProxy.

Here’s a minimal HAProxy configuration that uses lxd.example.net as the domain. After the certificate has been
issued, LXD will be reachable from https://lxd.example.net/.

Global configuration
global
log /dev/log local0
chroot /var/lib/haproxy
stats socket /run/haproxy/admin.sock mode 660 level admin
stats timeout 30s
user haproxy
group haproxy
daemon
ssl-default-bind-options ssl-min-ver TLSv1.2

(continues on next page)

2.3. Explanation 225

https://openid.net/connect/
https://oauth.net/2/device-flow/
https://letsencrypt.org/
http://www.haproxy.org/

Canonical LXD

(continued from previous page)

tune.ssl.default-dh-param 2048
maxconn 100000

Default settings
defaults
mode tcp
timeout connect 5s
timeout client 30s
timeout client-fin 30s
timeout server 120s
timeout tunnel 6h
timeout http-request 5s
maxconn 80000

Default backend - Return HTTP 301 (TLS upgrade)
backend http-301
mode http
redirect scheme https code 301

Default backend - Return HTTP 403
backend http-403
mode http
http-request deny deny_status 403

HTTP dispatcher
frontend http-dispatcher
bind :80
mode http

Backend selection
tcp-request inspect-delay 5s

Dispatch
default_backend http-403
use_backend http-301 if { hdr(host) -i lxd.example.net }

SNI dispatcher
frontend sni-dispatcher
bind :443
mode tcp

Backend selection
tcp-request inspect-delay 5s

require TLS
tcp-request content reject unless { req.ssl_hello_type 1 }

Dispatch
default_backend http-403
use_backend lxd-nodes if { req.ssl_sni -i lxd.example.net }

LXD nodes

(continues on next page)

226 Chapter 2. Project and community

Canonical LXD

(continued from previous page)

backend lxd-nodes
mode tcp

option tcp-check

Multiple servers should be listed when running a cluster
server lxd-node01 1.2.3.4:8443 check
server lxd-node02 1.2.3.5:8443 check
server lxd-node03 1.2.3.6:8443 check

Failure scenarios

In the following scenarios, authentication is expected to fail.

Server certificate changed

The server certificate might change in the following cases:

• The server was fully reinstalled and therefore got a new certificate.

• The connection is being intercepted (MITM (Machine in the middle)).

In such cases, the client will refuse to connect to the server because the certificate fingerprint does not match the
fingerprint in the configuration for this remote.

It is then up to the user to contact the server administrator to check if the certificate did in fact change. If it did, the
certificate can be replaced by the new one, or the remote can be removed altogether and re-added.

Server trust relationship revoked

The server trust relationship is revoked for a client if another trusted client or the local server administrator removes
the trust entry for the client on the server.

In this case, the server still uses the same certificate, but all API calls return a 403 code with an error indicating that
the client isn’t trusted.

Related topics

Explanation:

• About security

How-to guides:

• How to expose LXD to the network

2.3. Explanation 227

Canonical LXD

Remote API authorization

When LXD is exposed over the network it is possible to restrict API access via two mechanisms:

• Restricted TLS certificates

• Fine-grained authorization

Restricted TLS certificates

It is possible to restrict a TLS client to one or multiple projects. In this case, the client will also be prevented from
performing global configuration changes or altering the configuration (limits, restrictions) of the projects it’s allowed
access to.

To restrict access, use lxc config trust edit <fingerprint>. Set the restricted key to true and specify a
list of projects to restrict the client to. If the list of projects is empty, the client will not be allowed access to any of
them.

Fine-grained authorization

It is possible to restrict OIDC clients to granular actions on specific LXD resources. For example, one could restrict a
user to be able to view, but not edit, a single instance.

There are four key concepts that LXD uses to manage these fine-grained permissions:

• Entitlements: An entitlement encapsulates an action that can be taken against a LXD API resource type. Some
entitlements might apply to many resource types, whereas other entitlements can only apply to a single resource
type. For example, the entitlement can_view is available for all resource types, but the entitlement can_exec
is only available for LXD resources of type instance.

• Permissions: A permission is the application of an entitlement to a particular LXD resource. For example, given
the entitlement can_exec that is only defined for instances, a permission is the combination of can_exec and
a single instance, as uniquely defined by its API URL (for example, /1.0/instances/c1?project=foo).

• Identities (users): An identity is any authenticated party that makes requests to LXD, including TLS clients.
When an OIDC client adds a LXD server as a remote, the OIDC client is saved in LXD as an identity. Permissions
cannot be assigned to identities directly.

• Groups: A group is a collection of one or more identities. Identities can belong to one or more groups. Permis-
sions can be assigned to groups. TLS clients cannot currently be assigned to groups.

Explore permissions

To discover available permissions that can be assigned to a group, or view permissions that are currently assigned, run
the following command:

lxc auth permission list --max-entitlements 0

The entity type column displays the LXD API resource type, this value is required when adding a permission to a
group.

The URL column displays the URL of the LXD API resource.

The entitlements column displays all available entitlements for that entity type. If any groups are already assigned
permissions on the API resource at the displayed URL, they are listed alongside the entitlements that they have been
granted.

228 Chapter 2. Project and community

Canonical LXD

Some useful permissions at a glance:

• The admin entitlement on entity type server gives full access to LXD. This is equivalent to an unrestricted TLS
client or Unix socket access.

• The project_manager entitlement on entity type server grants access to create, edit, and delete projects, and
all resources belonging to those projects. However, this permission does not allow access to server configuration,
storage pool configuration, or certificate/identity management.

• The operator entitlement on entity type project grants access to create, edit, and delete all resources belonging
to the project against which the permission is granted. Members of a group with this permission will not be able
to edit the project configuration itself. This is equivalent to a restricted TLS client with access to the same project.

• The user entitlement on entity type instance grants access to view an instance, pull/push files, get a console,
and begin a terminal session. Members of a group with this entitlement cannot edit the instance configuration.

Note: Due to a limitation in the LXD client, if can_exec is granted to a group for a particular instance, members of
the group will not be able to start a terminal session unless can_view_events is additionally granted for the parent
project of the instance. We are working to resolve this.

Explore identities

To discover available identities that can be assigned to a group, or view identities that are currently assigned, run the
following command:

lxc auth identity list

The authentication method column displays the method by which the client authenticates with LXD.

The type column displays the type of identity. Identity types are a superset of TLS certificate types and additionally
include OIDC clients.

The name column displays the name of the identity. For TLS clients, this will be the name of the certificate. For OIDC
clients this will be the name of the client as given by the IdP (identity provider) (requested via the profile scope).

The identifier column displays a unique identifier for the identity within that authentication method. For TLS clients,
this will be the certificate fingerprint. For OIDC clients, this will be the email address of the client.

The groups column displays any groups that are currently assigned to the identity. Groups cannot currently be assigned
to TLS clients.

Note: OIDC clients will only be displayed in the list of identities once they have authenticated with LXD.

Manage permissions

In LXD, identities cannot be granted permissions directly. Instead, identities are added to groups, and groups are
granted permissions. To create a group, run:

lxc auth group create <group_name>

To add an identity to a group, run:

2.3. Explanation 229

https://openid.net/specs/openid-connect-basic-1_0.html#Scopes

Canonical LXD

lxc auth identity group add <authentication_method>/<identifier> <group_name>

For example, for OIDC clients:

lxc auth identity group add oidc/<email_address> <group_name>

The identity is now a member of the group. To add permissions to the group, run:

lxc auth group permission add <group_name> <entity_type> [<entity_name>] <entitlement> [
→˓<key>=<value>...]

Here are some examples:

• lxc auth group permission add administrator server admin grants members of administrator
the admin entitlement on server.

• lxc auth group permission add junior-dev project sandbox operator grants members of
junior-dev the operator entitlement on project sandbox.

• lxc auth group permission add my-group instance c1 user project=default grants members
of my-group the user entitlement on instance c1 in project default.

Some entity types require more than one supplementary argument to uniquely specify the entity. For example, entities
of type storage_volume and storage_bucket require an additional pool=<storage_pool_name> argument.

Use groups defined by the identity provider

It is common practice to manage users, roles, and groups centrally via an identity provider (IdP). In LXD, identity
provider groups allow groups that are defined by the IdP to be mapped to LXD groups. When an OIDC client makes
a request to LXD, any groups that can be extracted from the client’s identity token are mapped to LXD groups, giving
the client the same effective permissions.

To configure IdP group mappings in LXD, first configure your IdP to add groups to identity and access tokens as a
custom claim. This configuration depends on your IdP. In Auth0, for example, you can add the “roles” that a user
has as a custom claim via an action. Alternatively, if RBAC (role-based access control) is enabled for the audience, a
“permissions” claim can be added automatically. In Keycloak, you can define a mapper to set Keycloak groups in the
token.

Then configure LXD to extract this claim. To do so, set the value of the oidc.groups.claim configuration key to the
value of the field name of the custom claim:

lxc config set oidc.groups.claim=<claim_name>

LXD will then expect the identity and access tokens to contain a claim with this name. The value of the claim must be
a JSON array containing a string value for each IdP group name. If the group names are extracted successfully, LXD
will be aware of the IdP groups for the duration of the request.

Next, configure a mapping between an IdP group and a LXD group as follows:

lxc auth identity-provider-group create <idp_group_name>
lxc auth identity-provider-group group add <idp_group_name> <lxd_group_name>

IdP groups can be mapped to multiple LXD groups, and multiple IdP groups can be mapped to the same LXD group.

Important: LXD does not store the identity provider groups that are extracted from identity or access tokens. This can
obfuscate the true permissions of an identity. For example, if an identity belongs to LXD group “foo”, an administrator

230 Chapter 2. Project and community

https://auth0.com/
https://community.auth0.com/t/how-to-add-roles-and-permissions-to-the-id-token-using-actions/84506
https://keycloak.discourse.group/t/anyway-to-include-user-groups-into-my-jwt-token/8715

Canonical LXD

can view the permissions of group “foo” to determine the level of access of the identity. However, if identity provider
group mappings are configured, direct group membership alone does not determine their level of access. The command
lxc auth identity info can be run by any identity to view a full list of their own effective groups and permissions
as granted directly or indirectly via IdP groups.

About projects

You can use projects to keep your LXD server clean by grouping related instances together. In addition to isolated
instances, each project can also have specific images, profiles, networks, and storage.

For example, projects can be useful in the following scenarios:

• You run a huge number of instances for different purposes, for example, for different customer projects. You
want to keep these instances separate to make it easier to locate and maintain them, and you might want to reuse
the same instance names in each customer project for consistency reasons. Each instance in a customer project
should use the same base configuration (for example, networks and storage), but the configuration might differ
between customer projects.

In this case, you can create a LXD project for each customer project (thus each group of instances) and use
different profiles, networks, and storage for each LXD project.

• Your LXD server is shared between multiple users. Each user runs their own instances, and might want to
configure their own profiles. You want to keep the user instances confined, so that each user can interact only
with their own instances and cannot see the instances created by other users. In addition, you want to be able to
limit resources for each user and make sure that the instances of different users cannot interfere with one another.

In this case, you can set up a multi-user environment with confined projects.

LXD comes with a default project. See How to create and configure projects for instructions on how to add projects.

Isolation of projects

Projects always encapsulate the instances they contain, which means that instances cannot be shared between projects
and instance names can be duplicated in several projects. When you are in a specific project, you can see only the
instances that belong to this project.

Other entities (images, profiles, networks, and storage) can be either isolated in the project or inherited from the
default project. To configure which entities are isolated, you enable or disable the respective feature in the project.
If a feature is enabled, the corresponding entity is isolated in the project; if the feature is disabled, it is inherited from
the default project.

For example, if you enable features.networks for a project, the project uses a separate set of networks and not
the networks defined in the default project. If you disable features.images, the project has access to the images
defined in the default project, and any images you add while you’re using the project are also added to the default
project.

See the list of available Project features for information about which features are enabled or disabled when you create
a project.

Note: You must select the features that you want to enable before starting to use a new project. When a project contains
instances, the features are locked. To edit them, you must remove all instances first.

New features that are added in an upgrade are disabled for existing projects.

2.3. Explanation 231

Canonical LXD

Confined projects in a multi-user environment

If your LXD server is used by multiple users (for example, in a lab environment), you can use projects to confine the
activities of each user. This method isolates the instances and other entities (depending on the feature configuration), as
described in Isolation of projects. It also confines users to their own user space and prevents them from gaining access
to other users’ instances or data. Any changes that affect the LXD server and its configuration, for example, adding or
removing storage, are not permitted.

In addition, this method allows users to work with LXD without being a member of the lxd group (see Access to the
LXD daemon). Members of the lxd group have full access to LXD, including permission to attach file system paths
and tweak the security features of an instance, which makes it possible to gain root access to the host system. Using
confined projects limits what users can do in LXD, but it also prevents users from gaining root access.

Authentication methods for projects

There are different ways of authentication that you can use to confine projects to specific users:

Client certificates
You can restrict the TLS client certificates to allow access to specific projects only. The projects must exist before
you can restrict access to them. A client that connects using a restricted certificate can see only the project or
projects that the client has been granted access to.

Multi-user LXD daemon
The LXD snap contains a multi-user LXD daemon that allows dynamic project creation on a per-user basis. You
can configure a specific user group other than the lxd group to give restricted LXD access to every user in the
group.

When a user that is a member of this group starts using LXD, LXD automatically creates a confined project for
this user.

If you’re not using the snap, you can still use this feature if your distribution supports it.

See How to confine projects to specific users for instructions on how to enable and configure the different authentication
methods.

Related topics

How-to guides:

• Projects

Reference:

• Project configuration

2.3.4 Production setup

When you’re ready to move your LXD setup to production, you should read up on the concepts that are important for
providing a scalable, reliable, and secure environment.

232 Chapter 2. Project and community

Canonical LXD

About clustering

To spread the total workload over several servers, LXD can be run in clustering mode. In this scenario, any number
of LXD servers share the same distributed database that holds the configuration for the cluster members and their
instances. The LXD cluster can be managed uniformly using the lxc client or the REST API.

This feature was introduced as part of the clustering API extension and is available since LXD 3.0.

Tip: If you want to quickly set up a basic LXD cluster, check out MicroCloud.

Cluster members

A LXD cluster consists of one bootstrap server and at least two further cluster members. It stores its state in a distributed
database, which is a Dqlite database replicated using the Raft algorithm.

While you could create a cluster with only two members, it is strongly recommended that the number of cluster members
be at least three. With this setup, the cluster can survive the loss of at least one member and still be able to establish
quorum for its distributed state.

When you create the cluster, the Dqlite database runs on only the bootstrap server until a third member joins the cluster.
Then both the second and the third server receive a replica of the database.

See How to form a cluster for more information.

Member roles

In a cluster with three members, all members replicate the distributed database that stores the state of the cluster. If
the cluster has more members, only some of them replicate the database. The remaining members have access to the
database, but don’t replicate it.

At each time, there is an elected cluster leader that monitors the health of the other members.

Each member that replicates the database has either the role of a voter or of a stand-by. If the cluster leader goes offline,
one of the voters is elected as the new leader. If a voter member goes offline, a stand-by member is automatically
promoted to voter. The database (and hence the cluster) remains available as long as a majority of voters is online.

The following roles can be assigned to LXD cluster members. Automatic roles are assigned by LXD itself and cannot
be modified by the user.

Role Automatic Description
database yes Voting member of the distributed database
database-leader yes Current leader of the distributed database
database-standby yes Stand-by (non-voting) member of the distributed database
event-hub no Exchange point (hub) for the internal LXD events (requires at least two)
ovn-chassis no Uplink gateway candidate for OVN networks

The default number of voter members (cluster.max_voters) is three. The default number of stand-by members
(cluster.max_standby) is two. With this configuration, your cluster will remain operational as long as you switch
off at most one voting member at a time.

See How to manage a cluster for more information.

2.3. Explanation 233

https://microcloud.is
https://dqlite.io/

Canonical LXD

Offline members and fault tolerance

If a cluster member is down for more than the configured offline threshold, its status is marked as offline. In this case,
no operations are possible on this member, and neither are operations that require a state change across all members.

As soon as the offline member comes back online, operations are available again.

If the member that goes offline is the leader itself, the other members will elect a new leader.

If you can’t or don’t want to bring the server back online, you can delete it from the cluster.

You can tweak the amount of seconds after which a non-responding member is considered offline by setting the
cluster.offline_threshold configuration. The default value is 20 seconds. The minimum value is 10 seconds.

To automatically evacuate instances from an offline member, set the cluster.healing_threshold configuration to
a non-zero value.

See How to recover a cluster for more information.

Failure domains

You can use failure domains to indicate which cluster members should be given preference when assigning roles to a
cluster member that has gone offline. For example, if a cluster member that currently has the database role gets shut
down, LXD tries to assign its database role to another cluster member in the same failure domain, if one is available.

To update the failure domain of a cluster member, use the lxc cluster edit <member> command and change the
failure_domain property from default to another string.

Member configuration

LXD cluster members are generally assumed to be identical systems. This means that all LXD servers joining a cluster
must have an identical configuration to the bootstrap server, in terms of storage pools and networks.

To accommodate things like slightly different disk ordering or network interface naming, there is an exception for some
configuration options related to storage and networks, which are member-specific.

When such settings are present in a cluster, any server that is being added must provide a value for them. Most often,
this is done through the interactive lxd init command, which asks the user for the value for a number of configuration
keys related to storage or networks.

Those settings typically include:

• The source device and size for a storage pool

• The name for a ZFS zpool, LVM thin pool or LVM volume group

• External interfaces and BGP next-hop for a bridged network

• The name of the parent network device for managed physical or macvlan networks

See How to configure storage for a cluster and How to configure networks for a cluster for more information.

If you want to look up the questions ahead of time (which can be useful for scripting), query the /1.0/cluster API
endpoint. This can be done through lxc query /1.0/cluster or through other API clients.

234 Chapter 2. Project and community

Canonical LXD

Images

By default, LXD replicates images on as many cluster members as there are database members. This typically means
up to three copies within the cluster.

You can increase that number to improve fault tolerance and the likelihood of the image being locally available. To
do so, set the cluster.images_minimal_replica configuration. The special value of -1 can be used to have the
image copied to all cluster members.

Cluster groups

In a LXD cluster, you can add members to cluster groups. You can use these cluster groups to launch instances on a
cluster member that belongs to a subset of all available members. For example, you could create a cluster group for all
members that have a GPU and then launch all instances that require a GPU on this cluster group.

By default, all cluster members belong to the default group.

See How to set up cluster groups and Launch an instance on a specific cluster member for more information.

Automatic placement of instances

In a cluster setup, each instance lives on one of the cluster members. When you launch an instance, you can target it to
a specific cluster member, to a cluster group or have LXD automatically assign it to a cluster member.

By default, the automatic assignment picks the cluster member that has the lowest number of instances. If several
members have the same amount of instances, one of the members is chosen at random.

However, you can control this behavior with the scheduler.instance configuration option:

• If scheduler.instance is set to all for a cluster member, this cluster member is selected for an instance if:

– The instance is created without --target and the cluster member has the lowest number of instances.

– The instance is targeted to live on this cluster member.

– The instance is targeted to live on a member of a cluster group that the cluster member is a part of, and the
cluster member has the lowest number of instances compared to the other members of the cluster group.

• If scheduler.instance is set to manual for a cluster member, this cluster member is selected for an instance
if:

– The instance is targeted to live on this cluster member.

• If scheduler.instance is set to group for a cluster member, this cluster member is selected for an instance
if:

– The instance is targeted to live on this cluster member.

– The instance is targeted to live on a member of a cluster group that the cluster member is a part of, and the
cluster member has the lowest number of instances compared to the other members of the cluster group.

2.3. Explanation 235

Canonical LXD

Instance placement scriptlet

LXD supports using custom logic to control automatic instance placement by using an embedded script (scriptlet).
This method provides more flexibility than the built-in instance placement functionality.

The instance placement scriptlet must be written in the Starlark language (which is a subset of Python). The scriptlet is
invoked each time LXD needs to know where to place an instance. The scriptlet receives information about the instance
that is being placed and the candidate cluster members that could host the instance. It is also possible for the scriptlet
to request information about each candidate cluster member’s state and the hardware resources available.

An instance placement scriptlet must implement the instance_placement function with the following signature:

instance_placement(request, candidate_members):

• request is an object that contains an expanded representation of scriptlet.InstancePlacement. This re-
quest includes project and reason fields. The reason can be new, evacuation or relocation.

• candidate_members is a list of cluster member objects representing api.ClusterMember entries.

For example:

def instance_placement(request, candidate_members):
Example of logging info, this will appear in LXD's log.
log_info("instance placement started: ", request)

Example of applying logic based on the instance request.
if request.name == "foo":

Example of logging an error, this will appear in LXD's log.
log_error("Invalid name supplied: ", request.name)

fail("Invalid name") # Exit with an error to reject instance placement.

Place the instance on the first candidate server provided.
set_target(candidate_members[0].server_name)

return # Return empty to allow instance placement to proceed.

The scriptlet must be applied to LXD by storing it in the instances.placement.scriptlet global configuration
setting.

For example, if the scriptlet is saved inside a file called instance_placement.star, then it can be applied to LXD
with the following command:

cat instance_placement.star | lxc config set instances.placement.scriptlet=-

To see the current scriptlet applied to LXD, use the lxc config get instances.placement.scriptlet com-
mand.

The following functions are available to the scriptlet (in addition to those provided by Starlark):

• log_info(*messages): Add a log entry to LXD’s log at info level. messages is one or more message
arguments.

• log_warn(*messages): Add a log entry to LXD’s log at warn level. messages is one or more message
arguments.

• log_error(*messages): Add a log entry to LXD’s log at error level. messages is one or more message
arguments.

236 Chapter 2. Project and community

https://github.com/bazelbuild/starlark
https://pkg.go.dev/github.com/canonical/lxd/shared/api/scriptlet/#InstancePlacement
https://pkg.go.dev/github.com/canonical/lxd/shared/api#ClusterMember

Canonical LXD

• set_cluster_member_target(member_name): Set the cluster member where the instance should be created.
member_name is the name of the cluster member the instance should be created on. If this function is not called,
then LXD will use its built-in instance placement logic.

• get_cluster_member_state(member_name): Get the cluster member’s state. Returns an object with the
cluster member’s state in the form of api.ClusterMemberState. member_name is the name of the cluster
member to get the state for.

• get_cluster_member_resources(member_name): Get information about resources on the cluster member.
Returns an object with the resource information in the form of api.Resources. member_name is the name of
the cluster member to get the resource information for.

• get_instance_resources(): Get information about the resources the instance will require. Returns an object
with the resource information in the form of scriptlet.InstanceResources.

Note: Field names in the object types are equivalent to the JSON field names in the associated Go types.

Related topics

How-to guides:

• Clustering

Reference:

• Cluster member configuration

About performance tuning

When you are ready to move your LXD setup to production, you should take some time to optimize the performance
of your system. There are different aspects that impact performance. The following steps help you to determine the
choices and settings that you should tune to improve your LXD setup.

Run benchmarks

LXD provides a benchmarking tool to evaluate the performance of your system. You can use the tool to initialize
or launch a number of containers and measure the time it takes for the system to create the containers. By running
the tool repeatedly with different LXD configurations, system settings or even hardware setups, you can compare the
performance and evaluate which is the ideal configuration.

See How to benchmark performance for instructions on running the tool.

Monitor instance metrics

LXD collects metrics for all running instances as well as some internal metrics. These metrics cover the CPU, memory,
network, disk and process usage. They are meant to be consumed by Prometheus, and you can use Grafana to display the
metrics as graphs. See Provided metrics for lists of available metrics and Set up a Grafana dashboard for instructions
on how to display the metrics in Grafana.

You should regularly monitor the metrics to evaluate the resources that your instances use. The numbers help you to
determine if there are any spikes or bottlenecks, or if usage patterns change and require updates to your configuration.

See How to monitor metrics for more information about metrics collection.

2.3. Explanation 237

https://pkg.go.dev/github.com/canonical/lxd/shared/api#ClusterMemberState
https://pkg.go.dev/github.com/canonical/lxd/shared/api#Resources
https://pkg.go.dev/github.com/canonical/lxd/shared/api/scriptlet/#InstanceResources

Canonical LXD

Tune server settings

The default kernel settings for most Linux distributions are not optimized for running a large number of containers or
virtual machines. Therefore, you should check and modify the relevant server settings to avoid hitting limits caused by
the default settings.

Typical errors that you might see when you encounter those limits are:

• Failed to allocate directory watch: Too many open files

• <Error> <Error>: Too many open files

• failed to open stream: Too many open files in...

• neighbour: ndisc_cache: neighbor table overflow!

See Server settings for a LXD production setup for a list of relevant server settings and suggested values.

Tune the network bandwidth

If you have a lot of local activity between instances or between the LXD host and the instances, or if you have a fast
internet connection, you should consider increasing the network bandwidth of your LXD setup. You can do this by
increasing the transmit and receive queue lengths.

See How to increase the network bandwidth for instructions.

Related topics

How-to guides:

• How to benchmark performance

• How to increase the network bandwidth

• How to monitor metrics

Reference:

• Provided metrics

• Server settings for a LXD production setup

About security

Consider the following aspects to ensure that your LXD installation is secure:

• Keep your operating system up-to-date and install all available security patches.

• Use only supported LXD versions (LTS releases or monthly feature releases).

• Restrict access to the LXD daemon and the remote API.

• Configure your network interfaces to be secure.

• Do not use privileged containers unless required. If you use privileged containers, put appropriate security
measures in place.

See the following sections for detailed information.

If you discover a security issue, see the LXD security policy for information on how to report the issue.

238 Chapter 2. Project and community

https://github.com/canonical/lxd/blob/main/SECURITY.md

Canonical LXD

Supported versions

Never use unsupported LXD versions in a production environment.

LXD has two types of releases:

• Monthly feature releases

• LTS releases

For feature releases, only the latest one is supported, and we usually don’t do point releases. Instead, users are expected
to wait until the next monthly release.

For LTS releases, we do periodic bugfix releases that include an accumulation of bugfixes from the feature releases.
Such bugfix releases do not include new features.

Access to the LXD daemon

LXD is a daemon that can be accessed locally over a Unix socket or, if configured, remotely over a TLS socket. Anyone
with access to the socket can fully control LXD, which includes the ability to attach host devices and file systems or to
tweak the security features for all instances.

Therefore, make sure to restrict the access to the daemon to trusted users.

Local access to the LXD daemon

The LXD daemon runs as root and provides a Unix socket for local communication. Access control for LXD is based
on group membership. The root user and all members of the lxd group can interact with the local daemon.

Important: Local access to LXD through the Unix socket always grants full access to LXD. This includes the ability
to attach file system paths or devices to any instance as well as tweak the security features on any instance.

Therefore, you should only give such access to users who you’d trust with root access to your system.

Access to the remote API

By default, access to the daemon is only possible locally. By setting the core.https_address configuration option,
you can expose the same API over the network on a TLS socket. See How to expose LXD to the network for instructions.
Remote clients can then connect to LXD and access any image that is marked for public use.

There are several ways to authenticate remote clients as trusted clients to allow them to access the API. See Remote
API authentication for details.

In a production setup, you should set core.https_address to the single address where the server should be available
(rather than any address on the host). In addition, you should set firewall rules to allow access to the LXD port only
from authorized hosts/subnets.

2.3. Explanation 239

Canonical LXD

Container security

LXD containers can use a wide range of features for security.

Also see the LXC security page on linuxcontainers.org for details on LXC container security and the applied
kernel features.

Unprivileged containers

By default, containers are unprivileged, meaning that they operate inside a user namespace, restricting the abilities of
users in the container to that of regular users on the host with limited privileges on the devices that the container owns.

Unprivileged containers are safe by design: The container UID 0 is mapped to an unprivileged user outside of the
container. It has extra rights only on resources that it owns itself.

This mechanism ensures that most security issues (for example, container escape or resource abuse) that might occur
in a container apply just as well to a random unprivileged user, which means they are a generic kernel security bug
rather than a LXD issue.

Tip: If data sharing between containers isn’t needed, you can enable security.idmap.isolated , which will use
non-overlapping UID/GID maps for each container, preventing potential DoS (Denial of Service) attacks on other
containers.

Privileged containers

LXD can also run privileged containers. In privileged containers, the container UID 0 is mapped to the host’s UID 0.

Such privileged containers are not root-safe, and a user with root access in such a container will be able to DoS the
host as well as find ways to escape confinement.

LXC applies some protection measures to privileged containers to prevent accidental damage of the host (where dam-
age is defined as things like reconfiguring host hardware, reconfiguring the host kernel, or accessing the host file sys-
tem). This protection of the host and prevention of escape is achieved through mandatory access control (apparmor,
selinux), Seccomp filters, dropping of capabilities, and namespaces. These measures are valuable when running
trusted workloads, but they do not make privileged containers root-safe.

Therefore, you should not use privileged containers unless required. If you use them, make sure to put appropriate
security measures in place.

Container name leakage

The default server configuration makes it easy to list all cgroups on a system and, by extension, all running containers.

You can prevent this name leakage by blocking access to /sys/kernel/slab and /proc/sched_debug before you
start any containers. To do so, run the following commands:

chmod 400 /proc/sched_debug
chmod 700 /sys/kernel/slab/

240 Chapter 2. Project and community

https://linuxcontainers.org/lxc/security/

Canonical LXD

Network security

Make sure to configure your network interfaces to be secure. Which aspects you should consider depends on the
networking mode you decide to use.

Bridged NIC security

The default networking mode in LXD is to provide a “managed” private network bridge that each instance connects to.
In this mode, there is an interface on the host called lxdbr0 that acts as the bridge for the instances.

The host runs an instance of dnsmasq for each managed bridge, which is responsible for allocating IP addresses and
providing both authoritative and recursive DNS services.

Instances using DHCPv4 will be allocated an IPv4 address, and a DNS record will be created for their instance name.
This prevents instances from being able to spoof DNS records by providing false host name information in the DHCP
request.

The dnsmasq service also provides IPv6 router advertisement capabilities. This means that instances will auto-
configure their own IPv6 address using SLAAC, so no allocation is made by dnsmasq. However, instances that are also
using DHCPv4 will also get an AAAA DNS record created for the equivalent SLAAC IPv6 address. This assumes that
the instances are not using any IPv6 privacy extensions when generating IPv6 addresses.

In this default configuration, whilst DNS names cannot not be spoofed, the instance is connected to an Ethernet bridge
and can transmit any layer 2 traffic that it wishes, which means an instance that is not trusted can effectively do MAC
or IP spoofing on the bridge.

In the default configuration, it is also possible for instances connected to the bridge to modify the LXD host’s IPv6
routing table by sending (potentially malicious) IPv6 router advertisements to the bridge. This is because the lxdbr0
interface is created with /proc/sys/net/ipv6/conf/lxdbr0/accept_ra set to 2, meaning that the LXD host will
accept router advertisements even though forwarding is enabled (see /proc/sys/net/ipv4/* Variables for more
information).

However, LXD offers several bridged NIC security features that can be used to control the type of traffic that an instance
is allowed to send onto the network. These NIC settings should be added to the profile that the instance is using, or
they can be added to individual instances, as shown below.

The following security features are available for bridged NICs:

Key Type De-
fault

Re-
quired

Description

security.
mac_filtering

bool false no Prevent the instance from spoofing another instance’s MAC ad-
dress

security.
ipv4_filtering

bool false no Prevent the instance from spoofing another instance’s IPv4 address
(enables mac_filtering)

security.
ipv6_filtering

bool false no Prevent the instance from spoofing another instance’s IPv6 address
(enables mac_filtering)

One can override the default bridged NIC settings from the profile on a per-instance basis using:

lxc config device override <instance> <NIC> security.mac_filtering=true

Used together, these features can prevent an instance connected to a bridge from spoofing MAC and IP addresses. These
options are implemented using either xtables (iptables, ip6tables and ebtables) or nftables, depending on
what is available on the host.

2.3. Explanation 241

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

Canonical LXD

It’s worth noting that those options effectively prevent nested containers from using the parent network with a different
MAC address (i.e using bridged or macvlan NICs).

The IP filtering features block ARP and NDP advertisements that contain a spoofed IP, as well as blocking any packets
that contain a spoofed source address.

If security.ipv4_filtering or security.ipv6_filtering is enabled and the instance cannot be allocated an
IP address (because ipvX.address=none or there is no DHCP service enabled on the bridge), then all IP traffic for
that protocol is blocked from the instance.

When security.ipv6_filtering is enabled, IPv6 router advertisements are blocked from the instance.

When security.ipv4_filtering or security.ipv6_filtering is enabled, any Ethernet frames that are not
ARP, IPv4 or IPv6 are dropped. This prevents stacked VLAN Q-in-Q (802.1ad) frames from bypassing the IP filtering.

Routed NIC security

An alternative networking mode is available called “routed”. It provides a virtual Ethernet device pair between container
and host. In this networking mode, the LXD host functions as a router, and static routes are added to the host directing
traffic for the container’s IPs towards the container’s veth interface.

By default, the veth interface created on the host has its accept_ra setting disabled to prevent router advertisements
from the container modifying the IPv6 routing table on the LXD host. In addition to that, the rp_filter on the host
is set to 1 to prevent source address spoofing for IPs that the host does not know the container has.

Related topics

How-to guides:

• How to expose LXD to the network

Explanation:

• Remote API authentication

2.4 Reference

The reference material in this section provides technical descriptions of LXD.

2.4.1 General information

Before you start using LXD, you should check the system requirements. You should also be aware of the supported
architectures, the available image servers, the format for images, and the environment used for containers.

242 Chapter 2. Project and community

Canonical LXD

Requirements

Go

LXD requires Go 1.22.0 or higher and is only tested with the Golang compiler.

We recommend having at least 2GiB of RAM to allow the build to complete.

Kernel requirements

The minimum supported kernel version is 5.15, but older kernels should also work to some degree.

LXD requires a kernel with support for:

• Namespaces (pid, net, uts, ipc and mount)

• Seccomp

• Native Linux AIO (io_setup(2), etc.)

The following optional features also require extra kernel options or newer versions:

• Namespaces (user and cgroup)

• AppArmor (including Ubuntu patch for mount mediation)

• Control Groups (blkio, cpuset, devices, memory, pids and net_prio)

• CRIU (exact details to be found with CRIU upstream)

• SKBPRIO/QFQ qdiscs (for limits.priority, minimum kernel 5.17)

As well as any other kernel feature required by the LXC version in use.

LXC

LXD requires LXC 5.0.0 or higher with the following build options:

• apparmor (if using LXD’s AppArmor support)

• seccomp

To run recent version of various distributions, including Ubuntu, LXCFS should also be installed.

QEMU

For virtual machines, QEMU 6.2 or higher is required. Some features like Confidential Guest support require a more
recent QEMU and kernel version.

Hardware-assisted virtualization (Intel VT-x, AMD-V, etc) is required for running virtual machines. Additional hard-
ware support (Intel VT-d, AMD-Vi) may be required for device pass-through.

2.4. Reference 243

https://man7.org/linux/man-pages/man2/io_setup.2.html

Canonical LXD

ZFS

For the ZFS storage driver, ZFS 2.1 or higher is required. Some features like zfs_delegate requires 2.2 or higher to
be used.

Additional libraries (and development headers)

LXD uses dqlite for its database, to build and set it up, you can run make deps.

LXD itself also uses a number of (usually packaged) C libraries:

• libacl1

• libcap2

• liblz4 (for dqlite)

• libuv1 (for dqlite)

• libsqlite3 >= 3.37.2 (for dqlite)

Make sure you have all these libraries themselves and their development headers (-dev packages) installed.

Related topics

Tutorials:

• First steps with LXD

How-to guides:

• Getting started

Architectures

LXD can run on just about any architecture that is supported by the Linux kernel and by Go.

Some entities in LXD are tied to an architecture, for example, the instances, instance snapshots and images.

The following table lists all supported architectures including their unique identifier and the name used to refer to them.
The architecture names are typically aligned with the Linux kernel architecture names.

244 Chapter 2. Project and community

Canonical LXD

ID Name Notes Personalities
1 i686 32bit Intel x86

2 x86_64 64bit Intel x86 x86
3 armv7l 32bit ARMv7 little-endian

4 aarch64 64bit ARMv8 little-endian armv7 (optional)
5 ppc 32bit PowerPC big-endian

6 ppc64 64bit PowerPC big-endian powerpc
7 ppc64le 64bit PowerPC little-endian

8 s390x 64bit ESA/390 big-endian

9 mips 32bit MIPS

10 mips64 64bit MIPS mips
11 riscv32 32bit RISC-V little-endian

12 riscv64 64bit RISC-V little-endian

Note: LXD cares only about the kernel architecture, not the particular userspace flavor as determined by the toolchain.

That means that LXD considers ARMv7 hard-float to be the same as ARMv7 soft-float and refers to both as armv7. If
useful to the user, the exact userspace ABI may be set as an image and container property, allowing easy query.

Remote image servers

The lxc CLI command comes pre-configured with the following default remote image servers:

images:
This server provides unofficial images for a variety of Linux distributions. The images are built to be compact
and minimal, and therefore the default image variants do not include cloud-init. Where possible, /cloud
variants that include cloud-init are provided. See cloud-init support in images.

This server does not provide official Ubuntu images (for those, use the ubuntu: server). It does, however,
provide desktop variants of current Ubuntu releases.

See images.lxd.canonical.com for an overview of available images.

ubuntu:
This server provides official stable Ubuntu images. All images are cloud images, which means that they include
both cloud-init and the lxd-agent.

See cloud-images.ubuntu.com/releases for an overview of available images.

ubuntu-daily:
This server provides official daily Ubuntu images. All images are cloud images, which means that they include
both cloud-init and the lxd-agent.

See cloud-images.ubuntu.com/daily for an overview of available images.

2.4. Reference 245

https://images.lxd.canonical.com
https://cloud-images.ubuntu.com/releases/
https://cloud-images.ubuntu.com/daily/

Canonical LXD

ubuntu-minimal:
This server provides official Ubuntu Minimal images. All images are cloud images, which means that they
include both cloud-init and the lxd-agent.

See cloud-images.ubuntu.com/minimal/releases for an overview of available images.

ubuntu-minimal-daily:
This server provides official daily Ubuntu Minimal images. All images are cloud images, which means that they
include both cloud-init and the lxd-agent.

See cloud-images.ubuntu.com/minimal/daily for an overview of available images.

Remote server types

LXD supports the following types of remote image servers:

Simple streams servers
Pure image servers that use the simple streams format. The default image servers are simple streams servers.

Public LXD servers
LXD servers that are used solely to serve images and do not run instances themselves.

To make a LXD server publicly available over the network on port 8443, set the core.https_address configu-
ration option to :8443 and do not configure any authentication methods (see How to expose LXD to the network
for more information). Then set the images that you want to share to public.

LXD servers
Regular LXD servers that you can manage over a network, and that can also be used as image servers.

For security reasons, you should restrict the access to the remote API and configure an authentication method to
control access. See How to expose LXD to the network and Remote API authentication for more information.

Related topics

How-to guides:

• Images

Explanation:

• About images

Image format

Images contain a root file system and a metadata file that describes the image. They can also contain templates for
creating files inside an instance that uses the image.

Images can be packaged as either a unified image (single file) or a split image (two files).

246 Chapter 2. Project and community

https://cloud-images.ubuntu.com/minimal/releases/
https://cloud-images.ubuntu.com/minimal/daily/
https://git.launchpad.net/simplestreams/tree/

Canonical LXD

Content

Images for containers have the following directory structure:

metadata.yaml
rootfs/
templates/

Images for VMs have the following directory structure:

metadata.yaml
rootfs.img
templates/

For both instance types, the templates/ directory is optional.

Metadata

The metadata.yaml file contains information that is relevant to running the image in LXD. It includes the following
information:

architecture: x86_64
creation_date: 1424284563
properties:
description: Ubuntu 24.04 LTS Intel 64bit
os: Ubuntu
release: noble 24.04

templates:
...

The architecture and creation_date fields are mandatory. The properties field contains a set of default prop-
erties for the image. The os, release, name and description fields are commonly used, but are not mandatory.

The templates field is optional. See Templates (optional) for information on how to configure templates.

Root file system

For containers, the rootfs/ directory contains a full file system tree of the root directory (/) in the container.

Virtual machines use a rootfs.img qcow2 file instead of a rootfs/ directory. This file becomes the main disk device.

Templates (optional)

You can use templates to dynamically create files inside an instance. To do so, configure template rules in the
metadata.yaml file and place the template files in a templates/ directory.

As a general rule, you should never template a file that is owned by a package or is otherwise expected to be overwritten
by normal operation of an instance.

2.4. Reference 247

Canonical LXD

Template rules

For each file that should be generated, create a rule in the metadata.yaml file. For example:

templates:
/etc/hosts:
when:
- create
- rename

template: hosts.tpl
properties:
foo: bar

/etc/hostname:
when:
- start

template: hostname.tpl
/etc/network/interfaces:
when:
- create

template: interfaces.tpl
create_only: true

The when key can be one or more of:

• create - run at the time a new instance is created from the image

• copy - run when an instance is created from an existing one

• start - run every time the instance is started

The template key points to the template file in the templates/ directory.

You can pass user-defined template properties to the template file through the properties key.

Set the create_only key if you want LXD to create the file if it doesn’t exist, but not overwrite an existing file.

Template files

Template files use the Pongo2 format.

They always receive the following context:

Variable Type Description
trigger string Name of the event that triggered the template
path string Path of the file that uses the template
instance map[string]string Key/value map of instance properties (name, architecture, privileged

and ephemeral)
config map[string]string Key/value map of the instance’s configuration
devices map[string]map[string]stringKey/value map of the devices assigned to the instance
properties map[string]string Key/value map of the template properties specified in metadata.

yaml

For convenience, the following functions are exported to the Pongo2 templates:

• config_get("user.foo", "bar") - Returns the value of user.foo, or "bar" if not set.

248 Chapter 2. Project and community

https://www.schlachter.tech/solutions/pongo2-template-engine/

Canonical LXD

Image tarballs

LXD supports two LXD-specific image formats: a unified tarball and split tarballs.

These tarballs can be compressed. LXD supports a wide variety of compression algorithms for tarballs. However, for
compatibility purposes, you should use gzip or xz.

Unified tarball

A unified tarball is a single tarball (usually *.tar.xz) that contains the full content of the image, including the meta-
data, the root file system and optionally the template files.

This is the format that LXD itself uses internally when publishing images. It is usually easier to work with; therefore,
you should use the unified format when creating LXD-specific images.

The image identifier for such images is the SHA-256 of the tarball.

Split tarballs

A split image consists of two separate tarballs. One tarball contains the metadata and optionally the template files
(usually *.tar.xz), and the other contains the root file system (usually *.squashfs for containers or *.qcow2 for
virtual machines).

For containers, the root file system tarball can be SquashFS-formatted. For virtual machines, the rootfs.img file
always uses the qcow2 format. It can optionally be compressed using qcow2’s native compression.

This format is designed to allow for easy image building from existing non-LXD rootfs tarballs that are already available.
You should also use this format if you want to create images that can be consumed by both LXD and other tools.

The image identifier for such images is the SHA-256 of the concatenation of the metadata and root file system tarball
(in that order).

Related topics

How-to guides:

• Images

Explanation:

• About images

Container runtime environment

LXD attempts to present a consistent environment to all containers it runs.

The exact environment will differ slightly based on kernel features and user configuration, but otherwise, it is identical
for all containers.

2.4. Reference 249

Canonical LXD

File system

LXD assumes that any image it uses to create a new container comes with at least the following root-level directories:

• /dev (empty)

• /proc (empty)

• /sbin/init (executable)

• /sys (empty)

Devices

LXD containers have a minimal and ephemeral /dev based on a tmpfs file system. Since this is a tmpfs and not a
devtmpfs file system, device nodes appear only if manually created.

The following standard set of device nodes is set up automatically:

• /dev/console

• /dev/fd

• /dev/full

• /dev/log

• /dev/null

• /dev/ptmx

• /dev/random

• /dev/stdin

• /dev/stderr

• /dev/stdout

• /dev/tty

• /dev/urandom

• /dev/zero

In addition to the standard set of devices, the following devices are also set up for convenience:

• /dev/fuse

• /dev/net/tun

• /dev/mqueue

Network

LXD containers may have any number of network devices attached to them. The naming for those (unless overridden
by the user) is ethX, where X is an incrementing number.

250 Chapter 2. Project and community

Canonical LXD

Container-to-host communication

LXD sets up a socket at /dev/lxd/sock that the root user in the container can use to communicate with LXD on the
host.

See Communication between instance and host for the API documentation.

Mounts

The following mounts are set up by default:

• /proc ()

• /sys (sysfs)

• /sys/fs/cgroup/* (cgroupfs) (only on kernels that lack cgroup namespace support)

If they are present on the host, the following paths will also automatically be mounted:

• /proc/sys/fs/binfmt_misc

• /sys/firmware/efi/efivars

• /sys/fs/fuse/connections

• /sys/fs/pstore

• /sys/kernel/debug

• /sys/kernel/security

The reason for passing all of those paths is that legacy init systems require them to be mounted, or be mountable, inside
the container.

The majority of those paths will not be writable (or even readable) from inside an unprivileged container. In privileged
containers, they will be blocked by the AppArmor policy.

LXCFS

If LXCFS is present on the host, it is automatically set up for the container.

This normally results in a number of /proc files being overridden through bind-mounts. On older kernels, a virtual
version of /sys/fs/cgroup might also be set up by LXCFS.

PID1

LXD spawns whatever is located at /sbin/init as the initial process of the container (PID 1). This binary should act
as a proper init system, including handling re-parented processes.

LXD’s communication with PID1 in the container is limited to two signals:

• SIGINT to trigger a reboot of the container

• SIGPWR (or alternatively SIGRTMIN+3) to trigger a clean shutdown of the container

The initial environment of PID1 is blank except for container=lxc, which can be used by the init system to detect
the runtime.

All file descriptors above the default three are closed prior to PID1 being spawned.

2.4. Reference 251

Canonical LXD

Related topics

How-to guides:

• Instances

Explanation:

• Instance types in LXD

2.4.2 Configuration options

LXD is highly configurable. Check the available configuration options for the LXD server and the different entities
used in LXD.

Index

Server configuration

The LXD server can be configured through a set of key/value configuration options.

The key/value configuration is namespaced. The following options are available:

• Core configuration

• ACME configuration

• OpenID Connect configuration

• Cluster configuration

• Images configuration

• Loki configuration

• Miscellaneous options

See How to configure the LXD server for instructions on how to set the configuration options.

Note: Options marked with a global scope are immediately applied to all cluster members. Options with a local
scope must be set on a per-member basis.

Core configuration

The following server options control the core daemon configuration: core.bgp_address Address to bind the BGP
server to

Key: core.bgp_address
Type: string
Scope: local

See How to configure LXD as a BGP server.

core.bgp_asn BGP Autonomous System Number for the local server

252 Chapter 2. Project and community

Canonical LXD

Key: core.bgp_asn
Type: string
Scope: global

core.bgp_routerid A unique identifier for the BGP server

Key: core.bgp_routerid
Type: string
Scope: local

The identifier must be formatted as an IPv4 address.

core.debug_address Address to bind the pprof debug server to (HTTP)

Key: core.debug_address
Type: string
Scope: local

core.dns_address Address to bind the authoritative DNS server to

Key: core.dns_address
Type: string
Scope: local

See Enable the built-in DNS server.

core.https_address Address to bind for the remote API (HTTPS)

Key: core.https_address
Type: string
Scope: local

See How to expose LXD to the network.

core.https_allowed_credentials Whether to set Access-Control-Allow-Credentials

Key: core.https_allowed_credentials
Type: bool
Default: false
Scope: global

If enabled, the Access-Control-Allow-Credentials HTTP header value is set to true.

core.https_allowed_headers Access-Control-Allow-Headers HTTP header value

Key: core.https_allowed_headers
Type: string
Scope: global

2.4. Reference 253

Canonical LXD

core.https_allowed_methods Access-Control-Allow-Methods HTTP header value

Key: core.https_allowed_methods
Type: string
Scope: global

core.https_allowed_origin Access-Control-Allow-Origin HTTP header value

Key: core.https_allowed_origin
Type: string
Scope: global

core.https_trusted_proxy Trusted servers to provide the client’s address

Key: core.https_trusted_proxy
Type: string
Scope: global

Specify a comma-separated list of IP addresses of trusted servers that provide the client’s address through the proxy
connection header.

core.metrics_address Address to bind the metrics server to (HTTPS)

Key: core.metrics_address
Type: string
Scope: local

See How to monitor metrics.

core.metrics_authentication Whether to enforce authentication on the metrics endpoint

Key: core.metrics_authentication
Type: bool
Default: true
Scope: global

core.proxy_http HTTP proxy to use

Key: core.proxy_http
Type: string
Scope: global

If this option is not specified, LXD falls back to the HTTP_PROXY environment variable (if set).

core.proxy_https HTTPS proxy to use

Key: core.proxy_https
Type: string
Scope: global

254 Chapter 2. Project and community

Canonical LXD

If this option is not specified, LXD falls back to the HTTPS_PROXY environment variable (if set).

core.proxy_ignore_hosts Hosts that don’t need the proxy

Key: core.proxy_ignore_hosts
Type: string
Scope: global

Specify this option in a similar format to NO_PROXY (for example, 1.2.3.4,1.2.3.5)

If this option is not specified, LXD falls back to the NO_PROXY environment variable (if set).

core.remote_token_expiry Time after which a remote add token expires

Key: core.remote_token_expiry
Type: string
Default: no expiry
Scope: global

core.shutdown_timeout How long to wait before shutdown

Key: core.shutdown_timeout
Type: integer
Default: 5
Scope: global

Specify the number of minutes to wait for running operations to complete before the LXD server shuts down.

core.storage_buckets_address Address to bind the storage object server to (HTTPS)

Key: core.storage_buckets_address
Type: string
Scope: local

See How to manage storage buckets and keys.

core.syslog_socket Whether to enable the syslog unixgram socket listener

Key: core.syslog_socket
Type: bool
Default: false
Scope: local

Set this option to true to enable the syslog unixgram socket to receive log messages from external processes.

core.trust_ca_certificates Whether to automatically trust clients signed by the CA

Key: core.trust_ca_certificates
Type: bool
Default: false
Scope: global

2.4. Reference 255

Canonical LXD

core.trust_password Password to be provided by clients to set up a trust

Key: core.trust_password
Type: string
Scope: global

ACME configuration

The following server options control the ACME configuration: acme.agree_tos Agree to ACME terms of service

Key: acme.agree_tos
Type: bool
Default: false
Scope: global

acme.ca_url URL to the directory resource of the ACME service

Key: acme.ca_url
Type: string
Default: https://acme-v02.api.letsencrypt.org/directory
Scope: global

acme.domain Domain for which the certificate is issued

Key: acme.domain
Type: string
Scope: global

acme.email Email address used for the account registration

Key: acme.email
Type: string
Scope: global

OpenID Connect configuration

The following server options configure external user authentication through OpenID Connect authentication: oidc.
audience Expected audience value for the application

Key: oidc.audience
Type: string
Scope: global

This value is required by some providers.

oidc.client.id OpenID Connect client ID

256 Chapter 2. Project and community

Canonical LXD

Key: oidc.client.id
Type: string
Scope: global

oidc.groups.claim Expected audience value for the application

Key: oidc.groups.claim
Type: string
Scope: global

Specify a custom claim to be requested when performing OIDC flows. Configure a corresponding custom claim in your
identity provider and add organization level groups to it. These can be mapped to LXD groups for automatic access
control.

oidc.issuer OpenID Connect Discovery URL for the provider

Key: oidc.issuer
Type: string
Scope: global

Cluster configuration

The following server options control Clustering: cluster.healing_threshold Threshold when to evacuate an
offline cluster member

Key: cluster.healing_threshold
Type: integer
Default: 0
Scope: global

Specify the number of seconds after which an offline cluster member is to be evacuated. To disable evacuating offline
members, set this option to 0.

cluster.https_address Address to use for clustering traffic

Key: cluster.https_address
Type: string
Scope: local

See Separate REST API and clustering networks.

cluster.images_minimal_replica Number of cluster members that replicate an image

Key: cluster.images_minimal_replica
Type: integer
Default: 3
Scope: global

2.4. Reference 257

Canonical LXD

Specify the minimal number of cluster members that keep a copy of a particular image. Set this option to 1 for no
replication, or to -1 to replicate images on all members.

cluster.join_token_expiry Time after which a cluster join token expires

Key: cluster.join_token_expiry
Type: string
Default: 3H
Scope: global

cluster.max_standby Number of database stand-by members

Key: cluster.max_standby
Type: integer
Default: 2
Scope: global

Specify the maximum number of cluster members that are assigned the database stand-by role. This must be a number
between 0 and 5.

cluster.max_voters Number of database voter members

Key: cluster.max_voters
Type: integer
Default: 3
Scope: global

Specify the maximum number of cluster members that are assigned the database voter role. This must be an odd number
>= 3.

cluster.offline_threshold Threshold when an unresponsive member is considered offline

Key: cluster.offline_threshold
Type: integer
Default: 20
Scope: global

Specify the number of seconds after which an unresponsive member is considered offline.

Images configuration

The following server options configure how to handle Images: images.auto_update_cached Whether to automat-
ically update cached images

Key: images.auto_update_cached
Type: bool
Default: true
Scope: global

images.auto_update_interval Interval at which to look for updates to cached images

258 Chapter 2. Project and community

Canonical LXD

Key: images.auto_update_interval
Type: integer
Default: 6
Scope: global

Specify the interval in hours. To disable looking for updates to cached images, set this option to 0.

images.compression_algorithm Compression algorithm to use for new images

Key: images.compression_algorithm
Type: string
Default: gzip
Scope: global

Possible values are bzip2, gzip, lzma, xz, or none.

images.default_architecture Default architecture to use in a mixed-architecture cluster

Key: images.default_architecture
Type: string

images.remote_cache_expiry When an unused cached remote image is flushed

Key: images.remote_cache_expiry
Type: integer
Default: 10
Scope: global

Specify the number of days after which the unused cached image expires.

Loki configuration

The following server options configure the external log aggregation system: loki.api.ca_cert CA certificate for
the Loki server

Key: loki.api.ca_cert
Type: string
Scope: global

loki.api.url URL to the Loki server

Key: loki.api.url
Type: string
Scope: global

Specify the protocol, name or IP and port. For example https://loki.example.com:3100. LXD will automatically
add the /loki/api/v1/push suffix so there’s no need to add it here.

2.4. Reference 259

Canonical LXD

loki.auth.password Password used for Loki authentication

Key: loki.auth.password
Type: string
Scope: global

loki.auth.username User name used for Loki authentication

Key: loki.auth.username
Type: string
Scope: global

loki.instance Name to use as the instance field in Loki events.

Key: loki.instance
Type: string
Default: Local server host name or cluster member name
Scope: global

This allows replacing the default instance value (server host name) by a more relevant value like a cluster identifier.

loki.labels Labels for a Loki log entry

Key: loki.labels
Type: string
Scope: global

Specify a comma-separated list of values that should be used as labels for a Loki log entry.

loki.loglevel Minimum log level to send to the Loki server

Key: loki.loglevel
Type: string
Default: info
Scope: global

loki.types Events to send to the Loki server

Key: loki.types
Type: string
Default: lifecycle,logging
Scope: global

Specify a comma-separated list of events to send to the Loki server. The events can be any combination of lifecycle,
logging, and ovn.

260 Chapter 2. Project and community

Canonical LXD

Miscellaneous options

The following server options configure server-specific settings for Instances, MAAS integration, OVN integration,
Backups and Storage: backups.compression_algorithm Compression algorithm to use for backups

Key: backups.compression_algorithm
Type: string
Default: gzip
Scope: global

Possible values are bzip2, gzip, lzma, xz, or none.

instances.migration.stateful Whether to set migration.stateful to true for the instances

Key: instances.migration.stateful
Type: bool
Scope: global

You can override this setting for relevant instances, either in the instance-specific configuration or through a profile.

instances.nic.host_name How to set the host name for a NIC

Key: instances.nic.host_name
Type: string
Default: random
Scope: global

Possible values are random and mac.

If set to random, use the random host interface name as the host name. If set to mac, generate a host name in the form
lxd<mac_address> (MAC without leading two digits).

instances.placement.scriptlet Instance placement scriptlet for automatic instance placement

Key: instances.placement.scriptlet
Type: string
Scope: global

When using custom automatic instance placement logic, this option stores the scriptlet. See Instance placement scriptlet
for more information.

maas.api.key API key to manage MAAS

Key: maas.api.key
Type: string
Scope: global

maas.api.url URL of the MAAS server

2.4. Reference 261

Canonical LXD

Key: maas.api.url
Type: string
Scope: global

maas.machine Name of this LXD host in MAAS

Key: maas.machine
Type: string
Default: host name
Scope: local

network.ovn.ca_cert OVN SSL certificate authority

Key: network.ovn.ca_cert
Type: string
Default: Content of /etc/ovn/ovn-central.crt if present
Scope: global

network.ovn.client_cert OVN SSL client certificate

Key: network.ovn.client_cert
Type: string
Default: Content of /etc/ovn/cert_host if present
Scope: global

network.ovn.client_key OVN SSL client key

Key: network.ovn.client_key
Type: string
Default: Content of /etc/ovn/key_host if present
Scope: global

network.ovn.integration_bridge OVS integration bridge to use for OVN networks

Key: network.ovn.integration_bridge
Type: string
Default: br-int
Scope: global

network.ovn.northbound_connection OVN northbound database connection string

Key: network.ovn.northbound_connection
Type: string
Default: unix:/var/run/ovn/ovnnb_db.sock
Scope: global

storage.backups_volume Volume to use to store backup tarballs

262 Chapter 2. Project and community

Canonical LXD

Key: storage.backups_volume
Type: string
Scope: local

Specify the volume using the syntax POOL/VOLUME.

storage.images_volume Volume to use to store the image tarballs

Key: storage.images_volume
Type: string
Scope: local

Specify the volume using the syntax POOL/VOLUME.

Related topics

How-to guides:

• How to configure the LXD server

Instance configuration

The instance configuration consists of different categories:

Instance properties
Instance properties are specified when the instance is created. They include, for example, the instance name and
architecture. Some of the properties are read-only and cannot be changed after creation, while others can be
updated by setting their property value or editing the full instance configuration.

In the YAML configuration, properties are on the top level.

See Instance properties for a reference of available instance properties.

Instance options
Instance options are configuration options that are related directly to the instance. They include, for example,
startup options, security settings, hardware limits, kernel modules, snapshots and user keys. These options can be
specified as key/value pairs during instance creation (through the --config key=value flag). After creation,
they can be configured with the lxc config set and lxc config unset commands.

In the YAML configuration, options are located under the config entry.

See Instance options for a reference of available instance options, and Configure instance options for instructions
on how to configure the options.

Instance devices
Instance devices are attached to an instance. They include, for example, network interfaces, mount points, USB
and GPU devices. Devices are usually added after an instance is created with the lxc config device add
command, but they can also be added to a profile or a YAML configuration file that is used to create an instance.

Each type of device has its own specific set of options, referred to as instance device options.

In the YAML configuration, devices are located under the devices entry.

See Devices for a reference of available devices and the corresponding instance device options, and Configure
devices for instructions on how to add and configure instance devices.

2.4. Reference 263

Canonical LXD

Instance properties

Instance properties are set when the instance is created. They cannot be part of a profile.

The following instance properties are available: architecture Instance architecture

Key: architecture
Type: string
Read-only: no

name Instance name

Key: name
Type: string
Read-only: yes

See Instance name requirements.

Instance name requirements

The instance name can be changed only by renaming the instance with the lxc rename command.

Valid instance names must fulfill the following requirements:

• The name must be between 1 and 63 characters long.

• The name must contain only letters, numbers and dashes from the ASCII table.

• The name must not start with a digit or a dash.

• The name must not end with a dash.

The purpose of these requirements is to ensure that the instance name can be used in DNS records, on the file system,
in various security profiles and as the host name of the instance itself.

Instance options

Instance options are configuration options that are directly related to the instance.

See Configure instance options for instructions on how to set the instance options.

The key/value configuration is namespaced. The following options are available:

• Miscellaneous options

• Boot-related options

• cloud-init configuration

• Resource limits

• Migration options

• NVIDIA and CUDA configuration

• Raw instance configuration overrides

• Security policies

264 Chapter 2. Project and community

Canonical LXD

• Snapshot scheduling and configuration

• Volatile internal data

Note that while a type is defined for each option, all values are stored as strings and should be exported over the REST
API as strings (which makes it possible to support any extra values without breaking backward compatibility).

Miscellaneous options

In addition to the configuration options listed in the following sections, these instance options are supported: agent.
nic_config Whether to use the name and MTU of the default network interfaces

Key: agent.nic_config
Type: bool
Default: false
Live update: no
Condition: virtual machine

For containers, the name and MTU of the default network interfaces is used for the instance devices. For virtual
machines, set this option to true to set the name and MTU of the default network interfaces to be the same as the
instance devices.

cluster.evacuate What to do when evacuating the instance

Key: cluster.evacuate
Type: string
Default: auto
Live update: no

The cluster.evacuate provides control over how instances are handled when a cluster member is being evacuated.

Available Modes:

• auto (default): The system will automatically decide the best evacuation method based on the instance’s type
and configured devices:

– If any device is not suitable for migration, the instance will not be migrated (only stopped).

– Live migration will be used only for virtual machines with the migration.stateful setting enabled and
for which all its devices can be migrated as well.

• live-migrate: Instances are live-migrated to another node. This means the instance remains running and
operational during the migration process, ensuring minimal disruption.

• migrate: In this mode, instances are migrated to another node in the cluster. The migration process will not be
live, meaning there will be a brief downtime for the instance during the migration.

• stop: Instances are not migrated. Instead, they are stopped on the current node.

See Evacuate and restore cluster members for more information.

linux.kernel_modules Kernel modules to load or allow loading

Key: linux.kernel_modules
Type: string
Live update: yes
Condition: container

2.4. Reference 265

Canonical LXD

Specify the kernel modules as a comma-separated list.

The modules are loaded before the instance starts, or they can be loaded by a privileged user if linux.
kernel_modules.load is set to ondemand.

linux.kernel_modules.load How to load kernel modules

Key: linux.kernel_modules.load
Type: string
Default: boot
Live update: no
Condition: container

This option specifies how to load the kernel modules that are specified in linux.kernel_modules. Possible values
are boot (load the modules when booting the container) and ondemand (intercept the finit_modules() syscall and
allow a privileged user in the container’s user namespace to load the modules).

linux.sysctl.* Override for the corresponding sysctl setting in the container

Key: linux.sysctl.*
Type: string
Live update: no
Condition: container

user.* Free-form user key/value storage

Key: user.*
Type: string
Live update: no

User keys can be used in search.

environment.* Environment variables for the instance

Key: environment.*
Type: string
Live update: yes (exec)

You can export key/value environment variables to the instance. These are then set for lxc exec.

Boot-related options

The following instance options control the boot-related behavior of the instance: boot.autostart Whether to
always start the instance when LXD starts

Key: boot.autostart
Type: bool
Live update: no

If set to false, restore the last state.

266 Chapter 2. Project and community

Canonical LXD

boot.autostart.delay Delay after starting the instance

Key: boot.autostart.delay
Type: integer
Default: 0
Live update: no

The number of seconds to wait after the instance started before starting the next one.

boot.autostart.priority What order to start the instances in

Key: boot.autostart.priority
Type: integer
Default: 0
Live update: no

The instance with the highest value is started first.

boot.debug_edk2 Enable debug version of the edk2

Key: boot.debug_edk2
Type: bool

The instance should use a debug version of the edk2. A log file can be found in $LXD_DIR/logs/<instance_name>/
edk2.log.

boot.host_shutdown_timeout How long to wait for the instance to shut down

Key: boot.host_shutdown_timeout
Type: integer
Default: 30
Live update: yes

Number of seconds to wait for the instance to shut down before it is force-stopped.

boot.stop.priority What order to shut down the instances in

Key: boot.stop.priority
Type: integer
Default: 0
Live update: no

The instance with the highest value is shut down first.

2.4. Reference 267

Canonical LXD

cloud-init configuration

The following instance options control the cloud-init configuration of the instance: cloud-init.
network-config Network configuration for cloud-init

Key: cloud-init.network-config
Type: string
Default: DHCP on eth0
Live update: no
Condition: If supported by image

The content is used as seed value for cloud-init.

cloud-init.user-data User data for cloud-init

Key: cloud-init.user-data
Type: string
Default: #cloud-config
Live update: no
Condition: If supported by image

The content is used as seed value for cloud-init.

cloud-init.vendor-data Vendor data for cloud-init

Key: cloud-init.vendor-data
Type: string
Default: #cloud-config
Live update: no
Condition: If supported by image

The content is used as seed value for cloud-init.

user.network-config Legacy version of cloud-init.network-config

Key: user.network-config
Type: string
Default: DHCP on eth0
Live update: no
Condition: If supported by image

user.user-data Legacy version of cloud-init.user-data

Key: user.user-data
Type: string
Default: #cloud-config
Live update: no
Condition: If supported by image

user.vendor-data Legacy version of cloud-init.vendor-data

268 Chapter 2. Project and community

Canonical LXD

Key: user.vendor-data
Type: string
Default: #cloud-config
Live update: no
Condition: If supported by image

Support for these options depends on the image that is used and is not guaranteed.

If you specify both cloud-init.user-data and cloud-init.vendor-data, the content of both options is merged.
Therefore, make sure that the cloud-init configuration you specify in those options does not contain the same keys.

Resource limits

The following instance options specify resource limits for the instance: limits.cpu Which CPUs to expose to the
instance

Key: limits.cpu
Type: string
Default: 1 (VMs)
Live update: yes

A number or a specific range of CPUs to expose to the instance.

See CPU pinning for more information.

limits.cpu.allowance How much of the CPU can be used

Key: limits.cpu.allowance
Type: string
Default: 100%
Live update: yes
Condition: container

To control how much of the CPU can be used, specify either a percentage (50%) for a soft limit or a chunk of time
(25ms/100ms) for a hard limit.

See Allowance and priority (container only) for more information.

limits.cpu.nodes Which NUMA nodes to place the instance CPUs on

Key: limits.cpu.nodes
Type: string
Live update: yes

A comma-separated list of NUMA node IDs or ranges to place the instance CPUs on.

See Allowance and priority (container only) for more information.

limits.cpu.priority CPU scheduling priority compared to other instances

2.4. Reference 269

Canonical LXD

Key: limits.cpu.priority
Type: integer
Default: 10 (maximum)
Live update: yes
Condition: container

When overcommitting resources, specify the CPU scheduling priority compared to other instances that share the same
CPUs. Specify an integer between 0 and 10.

See Allowance and priority (container only) for more information.

limits.disk.priority Priority of the instance’s I/O requests

Key: limits.disk.priority
Type: integer
Default: 5 (medium)
Live update: yes

Controls how much priority to give to the instance’s I/O requests when under load.

Specify an integer between 0 and 10.

limits.hugepages.1GB Limit for the number of 1 GB huge pages

Key: limits.hugepages.1GB
Type: string
Live update: yes
Condition: container

Fixed value (in bytes) to limit the number of 1 GB huge pages. Various suffixes are supported (see Units for storage
and network limits).

See Huge page limits for more information.

limits.hugepages.1MB Limit for the number of 1 MB huge pages

Key: limits.hugepages.1MB
Type: string
Live update: yes
Condition: container

Fixed value (in bytes) to limit the number of 1 MB huge pages. Various suffixes are supported (see Units for storage
and network limits).

See Huge page limits for more information.

limits.hugepages.2MB Limit for the number of 2 MB huge pages

Key: limits.hugepages.2MB
Type: string
Live update: yes
Condition: container

270 Chapter 2. Project and community

Canonical LXD

Fixed value (in bytes) to limit the number of 2 MB huge pages. Various suffixes are supported (see Units for storage
and network limits).

See Huge page limits for more information.

limits.hugepages.64KB Limit for the number of 64 KB huge pages

Key: limits.hugepages.64KB
Type: string
Live update: yes
Condition: container

Fixed value (in bytes) to limit the number of 64 KB huge pages. Various suffixes are supported (see Units for storage
and network limits).

See Huge page limits for more information.

limits.memory Usage limit for the host’s memory

Key: limits.memory
Type: string
Default: 1Gib (VMs)
Live update: yes

Percentage of the host’s memory or a fixed value in bytes. Various suffixes are supported.

See Units for storage and network limits for details.

limits.memory.enforce Whether the memory limit is hard or soft

Key: limits.memory.enforce
Type: string
Default: hard
Live update: yes
Condition: container

If the instance’s memory limit is hard, the instance cannot exceed its limit. If it is soft, the instance can exceed its
memory limit when extra host memory is available.

limits.memory.hugepages Whether to back the instance using huge pages

Key: limits.memory.hugepages
Type: bool
Default: false
Live update: no
Condition: virtual machine

If this option is set to false, regular system memory is used.

limits.memory.swap Whether to encourage/discourage swapping less used pages for this instance

2.4. Reference 271

Canonical LXD

Key: limits.memory.swap
Type: bool
Default: true
Live update: yes
Condition: container

limits.memory.swap.priority Prevents the instance from being swapped to disk

Key: limits.memory.swap.priority
Type: integer
Default: 10 (maximum)
Live update: yes
Condition: container

Specify an integer between 0 and 10. The higher the value, the less likely the instance is to be swapped to disk.

limits.processes Maximum number of processes that can run in the instance

Key: limits.processes
Type: integer
Default: empty
Live update: yes
Condition: container

If left empty, no limit is set.

limits.kernel.* Kernel resources per instance

Key: limits.kernel.*
Type: string
Live update: no
Condition: container

You can set kernel limits on an instance, for example, you can limit the number of open files. See Kernel resource
limits for more information.

CPU limits

You have different options to limit CPU usage:

• Set limits.cpu to restrict which CPUs the instance can see and use. See CPU pinning for how to set this option.

• Set limits.cpu.allowance to restrict the load an instance can put on the available CPUs. This option is
available only for containers. See Allowance and priority (container only) for how to set this option.

It is possible to set both options at the same time to restrict both which CPUs are visible to the instance and the
allowed usage of those instances. However, if you use limits.cpu.allowance with a time limit, you should avoid
using limits.cpu in addition, because that puts a lot of constraints on the scheduler and might lead to less efficient
allocations.

The CPU limits are implemented through a mix of the cpuset and cpu cgroup controllers.

272 Chapter 2. Project and community

Canonical LXD

CPU pinning

limits.cpu results in CPU pinning through the cpuset controller. You can specify either which CPUs or how many
CPUs are visible and available to the instance:

• To specify which CPUs to use, set limits.cpu to either a set of CPUs (for example, 1,2,3) or a CPU range
(for example, 0-3).

To pin to a single CPU, use the range syntax (for example, 1-1) to differentiate it from a number of CPUs.

• If you specify a number (for example, 4) of CPUs, LXD will do dynamic load-balancing of all instances that
aren’t pinned to specific CPUs, trying to spread the load on the machine. Instances are re-balanced every time
an instance starts or stops, as well as whenever a CPU is added to the system.

CPU limits for virtual machines

Note: LXD supports live-updating the limits.cpu option. However, for virtual machines, this only means that the
respective CPUs are hotplugged. Depending on the guest operating system, you might need to either restart the instance
or complete some manual actions to bring the new CPUs online.

LXD virtual machines default to having just one vCPU allocated, which shows up as matching the host CPU vendor
and type, but has a single core and no threads.

When limits.cpu is set to a single integer, LXD allocates multiple vCPUs and exposes them to the guest as full cores.
Those vCPUs are not pinned to specific physical cores on the host. The number of vCPUs can be updated while the
VM is running.

When limits.cpu is set to a range or comma-separated list of CPU IDs (as provided by lxc info --resources),
the vCPUs are pinned to those physical cores. In this scenario, LXD checks whether the CPU configuration lines up
with a realistic hardware topology and if it does, it replicates that topology in the guest. When doing CPU pinning, it
is not possible to change the configuration while the VM is running.

For example, if the pinning configuration includes eight threads, with each pair of thread coming from the same core
and an even number of cores spread across two CPUs, the guest will show two CPUs, each with two cores and each
core with two threads. The NUMA layout is similarly replicated and in this scenario, the guest would most likely end
up with two NUMA nodes, one for each CPU socket.

In such an environment with multiple NUMA nodes, the memory is similarly divided across NUMA nodes and be
pinned accordingly on the host and then exposed to the guest.

All this allows for very high performance operations in the guest as the guest scheduler can properly reason about
sockets, cores and threads as well as consider NUMA topology when sharing memory or moving processes across
NUMA nodes.

Allowance and priority (container only)

limits.cpu.allowance drives either the CFS scheduler quotas when passed a time constraint, or the generic CPU
shares mechanism when passed a percentage value:

• The time constraint (for example, 20ms/50ms) is a hard limit. For example, if you want to allow the container to
use a maximum of one CPU, set limits.cpu.allowance to a value like 100ms/100ms. The value is relative
to one CPU worth of time, so to restrict to two CPUs worth of time, use something like 100ms/50ms or 200ms/
100ms.

2.4. Reference 273

Canonical LXD

• When using a percentage value, the limit is a soft limit that is applied only when under load. It is used to calculate
the scheduler priority for the instance, relative to any other instance that is using the same CPU or CPUs. For
example, to limit the CPU usage of the container to one CPU when under load, set limits.cpu.allowance to
100%.

limits.cpu.nodes can be used to restrict the CPUs that the instance can use to a specific set of NUMA nodes. To
specify which NUMA nodes to use, set limits.cpu.nodes to either a set of NUMA node IDs (for example, 0,1) or
a set of NUMA node ranges (for example, 0-1,2-4).

limits.cpu.priority is another factor that is used to compute the scheduler priority score when a number of in-
stances sharing a set of CPUs have the same percentage of CPU assigned to them.

Huge page limits

LXD allows to limit the number of huge pages available to a container through the limits.hugepage.[size] key
(for example, limits.hugepages.1MB).

Architectures often expose multiple huge-page sizes. The available huge-page sizes depend on the architecture.

Setting limits for huge pages is especially useful when LXD is configured to intercept the mount syscall for the
hugetlbfs file system in unprivileged containers. When LXD intercepts a hugetlbfs mount syscall, it mounts
the hugetlbfs file system for a container with correct uid and gid values as mount options. This makes it possible to
use huge pages from unprivileged containers. However, it is recommended to limit the number of huge pages available
to the container through limits.hugepages.[size] to stop the container from being able to exhaust the huge pages
available to the host.

Limiting huge pages is done through the hugetlb cgroup controller, which means that the host system must expose
the hugetlb controller in the legacy or unified cgroup hierarchy for these limits to apply.

Kernel resource limits

For container instances, LXD exposes a generic namespaced key limits.kernel.* that can be used to set resource
limits.

It is generic in the sense that LXD does not perform any validation on the resource that is specified following the
limits.kernel.* prefix. LXD cannot know about all the possible resources that a given kernel supports. Instead,
LXD simply passes down the corresponding resource key after the limits.kernel.* prefix and its value to the kernel.
The kernel does the appropriate validation. This allows users to specify any supported limit on their system.

Some common limits are:

274 Chapter 2. Project and community

Canonical LXD

Key Resource Description
limits.kernel.as RLIMIT_AS Maximum size of the process’s virtual memory
limits.kernel.core RLIMIT_CORE Maximum size of the process’s core dump file
limits.kernel.cpu RLIMIT_CPU Limit in seconds on the amount of CPU time the process can con-

sume
limits.kernel.data RLIMIT_DATA Maximum size of the process’s data segment
limits.kernel.
fsize

RLIMIT_FSIZE Maximum size of files the process may create

limits.kernel.
locks

RLIMIT_LOCKS Limit on the number of file locks that this process may establish

limits.kernel.
memlock

RLIMIT_MEMLOCK Limit on the number of bytes of memory that the process may lock
in RAM

limits.kernel.nice RLIMIT_NICE Maximum value to which the process’s nice value can be raised
limits.kernel.
nofile

RLIMIT_NOFILE Maximum number of open files for the process

limits.kernel.
nproc

RLIMIT_NPROC Maximum number of processes that can be created for the user of
the calling process

limits.kernel.
rtprio

RLIMIT_RTPRIO Maximum value on the real-time-priority that may be set for this
process

limits.kernel.
sigpending

RLIMIT_SIGPENDINGMaximum number of signals that may be queued for the user of the
calling process

A full list of all available limits can be found in the manpages for the getrlimit(2)/setrlimit(2) system calls.

To specify a limit within the limits.kernel.* namespace, use the resource name in lowercase without the RLIMIT_
prefix. For example, RLIMIT_NOFILE should be specified as nofile.

A limit is specified as two colon-separated values that are either numeric or the word unlimited (for example, limits.
kernel.nofile=1000:2000). A single value can be used as a shortcut to set both soft and hard limit to the same
value (for example, limits.kernel.nofile=3000).

A resource with no explicitly configured limit will inherit its limit from the process that starts up the container. Note
that this inheritance is not enforced by LXD but by the kernel.

Migration options

The following instance options control the behavior if the instance is moved from one LXD server to another:
migration.incremental.memory Whether to use incremental memory transfer

Key: migration.incremental.memory
Type: bool
Default: false
Live update: yes
Condition: container

Using incremental memory transfer of the instance’s memory can reduce downtime.

migration.incremental.memory.goal Percentage of memory to have in sync before stopping the instance

2.4. Reference 275

Canonical LXD

Key: migration.incremental.memory.goal
Type: integer
Default: 70
Live update: yes
Condition: container

migration.incremental.memory.iterationsMaximum number of transfer operations to go through before stop-
ping the instance

Key: migration.incremental.memory.iterations
Type: integer
Default: 10
Live update: yes
Condition: container

migration.stateful Whether to allow for stateful stop/start and snapshots

Key: migration.stateful
Type: bool
Default: false or value from profiles or instances.migration.stateful (if set)
Live update: no
Condition: virtual machine

Enabling this option prevents the use of some features that are incompatible with it.

NVIDIA and CUDA configuration

The following instance options specify the NVIDIA and CUDA configuration of the instance: nvidia.driver.
capabilities What driver capabilities the instance needs

Key: nvidia.driver.capabilities
Type: string
Default: compute,utility
Live update: no
Condition: container

The specified driver capabilities are used to set libnvidia-container NVIDIA_DRIVER_CAPABILITIES.

nvidia.require.cuda Required CUDA version

Key: nvidia.require.cuda
Type: string
Live update: no
Condition: container

The specified version expression is used to set libnvidia-container NVIDIA_REQUIRE_CUDA.

nvidia.require.driver Required driver version

276 Chapter 2. Project and community

Canonical LXD

Key: nvidia.require.driver
Type: string
Live update: no
Condition: container

The specified version expression is used to set libnvidia-container NVIDIA_REQUIRE_DRIVER.

nvidia.runtime Whether to pass the host NVIDIA and CUDA runtime libraries into the instance

Key: nvidia.runtime
Type: bool
Default: false
Live update: no
Condition: container

Raw instance configuration overrides

The following instance options allow direct interaction with the backend features that LXD itself uses: raw.apparmor
AppArmor profile entries

Key: raw.apparmor
Type: blob
Live update: yes

The specified entries are appended to the generated profile.

raw.idmap Raw idmap configuration

Key: raw.idmap
Type: blob
Live update: no
Condition: unprivileged container

For example: both 1000 1000

raw.lxc Raw LXC configuration to be appended to the generated one

Key: raw.lxc
Type: blob
Live update: no
Condition: container

raw.qemu Raw QEMU configuration to be appended to the generated command line

Key: raw.qemu
Type: blob
Live update: no
Condition: virtual machine

2.4. Reference 277

Canonical LXD

raw.qemu.conf Addition/override to the generated qemu.conf file

Key: raw.qemu.conf
Type: blob
Live update: no
Condition: virtual machine

See Override QEMU configuration for more information.

raw.seccomp Raw Seccomp configuration

Key: raw.seccomp
Type: blob
Live update: no
Condition: container

Important: Setting these raw.* keys might break LXD in non-obvious ways. Therefore, you should avoid setting
any of these keys.

Override QEMU configuration

For VM instances, LXD configures QEMU through a configuration file that is passed to QEMU with the -readconfig
command-line option. This configuration file is generated for each instance before boot. It can be found at /var/log/
lxd/<instance_name>/qemu.conf.

The default configuration works fine for LXD’s most common use case: modern UEFI guests with VirtIO devices. In
some situations, however, you might need to override the generated configuration. For example:

• To run an old guest OS that doesn’t support UEFI.

• To specify custom virtual devices when VirtIO is not supported by the guest OS.

• To add devices that are not supported by LXD before the machines boots.

• To remove devices that conflict with the guest OS.

To override the configuration, set the raw.qemu.conf option. It supports a format similar to qemu.conf, with some
additions. Since it is a multi-line configuration option, you can use it to modify multiple sections or keys.

• To replace a section or key in the generated configuration file, add a section with a different value.

For example, use the following section to override the default virtio-gpu-pci GPU driver:

raw.qemu.conf: |-
[device "qemu_gpu"]
driver = "qxl-vga"

• To remove a section, specify a section without any keys. For example:

raw.qemu.conf: |-
[device "qemu_gpu"]

• To remove a key, specify an empty string as the value. For example:

278 Chapter 2. Project and community

Canonical LXD

raw.qemu.conf: |-
[device "qemu_gpu"]
driver = ""

• To add a new section, specify a section name that is not present in the configuration file.

The configuration file format used by QEMU allows multiple sections with the same name. Here’s a piece of the
configuration generated by LXD:

[global]
driver = "ICH9-LPC"
property = "disable_s3"
value = "1"

[global]
driver = "ICH9-LPC"
property = "disable_s4"
value = "1"

To specify which section to override, specify an index. For example:

raw.qemu.conf: |-
[global][1]
value = "0"

Section indexes start at 0 (which is the default value when not specified), so the above example would generate the
following configuration:

[global]
driver = "ICH9-LPC"
property = "disable_s3"
value = "1"

[global]
driver = "ICH9-LPC"
property = "disable_s4"
value = "0"

Security policies

The following instance options control the About security policies of the instance: security.agent.metrics
Whether the lxd-agent is queried for state information and metrics

Key: security.agent.metrics
Type: bool
Default: true
Live update: no
Condition: virtual machine

security.csm Whether to use a firmware that supports UEFI-incompatible operating systems

2.4. Reference 279

Canonical LXD

Key: security.csm
Type: bool
Default: false
Live update: no
Condition: virtual machine

When enabling this option, set security.secureboot to false.

security.devlxd Whether /dev/lxd is present in the instance

Key: security.devlxd
Type: bool
Default: true
Live update: no

See Communication between instance and host for more information.

security.devlxd.images Controls the availability of the /1.0/images API over devlxd

Key: security.devlxd.images
Type: bool
Default: false
Live update: no
Condition: container

security.idmap.base The base host ID to use for the allocation

Key: security.idmap.base
Type: integer
Live update: no
Condition: unprivileged container

Setting this option overrides auto-detection.

security.idmap.isolated Whether to use a unique idmap for this instance

Key: security.idmap.isolated
Type: bool
Default: false
Live update: no
Condition: unprivileged container

If specified, the idmap used for this instance is unique among instances that have this option set.

security.idmap.size The size of the idmap to use

Key: security.idmap.size
Type: integer
Live update: no
Condition: unprivileged container

280 Chapter 2. Project and community

Canonical LXD

security.nesting Whether to support running LXD (nested) inside the instance

Key: security.nesting
Type: bool
Default: false
Live update: yes
Condition: container

security.privileged Whether to run the instance in privileged mode

Key: security.privileged
Type: bool
Default: false
Live update: no
Condition: container

See Container security for more information.

security.protection.delete Prevents the instance from being deleted

Key: security.protection.delete
Type: bool
Default: false
Live update: yes

security.protection.shift Whether to protect the file system from being UID/GID shifted

Key: security.protection.shift
Type: bool
Default: false
Live update: yes
Condition: container

Set this option to true to prevent the instance’s file system from being UID/GID shifted on startup.

security.secureboot Whether UEFI secure boot is enabled with the default Microsoft keys

Key: security.secureboot
Type: bool
Default: true
Live update: no
Condition: virtual machine

When disabling this option, consider enabling security.csm .

security.sev Whether AMD SEV (Secure Encrypted Virtualization) is enabled for this VM

2.4. Reference 281

Canonical LXD

Key: security.sev
Type: bool
Default: false
Live update: no
Condition: virtual machine

security.sev.policy.es Whether AMD SEV-ES (SEV Encrypted State) is enabled for this VM

Key: security.sev.policy.es
Type: bool
Default: false
Live update: no
Condition: virtual machine

security.sev.session.data The guest owner’s base64-encoded session blob

Key: security.sev.session.data
Type: string
Default: true
Live update: no
Condition: virtual machine

security.sev.session.dh The guest owner’s base64-encoded Diffie-Hellman key

Key: security.sev.session.dh
Type: string
Default: true
Live update: no
Condition: virtual machine

security.syscalls.allow List of syscalls to allow

Key: security.syscalls.allow
Type: string
Live update: no
Condition: container

A \n-separated list of syscalls to allow. This list must be mutually exclusive with security.syscalls.deny*.

security.syscalls.deny List of syscalls to deny

Key: security.syscalls.deny
Type: string
Live update: no
Condition: container

A \n-separated list of syscalls to deny. This list must be mutually exclusive with security.syscalls.allow.

security.syscalls.deny_compat Whether to block compat_* syscalls (x86_64 only)

282 Chapter 2. Project and community

Canonical LXD

Key: security.syscalls.deny_compat
Type: bool
Default: false
Live update: no
Condition: container

On x86_64, this option controls whether to block compat_* syscalls. On other architectures, the option is ignored.

security.syscalls.deny_default Whether to enable the default syscall deny

Key: security.syscalls.deny_default
Type: bool
Default: true
Live update: no
Condition: container

security.syscalls.intercept.bpf Whether to handle the bpf() system call

Key: security.syscalls.intercept.bpf
Type: bool
Default: false
Live update: no
Condition: container

security.syscalls.intercept.bpf.devices Whether to allow BPF programs

Key: security.syscalls.intercept.bpf.devices
Type: bool
Default: false
Live update: no
Condition: container

This option controls whether to allow BPF programs for the devices cgroup in the unified hierarchy to be loaded.

security.syscalls.intercept.mknod Whether to handle the mknod and mknodat system calls

Key: security.syscalls.intercept.mknod
Type: bool
Default: false
Live update: no
Condition: container

These system calls allow creation of a limited subset of char/block devices.

security.syscalls.intercept.mount Whether to handle the mount system call

2.4. Reference 283

Canonical LXD

Key: security.syscalls.intercept.mount
Type: bool
Default: false
Live update: no
Condition: container

security.syscalls.intercept.mount.allowed File systems that can be mounted

Key: security.syscalls.intercept.mount.allowed
Type: string
Live update: yes
Condition: container

Specify a comma-separated list of file systems that are safe to mount for processes inside the instance.

security.syscalls.intercept.mount.fuse File system that should be redirected to FUSE implementation

Key: security.syscalls.intercept.mount.fuse
Type: string
Live update: yes
Condition: container

Specify the mounts of a given file system that should be redirected to their FUSE implementation (for example,
ext4=fuse2fs).

security.syscalls.intercept.mount.shift Whether to use idmapped mounts for syscall interception

Key: security.syscalls.intercept.mount.shift
Type: bool
Default: false
Live update: yes
Condition: container

security.syscalls.intercept.sched_setscheduler Whether to handle the sched_setscheduler system
call

Key: security.syscalls.intercept.sched_setscheduler
Type: bool
Default: false
Live update: no
Condition: container

This system call allows increasing process priority.

security.syscalls.intercept.setxattr Whether to handle the setxattr system call

284 Chapter 2. Project and community

Canonical LXD

Key: security.syscalls.intercept.setxattr
Type: bool
Default: false
Live update: no
Condition: container

This system call allows setting a limited subset of restricted extended attributes.

security.syscalls.intercept.sysinfo Whether to handle the sysinfo system call

Key: security.syscalls.intercept.sysinfo
Type: bool
Default: false
Live update: no
Condition: container

This system call can be used to get cgroup-based resource usage information.

Snapshot scheduling and configuration

The following instance options control the creation and expiry of instance snapshots: snapshots.expiry When
snapshots are to be deleted

Key: snapshots.expiry
Type: string
Live update: no

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name

Key: snapshots.pattern
Type: string
Default: snap%d
Live update: no

Specify a Pongo2 template string that represents the snapshot name. This template is used for scheduled snapshots and
for unnamed snapshots.

See Automatic snapshot names for more information.

snapshots.schedule Schedule for automatic instance snapshots

Key: snapshots.schedule
Type: string
Default: empty
Live update: no

2.4. Reference 285

Canonical LXD

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated list of schedule
aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or leave empty to disable auto-
matic snapshots.

snapshots.schedule.stopped Whether to automatically snapshot stopped instances

Key: snapshots.schedule.stopped
Type: bool
Default: false
Live update: no

Automatic snapshot names

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable creation_date. Make sure to format the
date in your template string to avoid forbidden characters in the snapshot name. For example, set snapshots.pattern
to {{ creation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of creation, down
to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first snapshot, the placeholder
is replaced with 0. For subsequent snapshots, the existing snapshot names are taken into account to find the highest
number at the placeholder’s position. This number is then incremented by one for the new name.

Volatile internal data

The following volatile keys are currently used internally by LXD to store internal data specific to an instance:
volatile.<name>.apply_quota Disk quota

Key: volatile.<name>.apply_quota
Type: string

The disk quota is applied the next time the instance starts.

volatile.<name>.ceph_rbd RBD device path for Ceph disk devices

Key: volatile.<name>.ceph_rbd
Type: string

volatile.<name>.host_name Network device name on the host

Key: volatile.<name>.host_name
Type: string

volatile.<name>.hwaddr Network device MAC address

Key: volatile.<name>.hwaddr
Type: string

286 Chapter 2. Project and community

Canonical LXD

The network device MAC address is used when no hwaddr property is set on the device itself.

volatile.<name>.last_state.created Whether the network device physical device was created

Key: volatile.<name>.last_state.created
Type: string

Possible values are true or false.

volatile.<name>.last_state.hwaddr Network device original MAC

Key: volatile.<name>.last_state.hwaddr
Type: string

The original MAC that was used when moving a physical device into an instance.

volatile.<name>.last_state.ip_addresses Last used IP addresses

Key: volatile.<name>.last_state.ip_addresses
Type: string

Comma-separated list of the last used IP addresses of the network device.

volatile.<name>.last_state.mtu Network device original MTU

Key: volatile.<name>.last_state.mtu
Type: string

The original MTU that was used when moving a physical device into an instance.

volatile.<name>.last_state.vdpa.name VDPA device name

Key: volatile.<name>.last_state.vdpa.name
Type: string

The VDPA device name used when moving a VDPA device file descriptor into an instance.

volatile.<name>.last_state.vf.hwaddr SR-IOV virtual function original MAC

Key: volatile.<name>.last_state.vf.hwaddr
Type: string

The original MAC used when moving a VF into an instance.

volatile.<name>.last_state.vf.id SR-IOV virtual function ID

Key: volatile.<name>.last_state.vf.id
Type: string

The ID used when moving a VF into an instance.

2.4. Reference 287

Canonical LXD

volatile.<name>.last_state.vf.spoofcheck SR-IOV virtual function original spoof check setting

Key: volatile.<name>.last_state.vf.spoofcheck
Type: string

The original spoof check setting used when moving a VF into an instance.

volatile.<name>.last_state.vf.vlan SR-IOV virtual function original VLAN

Key: volatile.<name>.last_state.vf.vlan
Type: string

The original VLAN used when moving a VF into an instance.

volatile.apply_nvram Whether to regenerate VM NVRAM the next time the instance starts

Key: volatile.apply_nvram
Type: bool

volatile.apply_template Template hook

Key: volatile.apply_template
Type: string

The template with the given name is triggered upon next startup.

volatile.base_image Hash of the base image

Key: volatile.base_image
Type: string

The hash of the image that the instance was created from (empty if the instance was not created from an image).

volatile.cloud_init.instance-id instance-id (UUID) exposed to cloud-init

Key: volatile.cloud_init.instance-id
Type: string

volatile.evacuate.origin The origin of the evacuated instance

Key: volatile.evacuate.origin
Type: string

The cluster member that the instance lived on before evacuation.

volatile.idmap.base The first ID in the instance’s primary idmap range

Key: volatile.idmap.base
Type: integer

288 Chapter 2. Project and community

Canonical LXD

volatile.idmap.current The idmap currently in use by the instance

Key: volatile.idmap.current
Type: string

volatile.idmap.next The idmap to use the next time the instance starts

Key: volatile.idmap.next
Type: string

volatile.last_state.idmap Serialized instance UID/GID map

Key: volatile.last_state.idmap
Type: string

volatile.last_state.power Instance state as of last host shutdown

Key: volatile.last_state.power
Type: string

volatile.uuid Instance UUID

Key: volatile.uuid
Type: string

The instance UUID is globally unique across all servers and projects.

volatile.uuid.generation Instance generation UUID

Key: volatile.uuid.generation
Type: string

The instance generation UUID changes whenever the instance’s place in time moves backwards. It is globally unique
across all servers and projects.

volatile.vsock_id Instance vsock ID used as of last start

Key: volatile.vsock_id
Type: string

Note: Volatile keys cannot be set by the user.

2.4. Reference 289

Canonical LXD

Devices

Devices are attached to an instance (see Configure devices) or to a profile (see Edit a profile).

They include, for example, network interfaces, mount points, USB and GPU devices. These devices can have instance
device options, depending on the type of the instance device.

LXD supports the following device types:

ID (database) Name Condition Description
0 none - Inheritance blocker
1 nic - Network interface
2 disk - Mount point inside the instance
3 unix-char container Unix character device
4 unix-block container Unix block device
5 usb - USB device
6 gpu - GPU device
7 infiniband container InfiniBand device
8 proxy container Proxy device
9 unix-hotplug container Unix hotplug device
10 tpm - TPM device
11 pci VM PCI device

Each instance comes with a set of Standard devices.

Standard devices

LXD provides each instance with the basic devices that are required for a standard POSIX system to work. These
devices aren’t visible in the instance or profile configuration, and they may not be overridden.

The standard devices are:

Device Type of device
/dev/null Character device
/dev/zero Character device
/dev/full Character device
/dev/console Character device
/dev/tty Character device
/dev/random Character device
/dev/urandom Character device
/dev/net/tun Character device
/dev/fuse Character device
lo Network interface

Any other devices must be defined in the instance configuration or in one of the profiles used by the instance. The
default profile typically contains a network interface that becomes eth0 in the instance.

290 Chapter 2. Project and community

Canonical LXD

Type: none

Note: The none device type is supported for both containers and VMs.

A none device doesn’t have any properties and doesn’t create anything inside the instance.

Its only purpose is to stop inheriting devices that come from profiles. To do so, add a device with the same name as the
one that you do not want to inherit, but with the device type none.

You can add this device either in a profile that is applied after the profile that contains the original device, or directly
on the instance.

Configuration examples

Add a none device to an instance:

lxc config device add <instance_name> <device_name> none

See Configure devices for more information.

Type: nic

Note: The nic device type is supported for both containers and VMs.

NICs support hotplugging for both containers and VMs (with the exception of the ipvlan NIC type).

Network devices, also referred to as Network Interface Controllers or NICs, supply a connection to a network. LXD
supports several different types of network devices (NIC types).

nictype vs. network

When adding a network device to an instance, there are two methods to specify the type of device that you want to add:
through the nictype device option or the network device option.

These two device options are mutually exclusive, and you can specify only one of them when you create a device. How-
ever, note that when you specify the network option, the nictype option is derived automatically from the network
type.

nictype
When using the nictype device option, you can specify a network interface that is not controlled by LXD.
Therefore, you must specify all information that LXD needs to use the network interface.

When using this method, the nictype option must be specified when creating the device, and it cannot be
changed later.

network
When using the network device option, the NIC is linked to an existing managed network. In this case, LXD
has all required information about the network, and you need to specify only the network name when adding the
device.

When using this method, LXD derives the nictype option automatically. The value is read-only and cannot be
changed.

2.4. Reference 291

Canonical LXD

Other device options that are inherited from the network are marked with a “yes” in the “Managed” field of
the NIC-specific device options. You cannot customize these options directly for the NIC if you’re using the
network method.

See About networking for more information.

Available NIC types

The following NICs can be added using the nictype or network options:

• bridged : Uses an existing bridge on the host and creates a virtual device pair to connect the host bridge to the
instance.

• macvlan: Sets up a new network device based on an existing one, but using a different MAC address.

• sriov: Passes a virtual function of an SR-IOV-enabled physical network device into the instance.

• physical: Passes a physical device from the host through to the instance. The targeted device will vanish from
the host and appear in the instance.

The following NICs can be added using only the network option:

• ovn: Uses an existing OVN network and creates a virtual device pair to connect the instance to it.

The following NICs can be added using only the nictype option:

• ipvlan: Sets up a new network device based on an existing one, using the same MAC address but a different IP.

• p2p: Creates a virtual device pair, putting one side in the instance and leaving the other side on the host.

• routed : Creates a virtual device pair to connect the host to the instance and sets up static routes and proxy
ARP/NDP entries to allow the instance to join the network of a designated parent interface.

The available device options depend on the NIC type and are listed in the following sections.

nictype: bridged

Note: You can select this NIC type through the nictype option or the network option (see Bridge network for
information about the managed bridge network).

A bridged NIC uses an existing bridge on the host and creates a virtual device pair to connect the host bridge to the
instance.

Device options

NIC devices of type bridged have the following device options: boot.priority Boot priority for VMs

Key: boot.priority
Type: integer
Managed: no

A higher value for this option means that the VM boots first.

host_name Name of the interface inside the host

292 Chapter 2. Project and community

Canonical LXD

Key: host_name
Type: string
Default: randomly assigned
Managed: no

hwaddr MAC address of the new interface

Key: hwaddr
Type: string
Default: randomly assigned
Managed: no

ipv4.address IPv4 address to assign to the instance through DHCP

Key: ipv4.address
Type: string
Managed: no

Set this option to none to restrict all IPv4 traffic when security.ipv4_filtering is set.

ipv4.routes IPv4 static routes for the NIC to add on the host

Key: ipv4.routes
Type: string
Managed: no

Specify a comma-delimited list of IPv4 static routes for this NIC to add on the host.

ipv4.routes.external IPv4 static routes to route to NIC

Key: ipv4.routes.external
Type: string
Managed: no

Specify a comma-delimited list of IPv4 static routes to route to the NIC and publish on the uplink network (BGP).

ipv6.address IPv6 address to assign to the instance through DHCP

Key: ipv6.address
Type: string
Managed: no

Set this option to none to restrict all IPv6 traffic when security.ipv6_filtering is set.

ipv6.routes IPv6 static routes for the NIC to add on the host

Key: ipv6.routes
Type: string
Managed: no

2.4. Reference 293

Canonical LXD

Specify a comma-delimited list of IPv6 static routes for this NIC to add on the host.

ipv6.routes.external IPv6 static routes to route to NIC

Key: ipv6.routes.external
Type: string
Managed: no

Specify a comma-delimited list of IPv6 static routes to route to the NIC and publish on the uplink network (BGP).

limits.egress I/O limit for outgoing traffic

Key: limits.egress
Type: string
Managed: no

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network limits).

limits.ingress I/O limit for incoming traffic

Key: limits.ingress
Type: string
Managed: no

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network limits).

limits.max I/O limit for both incoming and outgoing traffic

Key: limits.max
Type: string
Managed: no

This option is the same as setting both limits.ingress and limits.egress.

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network limits).

limits.priority skb->priority value for outgoing traffic

Key: limits.priority
Type: integer
Managed: no

The skb->priority value for outgoing traffic is used by the kernel queuing discipline (qdisc) to prioritize network
packets. Specify the value as a 32-bit unsigned integer.

The effect of this value depends on the particular qdisc implementation, for example, SKBPRIO or QFQ. Consult the
kernel qdisc documentation before setting this value.

maas.subnet.ipv4 MAAS IPv4 subnet to register the instance in

Key: maas.subnet.ipv4
Type: string
Managed: yes

294 Chapter 2. Project and community

Canonical LXD

maas.subnet.ipv6 MAAS IPv6 subnet to register the instance in

Key: maas.subnet.ipv6
Type: string
Managed: yes

mtu MTU of the new interface

Key: mtu
Type: integer
Default: parent MTU
Managed: yes

name Name of the interface inside the instance

Key: name
Type: string
Default: kernel assigned
Managed: no

network Managed network to link the device to

Key: network
Type: string
Managed: no

You can specify this option instead of specifying the nictype directly.

parent Name of the host device

Key: parent
Type: string
Managed: yes
Required: if specifying the nictype directly

queue.tx.length Transmit queue length for the NIC

Key: queue.tx.length
Type: integer
Managed: no

security.ipv4_filtering Whether to prevent the instance from spoofing an IPv4 address

Key: security.ipv4_filtering
Type: bool
Default: false
Managed: no

2.4. Reference 295

Canonical LXD

Set this option to true to prevent the instance from spoofing another instance’s IPv4 address. This option enables
security.mac_filtering.

security.ipv6_filtering Whether to prevent the instance from spoofing an IPv6 address

Key: security.ipv6_filtering
Type: bool
Default: false
Managed: no

Set this option to true to prevent the instance from spoofing another instance’s IPv6 address. This option enables
security.mac_filtering.

security.mac_filtering Whether to prevent the instance from spoofing a MAC address

Key: security.mac_filtering
Type: bool
Default: false
Managed: no

Set this option to true to prevent the instance from spoofing another instance’s MAC address.

security.port_isolation Whether to respect port isolation

Key: security.port_isolation
Type: bool
Default: false
Managed: no

Set this option to true to prevent the NIC from communicating with other NICs in the network that have port isolation
enabled.

vlan VLAN ID to use for non-tagged traffic

Key: vlan
Type: integer
Managed: no

Set this option to none to remove the port from the default VLAN.

vlan.tagged VLAN IDs or VLAN ranges to join for tagged traffic

Key: vlan.tagged
Type: integer
Managed: no

Specify the VLAN IDs or ranges as a comma-delimited list.

296 Chapter 2. Project and community

Canonical LXD

Configuration examples

Add a bridged network device to an instance, connecting to a LXD managed network:

lxc network create <network_name> --type=bridge
lxc config device add <instance_name> <device_name> nic network=<network_name>

Note that bridge is the type when creating a managed bridge network, while the device nictype that is required when
connecting to an unmanaged bridge is bridged.

Add a bridged network device to an instance, connecting to an existing bridge interface with nictype:

lxc config device add <instance_name> <device_name> nic nictype=bridged parent=<existing_
→˓bridge>

See How to create a network and Configure devices for more information.

nictype: macvlan

Note: You can select this NIC type through the nictype option or the network option (see Macvlan network for
information about the managed macvlan network).

A macvlan NIC sets up a new network device based on an existing one, but using a different MAC address.

If you are using a macvlan NIC, communication between the LXD host and the instances is not possible. Both the
host and the instances can talk to the gateway, but they cannot communicate directly.

Device options

NIC devices of type macvlan have the following device options: boot.priority Boot priority for VMs

Key: boot.priority
Type: integer
Managed: no

A higher value for this option means that the VM boots first.

gvrp Whether to use GARP VLAN Registration Protocol

Key: gvrp
Type: bool
Default: false
Managed: no

This option specifies whether to register the VLAN using the GARP VLAN Registration Protocol.

hwaddr MAC address of the new interface

2.4. Reference 297

Canonical LXD

Key: hwaddr
Type: string
Default: randomly assigned
Managed: no

maas.subnet.ipv4 MAAS IPv4 subnet to register the instance in

Key: maas.subnet.ipv4
Type: string
Managed: yes

maas.subnet.ipv6 MAAS IPv6 subnet to register the instance in

Key: maas.subnet.ipv6
Type: string
Managed: yes

mtu MTU of the new interface

Key: mtu
Type: integer
Default: parent MTU
Managed: yes

name Name of the interface inside the instance

Key: name
Type: string
Default: kernel assigned
Managed: no

network Managed network to link the device to

Key: network
Type: string
Managed: no

You can specify this option instead of specifying the nictype directly.

parent Name of the host device

Key: parent
Type: string
Managed: yes
Required: if specifying the nictype directly

vlan VLAN ID to attach to

298 Chapter 2. Project and community

Canonical LXD

Key: vlan
Type: integer
Managed: no

Configuration examples

Add a macvlan network device to an instance, connecting to a LXD managed network:

lxc network create <network_name> --type=macvlan parent=<existing_NIC>
lxc config device add <instance_name> <device_name> nic network=<network_name>

Add a macvlan network device to an instance, connecting to an existing network interface with nictype:

lxc config device add <instance_name> <device_name> nic nictype=macvlan parent=<existing_
→˓NIC>

See How to create a network and Configure devices for more information.

nictype: sriov

Note: You can select this NIC type through the nictype option or the network option (see SR-IOV network for
information about the managed sriov network).

An sriov NIC passes a virtual function of an SR-IOV-enabled physical network device into the instance.

An SR-IOV-enabled network device associates a set of virtual functions (VFs) with the single physical function (PF)
of the network device. PFs are standard PCIe functions. VFs, on the other hand, are very lightweight PCIe functions
that are optimized for data movement. They come with a limited set of configuration capabilities to prevent changing
properties of the PF.

Given that VFs appear as regular PCIe devices to the system, they can be passed to instances just like a regular physical
device.

VF allocation
The sriov interface type expects to be passed the name of an SR-IOV enabled network device on the system via
the parent property. LXD then checks for any available VFs on the system.

By default, LXD allocates the first free VF it finds. If it detects that either none are enabled or all currently
enabled VFs are in use, it bumps the number of supported VFs to the maximum value and uses the first free VF.
If all possible VFs are in use or the kernel or card doesn’t support incrementing the number of VFs, LXD returns
an error.

Note: If you need LXD to use a specific VF, use a physical NIC instead of a sriov NIC and set its parent
option to the VF name.

2.4. Reference 299

Canonical LXD

Device options

NIC devices of type sriov have the following device options: boot.priority Boot priority for VMs

Key: boot.priority
Type: integer
Managed: no

A higher value for this option means that the VM boots first.

hwaddr MAC address of the new interface

Key: hwaddr
Type: string
Default: randomly assigned
Managed: no

maas.subnet.ipv4 MAAS IPv4 subnet to register the instance in

Key: maas.subnet.ipv4
Type: string
Managed: yes

maas.subnet.ipv6 MAAS IPv6 subnet to register the instance in

Key: maas.subnet.ipv6
Type: string
Managed: yes

mtu MTU of the new interface

Key: mtu
Type: integer
Default: kernel assigned
Managed: yes

name Name of the interface inside the instance

Key: name
Type: string
Default: kernel assigned
Managed: no

network Managed network to link the device to

Key: network
Type: string
Managed: no

300 Chapter 2. Project and community

Canonical LXD

You can specify this option instead of specifying the nictype directly.

parent Name of the host device

Key: parent
Type: string
Managed: yes
Required: if specifying the nictype directly

security.mac_filtering Whether to prevent the instance from spoofing a MAC address

Key: security.mac_filtering
Type: bool
Default: false
Managed: no

Set this option to true to prevent the instance from spoofing another instance’s MAC address.

vlan VLAN ID to attach to

Key: vlan
Type: integer
Managed: no

Configuration examples

Add a sriov network device to an instance, connecting to a LXD managed network:

lxc network create <network_name> --type=sriov parent=<sriov_enabled_NIC>
lxc config device add <instance_name> <device_name> nic network=<network_name>

Add a sriov network device to an instance, connecting to an existing SR-IOV-enabled interface with nictype:

lxc config device add <instance_name> <device_name> nic nictype=sriov parent=<sriov_
→˓enabled_NIC>

See How to create a network and Configure devices for more information.

nictype: physical

Note:

• You can select this NIC type through the nictype option or the network option (see Physical network for
information about the managed physical network).

• You can have only one physical NIC for each parent device.

A physical NIC provides straight physical device pass-through from the host. The targeted device will vanish from
the host and appear in the instance (which means that you can have only one physical NIC for each targeted device).

2.4. Reference 301

Canonical LXD

Device options

NIC devices of type physical have the following device options: boot.priority Boot priority for VMs

Key: boot.priority
Type: integer
Managed: no

A higher value for this option means that the VM boots first.

gvrp Whether to use GARP VLAN Registration Protocol

Key: gvrp
Type: bool
Default: false
Managed: no

This option specifies whether to register the VLAN using the GARP VLAN Registration Protocol.

hwaddr MAC address of the new interface

Key: hwaddr
Type: string
Default: randomly assigned
Managed: no

maas.subnet.ipv4 MAAS IPv4 subnet to register the instance in

Key: maas.subnet.ipv4
Type: string
Managed: no

maas.subnet.ipv6 MAAS IPv6 subnet to register the instance in

Key: maas.subnet.ipv6
Type: string
Managed: no

mtu MTU of the new interface

Key: mtu
Type: integer
Default: parent MTU
Managed: no

name Name of the interface inside the instance

302 Chapter 2. Project and community

Canonical LXD

Key: name
Type: string
Default: kernel assigned
Managed: no

network Managed network to link the device to

Key: network
Type: string
Managed: no

You can specify this option instead of specifying the nictype directly.

parent Name of the host device

Key: parent
Type: string
Managed: yes
Required: if specifying the nictype directly

vlan VLAN ID to attach to

Key: vlan
Type: integer
Managed: no

Configuration examples

Add a physical network device to an instance, connecting to an existing physical network interface with nictype:

lxc config device add <instance_name> <device_name> nic nictype=physical parent=
→˓<physical_NIC>

Adding a physical network device to an instance using a managed network is not possible, because the physical
managed network type is intended to be used only with OVN networks.

See Configure devices for more information.

nictype: ovn

Note: You can select this NIC type only through the network option (see OVN network for information about the
managed ovn network).

An ovn NIC uses an existing OVN network and creates a virtual device pair to connect the instance to it.

SR-IOV hardware acceleration
To use acceleration=sriov, you must have a compatible SR-IOV physical NIC that supports the Ethernet

2.4. Reference 303

Canonical LXD

switch device driver model (switchdev) in your LXD host. LXD assumes that the physical NIC (PF) is config-
ured in switchdev mode and connected to the OVN integration OVS bridge, and that it has one or more virtual
functions (VFs) active.

To achieve this, follow these basic prerequisite setup steps:

1. Set up PF and VF:

1. Activate some VFs on PF (called enp9s0f0np0 in the following example, with a PCI address of
0000:09:00.0) and unbind them.

2. Enable switchdev mode and hw-tc-offload on the PF.

3. Rebind the VFs.

echo 4 > /sys/bus/pci/devices/0000:09:00.0/sriov_numvfs
for i in $(lspci -nnn | grep "Virtual Function" | cut -d' ' -f1); do echo 0000:
→˓$i > /sys/bus/pci/drivers/mlx5_core/unbind; done
devlink dev eswitch set pci/0000:09:00.0 mode switchdev
ethtool -K enp9s0f0np0 hw-tc-offload on
for i in $(lspci -nnn | grep "Virtual Function" | cut -d' ' -f1); do echo 0000:
→˓$i > /sys/bus/pci/drivers/mlx5_core/bind; done

2. Set up OVS by enabling hardware offload and adding the PF NIC to the integration bridge (normally called
br-int):

ovs-vsctl set open_vswitch . other_config:hw-offload=true
systemctl restart openvswitch-switch
ovs-vsctl add-port br-int enp9s0f0np0
ip link set enp9s0f0np0 up

VDPA hardware acceleration
To use acceleration=vdpa, you must have a compatible VDPA physical NIC. The setup is the same as for
SR-IOV hardware acceleration, except that you must also enable the vhost_vdpa module and check that you
have some available VDPA management devices :

modprobe vhost_vdpa && vdpa mgmtdev show

Device options

NIC devices of type ovn have the following device options: acceleration Enable hardware offloading

Key: acceleration
Type: string
Default: none
Managed: no

Possible values are none, sriov, or vdpa. See SR-IOV hardware acceleration for more information.

boot.priority Boot priority for VMs

Key: boot.priority
Type: integer
Managed: no

304 Chapter 2. Project and community

Canonical LXD

A higher value for this option means that the VM boots first.

host_name Name of the interface inside the host

Key: host_name
Type: string
Default: randomly assigned
Managed: no

hwaddr MAC address of the new interface

Key: hwaddr
Type: string
Default: randomly assigned
Managed: no

ipv4.address IPv4 address to assign to the instance through DHCP

Key: ipv4.address
Type: string
Managed: no

ipv4.routes IPv4 static routes to route for the NIC

Key: ipv4.routes
Type: string
Managed: no

Specify a comma-delimited list of IPv4 static routes to route for this NIC.

ipv4.routes.external IPv4 static routes to route to NIC

Key: ipv4.routes.external
Type: string
Managed: no

Specify a comma-delimited list of IPv4 static routes to route to the NIC and publish on the uplink network.

ipv6.address IPv6 address to assign to the instance through DHCP

Key: ipv6.address
Type: string
Managed: no

ipv6.routes IPv6 static routes to route to the NIC

Key: ipv6.routes
Type: string
Managed: no

2.4. Reference 305

Canonical LXD

Specify a comma-delimited list of IPv6 static routes to route to the NIC.

ipv6.routes.external IPv6 static routes to route to NIC

Key: ipv6.routes.external
Type: string
Managed: no

Specify a comma-delimited list of IPv6 static routes to route to the NIC and publish on the uplink network.

name Name of the interface inside the instance

Key: name
Type: string
Default: kernel assigned
Managed: no

nested Parent NIC name to nest this NIC under

Key: nested
Type: string
Managed: no

See also vlan.

network Managed network to link the device to

Key: network
Type: string
Managed: yes
Required: yes

security.acls Network ACLs to apply

Key: security.acls
Type: string
Managed: no

Specify a comma-separated list

security.acls.default.egress.action Default action to use for egress traffic

Key: security.acls.default.egress.action
Type: string
Default: reject
Managed: no

The specified action is used for all egress traffic that doesn’t match any ACL rule.

security.acls.default.egress.logged Whether to log egress traffic that doesn’t match any ACL rule

306 Chapter 2. Project and community

Canonical LXD

Key: security.acls.default.egress.logged
Type: bool
Default: false
Managed: no

security.acls.default.ingress.action Default action to use for ingress traffic

Key: security.acls.default.ingress.action
Type: string
Default: reject
Managed: no

The specified action is used for all ingress traffic that doesn’t match any ACL rule.

security.acls.default.ingress.logged Whether to log ingress traffic that doesn’t match any ACL rule

Key: security.acls.default.ingress.logged
Type: bool
Default: false
Managed: no

vlan VLAN ID to use when nesting

Key: vlan
Type: integer
Managed: no

See also nested .

Configuration examples

An ovn network device must be added using a managed network. To do so:

lxc network create <network_name> --type=ovn network=<parent_network>
lxc config device add <instance_name> <device_name> nic network=<network_name>

See How to set up OVN with LXD for full instructions, and How to create a network and Configure devices for more
information.

nictype: ipvlan

Note:

• This NIC type is available only for containers, not for virtual machines.

• You can select this NIC type only through the nictype option.

• This NIC type does not support hotplugging.

2.4. Reference 307

Canonical LXD

An ipvlan NIC sets up a new network device based on an existing one, using the same MAC address but a different
IP.

If you are using an ipvlan NIC, communication between the LXD host and the instances is not possible. Both the
host and the instances can talk to the gateway, but they cannot communicate directly.

LXD currently supports IPVLAN in L2 and L3S mode. In this mode, the gateway is automatically set by LXD, but the
IP addresses must be manually specified using the ipv4.address and/or ipv6.address options before the container
is started.

DNS
The name servers must be configured inside the container, because they are not set automatically. To do this, set
the following sysctls:

• When using IPv4 addresses:

net.ipv4.conf.<parent>.forwarding=1

• When using IPv6 addresses:

net.ipv6.conf.<parent>.forwarding=1
net.ipv6.conf.<parent>.proxy_ndp=1

Device options

NIC devices of type ipvlan have the following device options: gvrp Whether to use GARP VLAN Registration
Protocol

Key: gvrp
Type: bool
Default: false

This option specifies whether to register the VLAN using the GARP VLAN Registration Protocol.

hwaddr MAC address of the new interface

Key: hwaddr
Type: string
Default: randomly assigned

ipv4.address IPv4 static addresses to add to the instance

Key: ipv4.address
Type: string

Specify a comma-delimited list of IPv4 static addresses to add to the instance. In l2 mode, you can specify them as
CIDR values or singular addresses using a subnet of /24.

ipv4.gateway IPv4 gateway

308 Chapter 2. Project and community

Canonical LXD

Key: ipv4.gateway
Type: string
Default: auto (l3s), - (l2)

In l3s mode, the option specifies whether to add an automatic default IPv4 gateway. Possible values are auto and
none.

In l2 mode, this option specifies the IPv4 address of the gateway.

ipv4.host_table Custom policy routing table ID to add IPv4 static routes to

Key: ipv4.host_table
Type: integer

The custom policy routing table is in addition to the main routing table.

ipv6.address IPv6 static addresses to add to the instance

Key: ipv6.address
Type: string

Specify a comma-delimited list of IPv6 static addresses to add to the instance. In l2 mode, you can specify them as
CIDR values or singular addresses using a subnet of /64.

ipv6.gateway IPv6 gateway

Key: ipv6.gateway
Type: string
Default: auto (l3s), - (l2)

In l3s mode, the option specifies whether to add an automatic default IPv6 gateway. Possible values are auto and
none.

In l2 mode, this option specifies the IPv6 address of the gateway.

ipv6.host_table Custom policy routing table ID to add IPv6 static routes to

Key: ipv6.host_table
Type: integer

The custom policy routing table is in addition to the main routing table.

mode IPVLAN mode

Key: mode
Type: string
Default: l3s

Possible values are l2 and l3s.

mtu The MTU of the new interface

2.4. Reference 309

Canonical LXD

Key: mtu
Type: integer
Default: parent MTU

name Name of the interface inside the instance

Key: name
Type: string
Default: kernel assigned

parent Name of the host device

Key: parent
Type: string
Required: yes

vlan VLAN ID to attach to

Key: vlan
Type: integer

Configuration examples

Add an ipvlan network device to an instance, connecting to an existing network interface with nictype:

lxc stop <instance_name>
lxc config device add <instance_name> <device_name> nic nictype=ipvlan parent=<existing_
→˓NIC>

Adding an ipvlan network device to an instance using a managed network is not possible.

See Configure devices for more information.

nictype: p2p

Note: You can select this NIC type only through the nictype option.

A p2p NIC creates a virtual device pair, putting one side in the instance and leaving the other side on the host.

310 Chapter 2. Project and community

Canonical LXD

Device options

NIC devices of type p2p have the following device options: boot.priority Boot priority for VMs

Key: boot.priority
Type: integer

A higher value for this option means that the VM boots first.

host_name Name of the interface inside the host

Key: host_name
Type: string
Default: randomly assigned

hwaddr MAC address of the new interface

Key: hwaddr
Type: string
Default: randomly assigned

ipv4.routes IPv4 static routes for the NIC to add on the host

Key: ipv4.routes
Type: string

Specify a comma-delimited list of IPv4 static routes for this NIC to add on the host.

ipv6.routes IPv6 static routes for the NIC to add on the host

Key: ipv6.routes
Type: string

Specify a comma-delimited list of IPv6 static routes for this NIC to add on the host.

limits.egress I/O limit for outgoing traffic

Key: limits.egress
Type: string

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network limits).

limits.ingress I/O limit for incoming traffic

Key: limits.ingress
Type: string

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network limits).

2.4. Reference 311

Canonical LXD

limits.max I/O limit for both incoming and outgoing traffic

Key: limits.max
Type: string

This option is the same as setting both limits.ingress and limits.egress.

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network limits).

limits.priority skb->priority value for outgoing traffic

Key: limits.priority
Type: integer

The skb->priority value for outgoing traffic is used by the kernel queuing discipline (qdisc) to prioritize network
packets. Specify the value as a 32-bit unsigned integer.

The effect of this value depends on the particular qdisc implementation, for example, SKBPRIO or QFQ. Consult the
kernel qdisc documentation before setting this value.

mtu MTU of the new interface

Key: mtu
Type: integer
Default: kernel assigned

name Name of the interface inside the instance

Key: name
Type: string
Default: kernel assigned

queue.tx.length Transmit queue length for the NIC

Key: queue.tx.length
Type: integer

Configuration examples

Add a p2p network device to an instance using nictype:

lxc config device add <instance_name> <device_name> nic nictype=p2p

Adding a p2p network device to an instance using a managed network is not possible.

See Configure devices for more information.

312 Chapter 2. Project and community

Canonical LXD

nictype: routed

Note: You can select this NIC type only through the nictype option.

A routed NIC creates a virtual device pair to connect the host to the instance and sets up static routes and proxy
ARP/NDP entries to allow the instance to join the network of a designated parent interface. For containers it uses a
virtual Ethernet device pair, and for VMs it uses a TAP device.

This NIC type is similar in operation to ipvlan, in that it allows an instance to join an external network without needing
to configure a bridge and shares the host’s MAC address. However, it differs from ipvlan because it does not need
IPVLAN support in the kernel, and the host and the instance can communicate with each other.

This NIC type respects netfilter rules on the host and uses the host’s routing table to route packets, which can be
useful if the host is connected to multiple networks.

IP addresses, gateways and routes
You must manually specify the IP addresses (using ipv4.address and/or ipv6.address) before the instance
is started.

For containers, the NIC configures the following link-local gateway IPs on the host end and sets them as the
default gateways in the container’s NIC interface:

169.254.0.1
fe80::1

For VMs, the gateways must be configured manually or via a mechanism like cloud-init (see the how to guide).

Note: If your container image is configured to perform DHCP on the interface, it will likely remove the auto-
matically added configuration. In this case, you must configure the IP addresses and gateways manually or via a
mechanism like cloud-init.

The NIC type configures static routes on the host pointing to the instance’s veth interface for all of the instance’s
IPs.

Multiple IP addresses
Each NIC device can have multiple IP addresses added to it.

However, it might be preferable to use multiple routed NIC interfaces instead. In this case, set the ipv4.
gateway and ipv6.gateway values to none on any subsequent interfaces to avoid default gateway conflicts.
Also consider specifying a different host-side address for these subsequent interfaces using ipv4.host_address
and/or ipv6.host_address.

Parent interface
This NIC can operate with and without a parent network interface set.

With the parent network interface set, proxy ARP/NDP entries of the instance’s IPs are added to the parent
interface, which allows the instance to join the parent interface’s network at layer 2.

To enable this, the following network configuration must be applied on the host via sysctl:

• When using IPv4 addresses:

net.ipv4.conf.<parent>.forwarding=1

• When using IPv6 addresses:

2.4. Reference 313

Canonical LXD

net.ipv6.conf.all.forwarding=1
net.ipv6.conf.<parent>.forwarding=1
net.ipv6.conf.all.proxy_ndp=1
net.ipv6.conf.<parent>.proxy_ndp=1

Device options

NIC devices of type routed have the following device options: gvrp Whether to use GARP VLAN Registration
Protocol

Key: gvrp
Type: bool
Default: false

This option specifies whether to register the VLAN using the GARP VLAN Registration Protocol.

host_name Name of the interface inside the host

Key: host_name
Type: string
Default: randomly assigned

hwaddr MAC address of the new interface

Key: hwaddr
Type: string
Default: randomly assigned

ipv4.address IPv4 static addresses to add to the instance

Key: ipv4.address
Type: string

Specify a comma-delimited list of IPv4 static addresses to add to the instance.

ipv4.gateway Whether to add an automatic default IPv4 gateway

Key: ipv4.gateway
Type: string
Default: auto

Possible values are auto and none.

ipv4.host_address IPv4 address to add to the host-side veth interface

Key: ipv4.host_address
Type: string
Default: 169.254.0.1

314 Chapter 2. Project and community

Canonical LXD

ipv4.host_table Custom policy routing table ID to add IPv4 static routes to

Key: ipv4.host_table
Type: integer

The custom policy routing table is in addition to the main routing table.

ipv4.neighbor_probe Whether to probe the parent network for IPv4 address availability

Key: ipv4.neighbor_probe
Type: bool
Default: true

ipv4.routes IPv4 static routes for the NIC to add on the host

Key: ipv4.routes
Type: string

Specify a comma-delimited list of IPv4 static routes for this NIC to add on the host (without L2 ARP/NDP proxy).

ipv6.address IPv6 static addresses to add to the instance

Key: ipv6.address
Type: string

Specify a comma-delimited list of IPv6 static addresses to add to the instance.

ipv6.gateway Whether to add an automatic default IPv6 gateway

Key: ipv6.gateway
Type: string
Default: auto

Possible values are auto and none.

ipv6.host_address IPv6 address to add to the host-side veth interface

Key: ipv6.host_address
Type: string
Default: fe80::1

ipv6.host_table Custom policy routing table ID to add IPv6 static routes to

Key: ipv6.host_table
Type: integer

The custom policy routing table is in addition to the main routing table.

ipv6.neighbor_probe Whether to probe the parent network for IPv6 address availability

2.4. Reference 315

Canonical LXD

Key: ipv6.neighbor_probe
Type: bool
Default: true

ipv6.routes IPv6 static routes for the NIC to add on the host

Key: ipv6.routes
Type: string

Specify a comma-delimited list of IPv6 static routes for this NIC to add on the host (without L2 ARP/NDP proxy).

limits.egress I/O limit for outgoing traffic

Key: limits.egress
Type: string

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network limits).

limits.ingress I/O limit for incoming traffic

Key: limits.ingress
Type: string

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network limits).

limits.max I/O limit for both incoming and outgoing traffic

Key: limits.max
Type: string

This option is the same as setting both limits.ingress and limits.egress.

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network limits).

limits.priority skb->priority value for outgoing traffic

Key: limits.priority
Type: integer

The skb->priority value for outgoing traffic is used by the kernel queuing discipline (qdisc) to prioritize network
packets. Specify the value as a 32-bit unsigned integer.

The effect of this value depends on the particular qdisc implementation, for example, SKBPRIO or QFQ. Consult the
kernel qdisc documentation before setting this value.

mtu The MTU of the new interface

Key: mtu
Type: integer
Default: parent MTU

316 Chapter 2. Project and community

Canonical LXD

name Name of the interface inside the instance

Key: name
Type: string
Default: kernel assigned

parent Name of the host device to join the instance to

Key: parent
Type: string

queue.tx.length Transmit queue length for the NIC

Key: queue.tx.length
Type: integer

vlan VLAN ID to attach to

Key: vlan
Type: integer

Configuration examples

Add a routed network device to an instance using nictype:

lxc config device add <instance_name> <device_name> nic nictype=routed ipv4.address=192.
→˓0.2.2 ipv6.address=2001:db8::2

Adding a routed network device to an instance using a managed network is not possible.

See Configure devices for more information.

bridged, macvlan or ipvlan for connection to physical network

The bridged, macvlan and ipvlan interface types can be used to connect to an existing physical network.

macvlan effectively lets you fork your physical NIC, getting a second interface that is then used by the instance. This
method saves you from creating a bridge device and virtual Ethernet device pairs and usually offers better performance
than a bridge.

The downside to this method is that macvlan devices, while able to communicate between themselves and to the
outside, cannot talk to their parent device. This means that you can’t use macvlan if you ever need your instances to
talk to the host itself.

In such case, a bridge device is preferable. A bridge also lets you use MAC filtering and I/O limits, which cannot be
applied to a macvlan device.

ipvlan is similar to macvlan, with the difference being that the forked device has IPs statically assigned to it and
inherits the parent’s MAC address on the network.

2.4. Reference 317

Canonical LXD

MAAS integration

If you’re using MAAS to manage the physical network under your LXD host and want to attach your instances directly
to a MAAS-managed network, LXD can be configured to interact with MAAS so that it can track your instances.

At the daemon level, you must configure maas.api.url and maas.api.key, and then set the NIC-specific maas.
subnet.ipv4 and/or maas.subnet.ipv6 keys on the instance or profile’s nic entry.

With this configuration, LXD registers all your instances with MAAS, giving them proper DHCP leases and DNS
records.

If you set the ipv4.address or ipv6.address keys on the NIC, those are registered as static assignments in MAAS.

Type: disk

Note: The disk device type is supported for both containers and VMs. It supports hotplugging for both containers
and VMs.

Disk devices supply additional storage to instances.

For containers, they are essentially mount points inside the instance (either as a bind-mount of an existing file or
directory on the host, or, if the source is a block device, a regular mount). Virtual machines share host-side mounts or
directories through 9p or virtiofs (if available), or as VirtIO disks for block-based disks.

Types of disk devices

You can create disk devices from different sources. The value that you specify for the source option specifies the type
of disk device that is added. See Configuration examples for more detailed information on how to add each type of
disk device.

Storage volume
The most common type of disk device is a storage volume. Specify the storage volume name as the source to
add a storage volume as a disk device.

Path on the host
You can share a path on your host (either a file system or a block device) to your instance. Specify the host path
as the source to add it as a disk device.

Ceph RBD
LXD can use Ceph to manage an internal file system for the instance, but if you have an existing, externally
managed Ceph RBD that you would like to use for an instance, you can add it by specifying ceph:<pool_name>/
<volume_name> as the source.

CephFS
LXD can use Ceph to manage an internal file system for the instance, but if you have an existing, exter-
nally managed Ceph file system that you would like to use for an instance, you can add it by specifying
cephfs:<fs_name>/<path> as the source.

ISO file
You can add an ISO file as a disk device for a virtual machine by specifying its file path as the source. It is added
as a ROM device inside the VM.

This source type is applicable only to VMs.

318 Chapter 2. Project and community

Canonical LXD

VM cloud-init
You can generate a cloud-init configuration ISO from the cloud-init.vendor-data and cloud-init.
user-data configuration keys and attach it to a virtual machine by specifying cloud-init:config as the
source. The cloud-init that is running inside the VM then detects the drive on boot and applies the configu-
ration.

This source type is applicable only to VMs.

Adding such a configuration disk might be needed if the VM image that is used includes cloud-init but not
the lxd-agent. This is the case for official Ubuntu images prior to 20.04. On such images, the following steps
enable the LXD agent and thus provide the ability to use lxc exec to access the VM:

lxc init ubuntu-daily:18.04 --vm u1
lxc config device add u1 config disk source=cloud-init:config
lxc config set u1 cloud-init.user-data - << EOF
#cloud-config
#packages:
- linux-image-virtual-hwe-16.04 # 16.04 GA kernel as a problem with vsock
runcmd:
- mount -t 9p config /mnt
- cd /mnt
- ./install.sh
- cd /
- umount /mnt
- systemctl start lxd-agent # XXX: causes a reboot

EOF
lxc start --console u1

Note that for 16.04, the HWE kernel is required to work around a problem with vsock (see the commented out
section in the above cloud-config).

Initial volume configuration for instance root disk devices

Initial volume configuration allows setting specific configurations for the root disk devices of new instances. These
settings are prefixed with initial. and are only applied when the instance is created. This method allows creating
instances that have unique configurations, independent of the default storage pool settings.

For example, you can add an initial volume configuration for zfs.block_mode to an existing profile, and this will then
take effect for each new instance you create using this profile:

lxc profile device set <profile_name> <device_name> initial.zfs.block_mode=true

You can also set an initial configuration directly when creating an instance. For example:

lxc init <image> <instance_name> --device <device_name>,initial.zfs.block_mode=true

Note that you cannot use initial volume configurations with custom volume options or to set the volume’s size.

2.4. Reference 319

Canonical LXD

Device options

disk devices have the following device options: boot.priority Boot priority for VMs

Key: boot.priority
Type: integer
Condition: virtual machine
Required: no

A higher value indicates a higher boot precedence for the disk device. This is useful for prioritizing boot sources like
ISO-backed disks.

ceph.cluster_name Cluster name of the Ceph cluster

Key: ceph.cluster_name
Type: string
Default: ceph
Required: for Ceph or CephFS sources

ceph.user_name User name of the Ceph cluster

Key: ceph.user_name
Type: string
Default: admin
Required: for Ceph or CephFS sources

initial.* Initial volume configuration

Key: initial.*
Type: n/a
Required: no

Initial volume configuration allows setting unique configurations independent of the default storage pool settings. See
Initial volume configuration for instance root disk devices for more information.

io.bus Bus for the device

Key: io.bus
Type: string
Default: virtio-scsi
Condition: virtual machine
Required: no

Possible values are virtio-scsi or nvme.

io.cache Caching mode for the device

320 Chapter 2. Project and community

Canonical LXD

Key: io.cache
Type: string
Default: none
Condition: virtual machine
Required: no

Possible values are none, writeback, or unsafe.

limits.max I/O limit in byte/s or IOPS for both read and write

Key: limits.max
Type: string
Required: no

This option is the same as setting both limits.read and limits.write.

You can specify a value in byte/s (various suffixes supported, see Units for storage and network limits) or in IOPS (must
be suffixed with iops). See also Configure I/O limits.

limits.read Read I/O limit in byte/s or IOPS

Key: limits.read
Type: string
Required: no

You can specify a value in byte/s (various suffixes supported, see Units for storage and network limits) or in IOPS (must
be suffixed with iops). See also Configure I/O limits.

limits.write Write I/O limit in byte/s or IOPS

Key: limits.write
Type: string
Required: no

You can specify a value in byte/s (various suffixes supported, see Units for storage and network limits) or in IOPS (must
be suffixed with iops). See also Configure I/O limits.

path Mount path

Key: path
Type: string
Condition: container
Required: yes

This option specifies the path inside the container where the disk will be mounted.

pool Storage pool to which the disk device belongs

Key: pool
Type: string
Condition: storage volumes managed by LXD
Required: no

2.4. Reference 321

Canonical LXD

propagation How a bind-mount is shared between the instance and the host

Key: propagation
Type: string
Default: private
Required: no

Possible values are private (the default), shared, slave, unbindable, rshared, rslave, runbindable,
rprivate. See the Linux Kernel shared subtree documentation for a full explanation.

raw.mount.options File system specific mount options

Key: raw.mount.options
Type: string
Required: no

readonly Whether to make the mount read-only

Key: readonly
Type: bool
Default: false
Required: no

recursive Whether to recursively mount the source path

Key: recursive
Type: bool
Default: false
Required: no

required Whether to fail if the source doesn’t exist

Key: required
Type: bool
Default: true
Required: no

shift Whether to set up a UID/GID shifting overlay

Key: shift
Type: bool
Default: false
Condition: container
Required: no

If enabled, this option sets up a shifting overlay to translate the source UID/GID to match the container instance.

size Disk size

322 Chapter 2. Project and community

https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt

Canonical LXD

Key: size
Type: string
Required: no

This option is supported only for the rootfs (/).

Specify a value in bytes (various suffixes supported, see Units for storage and network limits).

size.state Size of the file-system volume used for saving runtime state

Key: size.state
Type: string
Condition: virtual machine
Required: no

This option is similar to size, but applies to the file-system volume used for saving the runtime state in VMs.

source Source of a file system or block device

Key: source
Type: string
Required: yes

See Types of disk devices for details.

Configuration examples

How to add a disk device depends on its type.

Storage volume
To add a storage volume, specify its name as the source of the device:

lxc config device add <instance_name> <device_name> disk pool=<pool_name> source=
→˓<volume_name> [path=<path_in_instance>]

The path is required for file system volumes, but not for block volumes.

Alternatively, you can use the lxc storage volume attach command to Attach the volume to an instance.
Both commands use the same mechanism to add a storage volume as a disk device.

Path on the host
To add a host device, specify the host path as the source:

lxc config device add <instance_name> <device_name> disk source=<path_on_host>␣
→˓[path=<path_in_instance>]

The path is required for file systems, but not for block devices.

Ceph RBD
To add an existing Ceph RBD volume, specify its pool and volume name:

lxc config device add <instance_name> <device_name> disk source=ceph:<pool_name>/
→˓<volume_name> ceph.user_name=<user_name> ceph.cluster_name=<cluster_name> [path=
→˓<path_in_instance>]

2.4. Reference 323

Canonical LXD

The path is required for file systems, but not for block devices.

CephFS
To add an existing CephFS file system, specify its name and path:

lxc config device add <instance_name> <device_name> disk source=cephfs:<fs_name>/
→˓<path> ceph.user_name=<user_name> ceph.cluster_name=<cluster_name> path=<path_in_
→˓instance>

ISO file
To add an ISO file, specify its file path as the source:

lxc config device add <instance_name> <device_name> disk source=<file_path_on_host>

VM cloud-init
To add cloud-init configuration, specify cloud-init:config as the source:

lxc config device add <instance_name> <device_name> disk source=cloud-init:config

See Configure devices for more information.

Type: unix-char

Note: The unix-char device type is supported for containers. It supports hotplugging.

Unix character devices make the specified character device appear as a device in the instance (under /dev). You can
read from the device and write to it.

Device options

unix-char devices have the following device options: gid GID of the device owner in the instance

Key: gid
Type: integer
Default: 0

major Device major number

Key: major
Type: integer
Default: device on host

minor Device minor number

Key: minor
Type: integer
Default: device on host

mode Mode of the device in the instance

324 Chapter 2. Project and community

Canonical LXD

Key: mode
Type: integer
Default: 0660

path Path inside the instance

Key: path
Type: string
Required: either source or path must be set

required Whether this device is required to start the instance

Key: required
Type: bool
Default: true

See Hotplugging for more information.

source Path on the host

Key: source
Type: string
Required: either source or path must be set

uid UID of the device owner in the instance

Key: uid
Type: integer
Default: 0

Configuration examples

Add a unix-char device to an instance by specifying its source and path:

lxc config device add <instance_name> <device_name> unix-char source=<path_on_host> path=
→˓<path_on_instance>

If you want to use the same path on the instance as on the host, you can omit the source option:

lxc config device add <instance_name> <device_name> unix-char path=<path_to_the_device>

See Configure devices for more information.

2.4. Reference 325

Canonical LXD

Hotplugging

Hotplugging is enabled if you set required=false and specify the source option for the device.

In this case, the device is automatically passed into the container when it appears on the host, even after the container
starts. If the device disappears from the host system, it is removed from the container as well.

Type: unix-block

Note: The unix-block device type is supported for containers. It supports hotplugging.

Unix block devices make the specified block device appear as a device in the instance (under /dev). You can read from
the device and write to it.

Device options

unix-block devices have the following device options: gid GID of the device owner in the instance

Key: gid
Type: integer
Default: 0

major Device major number

Key: major
Type: integer
Default: device on host

minor Device minor number

Key: minor
Type: integer
Default: device on host

mode Mode of the device in the instance

Key: mode
Type: integer
Default: 0660

path Path inside the instance

Key: path
Type: string
Required: either source or path must be set

326 Chapter 2. Project and community

Canonical LXD

required Whether this device is required to start the instance

Key: required
Type: bool
Default: true

See Hotplugging for more information.

source Path on the host

Key: source
Type: string
Required: either source or path must be set

uid UID of the device owner in the instance

Key: uid
Type: integer
Default: 0

Configuration examples

Add a unix-block device to an instance by specifying its source and path:

lxc config device add <instance_name> <device_name> unix-block source=<path_on_host>␣
→˓path=<path_on_instance>

If you want to use the same path on the instance as on the host, you can omit the source option:

lxc config device add <instance_name> <device_name> unix-block path=<path_to_the_device>

See Configure devices for more information.

Hotplugging

Hotplugging is enabled if you set required=false and specify the source option for the device.

In this case, the device is automatically passed into the container when it appears on the host, even after the container
starts. If the device disappears from the host system, it is removed from the container as well.

Type: usb

Note: The usb device type is supported for both containers and VMs. It supports hotplugging for both containers and
VMs.

USB devices make the specified USB device appear in the instance. For performance issues, avoid using devices that
require high throughput or low latency.

2.4. Reference 327

Canonical LXD

For containers, only libusb devices (at /dev/bus/usb) are passed to the instance. This method works for devices that
have user-space drivers. For devices that require dedicated kernel drivers, use a unix-char device or a unix-hotplug
device instead.

For virtual machines, the entire USB device is passed through, so any USB device is supported. When a device is
passed to the instance, it vanishes from the host.

Device options

usb devices have the following device options: busnum The bus number of which the USB device is attached

Key: busnum
Type: int

devnum The device number of the USB device

Key: devnum
Type: int

gid GID of the device owner in the container

Key: gid
Type: integer
Default: 0
Condition: container

mode Mode of the device in the container

Key: mode
Type: integer
Default: 0660
Condition: container

productid Product ID of the USB device

Key: productid
Type: string

required Whether this device is required to start the instance

Key: required
Type: bool
Default: false

The default is false, which means that all devices can be hotplugged.

serial The serial number of the USB device

328 Chapter 2. Project and community

Canonical LXD

Key: serial
Type: string

uid UID of the device owner in the container

Key: uid
Type: integer
Default: 0
Condition: container

vendorid Vendor ID of the USB device

Key: vendorid
Type: string

Configuration examples

Add a usb device to an instance by specifying its vendor ID and product ID:

lxc config device add <instance_name> <device_name> usb vendorid=<vendor_ID> productid=
→˓<product_ID>

To determine the vendor ID and product ID, you can use lsusb, for example.

See Configure devices for more information.

Type: gpu

GPU devices make the specified GPU device or devices appear in the instance.

Note: For containers, a gpu device may match multiple GPUs at once. For VMs, each device can match only a single
GPU.

The following types of GPUs can be added using the gputype device option:

• physical (container and VM): Passes an entire GPU through into the instance. This value is the default if
gputype is unspecified.

• mdev (VM only): Creates and passes a virtual GPU through into the instance.

• mig (container only): Creates and passes a MIG (Multi-Instance GPU) through into the instance.

• sriov (VM only): Passes a virtual function of an SR-IOV-enabled GPU into the instance.

The available device options depend on the GPU type and are listed in the tables in the following sections.

2.4. Reference 329

Canonical LXD

gputype: physical

Note: The physicalGPU type is supported for both containers and VMs. It supports hotplugging only for containers,
not for VMs.

A physical GPU device passes an entire GPU through into the instance.

Device options

GPU devices of type physical have the following device options: gid GID of the device owner in the container

Key: gid
Type: integer
Default: 0
Condition: container

id DRM card ID of the GPU device

Key: id
Type: string

mode Mode of the device in the container

Key: mode
Type: integer
Default: 0660
Condition: container

pci PCI address of the GPU device

Key: pci
Type: string

productid Product ID of the GPU device

Key: productid
Type: string

uid UID of the device owner in the container

Key: uid
Type: integer
Default: 0
Condition: container

330 Chapter 2. Project and community

Canonical LXD

vendorid Vendor ID of the GPU device

Key: vendorid
Type: string

Configuration examples

Add all GPUs from the host system as a physical GPU device to an instance:

lxc config device add <instance_name> <device_name> gpu gputype=physical

Add a specific GPU from the host system as a physical GPU device to an instance by specifying its PCI address:

lxc config device add <instance_name> <device_name> gpu gputype=physical pci=<pci_
→˓address>

See Configure devices for more information.

gputype: mdev

Note: The mdev GPU type is supported only for VMs. It does not support hotplugging.

An mdev GPU device creates and passes a virtual GPU through into the instance. You can check the list of available
mdev profiles by running lxc info --resources.

Device options

GPU devices of type mdev have the following device options: id DRM card ID of the GPU device

Key: id
Type: string

mdev The mdev profile to use

Key: mdev
Type: string
Default: 0
Required: yes

For example: i915-GVTg_V5_4

pci PCI address of the GPU device

Key: pci
Type: string

2.4. Reference 331

Canonical LXD

productid Product ID of the GPU device

Key: productid
Type: string

vendorid Vendor ID of the GPU device

Key: vendorid
Type: string

Configuration examples

Add an mdev GPU device to an instance by specifying its mdev profile and the PCI address of the GPU:

lxc config device add <instance_name> <device_name> gpu gputype=mdev mdev=<mdev_profile>␣
→˓pci=<pci_address>

See Configure devices for more information.

gputype: mig

Note: The mig GPU type is supported only for containers. It does not support hotplugging.

A mig GPU device creates and passes a MIG compute instance through into the instance. Currently, this requires
NVIDIA MIG instances to be pre-created.

Device options

GPU devices of type mig have the following device options: id DRM card ID of the GPU device

Key: id
Type: string

mig.ci Existing MIG compute instance ID

Key: mig.ci
Type: integer

mig.gi Existing MIG GPU instance ID

Key: mig.gi
Type: integer

mig.uuid Existing MIG device UUID

332 Chapter 2. Project and community

Canonical LXD

Key: mig.uuid
Type: string

You can omit the MIG- prefix when specifying this option.

pci PCI address of the GPU device

Key: pci
Type: string

productid Product ID of the GPU device

Key: productid
Type: string

vendorid Vendor ID of the GPU device

Key: vendorid
Type: string

You must set either mig.uuid (NVIDIA drivers 470+) or both mig.ci and mig.gi (old NVIDIA drivers).

Configuration examples

Add a mig GPU device to an instance by specifying its UUID and the PCI address of the GPU:

lxc config device add <instance_name> <device_name> gpu gputype=mig mig.uuid=<mig_uuid>␣
→˓pci=<pci_address>

See Configure devices for more information.

gputype: sriov

Note: The sriov GPU type is supported only for VMs. It does not support hotplugging.

An sriov GPU device passes a virtual function of an SR-IOV-enabled GPU into the instance.

2.4. Reference 333

Canonical LXD

Device options

GPU devices of type sriov have the following device options: id DRM card ID of the parent GPU device

Key: id
Type: string

pci PCI address of the parent GPU device

Key: pci
Type: string

productid Product ID of the parent GPU device

Key: productid
Type: string

vendorid Vendor ID of the parent GPU device

Key: vendorid
Type: string

Configuration examples

Add a sriov GPU device to an instance by specifying the PCI address of the parent GPU:

lxc config device add <instance_name> <device_name> gpu gputype=sriov pci=<pci_address>

See Configure devices for more information.

Type: infiniband

Note: The infiniband device type is supported for both containers and VMs. It supports hotplugging only for
containers, not for VMs.

LXD supports two different kinds of network types for InfiniBand devices:

• physical: Passes a physical device from the host through to the instance. The targeted device will vanish from
the host and appear in the instance.

• sriov: Passes a virtual function of an SR-IOV-enabled physical network device into the instance.

Note: InfiniBand devices support SR-IOV, but in contrast to other SR-IOV-enabled devices, InfiniBand does
not support dynamic device creation in SR-IOV mode. Therefore, you must pre-configure the number of virtual
functions by configuring the corresponding kernel module.

334 Chapter 2. Project and community

Canonical LXD

Device options

infiniband devices have the following device options: hwaddr MAC address of the new interface

Key: hwaddr
Type: string
Default: randomly assigned
Required: no

You can specify either the full 20-byte variant or the short 8-byte variant (which will modify only the last 8 bytes of
the parent device).

mtu MTU of the new interface

Key: mtu
Type: integer
Default: parent MTU
Required: no

name Name of the interface inside the instance

Key: name
Type: string
Default: kernel assigned
Required: no

nictype Device type

Key: nictype
Type: string
Required: yes

Possible values are physical and sriov.

parent The name of the host device or bridge

Key: parent
Type: string
Required: yes

2.4. Reference 335

Canonical LXD

Configuration examples

Add a physical infiniband device to an instance:

lxc config device add <instance_name> <device_name> infiniband nictype=physical parent=
→˓<device>

Add an sriov infiniband device to an instance:

lxc config device add <instance_name> <device_name> infiniband nictype=sriov parent=
→˓<sriov_enabled_device>

See Configure devices for more information.

Type: proxy

Note: The proxy device type is supported for both containers (NAT and non-NAT modes) and VMs (NAT mode
only). It supports hotplugging for both containers and VMs.

Proxy devices allow forwarding network connections between host and instance. This method makes it possible to
forward traffic hitting one of the host’s addresses to an address inside the instance, or to do the reverse and have an
address in the instance connect through the host.

In NAT mode, a proxy device can be used for TCP and UDP proxying. In non-NAT mode, you can also proxy traffic
between Unix sockets (which can be useful to, for example, forward graphical GUI or audio traffic from the container
to the host system) or even across protocols (for example, you can have a TCP listener on the host system and forward
its traffic to a Unix socket inside a container).

The supported connection types are:

• tcp <-> tcp

• udp <-> udp

• unix <-> unix

• tcp <-> unix

• unix <-> tcp

• udp <-> tcp

• tcp <-> udp

• udp <-> unix

• unix <-> udp

To add a proxy device, use the following command:

lxc config device add <instance_name> <device_name> proxy listen=<type>:<addr>:<port>[-
→˓<port>][,<port>] connect=<type>:<addr>:<port> bind=<host/instance_name>

Tip: Using a proxy device in NAT mode is very similar to adding a network forward.

336 Chapter 2. Project and community

Canonical LXD

The difference is that network forwards are applied on a network level, while a proxy device is added for an instance.
In addition, network forwards cannot be used to proxy traffic between different connection types.

NAT mode

The proxy device also supports a NAT mode (nat=true), where packets are forwarded using NAT rather than being
proxied through a separate connection. This mode has the benefit that the client address is maintained without the need
for the target destination to support the HAProxy PROXY protocol (which is the only way to pass the client address
through when using the proxy device in non-NAT mode).

However, NAT mode is supported only if the host that the instance is running on is the gateway (which is the case if
you’re using lxdbr0, for example).

In NAT mode, the supported connection types are:

• tcp <-> tcp

• udp <-> udp

When configuring a proxy device with nat=true, you must ensure that the target instance has a static IP configured
on its NIC device.

Specifying IP addresses

Use the following command to configure a static IP for an instance NIC:

lxc config device set <instance_name> <nic_name> ipv4.address=<ipv4_address> ipv6.
→˓address=<ipv6_address>

To define a static IPv6 address, the parent managed network must have ipv6.dhcp.stateful enabled.

When defining IPv6 addresses, use the square bracket notation, for example:

connect=tcp:[2001:db8::1]:80

You can specify that the connect address should be the IP of the instance by setting the connect IP to the wildcard
address (0.0.0.0 for IPv4 and [::] for IPv6).

Note: The listen address can also use wildcard addresses when using non-NAT mode. However, when using NAT
mode, you must specify an IP address on the LXD host.

Device options

proxy devices have the following device options: bind Which side to bind on

Key: bind
Type: string
Default: host
Required: no

Possible values are host and instance.

2.4. Reference 337

Canonical LXD

connect Address and port to connect to

Key: connect
Type: string
Required: yes

Use the following format to specify the address and port: <type>:<addr>:<port>[-<port>][,<port>]

gid GID of the owner of the listening Unix socket

Key: gid
Type: integer
Default: 0
Required: no

listen Address and port to bind and listen

Key: listen
Type: string
Required: yes

Use the following format to specify the address and port: <type>:<addr>:<port>[-<port>][,<port>]

mode Mode for the listening Unix socket

Key: mode
Type: integer
Default: 0644
Required: no

nat Whether to optimize proxying via NAT

Key: nat
Type: bool
Default: false
Required: no

This option requires that the instance NIC has a static IP address.

proxy_protocol Whether to use the HAProxy PROXY protocol

Key: proxy_protocol
Type: bool
Default: false
Required: no

This option specifies whether to use the HAProxy PROXY protocol to transmit sender information.

security.gid What GID to drop privilege to

338 Chapter 2. Project and community

Canonical LXD

Key: security.gid
Type: integer
Default: 0
Required: no

security.uid What UID to drop privilege to

Key: security.uid
Type: integer
Default: 0
Required: no

uid UID of the owner of the listening Unix socket

Key: uid
Type: integer
Default: 0
Required: no

Configuration examples

Add a proxy device that forwards traffic from one address (the listen address) to another address (the connect
address) using NAT mode:

lxc config device add <instance_name> <device_name> proxy nat=true listen=tcp:<ip_
→˓address>:<port> connect=tcp:<ip_address>:<port>

Add a proxy device that forwards traffic going to a specific IP to a Unix socket on an instance that might not have a
network connection:

lxc config device add <instance_name> <device_name> proxy listen=tcp:<ip_address>:<port>␣
→˓connect=unix:/<socket_path_on_instance>

Add a proxy device that forwards traffic going to a Unix socket on an instance that might not have a network connection
to a specific IP address:

lxc config device add <instance_name> <device_name> proxy bind=instance listen=unix:/
→˓<socket_path_on_instance> connect=tcp:<ip_address>:<port>

See Configure devices for more information.

2.4. Reference 339

Canonical LXD

Type: unix-hotplug

Note: The unix-hotplug device type is supported for containers. It supports hotplugging.

Unix hotplug devices make the requested Unix device appear as a device in the instance (under /dev). If the device
exists on the host system, you can read from it and write to it.

The implementation depends on systemd-udev to be run on the host.

Device options

unix-hotplug devices have the following device options: gid GID of the device owner in the instance

Key: gid
Type: integer
Default: 0

mode Mode of the device in the instance

Key: mode
Type: integer
Default: 0660

productid Product ID of the Unix device

Key: productid
Type: string

required Whether this device is required to start the instance

Key: required
Type: bool
Default: false

The default is false, which means that all devices can be hotplugged.

uid UID of the device owner in the instance

Key: uid
Type: integer
Default: 0

vendorid Vendor ID of the Unix device

Key: vendorid
Type: string

340 Chapter 2. Project and community

Canonical LXD

Configuration examples

Add a unix-hotplug device to an instance by specifying its vendor ID and product ID:

lxc config device add <instance_name> <device_name> unix-hotplug vendorid=<vendor_ID>␣
→˓productid=<product_ID>

See Configure devices for more information.

Type: tpm

Note: The tpm device type is supported for both containers and VMs. It supports hotplugging only for containers, not
for VMs.

TPM devices enable access to a TPM (Trusted Platform Module) emulator.

TPM devices can be used to validate the boot process and ensure that no steps in the boot chain have been tampered
with, and they can securely generate and store encryption keys.

LXD uses a software TPM that supports TPM 2.0. For containers, the main use case is sealing certificates, which
means that the keys are stored outside of the container, making it virtually impossible for attackers to retrieve them.
For virtual machines, TPM can be used both for sealing certificates and for validating the boot process, which allows
using full disk encryption compatible with, for example, Windows BitLocker.

Device options

tpm devices have the following device options: path Path inside the container

Key: path
Type: string
Condition: containers
Required: for containers

For example: /dev/tpm0

pathrm Resource manager path inside the container

Key: pathrm
Type: string
Condition: containers
Required: for containers

For example: /dev/tpmrm0

2.4. Reference 341

Canonical LXD

Configuration examples

Add a tpm device to a container by specifying its path and the resource manager path:

lxc config device add <instance_name> <device_name> tpm path=<path_on_instance> pathrm=
→˓<resource_manager_path>

Add a tpm device to a virtual machine:

lxc config device add <instance_name> <device_name> tpm

See Configure devices for more information.

Type: pci

Note: The pci device type is supported for VMs. It does not support hotplugging.

PCI devices are used to pass raw PCI devices from the host into a virtual machine.

They are mainly intended to be used for specialized single-function PCI cards like sound cards or video capture cards.
In theory, you can also use them for more advanced PCI devices like GPUs or network cards, but it’s usually more
convenient to use the specific device types that LXD provides for these devices (gpu device or nic device).

Device options

pci devices have the following device options: address PCI address of the device

Key: address
Type: string
Required: yes

Configuration examples

Add a pci device to a virtual machine by specifying its PCI address:

lxc config device add <instance_name> <device_name> pci address=<pci_address>

To determine the PCI address, you can use lspci, for example.

See Configure devices for more information.

342 Chapter 2. Project and community

Canonical LXD

Units for storage and network limits

Any value that represents bytes or bits can make use of a number of suffixes to make it easier to understand what a
particular limit is.

Both decimal and binary (kibi) units are supported, with the latter mostly making sense for storage limits.

The full list of bit suffixes currently supported is:

• bit (1)

• kbit (1000)

• Mbit (1000^2)

• Gbit (1000^3)

• Tbit (1000^4)

• Pbit (1000^5)

• Ebit (1000^6)

• Kibit (1024)

• Mibit (1024^2)

• Gibit (1024^3)

• Tibit (1024^4)

• Pibit (1024^5)

• Eibit (1024^6)

The full list of byte suffixes currently supported is:

• B or bytes (1)

• kB (1000)

• MB (1000^2)

• GB (1000^3)

• TB (1000^4)

• PB (1000^5)

• EB (1000^6)

• KiB (1024)

• MiB (1024^2)

• GiB (1024^3)

• TiB (1024^4)

• PiB (1024^5)

• EiB (1024^6)

2.4. Reference 343

Canonical LXD

Related topics

How-to guides:

• Instances

Explanation:

• Instance types in LXD

Preseed YAML file fields

You can configure a new LXD installation and reconfigure an existing installation with a preseed YAML file.

The preseed YAML file fields are as follows:

config:
core.https_address: ""
core.trust_password: ""
images.auto_update_interval: 6

networks:
- config:

ipv4.address: auto
ipv4.nat: "true"
ipv6.address: auto
ipv6.nat: "true"

description: ""
name: lxdbr0
type: bridge
project: default

storage_pools:
- config: {}
description: ""
name: default
driver: zfs

storage_volumes:
- name: my-vol
pool: data

profiles:
- config:

limits.memory: 2GiB
description: Default LXD profile
devices:
eth0:
name: eth0
network: lxdbr0
type: nic

root:
path: /
pool: default

(continues on next page)

344 Chapter 2. Project and community

Canonical LXD

(continued from previous page)

type: disk
name: default

projects:
- config:

features.images: "true"
features.networks: "true"
features.networks.zones: "true"
features.profiles: "true"
features.storage.buckets: "true"
features.storage.volumes: "true"

description: Default LXD project
name: default

cluster:
enabled: true
server_address: ""
cluster_token: ""
member_config:
- entity: storage-pool
name: default
key: source
value: ""

- entity: storage-pool
name: my-pool
key: source
value: ""

- entity: storage-pool
name: my-pool
key: driver
value: "zfs"

Related topics

How-to guides:

• How to initialize LXD

Project configuration

Projects can be configured through a set of key/value configuration options. See Configure a project for instructions
on how to set these options.

The key/value configuration is namespaced. The following options are available:

• Project features

• Project limits

• Project restrictions

• Project-specific configuration

2.4. Reference 345

Canonical LXD

Project features

The project features define which entities are isolated in the project and which are inherited from the default project.

If a feature.* option is set to true, the corresponding entity is isolated in the project.

Note: When you create a project without explicitly configuring a specific option, this option is set to the initial value
given in the following table.

However, if you unset one of the feature.* options, it does not go back to the initial value, but to the default value.
The default value for all feature.* options is false.

features.images Whether to use a separate set of images for the project

Key: features.images
Type: bool
Default: false
Initial value: true

This setting applies to both images and image aliases.

features.networks Whether to use a separate set of networks for the project

Key: features.networks
Type: bool
Default: false
Initial value: false

features.networks.zones Whether to use a separate set of network zones for the project

Key: features.networks.zones
Type: bool
Default: false
Initial value: false

features.profiles Whether to use a separate set of profiles for the project

Key: features.profiles
Type: bool
Default: false
Initial value: true

features.storage.buckets Whether to use a separate set of storage buckets for the project

Key: features.storage.buckets
Type: bool
Default: false
Initial value: true

346 Chapter 2. Project and community

Canonical LXD

features.storage.volumes Whether to use a separate set of storage volumes for the project

Key: features.storage.volumes
Type: bool
Default: false
Initial value: true

Project limits

Project limits define a hard upper bound for the resources that can be used by the containers and VMs that belong to a
project.

Depending on the limits.* option, the limit applies to the number of entities that are allowed in the project (for
example, limits.containers or limits.networks) or to the aggregate value of resource usage for all instances
in the project (for example, limits.cpu or limits.processes). In the latter case, the limit usually applies to the
Resource limits that are configured for each instance (either directly or via a profile), and not to the resources that are
actually in use.

For example, if you set the project’s limits.memory configuration to 50GiB, the sum of the individual values of all
limits.memory configuration keys defined on the project’s instances will be kept under 50 GiB.

Similarly, setting the project’s limits.cpu configuration key to 100 means that the sum of individual limits.cpu
values will be kept below 100.

When using project limits, the following conditions must be fulfilled:

• When you set one of the limits.* configurations and there is a corresponding configuration for the instance,
all instances in the project must have the corresponding configuration defined (either directly or via a profile).
See Resource limits for the instance configuration options.

• The limits.cpu configuration cannot be used if CPU pinning is enabled. This means that to use limits.cpu
on a project, the limits.cpu configuration of each instance in the project must be set to a number of CPUs, not
a set or a range of CPUs.

• The limits.memory configuration must be set to an absolute value, not a percentage.

limits.containers Maximum number of containers that can be created in the project

Key: limits.containers
Type: integer

limits.cpu Maximum number of CPUs to use in the project

Key: limits.cpu
Type: integer

This value is the maximum value for the sum of the individual limits.cpu configurations set on the instances of the
project.

limits.disk Maximum disk space used by the project

Key: limits.disk
Type: string

2.4. Reference 347

Canonical LXD

This value is the maximum value of the aggregate disk space used by all instance volumes, custom volumes, and images
of the project.

limits.instances Maximum number of instances that can be created in the project

Key: limits.instances
Type: integer

limits.memory Usage limit for the host’s memory for the project

Key: limits.memory
Type: string

The value is the maximum value for the sum of the individual limits.memory configurations set on the instances of
the project.

limits.networks Maximum number of networks that the project can have

Key: limits.networks
Type: integer

limits.processes Maximum number of processes within the project

Key: limits.processes
Type: integer

This value is the maximum value for the sum of the individual limits.processes configurations set on the instances
of the project.

limits.virtual-machines Maximum number of VMs that can be created in the project

Key: limits.virtual-machines
Type: integer

Project restrictions

To prevent the instances of a project from accessing security-sensitive features (such as container nesting or raw LXC
configuration), set the restricted configuration option to true. You can then use the various restricted.* options
to pick individual features that would normally be blocked by restricted and allow them, so they can be used by the
instances of the project.

For example, to restrict a project and block all security-sensitive features, but allow container nesting, enter the following
commands:

lxc project set <project_name> restricted=true
lxc project set <project_name> restricted.containers.nesting=allow

Each security-sensitive feature has an associated restricted.* project configuration option. If you want to allow
the usage of a feature, change the value of its restricted.* option. Most restricted.* configurations are binary

348 Chapter 2. Project and community

Canonical LXD

switches that can be set to either block (the default) or allow. However, some options support other values for more
fine-grained control.

Note: You must set the restricted configuration to true for any of the restricted.* options to be effective. If
restricted is set to false, changing a restricted.* option has no effect.

Setting all restricted.* keys to allow is equivalent to setting restricted itself to false.

restricted Whether to block access to security-sensitive features

Key: restricted
Type: bool
Default: false

This option must be enabled to allow the restricted.* keys to take effect. To temporarily remove the restrictions,
you can disable this option instead of clearing the related keys.

restricted.backups Whether to prevent creating instance or volume backups

Key: restricted.backups
Type: string
Default: block

Possible values are allow or block.

restricted.cluster.groups Cluster groups that can be targeted

Key: restricted.cluster.groups
Type: string

If specified, this option prevents targeting cluster groups other than the provided ones.

restricted.cluster.target Whether to prevent targeting of cluster members

Key: restricted.cluster.target
Type: string
Default: block

Possible values are allow or block. When set to allow, this option allows targeting of cluster members (either directly
or via a group) when creating or moving instances.

restricted.containers.interception Whether to prevent using system call interception options

Key: restricted.containers.interception
Type: string
Default: block

Possible values are allow, block, or full. When set to allow, interception options that are usually safe are allowed.
File system mounting remains blocked.

restricted.containers.lowlevel Whether to prevent using low-level container options

2.4. Reference 349

Canonical LXD

Key: restricted.containers.lowlevel
Type: string
Default: block

Possible values are allow or block. When set to allow, low-level container options like raw.lxc, raw.idmap,
volatile.*, etc. can be used.

restricted.containers.nesting Whether to prevent running nested LXD

Key: restricted.containers.nesting
Type: string
Default: block

Possible values are allow or block. When set to allow, security.nesting can be set to true for an instance.

restricted.containers.privilege Which settings for privileged containers to prevent

Key: restricted.containers.privilege
Type: string
Default: unprivileged

Possible values are unprivileged, isolated, and allow.

• When set to unpriviliged, this option prevents setting security.privileged to true.

• When set to isolated, this option prevents setting security.privileged to true and forces using a unique
idmap per container using security.idmap.isolated set to true.

• When set to allow, there is no restriction.

restricted.devices.disk Which disk devices can be used

Key: restricted.devices.disk
Type: string
Default: managed

Possible values are allow, block, or managed.

• When set to block, this option prevents using all disk devices except the root one.

• When set to managed, this option allows using disk devices only if pool= is set.

• When set to allow, there is no restriction on which disk devices can be used.

Important: When allowing all disk devices, make sure to set restricted.devices.disk.paths to a list of
path prefixes that you want to allow. If you do not restrict the allowed paths, users can attach any disk device,
including shifted devices (disk devices with shift set to true), which can be used to gain root access to the
system.

restricted.devices.disk.paths Which source can be used for disk devices

Key: restricted.devices.disk.paths
Type: string

350 Chapter 2. Project and community

Canonical LXD

If restricted.devices.disk is set to allow, this option controls which source can be used for disk devices.
Specify a comma-separated list of path prefixes that restrict the source setting. If this option is left empty, all paths
are allowed.

restricted.devices.gpu Whether to prevent using devices of type gpu

Key: restricted.devices.gpu
Type: string
Default: block

Possible values are allow or block.

restricted.devices.infiniband Whether to prevent using devices of type infiniband

Key: restricted.devices.infiniband
Type: string
Default: block

Possible values are allow or block.

restricted.devices.nic Which network devices can be used

Key: restricted.devices.nic
Type: string
Default: managed

Possible values are allow, block, or managed.

• When set to block, this option prevents using all network devices.

• When set to managed, this option allows using network devices only if network= is set.

• When set to allow, there is no restriction on which network devices can be used.

restricted.devices.pci Whether to prevent using devices of type pci

Key: restricted.devices.pci
Type: string
Default: block

Possible values are allow or block.

restricted.devices.proxy Whether to prevent using devices of type proxy

Key: restricted.devices.proxy
Type: string
Default: block

Possible values are allow or block.

restricted.devices.unix-block Whether to prevent using devices of type unix-block

2.4. Reference 351

Canonical LXD

Key: restricted.devices.unix-block
Type: string
Default: block

Possible values are allow or block.

restricted.devices.unix-char Whether to prevent using devices of type unix-char

Key: restricted.devices.unix-char
Type: string
Default: block

Possible values are allow or block.

restricted.devices.unix-hotplug Whether to prevent using devices of type unix-hotplug

Key: restricted.devices.unix-hotplug
Type: string
Default: block

Possible values are allow or block.

restricted.devices.usb Whether to prevent using devices of type usb

Key: restricted.devices.usb
Type: string
Default: block

Possible values are allow or block.

restricted.idmap.gid Which host GID ranges are allowed in raw.idmap

Key: restricted.idmap.gid
Type: string

This option specifies the host GID ranges that are allowed in the instance’s raw.idmap setting.

restricted.idmap.uid Which host UID ranges are allowed in raw.idmap

Key: restricted.idmap.uid
Type: string

This option specifies the host UID ranges that are allowed in the instance’s raw.idmap setting.

restricted.networks.access Which network names are allowed for use in this project

Key: restricted.networks.access
Type: string

352 Chapter 2. Project and community

Canonical LXD

Specify a comma-delimited list of network names that are allowed for use in this project. If this option is not set, all
networks are accessible.

Note that this setting depends on the restricted.devices.nic setting.

restricted.networks.subnets Which network subnets are allocated for use in this project

Key: restricted.networks.subnets
Type: string
Default: block

Specify a comma-delimited list of network subnets from the uplink networks that are allocated for use in this project.
Use the form <uplink>:<subnet>.

restricted.networks.uplinks Which network names can be used as uplink in this project

Key: restricted.networks.uplinks
Type: string
Default: block

Specify a comma-delimited list of network names that can be used as uplink for networks in this project.

restricted.networks.zones Which network zones can be used in this project

Key: restricted.networks.zones
Type: string
Default: block

Specify a comma-delimited list of network zones that can be used (or something under them) in this project.

restricted.snapshots Whether to prevent creating instance or volume snapshots

Key: restricted.snapshots
Type: string
Default: block

restricted.virtual-machines.lowlevel Whether to prevent using low-level VM options

Key: restricted.virtual-machines.lowlevel
Type: string
Default: block

Possible values are allow or block. When set to allow, low-level VM options like raw.qemu, volatile.*, etc. can
be used.

2.4. Reference 353

Canonical LXD

Project-specific configuration

There are some Server configuration options that you can override for a project. In addition, you can add user metadata
for a project. backups.compression_algorithm Compression algorithm to use for backups

Key: backups.compression_algorithm
Type: string

Specify which compression algorithm to use for backups in this project. Possible values are bzip2, gzip, lzma, xz,
or none.

images.auto_update_cached Whether to automatically update cached images in the project

Key: images.auto_update_cached
Type: bool

images.auto_update_interval Interval at which to look for updates to cached images

Key: images.auto_update_interval
Type: integer

Specify the interval in hours. To disable looking for updates to cached images, set this option to 0.

images.compression_algorithm Compression algorithm to use for new images in the project

Key: images.compression_algorithm
Type: string

Possible values are bzip2, gzip, lzma, xz, or none.

images.default_architecture Default architecture to use in a mixed-architecture cluster

Key: images.default_architecture
Type: string

images.remote_cache_expiry When an unused cached remote image is flushed in the project

Key: images.remote_cache_expiry
Type: integer

Specify the number of days after which the unused cached image expires.

user.* User-provided free-form key/value pairs

Key: user.*
Type: string

354 Chapter 2. Project and community

Canonical LXD

Related topics

How-to guides:

• Projects

Explanation:

• About projects

Storage drivers

LXD supports the following storage drivers for storing images, instances and custom volumes:

Btrfs - btrfs

Btrfs (B-tree file system) is a local file system based on the COW (copy-on-write) principle. COW means that data
is stored to a different block after it has been modified instead of overwriting the existing data, reducing the risk of
data corruption. Unlike other file systems, Btrfs is extent-based, which means that it stores data in contiguous areas of
memory.

In addition to basic file system features, Btrfs offers RAID and volume management, pooling, snapshots, checksums,
compression and other features.

To use Btrfs, make sure you have btrfs-progs installed on your machine.

Terminology

A Btrfs file system can have subvolumes, which are named binary subtrees of the main tree of the file system with their
own independent file and directory hierarchy. A Btrfs snapshot is a special type of subvolume that captures a specific
state of another subvolume. Snapshots can be read-write or read-only.

btrfs driver in LXD

The btrfs driver in LXD uses a subvolume per instance, image and snapshot. When creating a new entity (for example,
launching a new instance), it creates a Btrfs snapshot.

Btrfs doesn’t natively support storing block devices. Therefore, when using Btrfs for VMs, LXD creates a big file on
disk to store the VM. This approach is not very efficient and might cause issues when creating snapshots.

Btrfs can be used as a storage backend inside a container in a nested LXD environment. In this case, the parent container
itself must use Btrfs. Note, however, that the nested LXD setup does not inherit the Btrfs quotas from the parent (see
Quotas below).

2.4. Reference 355

Canonical LXD

Quotas

Btrfs supports storage quotas via qgroups. Btrfs qgroups are hierarchical, but new subvolumes will not automatically
be added to the qgroups of their parent subvolumes. This means that users can trivially escape any quotas that are
set. Therefore, if strict quotas are needed, you should consider using a different storage driver (for example, ZFS with
refquota or LVM with Btrfs on top).

When using quotas, you must take into account that Btrfs extents are immutable. When blocks are written, they end up
in new extents. The old extents remain until all their data is dereferenced or rewritten. This means that a quota can be
reached even if the total amount of space used by the current files in the subvolume is smaller than the quota.

Note: This issue is seen most often when using VMs on Btrfs, due to the random I/O nature of using raw disk image
files on top of a Btrfs subvolume.

Therefore, you should never use VMs with Btrfs storage pools.

If you really need to use VMs with Btrfs storage pools, set the instance root disk’s size.state property to twice the
size of the root disk’s size. This configuration allows all blocks in the disk image file to be rewritten without reaching
the qgroup quota. Setting the btrfs.mount_options storage pool option to compress-force can also avoid this
scenario, because a side effect of enabling compression is to reduce the maximum extent size such that block rewrites
don’t cause as much storage to be double-tracked. However, this is a storage pool option, and it therefore affects all
volumes on the pool.

Configuration options

The following configuration options are available for storage pools that use the btrfs driver and for storage volumes
in these pools.

Storage pool configuration

btrfs.mount_options Mount options for block devices

Key: btrfs.mount_options
Type: string
Default: user_subvol_rm_allowed

size Size of the storage pool (for loop-based pools)

Key: size
Type: string
Default: auto (20% of free disk space, >= 5 GiB and <= 30 GiB)

When creating loop-based pools, specify the size in bytes (suffixes are supported). You can increase the size to grow
the storage pool.

The default (auto) creates a storage pool that uses 20% of the free disk space, with a minimum of 5 GiB and a maximum
of 30 GiB.

source Path to an existing block device, loop file, or Btrfs subvolume

356 Chapter 2. Project and community

Canonical LXD

Key: source
Type: string

source.wipe Whether to wipe the block device before creating the pool

Key: source.wipe
Type: bool
Default: false

Set this option to true to wipe the block device specified in source prior to creating the storage pool.

Tip: In addition to these configurations, you can also set default values for the storage volume configurations. See
Configure default values for storage volumes.

Storage volume configuration

security.shifted Enable ID shifting overlay

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume

size Size/quota of the storage volume

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver

snapshots.expiry When snapshots are to be deleted

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume

2.4. Reference 357

Canonical LXD

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume

You can specify a naming template that is used for scheduled snapshots and unnamed snapshots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable creation_date. Make sure to format the
date in your template string to avoid forbidden characters in the snapshot name. For example, set snapshots.pattern
to {{ creation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of creation, down
to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first snapshot, the placeholder
is replaced with 0. For subsequent snapshots, the existing snapshot names are taken into account to find the highest
number at the placeholder’s position. This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated list of schedule
aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or leave empty to disable auto-
matic snapshots (the default).

volatile.uuid The volume’s UUID

Key: volatile.uuid
Type: string
Default: random UUID

Storage bucket configuration

To enable storage buckets for local storage pool drivers and allow applications to access the buckets via the S3 protocol,
you must configure the core.storage_buckets_address server setting. size Size/quota of the storage bucket

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver

358 Chapter 2. Project and community

Canonical LXD

CephFS - cephfs

Ceph is an open-source storage platform that stores its data in a storage cluster based on RADOS (Reliable Autonomic
Distributed Object Store). It is highly scalable and, as a distributed system without a single point of failure, very
reliable.

Tip: If you want to quickly set up a basic Ceph cluster, check out MicroCeph.

Ceph provides different components for block storage and for file systems.

CephFS (Ceph File System) is Ceph’s file system component that provides a robust, fully-featured POSIX-compliant
distributed file system. Internally, it maps files to Ceph objects and stores file metadata (for example, file ownership,
directory paths, access permissions) in a separate data pool.

Terminology

Ceph uses the term object for the data that it stores. The daemon that is responsible for storing and managing data is
the Ceph OSD (Object Storage Daemon). Ceph’s storage is divided into pools, which are logical partitions for storing
objects. They are also referred to as data pools, storage pools or OSD pools.

A CephFS file system consists of two OSD storage pools, one for the actual data and one for the file metadata.

cephfs driver in LXD

Note: The cephfs driver can only be used for custom storage volumes with content type filesystem.

For other storage volumes, use the Ceph driver. That driver can also be used for custom storage volumes with content
type filesystem, but it implements them through Ceph RBD images.

Unlike other storage drivers, this driver does not set up the storage system but assumes that you already have a Ceph
cluster installed.

You can either create the CephFS file system that you want to use beforehand and specify it through the source option,
or specify the cephfs.create_missing option to automatically create the file system and the data and metadata OSD
pools (with the names given in cephfs.data_pool and cephfs.meta_pool).

This driver also behaves differently than other drivers in that it provides remote storage. As a result and depending
on the internal network, storage access might be a bit slower than for local storage. On the other hand, using remote
storage has big advantages in a cluster setup, because all cluster members have access to the same storage pools with
the exact same contents, without the need to synchronize storage pools.

LXD assumes that it has full control over the OSD storage pool. Therefore, you should never maintain any file system
entities that are not owned by LXD in a LXD OSD storage pool, because LXD might delete them.

The cephfs driver in LXD supports snapshots if snapshots are enabled on the server side.

2.4. Reference 359

https://ceph.io/en/
https://microcloud.is

Canonical LXD

Configuration options

The following configuration options are available for storage pools that use the cephfs driver and for storage volumes
in these pools.

Storage pool configuration

cephfs.cluster_name Name of the Ceph cluster that contains the CephFS file system

Key: cephfs.cluster_name
Type: string
Default: ceph

cephfs.create_missing Automatically create the CephFS file system

Key: cephfs.create_missing
Type: bool
Default: false

Use this option if the CephFS file system does not exist yet. LXD will then automatically create the file system and the
missing data and metadata OSD pools.

cephfs.data_pool Data OSD pool name

Key: cephfs.data_pool
Type: string

This option specifies the name for the data OSD pool that should be used when creating a file system automatically.

cephfs.fscache Enable use of kernel fscache and cachefilesd

Key: cephfs.fscache
Type: bool
Default: false

cephfs.meta_pool Metadata OSD pool name

Key: cephfs.meta_pool
Type: string

This option specifies the name for the file metadata OSD pool that should be used when creating a file system automat-
ically.

cephfs.osd_pg_num Number of placement groups when creating missing OSD pools

Key: cephfs.osd_pg_num
Type: string

360 Chapter 2. Project and community

Canonical LXD

This option specifies the number of OSD pool placement groups (pg_num) to use when creating a missing OSD pool.

cephfs.path The base path for the CephFS mount

Key: cephfs.path
Type: string
Default: /

cephfs.user.name The Ceph user to use

Key: cephfs.user.name
Type: string
Default: admin

source Existing CephFS file system or file system path to use

Key: source
Type: string

volatile.pool.pristine Whether the CephFS file system was empty on creation time

Key: volatile.pool.pristine
Type: string
Default: true

Tip: In addition to these configurations, you can also set default values for the storage volume configurations. See
Configure default values for storage volumes.

Storage volume configuration

security.shifted Enable ID shifting overlay

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume

2.4. Reference 361

Canonical LXD

size Size/quota of the storage volume

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver

snapshots.expiry When snapshots are to be deleted

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume

You can specify a naming template that is used for scheduled snapshots and unnamed snapshots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable creation_date. Make sure to format the
date in your template string to avoid forbidden characters in the snapshot name. For example, set snapshots.pattern
to {{ creation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of creation, down
to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first snapshot, the placeholder
is replaced with 0. For subsequent snapshots, the existing snapshot names are taken into account to find the highest
number at the placeholder’s position. This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated list of schedule
aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or leave empty to disable auto-
matic snapshots (the default).

volatile.uuid The volume’s UUID

Key: volatile.uuid
Type: string
Default: random UUID

362 Chapter 2. Project and community

Canonical LXD

Ceph Object - cephobject

Ceph is an open-source storage platform that stores its data in a storage cluster based on RADOS. It is highly scalable
and, as a distributed system without a single point of failure, very reliable.

Tip: If you want to quickly set up a basic Ceph cluster, check out MicroCeph.

Ceph provides different components for block storage and for file systems.

Ceph Object Gateway is an object storage interface built on top of librados to provide applications with a RESTful
gateway to Ceph Storage Clusters. It provides object storage functionality with an interface that is compatible with a
large subset of the Amazon S3 RESTful API.

Terminology

Ceph uses the term object for the data that it stores. The daemon that is responsible for storing and managing data
is the Ceph OSD. Ceph’s storage is divided into pools, which are logical partitions for storing objects. They are also
referred to as data pools, storage pools or OSD pools.

A Ceph Object Gateway consists of several OSD pools and one or more Ceph Object Gateway daemon (radosgw)
processes that provide object gateway functionality.

cephobject driver in LXD

Note: The cephobject driver can only be used for buckets.

For storage volumes, use the Ceph or CephFS drivers.

Unlike other storage drivers, this driver does not set up the storage system but assumes that you already have a Ceph
cluster installed.

You must set up a radosgw environment beforehand and ensure that its HTTP/HTTPS endpoint URL is reachable from
the LXD server or servers. See Manual Deployment for information on how to set up a Ceph cluster and Ceph Object
Gateway on how to set up a radosgw environment.

The radosgw URL can be specified at pool creation time using the cephobject.radosgw.endpoint option.

LXD uses the radosgw-admin command to manage buckets. So this command must be available and operational on
the LXD servers.

This driver also behaves differently than other drivers in that it provides remote storage. As a result and depending
on the internal network, storage access might be a bit slower than for local storage. On the other hand, using remote
storage has big advantages in a cluster setup, because all cluster members have access to the same storage pools with
the exact same contents, without the need to synchronize storage pools.

LXD assumes that it has full control over the OSD storage pool. Therefore, you should never maintain any file system
entities that are not owned by LXD in a LXD OSD storage pool, because LXD might delete them.

2.4. Reference 363

https://ceph.io/en/
https://microcloud.is
https://docs.ceph.com/en/latest/radosgw/
https://docs.ceph.com/en/latest/rados/api/librados-intro/
https://docs.ceph.com/en/latest/rados/
https://docs.ceph.com/en/latest/install/manual-deployment/
https://docs.ceph.com/en/latest/radosgw/
https://docs.ceph.com/en/latest/radosgw/

Canonical LXD

Configuration options

The following configuration options are available for storage pools that use the cephobject driver and for storage
buckets in these pools.

Storage pool configuration

cephobject.bucket.name_prefix Prefix to add to bucket names in Ceph

Key: cephobject.bucket.name_prefix
Type: string

cephobject.cluster_name The Ceph cluster to use

Key: cephobject.cluster_name
Type: string

cephobject.radosgw.endpoint URL of the radosgw gateway process

Key: cephobject.radosgw.endpoint
Type: string

cephobject.radosgw.endpoint_cert_file TLS client certificate to use for endpoint communication

Key: cephobject.radosgw.endpoint_cert_file
Type: string

Specify the path to the file that contains the TLS client certificate.

cephobject.user.name The Ceph user to use

Key: cephobject.user.name
Type: string
Default: admin

volatile.pool.pristine Whether the radosgw lxd-admin user existed at creation time

Key: volatile.pool.pristine
Type: string
Default: true

364 Chapter 2. Project and community

Canonical LXD

Storage bucket configuration

size Quota of the storage bucket

Key: size
Type: string

Ceph RBD - ceph

Ceph is an open-source storage platform that stores its data in a storage cluster based on RADOS. It is highly scalable
and, as a distributed system without a single point of failure, very reliable.

Tip: If you want to quickly set up a basic Ceph cluster, check out MicroCeph.

Ceph provides different components for block storage and for file systems.

Ceph RBD (RADOS Block Device) is Ceph’s block storage component that distributes data and workload across the
Ceph cluster. It uses thin provisioning, which means that it is possible to over-commit resources.

Terminology

Ceph uses the term object for the data that it stores. The daemon that is responsible for storing and managing data
is the Ceph OSD. Ceph’s storage is divided into pools, which are logical partitions for storing objects. They are also
referred to as data pools, storage pools or OSD pools.

Ceph block devices are also called RBD images, and you can create snapshots and clones of these RBD images.

ceph driver in LXD

Note: To use the Ceph RBD driver, you must specify it as ceph. This is slightly misleading, because it uses only Ceph
RBD (block storage) functionality, not full Ceph functionality. For storage volumes with content type filesystem
(images, containers and custom file-system volumes), the ceph driver uses Ceph RBD images with a file system on top
(see block.filesystem).

Alternatively, you can use the CephFS driver to create storage volumes with content type filesystem.

Unlike other storage drivers, this driver does not set up the storage system but assumes that you already have a Ceph
cluster installed.

This driver also behaves differently than other drivers in that it provides remote storage. As a result and depending
on the internal network, storage access might be a bit slower than for local storage. On the other hand, using remote
storage has big advantages in a cluster setup, because all cluster members have access to the same storage pools with
the exact same contents, without the need to synchronize storage pools.

The ceph driver in LXD uses RBD images for images, and snapshots and clones to create instances and snapshots.

LXD assumes that it has full control over the OSD storage pool. Therefore, you should never maintain any file system
entities that are not owned by LXD in a LXD OSD storage pool, because LXD might delete them.

2.4. Reference 365

https://ceph.io/en/
https://microcloud.is

Canonical LXD

Due to the way copy-on-write works in Ceph RBD, parent RBD images can’t be removed until all children are gone.
As a result, LXD automatically renames any objects that are removed but still referenced. Such objects are kept with a
zombie_ prefix until all references are gone and the object can safely be removed.

Limitations

The ceph driver has the following limitations:

Sharing custom volumes between instances
Custom storage volumes with content type filesystem can usually be shared between multiple instances
different cluster members. However, because the Ceph RBD driver “simulates” volumes with content type
filesystem by putting a file system on top of an RBD image, custom storage volumes can only be assigned to a
single instance at a time. If you need to share a custom volume with content type filesystem, use the CephFS
driver instead.

Sharing the OSD storage pool between installations
Sharing the same OSD storage pool between multiple LXD installations is not supported.

Using an OSD pool of type “erasure”
To use a Ceph OSD pool of type “erasure”, you must create the OSD pool beforehand. You must also create a
separate OSD pool of type “replicated” that will be used for storing metadata. This is required because Ceph
RBD does not support omap. To specify which pool is “erasure coded”, set the ceph.osd.data_pool_name
configuration option to the erasure coded pool name and the source configuration option to the replicated pool
name.

Configuration options

The following configuration options are available for storage pools that use the ceph driver and for storage volumes in
these pools.

Storage pool configuration

ceph.cluster_name Name of the Ceph cluster in which to create new storage pools

Key: ceph.cluster_name
Type: string
Default: ceph

ceph.osd.data_pool_name Name of the OSD data pool

Key: ceph.osd.data_pool_name
Type: string

ceph.osd.pg_num Number of placement groups for the OSD storage pool

Key: ceph.osd.pg_num
Type: string
Default: 32

ceph.osd.pool_name Name of the OSD storage pool

366 Chapter 2. Project and community

Canonical LXD

Key: ceph.osd.pool_name
Type: string
Default: name of the pool

ceph.rbd.clone_copy Whether to use RBD lightweight clones

Key: ceph.rbd.clone_copy
Type: bool
Default: true

Enable this option to use RBD lightweight clones rather than full dataset copies.

ceph.rbd.du Whether to use RBD du

Key: ceph.rbd.du
Type: bool
Default: true

This option specifies whether to use RBD du to obtain disk usage data for stopped instances.

ceph.rbd.features Comma-separated list of RBD features to enable on the volumes

Key: ceph.rbd.features
Type: string
Default: layering

ceph.user.name The Ceph user to use when creating storage pools and volumes

Key: ceph.user.name
Type: string
Default: admin

source Existing OSD storage pool to use

Key: source
Type: string

volatile.pool.pristine Whether the pool was empty on creation time

Key: volatile.pool.pristine
Type: string
Default: true

Tip: In addition to these configurations, you can also set default values for the storage volume configurations. See
Configure default values for storage volumes.

2.4. Reference 367

Canonical LXD

Storage volume configuration

block.filesystem File system of the storage volume

Key: block.filesystem
Type: string
Default: same as volume.block.filesystem
Condition: block-based volume with content type filesystem

Valid options are: btrfs, ext4, xfs If not set, ext4 is assumed.

block.mount_options Mount options for block-backed file system volumes

Key: block.mount_options
Type: string
Default: same as volume.block.mount_options
Condition: block-based volume with content type filesystem

security.shifted Enable ID shifting overlay

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume

size Size/quota of the storage volume

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver

snapshots.expiry When snapshots are to be deleted

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume

Specify an expression like 1M 2H 3d 4w 5m 6y.

368 Chapter 2. Project and community

Canonical LXD

snapshots.pattern Template for the snapshot name

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume

You can specify a naming template that is used for scheduled snapshots and unnamed snapshots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable creation_date. Make sure to format the
date in your template string to avoid forbidden characters in the snapshot name. For example, set snapshots.pattern
to {{ creation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of creation, down
to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first snapshot, the placeholder
is replaced with 0. For subsequent snapshots, the existing snapshot names are taken into account to find the highest
number at the placeholder’s position. This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated list of schedule
aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or leave empty to disable auto-
matic snapshots (the default).

volatile.uuid The volume’s UUID

Key: volatile.uuid
Type: string
Default: random UUID

Dell PowerFlex - powerflex

Dell PowerFlex is a software-defined storage solution from Dell Technologies. Among other things it offers the con-
sumption of redundant block storage across the network.

LXD offers access to PowerFlex storage clusters by making use of the NVMe/TCP transport protocol. In addition,
PowerFlex offers copy-on-write snapshots, thin provisioning and other features.

To use PowerFlex, make sure you have the required kernel modules installed on your host system. On Ubuntu these are
nvme_fabrics and nvme_tcp, which come bundled in the linux-modules-extra-$(uname -r) package.

2.4. Reference 369

https://www.dell.com/en-us/dt/storage/powerflex.htm
https://dell.com

Canonical LXD

Terminology

PowerFlex groups various so-called SDS (storage data servers) under logical groups within a protection domain. Those
SDS are the hosts that contribute storage capacity to the PowerFlex cluster. A protection domain contains storage pools,
which represent a set of physical storage devices from different SDS. LXD creates its volumes in those storage pools.

You can take a snapshot of any volume in PowerFlex, which will create an independent copy of the parent volume.
PowerFlex volumes get added as a NVMe drive to the respective LXD host the volume got mapped to. For this, the
LXD host connects to one or multiple NVMe SDT (storage data targets) provided by PowerFlex. Those SDT run as
components on the PowerFlex storage layer.

powerflex driver in LXD

The powerflex driver in LXD uses PowerFlex volumes for custom storage volumes, instances and snapshots. For
storage volumes with content type filesystem (containers and custom file-system volumes), the powerflex driver
uses volumes with a file system on top (see block.filesystem). By default, LXD creates thin-provisioned PowerFlex
volumes.

LXD expects the PowerFlex protection domain and storage pool already to be set up. Furthermore, LXD assumes that
it has full control over the storage pool. Therefore, you should never maintain any volumes that are not owned by LXD
in a PowerFlex storage pool, because LXD might delete them.

This driver behaves differently than some of the other drivers in that it provides remote storage. As a result and de-
pending on the internal network, storage access might be a bit slower than for local storage. On the other hand, using
remote storage has big advantages in a cluster setup, because all cluster members have access to the same storage pools
with the exact same contents, without the need to synchronize storage pools.

When creating a new storage pool using the powerflex driver, LXD tries to discover one of the SDT from the given
storage pool. Alternatively, you can specify which SDT to use with powerflex.sdt. LXD instructs the NVMe
initiator to connect to all the other SDT when first connecting to the subsystem.

Due to the way copy-on-write works in PowerFlex, snapshots of any volume don’t rely on its parent. As a result,
volume snapshots are fully functional volumes themselves, and it’s possible to take additional snapshots from such
volume snapshots. This tree of dependencies is called the PowerFlex vTree. Both volumes and their snapshots get
added as standalone NVMe disks to the LXD host.

Volume names

Due to a limitation in PowerFlex, volume names cannot exceed 31 characters. Therefore the driver is using the volume’s
volatile.uuid to generate a fixed length volume name. A UUID of 5a2504b0-6a6c-4849-8ee7-ddb0b674fd14
will render to the base64-encoded string WiUEsGpsSEmO592wtnT9FA==.

To be able to identify the volume types and snapshots, special identifiers are prepended to the volume names:

Type Identifier Example
Container c_ c_WiUEsGpsSEmO592wtnT9FA==
Virtual machine v_ v_WiUEsGpsSEmO592wtnT9FA==.b
Image (ISO) i_ i_WiUEsGpsSEmO592wtnT9FA==.i
Custom volume u_ u_WiUEsGpsSEmO592wtnT9FA==

370 Chapter 2. Project and community

Canonical LXD

Limitations

The powerflex driver has the following limitations:

Limit of snapshots in a single vTree
An internal limitation in the PowerFlex vTree does not allow to take more than 126 snapshots of any volume in
PowerFlex. This limit also applies to any child of any of the parent volume’s snapshots. A single vTree can only
have 126 branches.

Non-optimized image storage
Due to the limit of 126 snapshots in the vTree, the PowerFlex driver doesn’t come with support for optimized
image storage. This would limit LXD to create only 126 instances from an image. Instead, when launching a
new instance, the image’s contents get copied to the instance’s root volume.

Copying volumes
PowerFlex does not support creating a copy of the volume so that it gets its own vTree. Therefore, LXD falls back
to copying the volume on the local system. This implicates an increased use of bandwidth due to the volume’s
contents being transferred over the network twice.

Volume size constraints
In PowerFlex, the size of a volume must be in multiples of 8 GiB. This results in the smallest possible volume
size of 8 GiB. However, if not specified otherwise, volumes are getting thin-provisioned by LXD. PowerFlex
volumes can only be increased in size.

Sharing custom volumes between instances
The PowerFlex driver “simulates” volumes with content type filesystem by putting a file system on top of a
PowerFlex volume. Therefore, custom storage volumes can only be assigned to a single instance at a time.

Sharing the PowerFlex storage pool between installations
Sharing the same PowerFlex storage pool between multiple LXD installations is not supported.

Recovering PowerFlex storage pools
Recovery of PowerFlex storage pools using lxd recover is not supported.

Configuration options

The following configuration options are available for storage pools that use the powerflex driver and for storage
volumes in these pools.

Storage pool configuration

powerflex.clone_copy Whether to use non-sparse copies for snapshots

Key: powerflex.clone_copy
Type: bool
Default: true

If this option is set to true, PowerFlex makes a non-sparse copy when creating a snapshot of an instance or custom
volume. See Limitations for more information.

powerflex.domain Name of the PowerFlex protection domain

Key: powerflex.domain
Type: string

2.4. Reference 371

Canonical LXD

This option is required only if powerflex.pool is specified using its name.

powerflex.gateway Address of the PowerFlex Gateway

Key: powerflex.gateway
Type: string

powerflex.gateway.verify Whether to verify the PowerFlex Gateway’s certificate

Key: powerflex.gateway.verify
Type: bool
Default: true

powerflex.mode How volumes are mapped to the local server

Key: powerflex.mode
Type: string
Default: the discovered mode

The mode gets discovered automatically if the system provides the necessary kernel modules. Currently, only nvme is
supported.

powerflex.pool ID of the PowerFlex storage pool

Key: powerflex.pool
Type: string

If you want to specify the storage pool via its name, also set powerflex.domain.

powerflex.sdt PowerFlex NVMe/TCP SDT

Key: powerflex.sdt
Type: string
Default: one of the SDT

powerflex.user.name User for PowerFlex Gateway authentication

Key: powerflex.user.name
Type: string
Default: admin

powerflex.user.password Password for PowerFlex Gateway authentication

Key: powerflex.user.password
Type: string

rsync.bwlimit Upper limit on the socket I/O for rsync

372 Chapter 2. Project and community

Canonical LXD

Key: rsync.bwlimit
Type: string
Default: 0 (no limit)

When rsync must be used to transfer storage entities, this option specifies the upper limit to be placed on the socket
I/O.

rsync.compression Whether to use compression while migrating storage pools

Key: rsync.compression
Type: bool
Default: true

volume.size Size/quota of the storage volume

Key: volume.size
Type: string
Default: 8GiB

The size must be in multiples of 8 GiB. See Limitations for more information.

Tip: In addition to these configurations, you can also set default values for the storage volume configurations. See
Configure default values for storage volumes.

Storage volume configuration

block.filesystem File system of the storage volume

Key: block.filesystem
Type: string
Default: same as volume.block.filesystem
Condition: block-based volume with content type filesystem

Valid options are: btrfs, ext4, xfs If not set, ext4 is assumed.

block.mount_options Mount options for block-backed file system volumes

Key: block.mount_options
Type: string
Default: same as volume.block.mount_options
Condition: block-based volume with content type filesystem

block.type Whether to create a thin or thick provisioned volume

Key: block.type
Type: string
Default: same as volume.block.type or thick

2.4. Reference 373

Canonical LXD

security.shifted Enable ID shifting overlay

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume

size Size/quota of the storage volume

Key: size
Type: string
Default: same as volume.size

The size must be in multiples of 8 GiB. See Limitations for more information.

snapshots.expiry When snapshots are to be deleted

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume

You can specify a naming template that is used for scheduled snapshots and unnamed snapshots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable creation_date. Make sure to format the
date in your template string to avoid forbidden characters in the snapshot name. For example, set snapshots.pattern
to {{ creation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of creation, down
to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first snapshot, the placeholder
is replaced with 0. For subsequent snapshots, the existing snapshot names are taken into account to find the highest
number at the placeholder’s position. This number is then incremented by one for the new name.

374 Chapter 2. Project and community

Canonical LXD

snapshots.schedule Schedule for automatic volume snapshots

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated list of schedule
aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or leave empty to disable auto-
matic snapshots (the default).

volatile.uuid The volume’s UUID

Key: volatile.uuid
Type: string
Default: random UUID

Directory - dir

The directory storage driver is a basic backend that stores its data in a standard file and directory structure. This driver
is quick to set up and allows inspecting the files directly on the disk, which can be convenient for testing. However,
LXD operations are not optimized for this driver.

dir driver in LXD

The dir driver in LXD is fully functional and provides the same set of features as other drivers. However, it is much
slower than all the other drivers because it must unpack images and do instant copies of instances, snapshots and images.

Unless specified differently during creation (with the source configuration option), the data is stored in the /var/
snap/lxd/common/lxd/storage-pools/ (for snap installations) or /var/lib/lxd/storage-pools/ directory.

Quotas

The dir driver supports storage quotas when running on either ext4 or XFS with project quotas enabled at the file
system level.

Configuration options

The following configuration options are available for storage pools that use the dir driver and for storage volumes in
these pools.

2.4. Reference 375

Canonical LXD

Storage pool configuration

rsync.bwlimit Upper limit on the socket I/O for rsync

Key: rsync.bwlimit
Type: string
Default: 0 (no limit)

When rsync must be used to transfer storage entities, this option specifies the upper limit to be placed on the socket
I/O.

rsync.compression Whether to use compression while migrating storage pools

Key: rsync.compression
Type: bool
Default: true

source Path to an existing directory

Key: source
Type: string

Tip: In addition to these configurations, you can also set default values for the storage volume configurations. See
Configure default values for storage volumes.

Storage volume configuration

security.shifted Enable ID shifting overlay

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume

size Size/quota of the storage volume

376 Chapter 2. Project and community

Canonical LXD

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver

snapshots.expiry When snapshots are to be deleted

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume

You can specify a naming template that is used for scheduled snapshots and unnamed snapshots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable creation_date. Make sure to format the
date in your template string to avoid forbidden characters in the snapshot name. For example, set snapshots.pattern
to {{ creation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of creation, down
to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first snapshot, the placeholder
is replaced with 0. For subsequent snapshots, the existing snapshot names are taken into account to find the highest
number at the placeholder’s position. This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated list of schedule
aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or leave empty to disable auto-
matic snapshots (the default).

volatile.uuid The volume’s UUID

Key: volatile.uuid
Type: string
Default: random UUID

2.4. Reference 377

Canonical LXD

Storage bucket configuration

To enable storage buckets for local storage pool drivers and allow applications to access the buckets via the S3 protocol,
you must configure the core.storage_buckets_address server setting.

Storage buckets do not have any configuration for dir pools. Unlike the other storage pool drivers, the dir driver does
not support bucket quotas via the size setting.

LVM - lvm

LVM (Logical Volume Manager) is a storage management framework rather than a file system. It is used to man-
age physical storage devices, allowing you to create a number of logical storage volumes that use and virtualize the
underlying physical storage devices.

Note that it is possible to over-commit the physical storage in the process, to allow flexibility for scenarios where not
all available storage is in use at the same time.

To use LVM, make sure you have lvm2 installed on your machine.

Terminology

LVM can combine several physical storage devices into a volume group. You can then allocate logical volumes of
different types from this volume group.

One supported volume type is a thin pool, which allows over-committing the resources by creating thinly provisioned
volumes whose total allowed maximum size is larger than the available physical storage. Another type is a volume
snapshot, which captures a specific state of a logical volume.

lvm driver in LXD

The lvm driver in LXD uses logical volumes for images, and volume snapshots for instances and snapshots.

LXD assumes that it has full control over the volume group. Therefore, you should not maintain any file system entities
that are not owned by LXD in an LVM volume group, because LXD might delete them. However, if you need to reuse
an existing volume group (for example, because your setup has only one volume group), you can do so by setting the
lvm.vg.force_reuse configuration.

By default, LVM storage pools use an LVM thin pool and create logical volumes for all LXD storage entities (images,
instances and custom volumes) in there. This behavior can be changed by setting lvm.use_thinpool to false when
you create the pool. In this case, LXD uses “normal” logical volumes for all storage entities that are not snapshots.
Note that this entails serious performance and space reductions for the lvm driver (close to the dir driver both in
speed and storage usage). The reason for this is that most storage operations must fall back to using rsync, because
logical volumes that are not thin pools do not support snapshots of snapshots. In addition, non-thin snapshots take up
much more storage space than thin snapshots, because they must reserve space for their maximum size at creation time.
Therefore, this option should only be chosen if the use case requires it.

For environments with a high instance turnover (for example, continuous integration) you should tweak the backup
retain_min and retain_days settings in /etc/lvm/lvm.conf to avoid slowdowns when interacting with LXD.

378 Chapter 2. Project and community

Canonical LXD

Configuration options

The following configuration options are available for storage pools that use the lvm driver and for storage volumes in
these pools.

Storage pool configuration

lvm.thinpool_metadata_size The size of the thin pool metadata volume

Key: lvm.thinpool_metadata_size
Type: string
Default: 0 (auto)

By default, LVM calculates an appropriate size.

lvm.thinpool_name Thin pool where volumes are created

Key: lvm.thinpool_name
Type: string
Default: LXDThinPool

lvm.use_thinpool Whether the storage pool uses a thin pool for logical volumes

Key: lvm.use_thinpool
Type: bool
Default: true

lvm.vg.force_reuse Force using an existing non-empty volume group

Key: lvm.vg.force_reuse
Type: bool
Default: false

lvm.vg_name Name of the volume group to create

Key: lvm.vg_name
Type: string
Default: name of the pool

rsync.bwlimit Upper limit on the socket I/O for rsync

Key: rsync.bwlimit
Type: string
Default: 0 (no limit)

When rsync must be used to transfer storage entities, this option specifies the upper limit to be placed on the socket
I/O.

2.4. Reference 379

Canonical LXD

rsync.compression Whether to use compression while migrating storage pools

Key: rsync.compression
Type: bool
Default: true

size Size of the storage pool (for loop-based pools)

Key: size
Type: string
Default: auto (20% of free disk space, >= 5 GiB and <= 30 GiB)

When creating loop-based pools, specify the size in bytes (suffixes are supported). You can increase the size to grow
the storage pool.

The default (auto) creates a storage pool that uses 20% of the free disk space, with a minimum of 5 GiB and a maximum
of 30 GiB.

source Path to an existing block device, loop file, or LVM volume group

Key: source
Type: string

source.wipe Whether to wipe the block device before creating the pool

Key: source.wipe
Type: bool
Default: false

Set this option to true to wipe the block device specified in source prior to creating the storage pool.

Tip: In addition to these configurations, you can also set default values for the storage volume configurations. See
Configure default values for storage volumes.

Storage volume configuration

block.filesystem File system of the storage volume

Key: block.filesystem
Type: string
Default: same as volume.block.filesystem
Condition: block-based volume with content type filesystem

Valid options are: btrfs, ext4, xfs If not set, ext4 is assumed.

block.mount_options Mount options for block-backed file system volumes

380 Chapter 2. Project and community

Canonical LXD

Key: block.mount_options
Type: string
Default: same as volume.block.mount_options
Condition: block-based volume with content type filesystem

lvm.stripes Number of stripes to use for new volumes (or thin pool volume)

Key: lvm.stripes
Type: string
Default: same as volume.lvm.stripes

lvm.stripes.size Size of stripes to use

Key: lvm.stripes.size
Type: string
Default: same as volume.lvm.stripes.size

The size must be at least 4096 bytes, and a multiple of 512 bytes.

security.shifted Enable ID shifting overlay

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume

size Size/quota of the storage volume

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver

snapshots.expiry When snapshots are to be deleted

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume

2.4. Reference 381

Canonical LXD

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume

You can specify a naming template that is used for scheduled snapshots and unnamed snapshots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable creation_date. Make sure to format the
date in your template string to avoid forbidden characters in the snapshot name. For example, set snapshots.pattern
to {{ creation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of creation, down
to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first snapshot, the placeholder
is replaced with 0. For subsequent snapshots, the existing snapshot names are taken into account to find the highest
number at the placeholder’s position. This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated list of schedule
aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or leave empty to disable auto-
matic snapshots (the default).

volatile.uuid The volume’s UUID

Key: volatile.uuid
Type: string
Default: random UUID

Storage bucket configuration

To enable storage buckets for local storage pool drivers and allow applications to access the buckets via the S3 protocol,
you must configure the core.storage_buckets_address server setting. size Size/quota of the storage bucket

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver

382 Chapter 2. Project and community

Canonical LXD

ZFS - zfs

ZFS (Zettabyte file system) combines both physical volume management and a file system. A ZFS installation can span
across a series of storage devices and is very scalable, allowing you to add disks to expand the available space in the
storage pool immediately.

ZFS is a block-based file system that protects against data corruption by using checksums to verify, confirm and correct
every operation. To run at a sufficient speed, this mechanism requires a powerful environment with a lot of RAM.

In addition, ZFS offers snapshots and replication, RAID management, copy-on-write clones, compression and other
features.

To use ZFS, make sure you have zfsutils-linux installed on your machine.

Terminology

ZFS creates logical units based on physical storage devices. These logical units are called ZFS pools or zpools. Each
zpool is then divided into a number of . These can be of different types:

• A can be seen as a partition or a mounted file system.

• A ZFS volume represents a block device.

• A ZFS snapshot captures a specific state of either a or a ZFS volume. ZFS snapshots are read-only.

• A ZFS clone is a writable copy of a ZFS snapshot.

zfs driver in LXD

The zfs driver in LXD uses and ZFS volumes for images and custom storage volumes, and ZFS snapshots and clones
to create instances from images and for instance and custom volume snapshots. By default, LXD enables compression
when creating a ZFS pool.

LXD assumes that it has full control over the ZFS pool and . Therefore, you should never maintain any or file system
entities that are not owned by LXD in a ZFS pool or , because LXD might delete them.

Due to the way copy-on-write works in ZFS, parent can’t be removed until all children are gone. As a result, LXD
automatically renames any objects that are removed but still referenced. Such objects are kept at a random deleted/
path until all references are gone and the object can safely be removed. Note that this method might have ramifications
for restoring snapshots. See Limitations below.

LXD automatically enables trimming support on all newly created pools on ZFS 0.8 or later. This increases the lifetime
of SSDs by allowing better block re-use by the controller, and it also allows to free space on the root file system when
using a loop-backed ZFS pool. If you are running a ZFS version earlier than 0.8 and want to enable trimming, upgrade
to at least version 0.8. Then use the following commands to make sure that trimming is automatically enabled for the
ZFS pool in the future and trim all currently unused space:

zpool upgrade ZPOOL-NAME
zpool set autotrim=on ZPOOL-NAME
zpool trim ZPOOL-NAME

2.4. Reference 383

Canonical LXD

Limitations

The zfs driver has the following limitations:

Restoring from older snapshots
ZFS doesn’t support restoring from snapshots other than the latest one. You can, however, create new instances
from older snapshots. This method makes it possible to confirm whether a specific snapshot contains what you
need. After determining the correct snapshot, you can remove the newer snapshots so that the snapshot you need
is the latest one and you can restore it.

Alternatively, you can configure LXD to automatically discard the newer snapshots during restore. To
do so, set the zfs.remove_snapshots configuration for the volume (or the corresponding volume.zfs.
remove_snapshots configuration on the storage pool for all volumes in the pool).

Note, however, that if zfs.clone_copy is set to true, instance copies use ZFS snapshots too. In that case, you
cannot restore an instance to a snapshot taken before the last copy without having to also delete all its descendants.
If this is not an option, you can copy the wanted snapshot into a new instance and then delete the old instance.
You will, however, lose any other snapshots the instance might have had.

Observing I/O quotas
I/O quotas are unlikely to affect very much. That’s because ZFS is a port of a Solaris module (using SPL) and
not a native Linux file system using the Linux VFS API, which is where I/O limits are applied.

Feature support in ZFS
Some features, like the use of idmaps or delegation of a ZFS dataset, require ZFS 2.2 or higher and are therefore
not widely available yet.

Quotas

ZFS provides two different quota properties: quota and refquota. quota restricts the total size of a , including its
snapshots and clones. refquota restricts only the size of the data in the , not its snapshots and clones.

By default, LXD uses the quota property when you set up a quota for your storage volume. If you want to use the
refquota property instead, set the zfs.use_refquota configuration for the volume (or the corresponding volume.
zfs.use_refquota configuration on the storage pool for all volumes in the pool).

You can also set the zfs.reserve_space (or volume.zfs.reserve_space) configuration to use ZFS reservation
or refreservation along with quota or refquota.

Configuration options

The following configuration options are available for storage pools that use the zfs driver and for storage volumes in
these pools.

Storage pool configuration

size Size of the storage pool (for loop-based pools)

Key: size
Type: string
Default: auto (20% of free disk space, >= 5 GiB and <= 30 GiB)

384 Chapter 2. Project and community

Canonical LXD

When creating loop-based pools, specify the size in bytes (suffixes are supported). You can increase the size to grow
the storage pool.

The default (auto) creates a storage pool that uses 20% of the free disk space, with a minimum of 5 GiB and a maximum
of 30 GiB.

source Path to an existing block device, loop file, or ZFS dataset/pool

Key: source
Type: string

source.wipe Whether to wipe the block device before creating the pool

Key: source.wipe
Type: bool
Default: false

Set this option to true to wipe the block device specified in source prior to creating the storage pool.

zfs.clone_copy Whether to use ZFS lightweight clones

Key: zfs.clone_copy
Type: string
Default: true

Set this option to true or false to enable or disable using ZFS lightweight clones rather than full dataset copies. Set
the option to rebase to copy based on the initial image.

zfs.export Disable zpool export while an unmount is being performed

Key: zfs.export
Type: bool
Default: true

zfs.pool_name Name of the zpool

Key: zfs.pool_name
Type: string
Default: name of the pool

Tip: In addition to these configurations, you can also set default values for the storage volume configurations. See
Configure default values for storage volumes.

2.4. Reference 385

Canonical LXD

Storage volume configuration

block.filesystem File system of the storage volume

Key: block.filesystem
Type: string
Default: same as volume.block.filesystem
Condition: block-based volume with content type filesystem (zfs.block_mode enabled)

Valid options are: btrfs, ext4, xfs If not set, ext4 is assumed.

block.mount_options Mount options for block-backed file system volumes

Key: block.mount_options
Type: string
Default: same as volume.block.mount_options
Condition: block-based volume with content type filesystem (zfs.block_mode enabled)

security.shifted Enable ID shifting overlay

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume

size Size/quota of the storage volume

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver

snapshots.expiry When snapshots are to be deleted

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume

Specify an expression like 1M 2H 3d 4w 5m 6y.

386 Chapter 2. Project and community

Canonical LXD

snapshots.pattern Template for the snapshot name

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume

You can specify a naming template that is used for scheduled snapshots and unnamed snapshots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable creation_date. Make sure to format the
date in your template string to avoid forbidden characters in the snapshot name. For example, set snapshots.pattern
to {{ creation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of creation, down
to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first snapshot, the placeholder
is replaced with 0. For subsequent snapshots, the existing snapshot names are taken into account to find the highest
number at the placeholder’s position. This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated list of schedule
aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or leave empty to disable auto-
matic snapshots (the default).

volatile.uuid The volume’s UUID

Key: volatile.uuid
Type: string
Default: random UUID

zfs.block_mode Whether to use a formatted zvol rather than a dataset

Key: zfs.block_mode
Type: bool
Default: same as volume.zfs.block_mode

zfs.block_mode can be set only for custom storage volumes. To enable ZFS block mode for all storage volumes in
the pool, including instance volumes, use volume.zfs.block_mode.

zfs.blocksize Size of the ZFS block

Key: zfs.blocksize
Type: string
Default: same as volume.zfs.blocksize

2.4. Reference 387

Canonical LXD

The size must be between 512 bytes and 16 MiB and must be a power of 2. For a block volume, a maximum value of
128 KiB will be used even if a higher value is set.

Depending on the value of zfs.block_mode, the specified size is used to set either volblocksize or recordsize
in ZFS.

zfs.delegate Whether to delegate the ZFS dataset

Key: zfs.delegate
Type: bool
Default: same as volume.zfs.delegate
Condition: ZFS 2.2 or higher

This option controls whether to delegate the ZFS dataset and anything underneath it to the container or containers that
use it. This allows using the zfs command in the container.

zfs.remove_snapshots Remove snapshots as needed

Key: zfs.remove_snapshots
Type: bool
Default: same as volume.zfs.remove_snapshots or false

zfs.reserve_space Use reservation/refreservation along with quota/refquota

Key: zfs.reserve_space
Type: bool
Default: same as volume.zfs.reserve_space or false

zfs.use_refquota Use refquota instead of quota for space

Key: zfs.use_refquota
Type: bool
Default: same as volume.zfs.use_refquota or false

Storage bucket configuration

To enable storage buckets for local storage pool drivers and allow applications to access the buckets via the S3 protocol,
you must configure the core.storage_buckets_address server setting. size Size/quota of the storage bucket

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver

See the corresponding pages for driver-specific information and configuration options.

388 Chapter 2. Project and community

Canonical LXD

Feature comparison

Where possible, LXD uses the advanced features of each storage system to optimize operations.

Feature Direc-
tory

Btrfs LVM ZFS Ceph
RBD

CephFS Ceph Ob-
ject

Dell Power-
Flex

Optimized image storage no yes yes yes yes n/a n/a no
Optimized instance creation no yes yes yes yes n/a n/a no
Optimized snapshot creation no yes yes yes yes yes n/a yes
Optimized image transfer no yes no yes yes n/a n/a no
Optimized volume transfer no yes no yes yes1 n/a n/a no
Optimized volume refresh no yes yes2 yes yes3 n/a n/a no
Copy on write no yes yes yes yes yes n/a yes
Block based no no yes no yes no n/a yes
Instant cloning no yes yes yes yes yes n/a no
Storage driver usable inside a
container

yes yes no yes4 no n/a n/a no

Restore from older snapshots
(not latest)

yes yes yes no yes yes n/a yes

Storage quotas yes5 yes yes yes yes yes yes yes
Available on lxd init yes yes yes yes yes no no no
Object storage yes yes yes yes no no yes no

Optimized image storage

Most of the storage drivers have some kind of optimized image storage format. To make instance creation near instan-
taneous, LXD clones a pre-made image volume when creating an instance rather than unpacking the image tarball from
scratch.

To prevent preparing such a volume on a storage pool that might never be used with that image, the volume is generated
on demand. Therefore, the first instance takes longer to create than subsequent ones.

Optimized volume transfer

Btrfs, ZFS and Ceph RBD have an internal send/receive mechanism that allows for optimized volume transfer.

LXD uses this optimized transfer when transferring instances and snapshots between storage pools that use the same
storage driver, if the storage driver supports optimized transfer and the optimized transfer is actually quicker. Otherwise,
LXD uses rsync to transfer container and file system volumes, or raw block transfer to transfer virtual machine and
custom block volumes.

The optimized transfer uses the underlying storage driver’s native functionality for transferring data, which is usually
faster than using rsync or raw block transfer.

1 Volumes of type block will fall back to non-optimized transfer when migrating to an older LXD server that doesn’t yet support the
RBD_AND_RSYNC migration type.

2 Requires lvm.use_thinpool to be enabled. Only when refreshing local volumes.
3 Only for volumes of type block.
4 Requires zfs.delegate to be enabled.
5

The dir driver supports storage quotas when running on either ext4 or XFS with project quotas enabled at the file system level.

2.4. Reference 389

Canonical LXD

Optimized volume refresh

The full potential of the optimized transfer becomes apparent when refreshing a copy of an instance or custom volume
that uses periodic snapshots. If the optimized transfer isn’t supported by the driver or its implementation of volume
refresh, instead of the delta, the entire volume including its snapshot(s) will be copied using either rsync or raw block
transfer. LXD will try to keep the overhead low by transferring only the volume itself or any snapshots that are missing
on the target.

When optimized refresh is available for an instance or custom volume, LXD bases the refresh on the latest snapshot,
which means:

• When you take a first snapshot and refresh the copy, the transfer will take roughly the same time as a full copy.
LXD transfers the new snapshot and the difference between the snapshot and the main volume.

• For subsequent snapshots, the transfer is considerably faster. LXD does not transfer the full new snapshot, but
only the difference between the new snapshot and the latest snapshot that already exists on the target.

• When refreshing without a new snapshot, LXD transfers only the differences between the main volume and the
latest snapshot on the target. This transfer is usually faster than using rsync (as long as the latest snapshot is not
too outdated).

On the other hand, refreshing copies of instances without snapshots (either because the instance doesn’t have any
snapshots or because the refresh uses the --instance-only flag) would actually be slower than using rsync or raw
block transfer. In such cases, the optimized transfer would transfer the difference between the (non-existent) latest
snapshot and the main volume, thus the full volume. Therefore, LXD uses rsync or raw block transfer instead of the
optimized transfer for refreshes without snapshots.

Recommended setup

The two best options for use with LXD are ZFS and Btrfs. They have similar functionalities, but ZFS is more reliable.

Whenever possible, you should dedicate a full disk or partition to your LXD storage pool. LXD allows to create loop-
based storage, but this isn’t recommended for production use. See Data storage location for more information.

The directory backend should be considered as a last resort option. It supports all main LXD features, but is slow
and inefficient because it cannot perform instant copies or snapshots. Therefore, it constantly copies the instance’s full
storage.

Security considerations

Currently, the Linux kernel might silently ignore mount options and not apply them when a block-based file system (for
example, ext4) is already mounted with different mount options. This means when dedicated disk devices are shared
between different storage pools with different mount options set, the second mount might not have the expected mount
options. This becomes security relevant when, for example, one storage pool is supposed to provide acl support and
the second one is supposed to not provide acl support.

For this reason, it is currently recommended to either have dedicated disk devices per storage pool or to ensure that all
storage pools that share the same dedicated disk device use the same mount options.

390 Chapter 2. Project and community

Canonical LXD

Related topics

How-to guides:

• Storage

Explanation:

• About storage pools, volumes and buckets

Networks

LXD supports different network types for Managed networks.

Fully controlled networks

Fully controlled networks create network interfaces and provide most functionality, including, for example, the ability
to do IP management.

LXD supports the following network types:

Bridge network

As one of the possible network configuration types under LXD, LXD supports creating and managing network bridges.

A network bridge creates a virtual L2 Ethernet switch that instance NICs can connect to, making it possible for them
to communicate with each other and the host. LXD bridges can leverage underlying native Linux bridges and Open
vSwitch.

The bridge network type allows to create an L2 bridge that connects the instances that use it together into a single
network L2 segment. Bridges created by LXD are managed, which means that in addition to creating the bridge
interface itself, LXD also sets up a local dnsmasq process to provide DHCP, IPv6 route announcements and DNS
services to the network. By default, it also performs NAT for the bridge.

See How to configure your firewall for instructions on how to configure your firewall to work with LXD bridge networks.

Note: Static DHCP assignments depend on the client using its MAC address as the DHCP identifier. This method
prevents conflicting leases when copying an instance, and thus makes statically assigned leases work properly.

IPv6 prefix size

If you’re using IPv6 for your bridge network, you should use a prefix size of 64.

Larger subnets (i.e., using a prefix smaller than 64) should work properly too, but they aren’t typically that useful for
SLAAC (Stateless Address Auto-configuration).

Smaller subnets are in theory possible (when using stateful DHCPv6 for IPv6 allocation), but they aren’t properly
supported by dnsmasq and might cause problems. If you must create a smaller subnet, use static allocation or another
standalone router advertisement daemon.

2.4. Reference 391

Canonical LXD

Configuration options

The following configuration key namespaces are currently supported for the bridge network type:

• bgp (BGP peer configuration)

• bridge (L2 interface configuration)

• dns (DNS server and resolution configuration)

• fan (configuration specific to the Ubuntu FAN overlay)

• ipv4 (L3 IPv4 configuration)

• ipv6 (L3 IPv6 configuration)

• maas (MAAS network identification)

• security (network ACL configuration)

• raw (raw configuration file content)

• tunnel (cross-host tunneling configuration)

• user (free-form key/value for user metadata)

Note: LXD uses the CIDR notation where network subnet information is required, for example, 192.0.2.0/24 or
2001:db8::/32. This does not apply to cases where a single address is required, for example, local/remote addresses
of tunnels, NAT addresses or specific addresses to apply to an instance.

The following configuration options are available for the bridge network type: bgp.ipv4.nexthop Override the
IPv4 next-hop for advertised prefixes

Key: bgp.ipv4.nexthop
Type: string
Default: local address
Condition: BGP server

bgp.ipv6.nexthop Override the IPv6 next-hop for advertised prefixes

Key: bgp.ipv6.nexthop
Type: string
Default: local address
Condition: BGP server

bgp.peers.NAME.address Peer address (IPv4 or IPv6)

Key: bgp.peers.NAME.address
Type: string
Condition: BGP server

bgp.peers.NAME.asn Peer AS number

392 Chapter 2. Project and community

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Canonical LXD

Key: bgp.peers.NAME.asn
Type: integer
Condition: BGP server

bgp.peers.NAME.holdtime Peer session hold time

Key: bgp.peers.NAME.holdtime
Type: integer
Default: 180
Condition: BGP server
Required: no

Specify the hold time in seconds.

bgp.peers.NAME.password Peer session password

Key: bgp.peers.NAME.password
Type: string
Default: (no password)
Condition: BGP server
Required: no

bridge.driver Bridge driver

Key: bridge.driver
Type: string
Default: native

Possible values are native and openvswitch.

bridge.external_interfaces Unconfigured network interfaces to include in the bridge

Key: bridge.external_interfaces
Type: string

Specify a comma-separated list of unconfigured network interfaces to include in the bridge.

bridge.hwaddr MAC address for the bridge

Key: bridge.hwaddr
Type: string

bridge.mode Bridge operation mode

Key: bridge.mode
Type: string
Default: standard

2.4. Reference 393

Canonical LXD

Possible values are standard and fan.

bridge.mtu Bridge MTU

Key: bridge.mtu
Type: integer
De-
fault:

1500 if bridge.mode=standard, 1480 if bridge.mode=fan and fan.type=ipip, or 1450 if bridge.
mode=fan and fan.type=vxlan

The default value varies depending on whether the bridge uses a tunnel or a fan setup.

dns.domain Domain to advertise to DHCP clients and use for DNS resolution

Key: dns.domain
Type: string
Default: lxd

dns.mode DNS registration mode

Key: dns.mode
Type: string
Default: managed

Possible values are none for no DNS record, managed for LXD-generated static records, and dynamic for client-
generated records.

dns.search Full domain search list

Key: dns.search
Type: string
Default: dns.domain value

Specify a comma-separated list of domains.

dns.zone.forward DNS zone names for forward DNS records

Key: dns.zone.forward
Type: string

Specify a comma-separated list of DNS zone names.

dns.zone.reverse.ipv4 DNS zone name for IPv4 reverse DNS records

Key: dns.zone.reverse.ipv4
Type: string

dns.zone.reverse.ipv6 DNS zone name for IPv6 reverse DNS records

Key: dns.zone.reverse.ipv6
Type: string

394 Chapter 2. Project and community

Canonical LXD

fan.overlay_subnet Subnet to use as the overlay for the FAN

Key: fan.overlay_subnet
Type: string
Default: 240.0.0.0/8
Condition: fan mode

Use CIDR notation.

fan.type Tunneling type for the FAN

Key: fan.type
Type: string
Default: vxlan
Condition: fan mode

Possible values are vxlan and ipip.

fan.underlay_subnet Subnet to use as the underlay for the FAN

Key: fan.underlay_subnet
Type: string
Default: initial value on creation: auto
Condition: fan mode

Use CIDR notation.

You can set the option to auto to use the default gateway subnet.

ipv4.address IPv4 address for the bridge

Key: ipv4.address
Type: string
Default: initial value on creation: auto
Condition: standard mode

Use CIDR notation.

You can set the option to none to turn off IPv4, or to auto to generate a new random unused subnet.

ipv4.dhcp Whether to allocate IPv4 addresses using DHCP

Key: ipv4.dhcp
Type: bool
Default: true
Condition: IPv4 address

ipv4.dhcp.expiry When to expire DHCP leases

2.4. Reference 395

Canonical LXD

Key: ipv4.dhcp.expiry
Type: string
Default: 1h
Condition: IPv4 DHCP

ipv4.dhcp.gateway Address of the gateway for the IPv4 subnet

Key: ipv4.dhcp.gateway
Type: string
Default: IPv4 address
Condition: IPv4 DHCP

ipv4.dhcp.ranges IPv4 ranges to use for DHCP

Key: ipv4.dhcp.ranges
Type: string
Default: all addresses
Condition: IPv4 DHCP

Specify a comma-separated list of IPv4 ranges in FIRST-LAST format.

ipv4.firewall Whether to generate filtering firewall rules for this network

Key: ipv4.firewall
Type: bool
Default: true
Condition: IPv4 address

ipv4.nat Whether to use NAT for IPv4

Key: ipv4.nat
Type: bool
Default: false (initial value on creation if ipv4.address is set to auto: true)
Condition: IPv4 address

ipv4.nat.address Source address used for outbound traffic from the bridge

Key: ipv4.nat.address
Type: string
Condition: IPv4 address

ipv4.nat.order Where to add the required NAT rules

Key: ipv4.nat.order
Type: string
Default: before
Condition: IPv4 address

396 Chapter 2. Project and community

Canonical LXD

Set this option to before to add the NAT rules before any pre-existing rules, or to after to add them after the pre-
existing rules.

ipv4.ovn.ranges IPv4 ranges to use for child OVN network routers

Key: ipv4.ovn.ranges
Type: string

Specify a comma-separated list of IPv4 ranges in FIRST-LAST format.

ipv4.routes Additional IPv4 CIDR subnets to route to the bridge

Key: ipv4.routes
Type: string
Condition: IPv4 address

Specify a comma-separated list of IPv4 CIDR subnets.

ipv4.routing Whether to route IPv4 traffic in and out of the bridge

Key: ipv4.routing
Type: bool
Default: true
Condition: IPv4 address

ipv6.address IPv6 address for the bridge

Key: ipv6.address
Type: string
Default: initial value on creation: auto
Condition: standard mode

Use CIDR notation.

You can set the option to none to turn off IPv6, or to auto to generate a new random unused subnet.

ipv6.dhcp Whether to provide additional network configuration over DHCP

Key: ipv6.dhcp
Type: bool
Default: true
Condition: IPv6 address

ipv6.dhcp.expiry When to expire DHCP leases

Key: ipv6.dhcp.expiry
Type: string
Default: 1h
Condition: IPv6 DHCP

ipv6.dhcp.ranges IPv6 ranges to use for DHCP

2.4. Reference 397

Canonical LXD

Key: ipv6.dhcp.ranges
Type: string
Default: all addresses
Condition: IPv6 stateful DHCP

Specify a comma-separated list of IPv6 ranges in FIRST-LAST format.

ipv6.dhcp.stateful Whether to allocate IPv6 addresses using DHCP

Key: ipv6.dhcp.stateful
Type: bool
Default: false
Condition: IPv6 DHCP

ipv6.firewall Whether to generate filtering firewall rules for this network

Key: ipv6.firewall
Type: bool
Default: true
Condition: IPv6 DHCP

ipv6.nat Whether to use NAT for IPv6

Key: ipv6.nat
Type: bool
Default: false (initial value on creation if ipv6.address is set to auto: true)
Condition: IPv6 address

ipv6.nat.address Source address used for outbound traffic from the bridge

Key: ipv6.nat.address
Type: string
Condition: IPv6 address

ipv6.nat.order Where to add the required NAT rules

Key: ipv6.nat.order
Type: string
Default: before
Condition: IPv6 address

Set this option to before to add the NAT rules before any pre-existing rules, or to after to add them after the pre-
existing rules.

ipv6.ovn.ranges IPv6 ranges to use for child OVN network routers

Key: ipv6.ovn.ranges
Type: string

398 Chapter 2. Project and community

Canonical LXD

Specify a comma-separated list of IPv6 ranges in FIRST-LAST format.

ipv6.routes Additional IPv6 CIDR subnets to route to the bridge

Key: ipv6.routes
Type: string
Condition: IPv6 address

Specify a comma-separated list of IPv6 CIDR subnets.

ipv6.routing Whether to route IPv6 traffic in and out of the bridge

Key: ipv6.routing
Type: bool
Condition: IPv6 address

maas.subnet.ipv4 MAAS IPv4 subnet to register instances in

Key: maas.subnet.ipv4
Type: string
Condition: IPv4 address; using the network property on the NIC

maas.subnet.ipv6 MAAS IPv6 subnet to register instances in

Key: maas.subnet.ipv6
Type: string
Condition: IPv6 address; using the network property on the NIC

raw.dnsmasq Additional dnsmasq configuration to append to the configuration file

Key: raw.dnsmasq
Type: string

security.acls Network ACLs to apply to NICs connected to this network

Key: security.acls
Type: string

Specify a comma-separated list of network ACLs.

Also see Bridge limitations.

security.acls.default.egress.action Default action to use for egress traffic

Key: security.acls.default.egress.action
Type: string
Condition: security.acls

The specified action is used for all egress traffic that doesn’t match any ACL rule.

2.4. Reference 399

Canonical LXD

security.acls.default.egress.logged Whether to log egress traffic that doesn’t match any ACL rule

Key: security.acls.default.egress.logged
Type: bool
Condition: security.acls

security.acls.default.ingress.action Default action to use for ingress traffic

Key: security.acls.default.ingress.action
Type: string
Condition: security.acls

The specified action is used for all ingress traffic that doesn’t match any ACL rule.

security.acls.default.ingress.logged Whether to log ingress traffic that doesn’t match any ACL rule

Key: security.acls.default.ingress.logged
Type: bool
Condition: security.acls

tunnel.NAME.group Multicast address for vxlan

Key: tunnel.NAME.group
Type: string
Condition: vxlan

This address is used if tunnel.NAME.local and tunnel.NAME.remote aren’t set.

tunnel.NAME.id Specific tunnel ID to use for the vxlan tunnel

Key: tunnel.NAME.id
Type: integer
Condition: vxlan

tunnel.NAME.interface Specific host interface to use for the tunnel

Key: tunnel.NAME.interface
Type: string
Condition: vxlan

tunnel.NAME.local Local address for the tunnel

Key: tunnel.NAME.local
Type: string
Condition: gre or vxlan
Required: not required for multicast vxlan

tunnel.NAME.port Specific port to use for the vxlan tunnel

400 Chapter 2. Project and community

Canonical LXD

Key: tunnel.NAME.port
Type: integer
Default: 0
Condition: vxlan

tunnel.NAME.protocol Tunneling protocol

Key: tunnel.NAME.protocol
Type: string
Condition: standard mode

Possible values are vxlan and gre.

tunnel.NAME.remote Remote address for the tunnel

Key: tunnel.NAME.remote
Type: string
Condition: gre or vxlan
Required: not required for multicast vxlan

tunnel.NAME.ttl Specific TTL to use for multicast routing topologies

Key: tunnel.NAME.ttl
Type: string
Default: 1
Condition: vxlan

user.* User-provided free-form key/value pairs

Key: user.*
Type: string

Supported features

The following features are supported for the bridge network type:

• How to configure network ACLs

• How to configure network forwards

• How to configure network zones

• How to configure LXD as a BGP server

• How to integrate with systemd-resolved

2.4. Reference 401

Canonical LXD

Firewall issues

See How to configure your firewall for instructions on how to troubleshoot firewall issues.

OVN network

OVN is a software-defined networking system that supports virtual network abstraction. You can use it to build your
own private cloud. See www.ovn.org for more information.

The ovn network type allows to create logical networks using the OVN SDN (software-defined networking). This kind
of network can be useful for labs and multi-tenant environments where the same logical subnets are used in multiple
discrete networks.

A LXD OVN network can be connected to an existing managed Bridge network or Physical network to gain access to
the wider network. By default, all connections from the OVN logical networks are NATed to an IP allocated from the
uplink network.

See How to set up OVN with LXD for basic instructions for setting up an OVN network.

Note: Static DHCP assignments depend on the client using its MAC address as the DHCP identifier. This method
prevents conflicting leases when copying an instance, and thus makes statically assigned leases work properly.

OVN networking architecture

The following figure shows the OVN network traffic flow in a LXD cluster:

Fig. 2: OVN networking (one network)

The OVN network connects the different cluster members. Network traffic between the cluster members passes through
the NIC for inter-cluster traffic (eth1 in the figure) and is transmitted through an OVN tunnel. This traffic between
cluster members is referred to as OVN east/west traffic.

For outside connectivity, the OVN network requires an uplink network (a Bridge network or a Physical network). The
OVN network uses a virtual router to connect to the uplink network through the NIC for uplink traffic (eth0 in the
figure). The virtual router is active on only one of the cluster members, and can move to a different member at any
time. Independent of where the router resides, the OVN network is available on all cluster members.

Every instance on any cluster member can connect to the OVN network through its virtual NIC (usually eth0 for
containers and enp5s0 for virtual machines). The traffic between the instances and the uplink network is referred to as
OVN north/south traffic.

The strengths of using OVN become apparent when looking at a networking architecture with more than one OVN
network:

Fig. 3: OVN networking (two networks)

In this case, both depicted OVN networks are completely independent. Both networks are available on all cluster
members (with each virtual router being active on one random cluster member). Each instance can use either of the
networks, and the traffic on either network is completely isolated from the other network.

402 Chapter 2. Project and community

https://www.ovn.org/

Canonical LXD

Configuration options

The following configuration key namespaces are currently supported for the ovn network type:

• bridge (L2 interface configuration)

• dns (DNS server and resolution configuration)

• ipv4 (L3 IPv4 configuration)

• ipv6 (L3 IPv6 configuration)

• security (network ACL configuration)

• user (free-form key/value for user metadata)

Note: LXD uses the CIDR notation where network subnet information is required, for example, 192.0.2.0/24 or
2001:db8::/32. This does not apply to cases where a single address is required, for example, local/remote addresses
of tunnels, NAT addresses or specific addresses to apply to an instance.

The following configuration options are available for the ovn network type: bridge.hwaddr MAC address for the
bridge

Key: bridge.hwaddr
Type: string

bridge.mtu Bridge MTU

Key: bridge.mtu
Type: integer
Default: 1442

The default value allows the host to host Geneve tunnels.

dns.domain Domain to advertise to DHCP clients and use for DNS resolution

Key: dns.domain
Type: string
Default: lxd

dns.search Full domain search list

Key: dns.search
Type: string
Default: dns.domain value

Specify a comma-separated list of domains.

dns.zone.forward DNS zone names for forward DNS records

Key: dns.zone.forward
Type: string

2.4. Reference 403

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Canonical LXD

Specify a comma-separated list of DNS zone names.

dns.zone.reverse.ipv4 DNS zone name for IPv4 reverse DNS records

Key: dns.zone.reverse.ipv4
Type: string

dns.zone.reverse.ipv6 DNS zone name for IPv6 reverse DNS records

Key: dns.zone.reverse.ipv6
Type: string

ipv4.address IPv4 address for the bridge

Key: ipv4.address
Type: string
Default: initial value on creation: auto
Condition: standard mode

Use CIDR notation.

You can set the option to none to turn off IPv4, or to auto to generate a new random unused subnet.

ipv4.dhcp Whether to allocate IPv4 addresses using DHCP

Key: ipv4.dhcp
Type: bool
Default: true
Condition: IPv4 address

ipv4.l3only Whether to enable layer 3 only mode for IPv4

Key: ipv4.l3only
Type: bool
Default: false
Condition: IPv4 address

ipv4.nat Whether to use NAT for IPv4

Key: ipv4.nat
Type: bool
Default: false (initial value on creation if ipv4.address is set to auto: true)
Condition: IPv4 address

ipv4.nat.address Source address used for outbound traffic from the network

Key: ipv4.nat.address
Type: string
Condition: IPv4 address; requires uplink ovn.ingress_mode=routed

404 Chapter 2. Project and community

Canonical LXD

ipv6.address IPv6 address for the bridge

Key: ipv6.address
Type: string
Default: initial value on creation: auto
Condition: standard mode

Use CIDR notation.

You can set the option to none to turn off IPv6, or to auto to generate a new random unused subnet.

ipv6.dhcp Whether to provide additional network configuration over DHCP

Key: ipv6.dhcp
Type: bool
Default: true
Condition: IPv6 address

ipv6.dhcp.stateful Whether to allocate IPv6 addresses using DHCP

Key: ipv6.dhcp.stateful
Type: bool
Default: false
Condition: IPv6 DHCP

ipv6.l3only Whether to enable layer 3 only mode for IPv6

Key: ipv6.l3only
Type: bool
Default: false
Condition: IPv6 DHCP stateful

ipv6.nat Whether to use NAT for IPv6

Key: ipv6.nat
Type: bool
Default: false (initial value on creation if ipv6.address is set to auto: true)
Condition: IPv6 address

ipv6.nat.address Source address used for outbound traffic from the network

Key: ipv6.nat.address
Type: string
Condition: IPv6 address; requires uplink ovn.ingress_mode=routed

network Uplink network to use for external network access

Key: network
Type: string

2.4. Reference 405

Canonical LXD

security.acls Network ACLs to apply to NICs connected to this network

Key: security.acls
Type: string

Specify a comma-separated list of network ACLs.

security.acls.default.egress.action Default action to use for egress traffic

Key: security.acls.default.egress.action
Type: string
Default: reject
Condition: security.acls

The specified action is used for all egress traffic that doesn’t match any ACL rule.

security.acls.default.egress.logged Whether to log egress traffic that doesn’t match any ACL rule

Key: security.acls.default.egress.logged
Type: bool
Default: false
Condition: security.acls

security.acls.default.ingress.action Default action to use for ingress traffic

Key: security.acls.default.ingress.action
Type: string
Default: reject
Condition: security.acls

The specified action is used for all ingress traffic that doesn’t match any ACL rule.

security.acls.default.ingress.logged Whether to log ingress traffic that doesn’t match any ACL rule

Key: security.acls.default.ingress.logged
Type: bool
Default: false
Condition: security.acls

user.* User-provided free-form key/value pairs

Key: user.*
Type: string

406 Chapter 2. Project and community

Canonical LXD

Supported features

The following features are supported for the ovn network type:

• How to configure network ACLs

• How to configure network forwards

• How to configure network zones

• How to create OVN peer routing relationships

• How to configure network load balancers

External networks

External networks use network interfaces that already exist. Therefore, LXD has limited possibility to control them,
and LXD features like network ACLs, network forwards and network zones are not supported.

The main purpose for using external networks is to provide an uplink network through a parent interface. This external
network specifies the presets to use when connecting instances or other networks to a parent interface.

LXD supports the following external network types:

Macvlan network

Macvlan is a virtual LAN that you can use if you want to assign several IP addresses to the same network interface,
basically splitting up the network interface into several sub-interfaces with their own IP addresses. You can then assign
IP addresses based on the randomly generated MAC addresses.

The macvlan network type allows to specify presets to use when connecting instances to a parent interface. In this
case, the instance NICs can simply set the network option to the network they connect to without knowing any of the
underlying configuration details.

Note: If you are using a macvlan network, communication between the LXD host and the instances is not possible.
Both the host and the instances can talk to the gateway, but they cannot communicate directly.

Configuration options

The following configuration key namespaces are currently supported for the macvlan network type:

• maas (MAAS network identification)

• user (free-form key/value for user metadata)

Note: LXD uses the CIDR notation where network subnet information is required, for example, 192.0.2.0/24 or
2001:db8::/32. This does not apply to cases where a single address is required, for example, local/remote addresses
of tunnels, NAT addresses or specific addresses to apply to an instance.

The following configuration options are available for the macvlan network type: gvrp Whether to use GARP VLAN
Registration Protocol

2.4. Reference 407

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Canonical LXD

Key: gvrp
Type: bool
Default: false

This option specifies whether to register the VLAN using the GARP VLAN Registration Protocol.

maas.subnet.ipv4 MAAS IPv4 subnet to register instances in

Key: maas.subnet.ipv4
Type: string
Condition: IPv4 address; using the network property on the NIC

maas.subnet.ipv6 MAAS IPv6 subnet to register instances in

Key: maas.subnet.ipv6
Type: string
Condition: IPv4 address; using the network property on the NIC

mtu MTU of the new interface

Key: mtu
Type: integer

parent Parent interface to create macvlan NICs on

Key: parent
Type: string

user.* User-provided free-form key/value pairs

Key: user.*
Type: string

vlan VLAN ID to attach to

Key: vlan
Type: integer

408 Chapter 2. Project and community

Canonical LXD

Physical network

The physical network type connects to an existing physical network, which can be a network interface or a bridge,
and serves as an uplink network for OVN.

This network type allows to specify presets to use when connecting OVN networks to a parent interface or to allow an
instance to use a physical interface as a NIC. In this case, the instance NICs can simply set the networkoption to the
network they connect to without knowing any of the underlying configuration details.

Configuration options

The following configuration key namespaces are currently supported for the physical network type:

• bgp (BGP peer configuration)

• dns (DNS server and resolution configuration)

• ipv4 (L3 IPv4 configuration)

• ipv6 (L3 IPv6 configuration)

• maas (MAAS network identification)

• ovn (OVN configuration)

• user (free-form key/value for user metadata)

Note: LXD uses the CIDR notation where network subnet information is required, for example, 192.0.2.0/24 or
2001:db8::/32. This does not apply to cases where a single address is required, for example, local/remote addresses
of tunnels, NAT addresses or specific addresses to apply to an instance.

The following configuration options are available for the physical network type: bgp.peers.NAME.address Peer
address for use by ovn downstream networks

Key: bgp.peers.NAME.address
Type: string
Condition: BGP server

The address can be IPv4 or IPv6.

bgp.peers.NAME.asn Peer AS number for use by ovn downstream networks

Key: bgp.peers.NAME.asn
Type: integer
Condition: BGP server

bgp.peers.NAME.holdtime Peer session hold time

Key: bgp.peers.NAME.holdtime
Type: integer
Default: 180
Condition: BGP server
Required: no

2.4. Reference 409

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Canonical LXD

Specify the peer session hold time in seconds.

bgp.peers.NAME.password Peer session password for use by ovn downstream networks

Key: bgp.peers.NAME.password
Type: string
Default: (no password)
Condition: BGP server
Required: no

dns.nameservers DNS server IPs on physical network

Key: dns.nameservers
Type: string
Condition: standard mode

Specify a list of DNS server IPs.

gvrp Whether to use GARP VLAN Registration Protocol

Key: gvrp
Type: bool
Default: false

This option specifies whether to register the VLAN using the GARP VLAN Registration Protocol.

ipv4.gateway IPv4 address for the gateway and network

Key: ipv4.gateway
Type: string
Condition: standard mode

Use CIDR notation.

ipv4.ovn.ranges IPv4 ranges to use for child OVN network routers

Key: ipv4.ovn.ranges
Type: string

Specify a comma-separated list of IPv4 ranges in FIRST-LAST format.

ipv4.routes Additional IPv4 CIDR subnets

Key: ipv4.routes
Type: string
Condition: IPv4 address

Specify a comma-separated list of IPv4 CIDR subnets that can be used with the child OVN network’s ipv4.routes.
external setting.

ipv4.routes.anycast Whether to allow IPv4 routes on multiple networks/NICs

410 Chapter 2. Project and community

Canonical LXD

Key: ipv4.routes.anycast
Type: bool
Default: false
Condition: IPv4 address

If set to true, this option allows the overlapping routes to be used on multiple networks/NICs at the same time.

ipv6.gateway IPv6 address for the gateway and network

Key: ipv6.gateway
Type: string
Condition: standard mode

Use CIDR notation.

ipv6.ovn.ranges IPv6 ranges to use for child OVN network routers

Key: ipv6.ovn.ranges
Type: string

Specify a comma-separated list of IPv6 ranges in FIRST-LAST format.

ipv6.routes Additional IPv6 CIDR subnets

Key: ipv6.routes
Type: string
Condition: IPv6 address

Specify a comma-separated list of IPv6 CIDR subnets that can be used with the child OVN network’s ipv6.routes.
external setting.

ipv6.routes.anycast Whether to allow IPv6 routes on multiple networks/NICs

Key: ipv6.routes.anycast
Type: bool
Default: false
Condition: IPv6 address

If set to true, this option allows the overlapping routes to be used on multiple networks/NICs at the same time.

maas.subnet.ipv4 MAAS IPv4 subnet to register instances in

Key: maas.subnet.ipv4
Type: string
Condition: IPv4 address; using the network property on the NIC

maas.subnet.ipv6 MAAS IPv6 subnet to register instances in

2.4. Reference 411

Canonical LXD

Key: maas.subnet.ipv6
Type: string
Condition: IPv6 address; using the network property on the NIC

mtu MTU of the new interface

Key: mtu
Type: integer

ovn.ingress_mode How OVN NIC external IPs are advertised on uplink network

Key: ovn.ingress_mode
Type: string
Default: l2proxy
Condition: standard mode

Possible values are l2proxy (proxy ARP/NDP) and routed.

parent Existing interface to use for network

Key: parent
Type: string

user.* User-provided free-form key/value pairs

Key: user.*
Type: string

vlan VLAN ID to attach to

Key: vlan
Type: integer

Supported features

The following features are supported for the physical network type:

• How to configure LXD as a BGP server

412 Chapter 2. Project and community

Canonical LXD

SR-IOV network

SR-IOV is a hardware standard that allows a single network card port to appear as several virtual network interfaces in
a virtualized environment.

The sriov network type allows to specify presets to use when connecting instances to a parent interface. In this
case, the instance NICs can simply set the network option to the network they connect to without knowing any of the
underlying configuration details.

Configuration options

The following configuration key namespaces are currently supported for the sriov network type:

• maas (MAAS network identification)

• user (free-form key/value for user metadata)

Note: LXD uses the CIDR notation where network subnet information is required, for example, 192.0.2.0/24 or
2001:db8::/32. This does not apply to cases where a single address is required, for example, local/remote addresses
of tunnels, NAT addresses or specific addresses to apply to an instance.

The following configuration options are available for the sriov network type: maas.subnet.ipv4 MAAS IPv4
subnet to register instances in

Key: maas.subnet.ipv4
Type: string
Condition: IPv4 address; using the network property on the NIC

maas.subnet.ipv6 MAAS IPv6 subnet to register instances in

Key: maas.subnet.ipv6
Type: string
Condition: IPv6 address; using the network property on the NIC

mtu MTU of the new interface

Key: mtu
Type: integer

parent Parent interface to create sriov NICs on

Key: parent
Type: string

user.* User-provided free-form key/value pairs

Key: user.*
Type: string

2.4. Reference 413

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Canonical LXD

vlan VLAN ID to attach to

Key: vlan
Type: integer

Related topics

How-to guides:

• Networking

Explanation:

• About networking

Cluster member configuration

Each cluster member has its own key/value configuration with the following supported namespaces:

• user (free form key/value for user metadata)

• scheduler (options related to how the member is automatically targeted by the cluster)

The following keys are currently supported: scheduler.instance Controls how instances are scheduled to run on
this member

Key: scheduler.instance
Type: string
Default: all

Possible values are all, manual, and group. See Automatic placement of instances for more information.

user.* Free form user key/value storage

Key: user.*
Type: string

User keys can be used in search.

Related topics

How-to guides:

• Clustering

Explanation:

• About clustering

414 Chapter 2. Project and community

Canonical LXD

2.4.3 Production setup

Once you are ready for production, make sure your LXD server is configured to support the required load. You should
also regularly monitor the server metrics.

Server settings for a LXD production setup

To allow your LXD server to run a large number of instances, configure the following settings to avoid hitting server
limits.

The Value column contains the suggested value for each parameter.

/etc/security/limits.conf

Note: For users of the snap, those limits are automatically raised.

Do-
main

Type Item Value De-
fault

Description

* soft nofile 1048576 unset Maximum number of open files
* hard nofile 1048576 unset Maximum number of open files
root soft nofile 1048576 unset Maximum number of open files
root hard nofile 1048576 unset Maximum number of open files
* soft memlock unlimitedunset Maximum locked-in-memory address space (KB)
* hard memlock unlimitedunset Maximum locked-in-memory address space (KB)
root soft memlock unlimitedunset Maximum locked-in-memory address space (KB), only need with

bpf syscall supervision
root hard memlock unlimitedunset Maximum locked-in-memory address space (KB), only need with

bpf syscall supervision

/etc/sysctl.conf

Note: Reboot the server after changing any of these parameters.

fs.aio-max-nr Maximum number of concurrent asynchronous I/O operations

Key: fs.aio-max-nr
Type: integer
Default: 65536

Suggested value: 524288

You might need to increase this limit further if you have a lot of workloads that use the AIO subsystem (for example,
MySQL).

fs.inotify.max_queued_events Upper limit on the number of events that can be queued

2.4. Reference 415

Canonical LXD

Key: fs.inotify.max_queued_events
Type: integer
Default: 16384

Suggested value: 1048576

This option specifies the maximum number of events that can be queued to the corresponding inotify instance (see
inotify for more information).

fs.inotify.max_user_instances Upper limit on the number of inotify instances

Key: fs.inotify.max_user_instances
Type: integer
Default: 128

Suggested value: 1048576

This option specifies the maximum number of inotify instances that can be created per real user ID (see inotify
for more information).

fs.inotify.max_user_watches Upper limit on the number of watches

Key: fs.inotify.max_user_watches
Type: integer
Default: 8192

Suggested value: 1048576

This option specifies the maximum number of watches that can be created per real user ID (see inotify for more
information).

kernel.dmesg_restrict Whether to deny access to the messages in the kernel ring buffer

Key: kernel.dmesg_restrict
Type: integer
Default: 0

Suggested value: 1

Set this option to 1 to deny container access to the messages in the kernel ring buffer. Note that setting this value to 1
will also deny access to non-root users on the host system.

kernel.keys.maxbytes Maximum size of the key ring that non-root users can use

Key: kernel.keys.maxbytes
Type: integer
Default: 20000

Suggested value: 2000000

kernel.keys.maxkeys Maximum number of keys that a non-root user can use

416 Chapter 2. Project and community

https://man7.org/linux/man-pages/man7/inotify.7.html
https://man7.org/linux/man-pages/man7/inotify.7.html
https://man7.org/linux/man-pages/man7/inotify.7.html

Canonical LXD

Key: kernel.keys.maxkeys
Type: integer
Default: 200

Suggested value: 2000

Set this option to a value that is higher than the number of instances.

net.core.bpf_jit_limit Limit on the size of eBPF JIT allocations

Key: net.core.bpf_jit_limit
Type: integer
Default: varies

Suggested value: 1000000000

On kernels < 5.15 that are compiled with CONFIG_BPF_JIT_ALWAYS_ON=y, this value might limit the amount of
instances that can be created.

net.ipv4.neigh.default.gc_thresh3 Maximum number of entries in the IPv4 ARP table

Key: net.ipv4.neigh.default.gc_thresh3
Type: integer
Default: 1024

Suggested value: 8192

Increase this value if you plan to create over 1024 instances. Otherwise, you will get the error neighbour:
ndisc_cache: neighbor table overflow! when the ARP table gets full and the instances cannot get a network
configuration. See ip-sysctl for more information.

net.ipv6.neigh.default.gc_thresh3 Maximum number of entries in IPv6 ARP table

Key: net.ipv6.neigh.default.gc_thresh3
Type: integer
Default: 1024

Suggested value: 8192

Increase this value if you plan to create over 1024 instances. Otherwise, you will get the error neighbour:
ndisc_cache: neighbor table overflow! when the ARP table gets full and the instances cannot get a network
configuration. See ip-sysctl for more information.

vm.max_map_count Maximum number of memory map areas a process may have

Key: vm.max_map_count
Type: integer
Default: 65530

Suggested value: 262144

Memory map areas are used as a side-effect of calling malloc, directly by mmap and mprotect, and also when loading
shared libraries.

2.4. Reference 417

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

Canonical LXD

Related topics

How-to guides:

• How to benchmark performance

• How to increase the network bandwidth

• How to monitor metrics

Explanation:

• About performance tuning

Provided metrics

LXD provides a number of instance metrics and internal metrics. See How to monitor metrics for instructions on how
to work with these metrics.

Instance metrics

The following instance metrics are provided:

Metric Description
lxd_cpu_effective_total Total number of effective CPUs
lxd_cpu_seconds_total{cpu="<cpu>", mode="<mode>"} Total number of CPU time used (in seconds)
lxd_disk_read_bytes_total{device="<dev>"} Total number of bytes read
lxd_disk_reads_completed_total{device="<dev>"} Total number of completed reads
lxd_disk_written_bytes_total{device="<dev>"} Total number of bytes written
lxd_disk_writes_completed_total{device="<dev>"} Total number of completed writes
lxd_filesystem_avail_bytes{device="<dev>",fstype="<type>"} Available space (in bytes)
lxd_filesystem_free_bytes{device="<dev>",fstype="<type>"} Free space (in bytes)
lxd_filesystem_size_bytes{device="<dev>",fstype="<type>"} Size of the file system (in bytes)
lxd_memory_Active_anon_bytes Amount of anonymous memory on active LRU list
lxd_memory_Active_bytes Amount of memory on active LRU list
lxd_memory_Active_file_bytes Amount of file-backed memory on active LRU list
lxd_memory_Cached_bytes Amount of cached memory
lxd_memory_Dirty_bytes Amount of memory waiting to be written back to the disk
lxd_memory_HugepagesFree_bytes Amount of free memory for hugetlb
lxd_memory_HugepagesTotal_bytes Amount of used memory for hugetlb
lxd_memory_Inactive_anon_bytes Amount of anonymous memory on inactive LRU list
lxd_memory_Inactive_bytes Amount of memory on inactive LRU list
lxd_memory_Inactive_file_bytes Amount of file-backed memory on inactive LRU list
lxd_memory_Mapped_bytes Amount of mapped memory
lxd_memory_MemAvailable_bytes Amount of available memory
lxd_memory_MemFree_bytes Amount of free memory
lxd_memory_MemTotal_bytes Amount of used memory
lxd_memory_OOM_kills_total The number of out-of-memory kills
lxd_memory_RSS_bytes Amount of anonymous and swap cache memory
lxd_memory_Shmem_bytes Amount of cached file system data that is swap-backed
lxd_memory_Swap_bytes Amount of used swap memory
lxd_memory_Unevictable_bytes Amount of unevictable memory
lxd_memory_Writeback_bytes Amount of memory queued for syncing to disk

continues on next page

418 Chapter 2. Project and community

Canonical LXD

Table 1 – continued from previous page
Metric Description
lxd_network_receive_bytes_total{device="<dev>"} Amount of received bytes on a given interface
lxd_network_receive_drop_total{device="<dev>"} Amount of received dropped bytes on a given interface
lxd_network_receive_errs_total{device="<dev>"} Amount of received errors on a given interface
lxd_network_receive_packets_total{device="<dev>"} Amount of received packets on a given interface
lxd_network_transmit_bytes_total{device="<dev>"} Amount of transmitted bytes on a given interface
lxd_network_transmit_drop_total{device="<dev>"} Amount of transmitted dropped bytes on a given interface
lxd_network_transmit_errs_total{device="<dev>"} Amount of transmitted errors on a given interface
lxd_network_transmit_packets_total{device="<dev>"} Amount of transmitted packets on a given interface
lxd_procs_total Number of running processes

Internal metrics

The following internal metrics are provided:

Metric Description
lxd_go_alloc_bytes_total Total number of bytes allocated (even if freed)
lxd_go_alloc_bytes Number of bytes allocated and still in use
lxd_go_buck_hash_sys_bytes Number of bytes used by the profiling bucket hash table
lxd_go_frees_total Total number of frees
lxd_go_gc_sys_bytes Number of bytes used for garbage collection system metadata
lxd_go_goroutines Number of goroutines that currently exist
lxd_go_heap_alloc_bytes Number of heap bytes allocated and still in use
lxd_go_heap_idle_bytes Number of heap bytes waiting to be used
lxd_go_heap_inuse_bytes Number of heap bytes that are in use
lxd_go_heap_objects Number of allocated objects
lxd_go_heap_released_bytes Number of heap bytes released to OS
lxd_go_heap_sys_bytes Number of heap bytes obtained from system
lxd_go_lookups_total Total number of pointer lookups
lxd_go_mallocs_total Total number of mallocs
lxd_go_mcache_inuse_bytes Number of bytes in use by mcache structures
lxd_go_mcache_sys_bytes Number of bytes used for mcache structures obtained from system
lxd_go_mspan_inuse_bytes Number of bytes in use by mspan structures
lxd_go_mspan_sys_bytes Number of bytes used for mspan structures obtained from system
lxd_go_next_gc_bytes Number of heap bytes when next garbage collection will take place
lxd_go_other_sys_bytes Number of bytes used for other system allocations
lxd_go_stack_inuse_bytes Number of bytes in use by the stack allocator
lxd_go_stack_sys_bytes Number of bytes obtained from system for stack allocator
lxd_go_sys_bytes Number of bytes obtained from system
lxd_operations_total Number of running operations
lxd_uptime_seconds Daemon uptime (in seconds)
lxd_warnings_total Number of active warnings

2.4. Reference 419

Canonical LXD

Related topics

How-to guides:

• How to monitor metrics

Explanation:

• About performance tuning

2.4.4 REST API

All communication between LXD and its clients happens using a RESTful API over HTTP. Check the list of API
extensions to see if a feature is available in your version of the API.

REST API

REST API

All communication between LXD and its clients happens using a RESTful API over HTTP. This API is encapsulated
over either TLS (for remote operations) or a Unix socket (for local operations).

See Remote API authentication for information about how to access the API remotely.

Tip:

• For examples on how the API is used, run any command of the LXD client (lxc) with the --debug flag. The
debug information displays the API calls and the return values.

• For quickly querying the API, the LXD client provides a lxc query command.

API versioning

The list of supported major API versions can be retrieved using GET /.

The reason for a major API bump is if the API breaks backward compatibility.

Feature additions done without breaking backward compatibility only result in addition to api_extensions which
can be used by the client to check if a given feature is supported by the server.

Return values

There are three standard return types:

• Standard return value

• Background operation

• Error

420 Chapter 2. Project and community

Canonical LXD

Standard return value

For a standard synchronous operation, the following JSON object is returned:

{
"type": "sync",
"status": "Success",
"status_code": 200,
"metadata": {} // Extra resource/action specific metadata

}

HTTP code must be 200.

Background operation

When a request results in a background operation, the HTTP code is set to 202 (Accepted) and the Location HTTP
header is set to the operation URL.

The body is a JSON object with the following structure:

{
"type": "async",
"status": "OK",
"status_code": 100,
"operation": "/1.0/instances/<id>", // URL to the background␣

→˓operation
"metadata": {} // Operation metadata (see␣

→˓below)
}

The operation metadata structure looks like:

{
"id": "a40f5541-5e98-454f-b3b6-8a51ef5dbd3c", // UUID of the operation
"class": "websocket", // Class of the operation␣

→˓(task, websocket or token)
"created_at": "2015-11-17T22:32:02.226176091-05:00", // When the operation was␣

→˓created
"updated_at": "2015-11-17T22:32:02.226176091-05:00", // Last time the operation␣

→˓was updated
"status": "Running", // String version of the␣

→˓operation's status
"status_code": 103, // Integer version of the␣

→˓operation's status (use this rather than status)
"resources": { // Dictionary of resource␣

→˓types (container, snapshots, images) and affected resources
"containers": [
"/1.0/instances/test"

]
},
"metadata": { // Metadata specific to the␣

→˓operation in question (in this case, exec)
"fds": {

(continues on next page)

2.4. Reference 421

Canonical LXD

(continued from previous page)

"0": "2a4a97af81529f6608dca31f03a7b7e47acc0b8dc6514496eb25e325f9e4fa6a",
"control": "5b64c661ef313b423b5317ba9cb6410e40b705806c28255f601c0ef603f079a7"

}
},
"may_cancel": false, // Whether the operation can␣

→˓be canceled (DELETE over REST)
"err": "" // The error string should␣

→˓the operation have failed
}

The body is mostly provided as a user friendly way of seeing what’s going on without having to pull the target operation,
all information in the body can also be retrieved from the background operation URL.

Error

There are various situations in which something may immediately go wrong, in those cases, the following return value
is used:

{
"type": "error",
"error": "Failure",
"error_code": 400,
"metadata": {} // More details about the error

}

HTTP code must be one of of 400, 401, 403, 404, 409, 412 or 500.

Status codes

The LXD REST API often has to return status information, be that the reason for an error, the current state of an
operation or the state of the various resources it exports.

To make it simple to debug, all of those are always doubled. There is a numeric representation of the state which is
guaranteed never to change and can be relied on by API clients. Then there is a text version meant to make it easier for
people manually using the API to figure out what’s happening.

In most cases, those will be called status and status_code, the former being the user-friendly string representation
and the latter the fixed numeric value.

The codes are always 3 digits, with the following ranges:

• 100 to 199: resource state (started, stopped, ready, . . .)

• 200 to 399: positive action result

• 400 to 599: negative action result

• 600 to 999: future use

422 Chapter 2. Project and community

Canonical LXD

List of current status codes

Code Meaning
100 Operation created
101 Started
102 Stopped
103 Running
104 Canceling
105 Pending
106 Starting
107 Stopping
108 Aborting
109 Freezing
110 Frozen
111 Thawed
112 Error
113 Ready
200 Success
400 Failure
401 Canceled

Recursion

To optimize queries of large lists, recursion is implemented for collections. A recursion argument can be passed to
a GET query against a collection.

The default value is 0 which means that collection member URLs are returned. Setting it to 1 will have those URLs be
replaced by the object they point to (typically another JSON object).

Recursion is implemented by simply replacing any pointer to an job (URL) by the object itself.

Filtering

To filter your results on certain values, filter is implemented for collections. A filter argument can be passed to a
GET query against a collection.

Filtering is available for the instance, image and storage volume endpoints.

There is no default value for filter which means that all results found will be returned. The following is the language
used for the filter argument:

?filter=field_name eq desired_field_assignment

The language follows the OData conventions for structuring REST API filtering logic. Logical operators are also
supported for filtering: not (not), equals (eq), not equals (ne), and (and), or (or). Filters are evaluated with left
associativity. Values with spaces can be surrounded with quotes. Nesting filtering is also supported. For instance, to
filter on a field in a configuration you would pass:

?filter=config.field_name eq desired_field_assignment

For filtering on device attributes you would pass:

2.4. Reference 423

Canonical LXD

?filter=devices.device_name.field_name eq desired_field_assignment

Here are a few GET query examples of the different filtering methods mentioned above:

containers?filter=name eq "my container" and status eq Running

containers?filter=config.image.os eq ubuntu or devices.eth0.nictype eq bridged

images?filter=Properties.os eq Centos and not UpdateSource.Protocol eq simplestreams

Asynchronous operations

Any operation which may take more than a second to be done must be done in the background, returning a background
operation ID to the client.

The client will then be able to either poll for a status update or wait for a notification using the long-poll API.

Notifications

A WebSocket-based API is available for notifications, different notification types exist to limit the traffic going to the
client.

It’s recommended that the client always subscribes to the operations notification type before triggering remote opera-
tions so that it doesn’t have to then poll for their status.

PUT vs PATCH

The LXD API supports both PUT and PATCH to modify existing objects.

PUT replaces the entire object with a new definition, it’s typically called after the current object state was retrieved
through GET.

To avoid race conditions, the ETag header should be read from the GET response and sent as If-Match for the PUT
request. This will cause LXD to fail the request if the object was modified between GET and PUT.

PATCH can be used to modify a single field inside an object by only specifying the property that you want to change.
To unset a key, setting it to empty will usually do the trick, but there are cases where PATCH won’t work and PUT
needs to be used instead.

Instances, containers and virtual-machines

The documentation shows paths such as /1.0/instances/..., which were introduced with LXD 3.19. Older releases
that supported only containers and not virtual machines supply the exact same API at /1.0/containers/....

For backward compatibility reasons, LXD does still expose and support that /1.0/containers API, though for the
sake of brevity, we decided not to double-document everything.

An additional endpoint at /1.0/virtual-machines is also present and much like /1.0/containers will only show
you instances of that type.

424 Chapter 2. Project and community

Canonical LXD

API structure

LXD has an auto-generated Swagger specification describing its API endpoints. The YAML version of this API spec-
ification can be found in rest-api.yaml. See Main API specification for a convenient web rendering of it.

Main API specification

API extensions

The changes below were introduced to the LXD API after the 1.0 API was finalized.

They are all backward compatible and can be detected by client tools by looking at the api_extensions field in GET
/1.0.

storage_zfs_remove_snapshots

A zfs.remove_snapshots daemon configuration key was introduced.

It’s a Boolean that defaults to false and that when set to true instructs LXD to remove any needed snapshot when
attempting to restore another.

This is needed as ZFS will only let you restore the latest snapshot.

container_host_shutdown_timeout

A boot.host_shutdown_timeout container configuration key was introduced.

It’s an integer which indicates how long LXD should wait for the container to stop before killing it.

Its value is only used on clean LXD daemon shutdown. It defaults to 30s.

container_stop_priority

A boot.stop.priority container configuration key was introduced.

It’s an integer which indicates the priority of a container during shutdown.

Containers will shutdown starting with the highest priority level.

Containers with the same priority will shutdown in parallel. It defaults to 0.

container_syscall_filtering

A number of new syscalls related container configuration keys were introduced.

• security.syscalls.deny_default

• security.syscalls.deny_compat

• security.syscalls.deny

• security.syscalls.allow

2.4. Reference 425

https://swagger.io/
https://github.com/canonical/lxd/blob/main/doc/rest-api.yaml

Canonical LXD

See Instance configuration for how to use them.

Note: Initially, those configuration keys were (accidentally) introduced with offensive names. They have since been
renamed (container_syscall_filtering_allow_deny_syntax), and the old names are no longer accepted.

auth_pki

This indicates support for PKI authentication mode.

In this mode, the client and server both must use certificates issued by the same PKI.

See About security for details.

container_last_used_at

A last_used_at field was added to the GET /1.0/containers/<name> endpoint.

It is a timestamp of the last time the container was started.

If a container has been created but not started yet, last_used_at field will be 1970-01-01T00:00:00Z

etag

Add support for the ETag header on all relevant endpoints.

This adds the following HTTP header on answers to GET:

• ETag (SHA-256 of user modifiable content)

And adds support for the following HTTP header on PUT requests:

• If-Match (ETag value retrieved through previous GET)

This makes it possible to GET a LXD object, modify it and PUT it without risking to hit a race condition where LXD
or another client modified the object in the meantime.

patch

Add support for the HTTP PATCH method.

PATCH allows for partial update of an object in place of PUT.

usb_devices

Add support for USB hotplug.

426 Chapter 2. Project and community

Canonical LXD

https_allowed_credentials

To use LXD API with all Web Browsers (via SPAs) you must send credentials (certificate) with each XHR (in order
for this to happen, you should set withCredentials=true flag to each XHR Request).

Some browsers like Firefox and Safari can’t accept server response without Access-Control-Allow-Credentials:
true header. To ensure that the server will return a response with that header, set core.
https_allowed_credentials to true.

image_compression_algorithm

This adds support for a compression_algorithm property when creating an image (POST /1.0/images).

Setting this property overrides the server default value (images.compression_algorithm).

directory_manipulation

This allows for creating and listing directories via the LXD API, and exports the file type via the X-LXD-type header,
which can be either file or directory right now.

container_cpu_time

This adds support for retrieving CPU time for a running container.

storage_zfs_use_refquota

Introduces a new server property zfs.use_refquota which instructs LXD to set the refquota property instead of
quota when setting a size limit on a container. LXD will also then use usedbydataset in place of used when being
queried about disk utilization.

This effectively controls whether disk usage by snapshots should be considered as part of the container’s disk space
usage.

storage_lvm_mount_options

Adds a new storage.lvm_mount_options daemon configuration option which defaults to discard and allows the
user to set addition mount options for the file system used by the LVM LV.

network

Network management API for LXD.

This includes:

• Addition of the managed property on /1.0/networks entries

• All the network configuration options (see Network configuration for details)

• POST /1.0/networks (see RESTful API for details)

• PUT /1.0/networks/<entry> (see RESTful API for details)

2.4. Reference 427

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/withCredentials

Canonical LXD

• PATCH /1.0/networks/<entry> (see RESTful API for details)

• DELETE /1.0/networks/<entry> (see RESTful API for details)

• ipv4.address property on nic type devices (when nictype is bridged)

• ipv6.address property on nic type devices (when nictype is bridged)

• security.mac_filtering property on nic type devices (when nictype is bridged)

profile_usedby

Adds a new used_by field to profile entries listing the containers that are using it.

container_push

When a container is created in push mode, the client serves as a proxy between the source and target server. This is
useful in cases where the target server is behind a NAT or firewall and cannot directly communicate with the source
server and operate in pull mode.

container_exec_recording

Introduces a new Boolean record-output, parameter to /1.0/containers/<name>/exec which when set to true
and combined with with wait-for-websocket set to false, will record stdout and stderr to disk and make them
available through the logs interface.

The URL to the recorded output is included in the operation metadata once the command is done running.

That output will expire similarly to other log files, typically after 48 hours.

certificate_update

Adds the following to the REST API:

• ETag header on GET of a certificate

• PUT of certificate entries

• PATCH of certificate entries

container_exec_signal_handling

Adds support /1.0/containers/<name>/exec for forwarding signals sent to the client to the processes executing in
the container. Currently SIGTERM and SIGHUP are forwarded. Further signals that can be forwarded might be added
later.

428 Chapter 2. Project and community

Canonical LXD

gpu_devices

Enables adding GPUs to a container.

container_image_properties

Introduces a new image configuration key space. Read-only, includes the properties of the parent image.

migration_progress

Transfer progress is now exported as part of the operation, on both sending and receiving ends. This shows up as a
fs_progress attribute in the operation metadata.

id_map

Enables setting the security.idmap.isolated , security.idmap.size, and raw.idmap fields.

network_firewall_filtering

Add two new keys, ipv4.firewall and ipv6.firewall which if set to false will turn off the generation of
iptables FORWARDING rules. NAT rules will still be added so long as the matching ipv4.nat or ipv6.nat
key is set to true.

Rules necessary for dnsmasq to work (DHCP/DNS) will always be applied if dnsmasq is enabled on the bridge.

network_routes

Introduces ipv4.routes and ipv6.routes which allow routing additional subnets to a LXD bridge.

storage

Storage management API for LXD.

This includes:

• GET /1.0/storage-pools

• POST /1.0/storage-pools (see RESTful API for details)

• GET /1.0/storage-pools/<name> (see RESTful API for details)

• POST /1.0/storage-pools/<name> (see RESTful API for details)

• PUT /1.0/storage-pools/<name> (see RESTful API for details)

• PATCH /1.0/storage-pools/<name> (see RESTful API for details)

• DELETE /1.0/storage-pools/<name> (see RESTful API for details)

• GET /1.0/storage-pools/<name>/volumes (see RESTful API for details)

• GET /1.0/storage-pools/<name>/volumes/<volume_type> (see RESTful API for details)

• POST /1.0/storage-pools/<name>/volumes/<volume_type> (see RESTful API for details)

2.4. Reference 429

Canonical LXD

• GET /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API for details)

• POST /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API for details)

• PUT /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API for details)

• PATCH /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API for details)

• DELETE /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API for details)

• All storage configuration options (see Storage configuration for details)

file_delete

Implements DELETE in /1.0/containers/<name>/files

file_append

Implements the X-LXD-write header which can be one of overwrite or append.

network_dhcp_expiry

Introduces ipv4.dhcp.expiry and ipv6.dhcp.expiry allowing to set the DHCP lease expiry time.

storage_lvm_vg_rename

Introduces the ability to rename a volume group by setting lvm.vg_name.

storage_lvm_thinpool_rename

Introduces the ability to rename a thin pool name by setting lvm.thinpool_name.

network_vlan

This adds a new vlan property to macvlan network devices.

When set, this will instruct LXD to attach to the specified VLAN. LXD will look for an existing interface for that
VLAN on the host. If one can’t be found it will create one itself and then use that as the macvlan parent.

image_create_aliases

Adds a new aliases field to POST /1.0/images allowing for aliases to be set at image creation/import time.

430 Chapter 2. Project and community

Canonical LXD

container_stateless_copy

This introduces a new live attribute in POST /1.0/containers/<name>. Setting it to false tells LXD not to
attempt running state transfer.

container_only_migration

Introduces a new Boolean container_only attribute. When set to true only the container will be copied or moved.

storage_zfs_clone_copy

Introduces a new Boolean zfs.clone_copy property for ZFS storage pools. When set to false copying a container
will be done through zfs send and receive. This will make the target container independent of its source container
thus avoiding the need to keep dependent snapshots in the ZFS pool around. However, this also entails less efficient
storage usage for the affected pool. The default value for this property is true, i.e. space-efficient snapshots will be
used unless explicitly set to false.

unix_device_rename

Introduces the ability to rename the unix-block/unix-char device inside container by setting path, and the source
attribute is added to specify the device on host. If source is set without a path, we should assume that path will be
the same as source. If path is set without source and major/minor isn’t set, we should assume that source will
be the same as path. So at least one of them must be set.

storage_rsync_bwlimit

When rsync has to be invoked to transfer storage entities setting rsync.bwlimit places an upper limit on the amount
of socket I/O allowed.

network_vxlan_interface

This introduces a new tunnel.NAME.interface option for networks.

This key control what host network interface is used for a VXLAN tunnel.

storage_btrfs_mount_options

This introduces the btrfs.mount_options property for Btrfs storage pools.

This key controls what mount options will be used for the Btrfs storage pool.

2.4. Reference 431

Canonical LXD

entity_description

This adds descriptions to entities like containers, snapshots, networks, storage pools and volumes.

image_force_refresh

This allows forcing a refresh for an existing image.

storage_lvm_lv_resizing

This introduces the ability to resize logical volumes by setting the size property in the containers root disk device.

id_map_base

This introduces a new security.idmap.base allowing the user to skip the map auto-selection process for isolated
containers and specify what host UID/GID to use as the base.

file_symlinks

This adds support for transferring symlinks through the file API. X-LXD-type can now be symlink with the request
content being the target path.

container_push_target

This adds the target field to POST /1.0/containers/<name> which can be used to have the source LXD host
connect to the target during migration.

network_vlan_physical

Allows use of vlan property with physical network devices.

When set, this will instruct LXD to attach to the specified VLAN on the parent interface. LXD will look for an
existing interface for that parent and VLAN on the host. If one can’t be found it will create one itself. Then, LXD
will directly attach this interface to the container.

storage_images_delete

This enabled the storage API to delete storage volumes for images from a specific storage pool.

432 Chapter 2. Project and community

Canonical LXD

container_edit_metadata

This adds support for editing a container metadata.yaml and related templates via API, by accessing URLs under
/1.0/containers/<name>/metadata. It can be used to edit a container before publishing an image from it.

container_snapshot_stateful_migration

This enables migrating stateful container snapshots to new containers.

storage_driver_ceph

This adds a Ceph storage driver.

storage_ceph_user_name

This adds the ability to specify the Ceph user.

instance_types

This adds the instance_type field to the container creation request. Its value is expanded to LXD resource limits.

storage_volatile_initial_source

This records the actual source passed to LXD during storage pool creation.

storage_ceph_force_osd_reuse

This introduces the ceph.osd.force_reuse property for the Ceph storage driver. When set to true LXD will reuse
an OSD storage pool that is already in use by another LXD instance.

storage_block_filesystem_btrfs

This adds support for Btrfs as a storage volume file system, in addition to ext4 and xfs.

resources

This adds support for querying a LXD daemon for the system resources it has available.

2.4. Reference 433

Canonical LXD

kernel_limits

This adds support for setting process limits such as maximum number of open files for the container via nofile. The
format is limits.kernel.[limit name].

storage_api_volume_rename

This adds support for renaming custom storage volumes.

network_sriov

This adds support for SR-IOV enabled network devices.

console

This adds support to interact with the container console device and console log.

restrict_devlxd

A new security.devlxd container configuration key was introduced. The key controls whether the /dev/lxd in-
terface is made available to the instance. If set to false, this effectively prevents the container from interacting with
the LXD daemon.

migration_pre_copy

This adds support for optimized memory transfer during live migration.

infiniband

This adds support to use InfiniBand network devices.

maas_network

This adds support for MAAS network integration.

When configured at the daemon level, it’s then possible to attach a nic device to a particular MAAS subnet.

434 Chapter 2. Project and community

Canonical LXD

devlxd_events

This adds a WebSocket API to the devlxd socket.

When connecting to /1.0/events over the devlxd socket, you will now be getting a stream of events over WebSocket.

proxy

This adds a new proxy device type to containers, allowing forwarding of connections between the host and container.

network_dhcp_gateway

Introduces a new ipv4.dhcp.gateway network configuration key to set an alternate gateway.

file_get_symlink

This makes it possible to retrieve symlinks using the file API.

network_leases

Adds a new /1.0/networks/NAME/leases API endpoint to query the lease database on bridges which run a LXD-
managed DHCP server.

unix_device_hotplug

This adds support for the required property for Unix devices.

storage_api_local_volume_handling

This add the ability to copy and move custom storage volumes locally in the same and between storage pools.

operation_description

Adds a description field to all operations.

clustering

Clustering API for LXD.

This includes the following new endpoints (see RESTful API for details):

• GET /1.0/cluster

• UPDATE /1.0/cluster

• GET /1.0/cluster/members

• GET /1.0/cluster/members/<name>

2.4. Reference 435

Canonical LXD

• POST /1.0/cluster/members/<name>

• DELETE /1.0/cluster/members/<name>

The following existing endpoints have been modified:

• POST /1.0/containers accepts a new target query parameter

• POST /1.0/storage-pools accepts a new target query parameter

• GET /1.0/storage-pool/<name> accepts a new target query parameter

• POST /1.0/storage-pool/<pool>/volumes/<type> accepts a new target query parameter

• GET /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query parameter

• POST /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query parameter

• PUT /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query parameter

• PATCH /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query parameter

• DELETE /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query parameter

• POST /1.0/networks accepts a new target query parameter

• GET /1.0/networks/<name> accepts a new target query parameter

event_lifecycle

This adds a new lifecycle message type to the events API.

storage_api_remote_volume_handling

This adds the ability to copy and move custom storage volumes between remote.

nvidia_runtime

Adds a nvidia.runtime configuration option for containers, setting this to true will have the NVIDIA runtime and
CUDA libraries passed to the container.

container_mount_propagation

This adds a new propagation option to the disk device type, allowing the configuration of kernel mount propagation.

container_backup

Add container backup support.

This includes the following new endpoints (see RESTful API for details):

• GET /1.0/containers/<name>/backups

• POST /1.0/containers/<name>/backups

• GET /1.0/containers/<name>/backups/<name>

• POST /1.0/containers/<name>/backups/<name>

436 Chapter 2. Project and community

Canonical LXD

• DELETE /1.0/containers/<name>/backups/<name>

• GET /1.0/containers/<name>/backups/<name>/export

The following existing endpoint has been modified:

• POST /1.0/containers accepts the new source type backup

devlxd_images

Adds a security.devlxd.images configuration option for containers which controls the availability of a /1.0/
images/FINGERPRINT/export API over devlxd. This can be used by a container running nested LXD to access raw
images from the host.

container_local_cross_pool_handling

This enables copying or moving containers between storage pools on the same LXD instance.

proxy_unix

Add support for both Unix sockets and abstract Unix sockets in proxy devices. They can be used by specifying the
address as unix:/path/to/unix.sock (normal socket) or unix:@/tmp/unix.sock (abstract socket).

Supported connections are now:

• TCP <-> TCP

• UNIX <-> UNIX

• TCP <-> UNIX

• UNIX <-> TCP

proxy_udp

Add support for UDP in proxy devices.

Supported connections are now:

• TCP <-> TCP

• UNIX <-> UNIX

• TCP <-> UNIX

• UNIX <-> TCP

• UDP <-> UDP

• TCP <-> UDP

• UNIX <-> UDP

2.4. Reference 437

Canonical LXD

clustering_join

This makes GET /1.0/cluster return information about which storage pools and networks are required to be created
by joining nodes and which node-specific configuration keys they are required to use when creating them. Likewise
the PUT /1.0/cluster endpoint now accepts the same format to pass information about storage pools and networks
to be automatically created before attempting to join a cluster.

proxy_tcp_udp_multi_port_handling

Adds support for forwarding traffic for multiple ports. Forwarding is allowed between a range of ports if the port
range is equal for source and target (for example 1.2.3.4 0-1000 -> 5.6.7.8 1000-2000) and between a range
of source ports and a single target port (for example 1.2.3.4 0-1000 -> 5.6.7.8 1000).

network_state

Adds support for retrieving a network’s state.

This adds the following new endpoint (see RESTful API for details):

• GET /1.0/networks/<name>/state

proxy_unix_dac_properties

This adds support for GID, UID, and mode properties for non-abstract Unix sockets.

container_protection_delete

Enables setting the security.protection.delete field which prevents containers from being deleted if set to true.
Snapshots are not affected by this setting.

proxy_priv_drop

Adds security.uid and security.gid for the proxy devices, allowing privilege dropping and effectively changing
the UID/GID used for connections to Unix sockets too.

pprof_http

This adds a new core.debug_address configuration option to start a debugging HTTP server.

That server currently includes a pprof API and replaces the old cpu-profile, memory-profile and
print-goroutines debug options.

438 Chapter 2. Project and community

Canonical LXD

proxy_haproxy_protocol

Adds a proxy_protocol key to the proxy device which controls the use of the HAProxy PROXY protocol header.

network_hwaddr

Adds a bridge.hwaddr key to control the MAC address of the bridge.

proxy_nat

This adds optimized UDP/TCP proxying. If the configuration allows, proxying will be done via iptables instead of
proxy devices.

network_nat_order

This introduces the ipv4.nat.order and ipv6.nat.order configuration keys for LXD bridges. Those keys control
whether to put the LXD rules before or after any pre-existing rules in the chain.

container_full

This introduces a new recursion=2 mode for GET /1.0/containers which allows for the retrieval of all container
structs, including the state, snapshots and backup structs.

This effectively allows for lxc list to get all it needs in one query.

backup_compression

This introduces a new backups.compression_algorithm configuration key which allows configuration of backup
compression.

nvidia_runtime_config

This introduces a few extra configuration keys when using nvidia.runtime and the libnvidia-container library.
Those keys translate pretty much directly to the matching NVIDIA container environment variables:

• nvidia.driver.capabilities => NVIDIA_DRIVER_CAPABILITIES

• nvidia.require.cuda => NVIDIA_REQUIRE_CUDA

• nvidia.require.driver => NVIDIA_REQUIRE_DRIVER

2.4. Reference 439

Canonical LXD

storage_api_volume_snapshots

Add support for storage volume snapshots. They work like container snapshots, only for volumes.

This adds the following new endpoint (see RESTful API for details):

• GET /1.0/storage-pools/<pool>/volumes/<type>/<name>/snapshots

• POST /1.0/storage-pools/<pool>/volumes/<type>/<name>/snapshots

• GET /1.0/storage-pools/<pool>/volumes/<type>/<volume>/snapshots/<name>

• PUT /1.0/storage-pools/<pool>/volumes/<type>/<volume>/snapshots/<name>

• POST /1.0/storage-pools/<pool>/volumes/<type>/<volume>/snapshots/<name>

• DELETE /1.0/storage-pools/<pool>/volumes/<type>/<volume>/snapshots/<name>

storage_unmapped

Introduces a new security.unmapped Boolean on storage volumes.

Setting it to true will flush the current map on the volume and prevent any further idmap tracking and remapping on
the volume.

This can be used to share data between isolated containers after attaching it to the container which requires write access.

projects

Add a new project API, supporting creation, update and deletion of projects.

Projects can hold containers, profiles or images at this point and let you get a separate view of your LXD resources by
switching to it.

network_vxlan_ttl

This adds a new tunnel.NAME.ttl network configuration option which makes it possible to raise the TTL on VXLAN
tunnels.

container_incremental_copy

This adds support for incremental container copy. When copying a container using the --refresh flag, only the
missing or outdated files will be copied over. Should the target container not exist yet, a normal copy operation is
performed.

440 Chapter 2. Project and community

Canonical LXD

usb_optional_vendorid

As the name implies, the vendorid field on USB devices attached to containers has now been made optional, allowing
for all USB devices to be passed to a container (similar to what’s done for GPUs).

snapshot_scheduling

This adds support for snapshot scheduling. It introduces three new configuration keys: snapshots.schedule,
snapshots.schedule.stopped, and snapshots.pattern. Snapshots can be created automatically up to every
minute.

snapshots_schedule_aliases

Snapshot schedule can be configured by a comma-separated list of schedule aliases. Available aliases are <@hourly>
<@daily> <@midnight> <@weekly> <@monthly> <@annually> <@yearly> <@startup> for instances, and
<@hourly> <@daily> <@midnight> <@weekly> <@monthly> <@annually> <@yearly> for storage volumes.

container_copy_project

Introduces a project field to the container source JSON object, allowing for copy/move of containers between projects.

clustering_server_address

This adds support for configuring a server network address which differs from the REST API client network address.
When bootstrapping a new cluster, clients can set the new cluster.https_address configuration key to specify
the address of the initial server. When joining a new server, clients can set the core.https_address configuration
key of the joining server to the REST API address the joining server should listen at, and set the server_address
key in the PUT /1.0/cluster API to the address the joining server should use for clustering traffic (the value of
server_address will be automatically copied to the cluster.https_address configuration key of the joining
server).

clustering_image_replication

Enable image replication across the nodes in the cluster. A new cluster.images_minimal_replica configuration
key was introduced can be used to specify to the minimal numbers of nodes for image replication.

container_protection_shift

Enables setting the security.protection.shift option which prevents containers from having their file system
shifted.

2.4. Reference 441

Canonical LXD

snapshot_expiry

This adds support for snapshot expiration. The task is run minutely. The configuration option snapshots.expiry
takes an expression in the form of 1M 2H 3d 4w 5m 6y (1 minute, 2 hours, 3 days, 4 weeks, 5 months, 6 years),
however not all parts have to be used.

Snapshots which are then created will be given an expiry date based on the expression. This expiry date, de-
fined by expires_at, can be manually edited using the API or lxc config edit. Snapshots with a valid expiry
date will be removed when the task in run. Expiry can be disabled by setting expires_at to an empty string or
0001-01-01T00:00:00Z (zero time). This is the default if snapshots.expiry is not set.

This adds the following new endpoint (see RESTful API for details):

• PUT /1.0/containers/<name>/snapshots/<name>

snapshot_expiry_creation

Adds expires_at to container creation, allowing for override of a snapshot’s expiry at creation time.

network_leases_location

Introduces a Location field in the leases list. This is used when querying a cluster to show what node a particular
lease was found on.

resources_cpu_socket

Add Socket field to CPU resources in case we get out of order socket information.

resources_gpu

Add a new GPU struct to the server resources, listing all usable GPUs on the system.

resources_numa

Shows the NUMA node for all CPUs and GPUs.

kernel_features

Exposes the state of optional kernel features through the server environment.

442 Chapter 2. Project and community

Canonical LXD

id_map_current

This introduces a new internal volatile.idmap.current key which is used to track the current mapping for the
container.

This effectively gives us:

• volatile.last_state.idmap => On-disk idmap

• volatile.idmap.current => Current kernel map

• volatile.idmap.next => Next on-disk idmap

This is required to implement environments where the on-disk map isn’t changed but the kernel map is (e.g. idmapped
mounts).

event_location

Expose the location of the generation of API events.

storage_api_remote_volume_snapshots

This allows migrating storage volumes including their snapshots.

network_nat_address

This introduces the ipv4.nat.address and ipv6.nat.address configuration keys for LXD bridges. Those keys
control the source address used for outbound traffic from the bridge.

container_nic_routes

This introduces the ipv4.routes and ipv6.routes properties on nic type devices. This allows adding static routes
on host to container’s NIC.

cluster_internal_copy

This makes it possible to do a normal POST /1.0/containers to copy a container between cluster nodes with LXD
internally detecting whether a migration is required.

seccomp_notify

If the kernel supports seccomp-based syscall interception LXD can be notified by a container that a registered syscall
has been performed. LXD can then decide to trigger various actions.

2.4. Reference 443

Canonical LXD

lxc_features

This introduces the lxc_features section output from the lxc info command via the GET /1.0 route. It outputs
the result of checks for key features being present in the underlying LXC library.

container_nic_ipvlan

This introduces the ipvlan nic device type.

network_vlan_sriov

This introduces VLAN (vlan) and MAC filtering (security.mac_filtering) support for SR-IOV devices.

storage_cephfs

Add support for CephFS as a storage pool driver. This can only be used for custom volumes, images and containers
should be on Ceph (RBD) instead.

container_nic_ipfilter

This introduces container IP filtering (security.ipv4_filtering and security.ipv6_filtering) support for
bridged NIC devices.

resources_v2

Rework the resources API at /1.0/resources, especially:

• CPU

– Fix reporting to track sockets, cores and threads

– Track NUMA node per core

– Track base and turbo frequency per socket

– Track current frequency per core

– Add CPU cache information

– Export the CPU architecture

– Show online/offline status of threads

• Memory

– Add huge-pages tracking

– Track memory consumption per NUMA node too

• GPU

– Split DRM information to separate struct

– Export device names and nodes in DRM struct

– Export device name and node in NVIDIA struct

444 Chapter 2. Project and community

Canonical LXD

– Add SR-IOV VF tracking

container_exec_user_group_cwd

Adds support for specifying User, Group and Cwd during POST /1.0/containers/NAME/exec.

container_syscall_intercept

Adds the security.syscalls.intercept.* configuration keys to control what system calls will be intercepted by
LXD and processed with elevated permissions.

container_disk_shift

Adds the shift property on disk devices which controls the use of the idmapped mounts overlay.

storage_shifted

Introduces a new security.shifted Boolean on storage volumes.

Setting it to truewill allow multiple isolated containers to attach the same storage volume while keeping the file system
writable from all of them.

This makes use of idmapped mounts as an overlay file system.

resources_infiniband

Export InfiniBand character device information (issm, umad, uverb) as part of the resources API.

daemon_storage

This introduces two new configuration keys storage.images_volume and storage.backups_volume to allow for
a storage volume on an existing pool be used for storing the daemon-wide images and backups artifacts.

instances

This introduces the concept of instances, of which currently the only type is container.

image_types

This introduces support for a new Type field on images, indicating what type of images they are.

2.4. Reference 445

Canonical LXD

resources_disk_sata

Extends the disk resource API struct to include:

• Proper detection of SATA devices (type)

• Device path

• Drive RPM

• Block size

• Firmware version

• Serial number

clustering_roles

This adds a new roles attribute to cluster entries, exposing a list of roles that the member serves in the cluster.

images_expiry

This allows for editing of the expiry date on images.

resources_network_firmware

Adds a FirmwareVersion field to network card entries.

backup_compression_algorithm

This adds support for a compression_algorithm property when creating a backup (POST /1.0/containers/
<name>/backups).

Setting this property overrides the server default value (backups.compression_algorithm).

ceph_data_pool_name

This adds support for an optional argument (ceph.osd.data_pool_name) when creating storage pools using Ceph
RBD, when this argument is used the pool will store it’s actual data in the pool specified with data_pool_name while
keeping the metadata in the pool specified by pool_name.

container_syscall_intercept_mount

Adds the security.syscalls.intercept.mount, security.syscalls.intercept.mount.allowed , and
security.syscalls.intercept.mount.shift configuration keys to control whether and how the mount system
call will be intercepted by LXD and processed with elevated permissions.

446 Chapter 2. Project and community

Canonical LXD

compression_squashfs

Adds support for importing/exporting of images/backups using SquashFS file system format.

container_raw_mount

This adds support for passing in raw mount options for disk devices.

container_nic_routed

This introduces the routed nic device type.

container_syscall_intercept_mount_fuse

Adds the security.syscalls.intercept.mount.fuse key. It can be used to redirect file-system mounts to their
fuse implementation. To this end, set e.g. security.syscalls.intercept.mount.fuse=ext4=fuse2fs.

container_disk_ceph

This allows for existing a Ceph RBD or CephFS to be directly connected to a LXD container.

virtual-machines

Add virtual machine support.

image_profiles

Allows a list of profiles to be applied to an image when launching a new container.

clustering_architecture

This adds a new architecture attribute to cluster members which indicates a cluster member’s architecture.

resources_disk_id

Add a new device_id field in the disk entries on the resources API.

2.4. Reference 447

Canonical LXD

storage_lvm_stripes

This adds the ability to use LVM stripes on normal volumes and thin pool volumes.

vm_boot_priority

Adds a boot.priority property on NIC and disk devices to control the boot order.

unix_hotplug_devices

Adds support for Unix char and block device hotplugging.

api_filtering

Adds support for filtering the result of a GET request for instances and images.

instance_nic_network

Adds support for the network property on a NIC device to allow a NIC to be linked to a managed network. This allows
it to inherit some of the network’s settings and allows better validation of IP settings.

clustering_sizing

Support specifying a custom values for database voters and standbys. The new cluster.max_voters and cluster.
max_standby configuration keys were introduced to specify to the ideal number of database voter and standbys.

firewall_driver

Adds the Firewall property to the ServerEnvironment struct indicating the firewall driver being used.

storage_lvm_vg_force_reuse

Introduces the ability to create a storage pool from an existing non-empty volume group. This option should be used
with care, as LXD can then not guarantee that volume name conflicts won’t occur with non-LXD created volumes in
the same volume group. This could also potentially lead to LXD deleting a non-LXD volume should name conflicts
occur.

448 Chapter 2. Project and community

Canonical LXD

container_syscall_intercept_hugetlbfs

When mount syscall interception is enabled and hugetlbfs is specified as an allowed file system type LXD will mount
a separate hugetlbfs instance for the container with the UID and GID mount options set to the container’s root UID
and GID. This ensures that processes in the container can use huge pages.

limits_hugepages

This allows to limit the number of huge pages a container can use through the hugetlb cgroup. This means the
hugetlb cgroup needs to be available. Note, that limiting huge pages is recommended when intercepting the mount
syscall for the hugetlbfs file system to avoid allowing the container to exhaust the host’s huge pages resources.

container_nic_routed_gateway

This introduces the ipv4.gateway and ipv6.gateway NIC configuration keys that can take a value of either auto
or none. The default value for the key if unspecified is auto. This will cause the current behavior of a default gateway
being added inside the container and the same gateway address being added to the host-side interface. If the value is set
to none then no default gateway nor will the address be added to the host-side interface. This allows multiple routed
NIC devices to be added to a container.

projects_restrictions

This introduces support for the restricted configuration key on project, which can prevent the use of security-
sensitive features in a project.

custom_volume_snapshot_expiry

This allows custom volume snapshots to expiry. Expiry dates can be set individually, or by setting the snapshots.
expiry configuration key on the parent custom volume which then automatically applies to all created snapshots.

volume_snapshot_scheduling

This adds support for custom volume snapshot scheduling. It introduces two new configuration keys: snapshots.
schedule and snapshots.pattern. Snapshots can be created automatically up to every minute.

trust_ca_certificates

This allows for checking client certificates trusted by the provided CA (server.ca). It can be enabled by setting
core.trust_ca_certificates to true. If enabled, it will perform the check, and bypass the trusted password if
true. An exception will be made if the connecting client certificate is in the provided CRL (ca.crl). In this case, it
will ask for the password.

2.4. Reference 449

Canonical LXD

snapshot_disk_usage

This adds a new size field to the output of /1.0/instances/<name>/snapshots/<snapshot> which represents
the disk usage of the snapshot.

clustering_edit_roles

This adds a writable endpoint for cluster members, allowing the editing of their roles.

container_nic_routed_host_address

This introduces the ipv4.host_address and ipv6.host_addressNIC configuration keys that can be used to control
the host-side veth interface’s IP addresses. This can be useful when using multiple routed NICs at the same time and
needing a predictable next-hop address to use.

This also alters the behavior of ipv4.gateway and ipv6.gateway NIC configuration keys. When they are set to
auto the container will have its default gateway set to the value of ipv4.host_address or ipv6.host_address
respectively.

The default values are:

ipv4.host_address: 169.254.0.1 ipv6.host_address: fe80::1

This is backward compatible with the previous default behavior.

container_nic_ipvlan_gateway

This introduces the ipv4.gateway and ipv6.gateway NIC configuration keys that can take a value of either auto
or none. The default value for the key if unspecified is auto. This will cause the current behavior of a default gateway
being added inside the container and the same gateway address being added to the host-side interface. If the value is set
to none then no default gateway nor will the address be added to the host-side interface. This allows multiple IPVLAN
NIC devices to be added to a container.

resources_usb_pci

This adds USB and PCI devices to the output of /1.0/resources.

resources_cpu_threads_numa

This indicates that the numa_node field is now recorded per-thread rather than per core as some hardware apparently
puts threads in different NUMA domains.

450 Chapter 2. Project and community

Canonical LXD

resources_cpu_core_die

Exposes the die_id information on each core.

api_os

This introduces two new fields in /1.0, os and os_version.

Those are taken from the OS-release data on the system.

container_nic_routed_host_table

This introduces the ipv4.host_table and ipv6.host_table NIC configuration keys that can be used to add static
routes for the instance’s IPs to a custom policy routing table by ID.

container_nic_ipvlan_host_table

This introduces the ipv4.host_table and ipv6.host_table NIC configuration keys that can be used to add static
routes for the instance’s IPs to a custom policy routing table by ID.

container_nic_ipvlan_mode

This introduces the mode NIC configuration key that can be used to switch the ipvlan mode into either l2 or l3s. If
not specified, the default value is l3s (which is the old behavior).

In l2 mode the ipv4.address and ipv6.address keys will accept addresses in either CIDR or singular formats. If
singular format is used, the default subnet size is taken to be /24 and /64 for IPv4 and IPv6 respectively.

In l2 mode the ipv4.gateway and ipv6.gateway keys accept only a singular IP address.

resources_system

This adds system information to the output of /1.0/resources.

images_push_relay

This adds the push and relay modes to image copy. It also introduces the following new endpoint:

• POST 1.0/images/<fingerprint>/export

2.4. Reference 451

Canonical LXD

network_dns_search

This introduces the dns.search configuration option on networks.

container_nic_routed_limits

This introduces limits.ingress, limits.egress and limits.max for routed NICs.

instance_nic_bridged_vlan

This introduces the vlan and vlan.tagged settings for bridged NICs.

vlan specifies the non-tagged VLAN to join, and vlan.tagged is a comma-delimited list of tagged VLANs to join.

network_state_bond_bridge

This adds a bridge and bond section to the /1.0/networks/NAME/state API.

Those contain additional state information relevant to those particular types.

Bond:

• Mode

• Transmit hash

• Up delay

• Down delay

• MII frequency

• MII state

• Lower devices

Bridge:

• ID

• Forward delay

• STP mode

• Default VLAN

• VLAN filtering

• Upper devices

452 Chapter 2. Project and community

Canonical LXD

resources_cpu_isolated

Add an Isolated property on CPU threads to indicate if the thread is physically Online but is configured not to accept
tasks.

usedby_consistency

This extension indicates that UsedBy should now be consistent with suitable ?project= and ?target= when appro-
priate.

The 5 entities that have UsedBy are:

• Profiles

• Projects

• Networks

• Storage pools

• Storage volumes

custom_block_volumes

This adds support for creating and attaching custom block volumes to instances. It introduces the new --type flag
when creating custom storage volumes, and accepts the values fs and block.

clustering_failure_domains

This extension adds a new failure_domain field to the PUT /1.0/cluster/<node> API, which can be used to set
the failure domain of a node.

container_syscall_filtering_allow_deny_syntax

A number of new syscalls related container configuration keys were updated.

• security.syscalls.deny_default

• security.syscalls.deny_compat

• security.syscalls.deny

• security.syscalls.allow

Support for the offensively named variants was removed.

2.4. Reference 453

Canonical LXD

resources_gpu_mdev

Expose available mediated device profiles and devices in /1.0/resources.

console_vga_type

This extends the /1.0/console endpoint to take a ?type= argument, which can be set to console (default) or vga
(the new type added by this extension).

When doing a POST to /1.0/<instance name>/console?type=vga the data WebSocket returned by the operation
in the metadata field will be a bidirectional proxy attached to a SPICE Unix socket of the target virtual machine.

projects_limits_disk

Add limits.disk to the available project configuration keys. If set, it limits the total amount of disk space that
instances volumes, custom volumes and images volumes can use in the project.

network_type_macvlan

Adds support for additional network type macvlan and adds parent configuration key for this network type to specify
which parent interface should be used for creating NIC device interfaces on top of.

Also adds network configuration key support for macvlan NICs to allow them to specify the associated network of
the same type that they should use as the basis for the NIC device.

network_type_sriov

Adds support for additional network type sriov and adds parent configuration key for this network type to specify
which parent interface should be used for creating NIC device interfaces on top of.

Also adds network configuration key support for sriov NICs to allow them to specify the associated network of the
same type that they should use as the basis for the NIC device.

container_syscall_intercept_bpf_devices

This adds support to intercept the bpf syscall in containers. Specifically, it allows to manage device cgroup bpf
programs.

network_type_ovn

Adds support for additional network type ovn with the ability to specify a bridge type network as the parent.

Introduces a new NIC device type of ovn which allows the network configuration key to specify which ovn type
network they should connect to.

Also introduces two new global configuration keys that apply to all ovn networks and NIC devices:

• network.ovn.integration_bridge - the OVS integration bridge to use.

• network.ovn.northbound_connection - the OVN northbound database connection string.

454 Chapter 2. Project and community

Canonical LXD

projects_networks

Adds the features.networks configuration key to projects and the ability for a project to hold networks.

projects_networks_restricted_uplinks

Adds the restricted.networks.uplinks project configuration key to indicate (as a comma-delimited list) which
networks the networks created inside the project can use as their uplink network.

custom_volume_backup

Add custom volume backup support.

This includes the following new endpoints (see RESTful API for details):

• GET /1.0/storage-pools/<pool>/<type>/<volume>/backups

• POST /1.0/storage-pools/<pool>/<type>/<volume>/backups

• GET /1.0/storage-pools/<pool>/<type>/<volume>/backups/<name>

• POST /1.0/storage-pools/<pool>/<type>/<volume>/backups/<name>

• DELETE /1.0/storage-pools/<pool>/<type>/<volume>/backups/<name>

• GET /1.0/storage-pools/<pool>/<type>/<volume>/backups/<name>/export

The following existing endpoint has been modified:

• POST /1.0/storage-pools/<pool>/<type>/<volume> accepts the new source type backup

backup_override_name

Adds Name field to InstanceBackupArgs to allow specifying a different instance name when restoring a backup.

Adds Name and PoolName fields to StoragePoolVolumeBackupArgs to allow specifying a different volume name
when restoring a custom volume backup.

storage_rsync_compression

Adds rsync.compression configuration key to storage pools. This key can be used to disable compression in rsync
while migrating storage pools.

network_type_physical

Adds support for additional network type physical that can be used as an uplink for ovn networks.

The interface specified by parent on the physical network will be connected to the ovn network’s gateway.

2.4. Reference 455

Canonical LXD

network_ovn_external_subnets

Adds support for ovn networks to use external subnets from uplink networks.

Introduces the ipv4.routes and ipv6.routes setting on physical networks that defines the external routes allowed
to be used in child OVN networks in their ipv4.routes.external and ipv6.routes.external settings.

Introduces the restricted.networks.subnets project setting that specifies which external subnets are allowed to
be used by OVN networks inside the project (if not set then all routes defined on the uplink network are allowed).

network_ovn_nat

Adds support for ipv4.nat and ipv6.nat settings on ovn networks.

When creating the network if these settings are unspecified, and an equivalent IP address is being generated for the
subnet, then the appropriate NAT setting will added set to true.

If the setting is missing then the value is taken as false.

network_ovn_external_routes_remove

Removes the settings ipv4.routes.external and ipv6.routes.external from ovn networks.

The equivalent settings on the ovn NIC type can be used instead for this, rather than having to specify them both at the
network and NIC level.

tpm_device_type

This introduces the tpm device type.

storage_zfs_clone_copy_rebase

This introduces rebase as a value for zfs.clone_copy causing LXD to track down any image dataset in the ancestry
line and then perform send/receive on top of that.

gpu_mdev

This adds support for virtual GPUs. It introduces the mdev configuration key for GPU devices which takes a supported
mdev type, e.g. i915-GVTg_V5_4.

resources_pci_iommu

This adds the IOMMUGroup field for PCI entries in the resources API.

456 Chapter 2. Project and community

Canonical LXD

resources_network_usb

Adds the usb_address field to the network card entries in the resources API.

resources_disk_address

Adds the usb_address and pci_address fields to the disk entries in the resources API.

network_physical_ovn_ingress_mode

Adds ovn.ingress_mode setting for physical networks.

Sets the method that OVN NIC external IPs will be advertised on uplink network.

Either l2proxy (proxy ARP/NDP) or routed.

network_ovn_dhcp

Adds ipv4.dhcp and ipv6.dhcp settings for ovn networks.

Allows DHCP (and RA for IPv6) to be disabled. Defaults to on.

network_physical_routes_anycast

Adds ipv4.routes.anycast and ipv6.routes.anycast Boolean settings for physical networks. Defaults to
false.

Allows OVN networks using physical network as uplink to relax external subnet/route overlap detection when used
with ovn.ingress_mode set to routed.

projects_limits_instances

Adds limits.instances to the available project configuration keys. If set, it limits the total number of instances
(VMs and containers) that can be used in the project.

network_state_vlan

This adds a vlan section to the /1.0/networks/NAME/state API.

Those contain additional state information relevant to VLAN interfaces:

• lower_device

• vid

2.4. Reference 457

Canonical LXD

instance_nic_bridged_port_isolation

This adds the security.port_isolation field for bridged NIC instances.

instance_bulk_state_change

Adds the following endpoint for bulk state change (see RESTful API for details):

• PUT /1.0/instances

network_gvrp

This adds an optional gvrp property to macvlan and physical networks, and to ipvlan, macvlan, routed and
physical NIC devices.

When set, this specifies whether the VLAN should be registered using GARP VLAN Registration Protocol. Defaults
to false.

instance_pool_move

This adds a pool field to the POST /1.0/instances/NAME API, allowing for easy move of an instance root disk
between pools.

gpu_sriov

This adds support for SR-IOV enabled GPUs. It introduces the sriov GPU type property.

pci_device_type

This introduces the pci device type.

storage_volume_state

Add new /1.0/storage-pools/POOL/volumes/VOLUME/state API endpoint to get usage data on a volume.

network_acl

This adds the concept of network ACLs to API under the API endpoint prefix /1.0/network-acls.

458 Chapter 2. Project and community

Canonical LXD

migration_stateful

Add a new migration.stateful configuration key.

disk_state_quota

This introduces the size.state device configuration key on disk devices.

storage_ceph_features

Adds a new ceph.rbd.features configuration key on storage pools to control the RBD features used for new volumes.

projects_compression

Adds new backups.compression_algorithm and images.compression_algorithm configuration keys which
allows configuration of backup and image compression per-project.

projects_images_remote_cache_expiry

Add new images.remote_cache_expiry configuration key to projects, allowing for set number of days after which
an unused cached remote image will be flushed.

certificate_project

Adds a new restricted property to certificates in the API as well as projects holding a list of project names that
the certificate has access to.

network_ovn_acl

Adds a new security.acls property to OVN networks and OVN NICs, allowing Network ACLs to be applied.

projects_images_auto_update

Adds new images.auto_update_cached and images.auto_update_interval configuration keys which allows
configuration of images auto update in projects

projects_restricted_cluster_target

Adds new restricted.cluster.target configuration key to project which prevent the user from using –target to
specify what cluster member to place a workload on or the ability to move a workload between members.

2.4. Reference 459

Canonical LXD

images_default_architecture

Adds new images.default_architecture global configuration key and matching per-project key which lets user
tell LXD what architecture to go with when no specific one is specified as part of the image request.

network_ovn_acl_defaults

Adds new security.acls.default.{in,e}gress.action and security.acls.default.{in,e}gress.
logged configuration keys for OVN networks and NICs. This replaces the removed ACL default.action and
default.logged keys.

gpu_mig

This adds support for NVIDIA MIG. It introduces the mig GPU type and associated configuration keys.

project_usage

Adds an API endpoint to get current resource allocations in a project. Accessible at API GET /1.0/projects/
<name>/state.

network_bridge_acl

Adds a new security.acls configuration key to bridge networks, allowing Network ACLs to be applied.

Also adds security.acls.default.{in,e}gress.action and security.acls.default.{in,e}gress.
logged configuration keys for specifying the default behavior for unmatched traffic.

warnings

Warning API for LXD.

This includes the following endpoints (see Restful API for details):

• GET /1.0/warnings

• GET /1.0/warnings/<uuid>

• PUT /1.0/warnings/<uuid>

• DELETE /1.0/warnings/<uuid>

projects_restricted_backups_and_snapshots

Adds new restricted.backups and restricted.snapshots configuration keys to project which prevents the user
from creation of backups and snapshots.

460 Chapter 2. Project and community

Canonical LXD

clustering_join_token

Adds POST /1.0/cluster/membersAPI endpoint for requesting a join token used when adding new cluster members
without using the trust password.

clustering_description

Adds an editable description to the cluster members.

server_trusted_proxy

This introduces support for core.https_trusted_proxy which has LXD parse a HAProxy style connection header
on such connections and if present, will rewrite the request’s source address to that provided by the proxy server.

clustering_update_cert

Adds PUT /1.0/cluster/certificate endpoint for updating the cluster certificate across the whole cluster

storage_api_project

This adds support for copy/move custom storage volumes between projects.

server_instance_driver_operational

This modifies the driver output for the /1.0 endpoint to only include drivers which are actually supported and oper-
ational on the server (as opposed to being included in LXD but not operational on the server).

server_supported_storage_drivers

This adds supported storage driver info to server environment info.

event_lifecycle_requestor_address

Adds a new address field to lifecycle requestor.

resources_gpu_usb

Add a new USBAddress (usb_address) field to ResourcesGPUCard (GPU entries) in the resources API.

2.4. Reference 461

Canonical LXD

clustering_evacuation

Adds POST /1.0/cluster/members/<name>/state endpoint for evacuating and restoring cluster members. It also
adds the configuration keys cluster.evacuate and volatile.evacuate.origin for setting the evacuation method
(auto, stop or migrate) and the origin of any migrated instance respectively.

network_ovn_nat_address

This introduces the ipv4.nat.address and ipv6.nat.address configuration keys for LXD ovn networks. Those
keys control the source address used for outbound traffic from the OVN virtual network. These keys can only be
specified when the OVN network’s uplink network has ovn.ingress_mode set to routed.

network_bgp

This introduces support for LXD acting as a BGP router to advertise routes to bridge and ovn networks.

This comes with the addition to global configuration of:

• core.bgp_address

• core.bgp_asn

• core.bgp_routerid

The following network configurations keys (bridge and physical):

• bgp.peers.<name>.address

• bgp.peers.<name>.asn

• bgp.peers.<name>.password

The nexthop configuration keys (bridge):

• bgp.ipv4.nexthop

• bgp.ipv6.nexthop

And the following NIC-specific configuration keys (bridged NIC type):

• ipv4.routes.external

• ipv6.routes.external

network_forward

This introduces the networking address forward functionality. Allowing for bridge and ovn networks to define external
IP addresses that can be forwarded to internal IP(s) inside their respective networks.

462 Chapter 2. Project and community

Canonical LXD

custom_volume_refresh

Adds support for refresh during volume migration.

network_counters_errors_dropped

This adds the received and sent errors as well as inbound and outbound dropped packets to the network counters.

metrics

This adds metrics to LXD. It returns metrics of running instances using the OpenMetrics format.

This includes the following endpoints:

• GET /1.0/metrics

image_source_project

Adds a new project field to POST /1.0/images allowing for the source project to be set at image copy time.

clustering_config

Adds new config property to cluster members with configurable key/value pairs.

network_peer

This adds network peering to allow traffic to flow between OVN networks without leaving the OVN subsystem.

linux_sysctl

Adds new linux.sysctl.* configuration keys allowing users to modify certain kernel parameters within containers.

network_dns

Introduces a built-in DNS server and zones API to provide DNS records for LXD instances.

This introduces the following server configuration key:

• core.dns_address

The following network configuration key:

• dns.zone.forward

• dns.zone.reverse.ipv4

• dns.zone.reverse.ipv6

And the following project configuration key:

• restricted.networks.zones

2.4. Reference 463

Canonical LXD

A new REST API is also introduced to manage DNS zones:

• /1.0/network-zones (GET, POST)

• /1.0/network-zones/<name> (GET, PUT, PATCH, DELETE)

ovn_nic_acceleration

Adds new acceleration configuration key to OVN NICs which can be used for enabling hardware offloading. It
takes the values none or sriov.

certificate_self_renewal

This adds support for renewing a client’s own trust certificate.

instance_project_move

This adds a project field to the POST /1.0/instances/NAME API, allowing for easy move of an instance between
projects.

storage_volume_project_move

This adds support for moving storage volume between projects.

cloud_init

This adds a new cloud-init configuration key namespace which contains the following keys:

• cloud-init.vendor-data

• cloud-init.user-data

• cloud-init.network-config

It also adds a new endpoint /1.0/devices to devlxd which shows an instance’s devices.

network_dns_nat

This introduces network.nat as a configuration option on network zones (DNS).

It defaults to the current behavior of generating records for all instances NICs but if set to false, it will instruct LXD
to only generate records for externally reachable addresses.

464 Chapter 2. Project and community

Canonical LXD

database_leader

Adds new database-leader role which is assigned to cluster leader.

instance_all_projects

This adds support for displaying instances from all projects.

clustering_groups

Add support for grouping cluster members.

This introduces the following new endpoints:

• /1.0/cluster/groups (GET, POST)

• /1.0/cluster/groups/<name> (GET, POST, PUT, PATCH, DELETE)

The following project restriction is added:

• restricted.cluster.groups

ceph_rbd_du

Adds a new ceph.rbd.du Boolean on Ceph storage pools which allows disabling the use of the potentially slow rbd
du calls.

instance_get_full

This introduces a new recursion=1 mode for GET /1.0/instances/{name} which allows for the retrieval of all
instance structs, including the state, snapshots and backup structs.

qemu_metrics

This adds a new security.agent.metrics Boolean which defaults to true. When set to false, it doesn’t connect
to the lxd-agent for metrics and other state information, but relies on stats from QEMU.

gpu_mig_uuid

Adds support for the new MIG UUID format used by NVIDIA 470+ drivers (for example,
MIG-74c6a31a-fde5-5c61-973b-70e12346c202), the MIG- prefix can be omitted

This extension supersedes old mig.gi and mig.ci parameters which are kept for compatibility with old drivers and
cannot be set together.

2.4. Reference 465

Canonical LXD

event_project

Expose the project an API event belongs to.

clustering_evacuation_live

This adds live-migrate as a configuration option to cluster.evacuate, which forces live-migration of instances
during cluster evacuation.

instance_allow_inconsistent_copy

Adds allow_inconsistent field to instance source on POST /1.0/instances. If true, rsync will ignore the
Partial transfer due to vanished source files (code 24) error when creating an instance from a copy.

network_state_ovn

This adds an ovn section to the /1.0/networks/NAME/state API which contains additional state information rele-
vant to OVN networks:

• chassis

storage_volume_api_filtering

Adds support for filtering the result of a GET request for storage volumes.

image_restrictions

This extension adds on to the image properties to include image restrictions/host requirements. These requirements
help determine the compatibility between an instance and the host system.

storage_zfs_export

Introduces the ability to disable zpool export when unmounting pool by setting zfs.export.

network_dns_records

This extends the network zones (DNS) API to add the ability to create and manage custom records.

This adds:

• GET /1.0/network-zones/ZONE/records

• POST /1.0/network-zones/ZONE/records

• GET /1.0/network-zones/ZONE/records/RECORD

• PUT /1.0/network-zones/ZONE/records/RECORD

• PATCH /1.0/network-zones/ZONE/records/RECORD

• DELETE /1.0/network-zones/ZONE/records/RECORD

466 Chapter 2. Project and community

Canonical LXD

storage_zfs_reserve_space

Adds ability to set the reservation/refreservation ZFS property along with quota/refquota.

network_acl_log

Adds a new GET /1.0/networks-acls/NAME/log API to retrieve ACL firewall logs.

storage_zfs_blocksize

Introduces a new zfs.blocksize property for ZFS storage volumes which allows to set volume block size.

metrics_cpu_seconds

This is used to detect whether LXD was fixed to output used CPU time in seconds rather than as milliseconds.

instance_snapshot_never

Adds a @never option to snapshots.schedule which allows disabling inheritance.

certificate_token

This adds token-based certificate addition to the trust store as a safer alternative to a trust password.

It adds the token field to POST /1.0/certificates.

instance_nic_routed_neighbor_probe

This adds the ability to disable the routed NIC IP neighbor probing for availability on the parent network.

Adds the ipv4.neighbor_probe and ipv6.neighbor_probe NIC settings. Defaulting to true if not specified.

event_hub

This adds support for event-hub cluster member role and the ServerEventMode environment field.

agent_nic_config

If set to true, on VM start-up the lxd-agent will apply NIC configuration to change the names and MTU of the
instance NIC devices.

2.4. Reference 467

Canonical LXD

projects_restricted_intercept

Adds new restricted.containers.interception configuration key to allow usually safe system call interception
options.

metrics_authentication

Introduces a new core.metrics_authentication server configuration option to allow for the /1.0/metrics end-
point to be generally available without client authentication.

images_target_project

Adds ability to copy image to a project different from the source.

cluster_migration_inconsistent_copy

Adds allow_inconsistent field to POST /1.0/instances/<name>. Set to true to allow inconsistent copying
between cluster members.

cluster_ovn_chassis

Introduces a new ovn-chassis cluster role which allows for specifying what cluster member should act as an OVN
chassis.

container_syscall_intercept_sched_setscheduler

Adds the security.syscalls.intercept.sched_setscheduler to allow advanced process priority management
in containers.

storage_lvm_thinpool_metadata_size

Introduces the ability to specify the thin pool metadata volume size via lvm.thinpool_metadata_size.

If this is not specified then the default is to let LVM pick an appropriate thin pool metadata volume size.

storage_volume_state_total

This adds total field to the GET /1.0/storage-pools/{name}/volumes/{type}/{volume}/state API.

468 Chapter 2. Project and community

Canonical LXD

instance_file_head

Implements HEAD on /1.0/instances/NAME/file.

instances_nic_host_name

This introduces the instances.nic.host_name server configuration key that can take a value of either random or
mac. The default value for the key if unspecified is random. If it is set to random then use the random host interface
names. If it’s set to mac, then generate a name in the form lxd1122334455.

image_copy_profile

Adds ability to modify the set of profiles when image is copied.

container_syscall_intercept_sysinfo

Adds the security.syscalls.intercept.sysinfo to allow the sysinfo syscall to be populated with cgroup-
based resource usage information.

clustering_evacuation_mode

This introduces a mode field to the evacuation request which allows for overriding the evacuation mode traditionally
set through cluster.evacuate.

resources_pci_vpd

Adds a new VPD struct to the PCI resource entries. This struct extracts vendor provided data including the full product
name and additional key/value configuration pairs.

qemu_raw_conf

Introduces a raw.qemu.conf configuration key to override select sections of the generated qemu.conf.

storage_cephfs_fscache

Add support for fscache/cachefilesd on CephFS pools through a new cephfs.fscache configuration option.

2.4. Reference 469

Canonical LXD

network_load_balancer

This introduces the networking load balancer functionality. Allowing ovn networks to define port(s) on external IP
addresses that can be forwarded to one or more internal IP(s) inside their respective networks.

vsock_api

This introduces a bidirectional vsock interface which allows the lxd-agent and the LXD server to communicate
better.

instance_ready_state

This introduces a new Ready state for instances which can be set using devlxd.

network_bgp_holdtime

This introduces a new bgp.peers.<name>.holdtime configuration key to control the BGP hold time for a particular
peer.

storage_volumes_all_projects

This introduces the ability to list storage volumes from all projects.

metrics_memory_oom_total

This introduces a new lxd_memory_OOM_kills_total metric to the /1.0/metrics API. It reports the number of
times the out of memory killer (OOM) has been triggered.

storage_buckets

This introduces the storage bucket API. It allows the management of S3 object storage buckets for storage pools.

storage_buckets_create_credentials

This updates the storage bucket API to return initial admin credentials at bucket creation time.

metrics_cpu_effective_total

This introduces a new lxd_cpu_effective_total metric to the /1.0/metrics API. It reports the total number of
effective CPUs.

470 Chapter 2. Project and community

Canonical LXD

projects_networks_restricted_access

Adds the restricted.networks.access project configuration key to indicate (as a comma-delimited list) which
networks can be accessed inside the project. If not specified, all networks are accessible (assuming it is also allowed
by the restricted.devices.nic setting, described below).

This also introduces a change whereby network access is controlled by the project’s restricted.devices.nic set-
ting:

• If restricted.devices.nic is set to managed (the default if not specified), only managed networks are ac-
cessible.

• If restricted.devices.nic is set to allow, all networks are accessible (dependent on the restricted.
networks.access setting).

• If restricted.devices.nic is set to block, no networks are accessible.

storage_buckets_local

This introduces the ability to use storage buckets on local storage pools by setting the new core.
storage_buckets_address global configuration setting.

loki

This adds support for sending life cycle and logging events to a Loki server.

It adds the following global configuration keys:

• loki.api.ca_cert: CA certificate which can be used when sending events to the Loki server

• loki.api.url: URL to the Loki server (protocol, name or IP and port)

• loki.auth.username and loki.auth.password : Used if Loki is behind a reverse proxy with basic authen-
tication enabled

• loki.labels: Comma-separated list of values which are to be used as labels for Loki events.

• loki.loglevel: Minimum log level for events sent to the Loki server.

• loki.types: Types of events which are to be sent to the Loki server (lifecycle and/or logging).

acme

This adds ACME support, which allows Let’s Encrypt or other ACME services to issue certificates.

It adds the following global configuration keys:

• acme.domain: The domain for which the certificate should be issued.

• acme.email: The email address used for the account of the ACME service.

• acme.ca_url: The directory URL of the ACME service, defaults to https://acme-v02.api.letsencrypt.
org/directory.

It also adds the following endpoint, which is required for the HTTP-01 challenge:

• /.well-known/acme-challenge/<token>

2.4. Reference 471

https://letsencrypt.org/

Canonical LXD

internal_metrics

This adds internal metrics to the list of metrics. These include:

• Total running operations

• Total active warnings

• Daemon uptime in seconds

• Go memory stats

• Number of goroutines

cluster_join_token_expiry

This adds an expiry to cluster join tokens which defaults to 3 hours, but can be changed by setting the cluster.
join_token_expiry configuration key.

remote_token_expiry

This adds an expiry to remote add join tokens. It can be set in the core.remote_token_expiry configuration key,
and default to no expiry.

storage_volumes_created_at

This change adds support for storing the creation date and time of storage volumes and their snapshots.

This adds the CreatedAt field to the StorageVolume and StorageVolumeSnapshot API types.

cpu_hotplug

This adds CPU hotplugging for VMs. Hotplugging is disabled when using CPU pinning, because this would require
hotplugging NUMA devices as well, which is not possible.

projects_networks_zones

This adds support for the features.networks.zones project feature, which changes which project network zones
are associated with when they are created. Previously network zones were tied to the value of features.networks,
meaning they were created in the same project as networks were.

Now this has been decoupled from features.networks to allow projects that share a network in the default project
(i.e those with features.networks=false) to have their own project level DNS zones that give a project oriented
“view” of the addresses on that shared network (which only includes addresses from instances in their project).

This also introduces a change to the network dns.zone.forward setting, which now accepts a comma-separated of
DNS zone names (a maximum of one per project) in order to associate a shared network with multiple zones.

No change to the dns.zone.reverse.* settings have been made, they still only allow a single DNS zone to be set.
However the resulting zone content that is generated now includes PTR records covering addresses from all projects
that are referencing that network via one of their forward zones.

Existing projects that have features.networks=true will have features.networks.zones=true set automati-
cally, but new projects will need to specify this explicitly.

472 Chapter 2. Project and community

Canonical LXD

instance_nic_txqueuelength

Adds a txqueuelen key to control the txqueuelen parameter of the NIC device.

cluster_member_state

Adds GET /1.0/cluster/members/<member>/stateAPI endpoint and associated ClusterMemberStateAPI re-
sponse type.

instances_placement_scriptlet

Adds support for a Starlark scriptlet to be provided to LXD to allow customized logic that controls placement of new
instances in a cluster.

The Starlark scriptlet is provided to LXD via the new global configuration option instances.placement.
scriptlet.

storage_pool_source_wipe

Adds support for a source.wipe Boolean on the storage pool, indicating that LXD should wipe partition headers off
the requested disk rather than potentially fail due to pre-existing file systems.

zfs_block_mode

This adds support for using ZFS block volumes allowing the use of different file systems on top of ZFS.

This adds the following new configuration options for ZFS storage pools:

• volume.zfs.block_mode

• volume.block.mount_options

• volume.block.filesystem

instance_generation_id

Adds support for instance generation ID. The VM or container generation ID will change whenever the instance’s place
in time moves backwards. As of now, the generation ID is only exposed through to VM type instances. This allows for
the VM guest OS to reinitialize any state it needs to avoid duplicating potential state that has already occurred:

• volatile.uuid.generation

2.4. Reference 473

Canonical LXD

disk_io_cache

This introduces a new io.cache property to disk devices which can be used to override the VM caching behavior.

amd_sev

Adds support for AMD SEV (Secure Encrypted Virtualization) that can be used to encrypt the memory of a guest VM.

This adds the following new configuration options for SEV encryption:

• security.sev : (bool) is SEV enabled for this VM

• security.sev.policy.es : (bool) is SEV-ES enabled for this VM

• security.sev.session.dh : (string) guest owner’s base64-encoded Diffie-Hellman key

• security.sev.session.data : (string) guest owner’s base64-encoded session blob

storage_pool_loop_resize

This allows growing loop file backed storage pools by changing the size setting of the pool.

migration_vm_live

This adds support for performing VM QEMU to QEMU live migration for both shared storage (clustered Ceph) and
non-shared storage pools.

This also adds the CRIUType_VM_QEMU value of 3 for the migration CRIUType protobuf field.

ovn_nic_nesting

This adds support for nesting an ovn NIC inside another ovn NIC on the same instance. This allows for an OVN logical
switch port to be tunneled inside another OVN NIC using VLAN tagging.

This feature is configured by specifying the parent NIC name using the nested property and the VLAN ID to use for
tunneling with the vlan property.

oidc

This adds support for OpenID Connect (OIDC) authentication.

This adds the following new configuration keys:

• oidc.issuer

• oidc.client.id

• oidc.audience

474 Chapter 2. Project and community

Canonical LXD

network_ovn_l3only

This adds the ability to set an ovn network into “layer 3 only” mode. This mode can be enabled at IPv4 or IPv6 level
using ipv4.l3only and ipv6.l3only configuration options respectively.

With this mode enabled the following changes are made to the network:

• The virtual router’s internal port address will be configured with a single host netmask (e.g. /32 for IPv4 or /128
for IPv6).

• Static routes for active instance NIC addresses will be added to the virtual router.

• A discard route for the entire internal subnet will be added to the virtual router to prevent packets destined for
inactive addresses from escaping to the uplink network.

• The DHCPv4 server will be configured to indicate that a netmask of 255.255.255.255 be used for instance con-
figuration.

ovn_nic_acceleration_vdpa

This updates the ovn_nic_acceleration API extension. The acceleration configuration key for OVN NICs can
now takes the value vdpa to support Virtual Data Path Acceleration (VDPA).

cluster_healing

This adds cluster healing which automatically evacuates offline cluster members.

This adds the following new configuration key:

• cluster.healing_threshold

The configuration key takes an integer, and can be disabled by setting it to 0 (default). If set, the value represents
the threshold after which an offline cluster member is to be evacuated. In case the value is lower than cluster.
offline_threshold , that value will be used instead.

When the offline cluster member is evacuated, only remote-backed instances will be migrated. Local instances will be
ignored as there is no way of migrating them once the cluster member is offline.

instances_state_total

This extension adds a new total field to InstanceStateDisk and InstanceStateMemory, both part of the in-
stance’s state API.

auth_user

Add current user details to the main API endpoint.

This introduces:

• auth_user_name

• auth_user_method

2.4. Reference 475

Canonical LXD

security_csm

Introduce a new security.csm configuration key to control the use of CSM (Compatibility Support Module) to allow
legacy operating systems to be run in LXD VMs.

instances_rebuild

This extension adds the ability to rebuild an instance with the same origin image, alternate image or as empty. A new
POST /1.0/instances/<name>/rebuild?project=<project> API endpoint has been added as well as a new
CLI command lxc rebuild .

numa_cpu_placement

This adds the possibility to place a set of CPUs in a desired set of NUMA nodes.

This adds the following new configuration key:

• limits.cpu.nodes : (string) comma-separated list of NUMA node IDs or NUMA node ID ranges to place the
CPUs (chosen with a dynamic value of limits.cpu) in.

custom_volume_iso

This adds the possibility to import ISO images as custom storage volumes.

This adds the --type flag to lxc storage volume import.

network_allocations

This adds the possibility to list a LXD deployment’s network allocations.

Through the lxc network list-allocations command and the --project <PROJECT> | --all-projects
flags, you can list all the used IP addresses, hardware addresses (for instances), resource URIs and whether it uses NAT
for each instance, network, network forward and network load-balancer.

storage_api_remote_volume_snapshot_copy

This allows copying storage volume snapshots to and from remotes.

zfs_delegate

This implements a new zfs.delegate volume Boolean for volumes on a ZFS storage driver. When enabled and a
suitable system is in use (requires ZFS 2.2 or higher), the ZFS dataset will be delegated to the container, allowing for
its use through the zfs command line tool.

476 Chapter 2. Project and community

Canonical LXD

operations_get_query_all_projects

This introduces support for the all-projects query parameter for the GET API calls to both /1.0/operations and
/1.0/operations?recursion=1. This parameter allows bypassing the project name filter.

metadata_configuration

Adds the GET /1.0/metadata/configuration API endpoint to retrieve the generated metadata configuration in a
JSON format. The JSON structure adopts the structure "configs" > `ENTITY` > `ENTITY_SECTION` > "keys"
> [<CONFIG_OPTION_0>, <CONFIG_OPTION_1>, ...]. Check the list of configuration options to see which con-
figuration options are included.

syslog_socket

This introduces a syslog socket that can receive syslog formatted log messages. These can be viewed in the events API
and lxc monitor, and can be forwarded to Loki. To enable this feature, set core.syslog_socket to true.

event_lifecycle_name_and_project

This adds the fields Name and Project to lifecycle events.

instances_nic_limits_priority

This introduces a new per-NIC limits.priority option that works with both cgroup1 and cgroup2 unlike the dep-
recated limits.network.priority instance setting, which only worked with cgroup1.

disk_initial_volume_configuration

This API extension provides the capability to set initial volume configurations for instance root devices. Initial volume
configurations are prefixed with initial. and can be specified either through profiles or directly during instance
initialization using the --device flag.

Note that these configuration are applied only at the time of instance creation and subsequent modifications have no
effect on existing devices.

operation_wait

This API extension indicates that the /1.0/operations/{id}/wait endpoint exists on the server. This indicates to
the client that the endpoint can be used to wait for an operation to complete rather than waiting for an operation event
via the /1.0/events endpoint.

2.4. Reference 477

Canonical LXD

cluster_internal_custom_volume_copy

This extension adds support for copying and moving custom storage volumes within a cluster with a single API
call. Calling POST /1.0/storage-pools/<pool>/custom?target=<target> will copy the custom volume
specified in the source part of the request. Calling POST /1.0/storage-pools/<pool>/custom/<volume>?
target=<target> will move the custom volume from the source, specified in the source part of the request, to
the target.

disk_io_bus

This introduces a new io.bus property to disk devices which can be used to override the bus the disk is attached to.

storage_cephfs_create_missing

This introduces the configuration keys cephfs.create_missing, cephfs.osd_pg_num , cephfs.meta_pool and
cephfs.data_pool to be used when adding a cephfs storage pool to instruct LXD to create the necessary entities
for the storage pool, if they do not exist.

instance_move_config

This API extension provides the ability to use flags --profile, --no-profile, --device, and --config when
moving an instance between projects and/or storage pools.

ovn_ssl_config

This introduces new server configuration keys to provide the SSL CA and client key pair to access the OVN
databases. The new configuration keys are network.ovn.ca_cert, network.ovn.client_cert and network.
ovn.client_key.

init_preseed_storage_volumes

This API extension provides the ability to configure storage volumes in preseed init.

metrics_instances_count

This extends the metrics to include the containers and virtual machines counts. Instances are counted irrespective of
their state.

478 Chapter 2. Project and community

Canonical LXD

server_instance_type_info

This API extension enables querying a server’s supported instance types. When querying the /1.0 endpoint, a new
field named instance_types is added to the retrieved data. This field indicates which instance types are supported
by the server.

resources_disk_mounted

Adds a mounted field to disk resources that LXD discovers on the system, reporting whether that disk or partition is
mounted.

server_version_lts

The API extension adds indication whether the LXD version is an LTS release. This is indicated when command lxc
version is executed or when /1.0 endpoint is queried.

oidc_groups_claim

This API extension enables setting an oidc.groups.claim configuration key. If OIDC authentication is configured
and this claim is set, LXD will request this claim in the scope of OIDC flow. The value of the claim will be extracted
and might be used to make authorization decisions.

loki_config_instance

Adds a new loki.instance server configuration key to customize the instance field in Loki events. This can be
used to expose the name of the cluster rather than the individual system name sending the event as that’s usually already
covered by the location field.

storage_volatile_uuid

Adds a new volatile.uuid configuration key to all storage volumes, snapshots and buckets. This information can
be used by storage drivers as a separate identifier besides the name when working with volumes.

import_instance_devices

This API extension provides the ability to use flags --devicewhen importing an instance to override instance’s devices.

instances_uefi_vars

This API extension indicates that the /1.0/instances/{name}/uefi-vars endpoint is supported on the server. This
endpoint allows to get the full list of UEFI variables (HTTP method GET) or replace the entire set of UEFI variables
(HTTP method PUT).

2.4. Reference 479

Canonical LXD

instances_migration_stateful

This API extension allows newly created VMs to have their migration.stateful configuration key automatically
set through the new server-level configuration key instances.migration.stateful. If migration.stateful is
already set at the profile or instance level then instances.migration.stateful is not applied.

access_management

Adds new APIs under /1.0/auth for viewing and managing identities, groups, and permissions. Adds an embedded
OpenFGA authorization driver for enforcing fine-grained permissions.

Important: Prior to the addition of this extension, all OIDC clients were given full access to LXD (equivalent to Unix
socket access). This extension revokes access to all OIDC clients. To regain access, a user must:

1. Make a call to the OIDC enabled LXD remote (e.g. lxc info) to ensure that their OIDC identity is added to
the LXD database.

2. Create a group: lxc auth group create <group_name>

3. Grant the group a suitable permission. As all OIDC clients prior to this extension have had full access to LXD,
the corresponding permission is admin on server. To grant this permission to your group, run: lxc auth
group permission add <group_name> server admin

4. Add themselves to the group. To do this, run: lxc auth identity group add oidc/<email_address>
<group_name>

Steps 2 to 4 above cannot be performed via OIDC authentication (access has been revoked). They must be performed
by a sufficiently privileged user, either via Unix socket or unrestricted TLS client certificate.

For more information on access control for OIDC clients, see Fine-grained authorization.

vm_disk_io_limits

Adds the ability to limit disk I/O for virtual machines.

storage_volumes_all

This API extension adds support for listing storage volumes from all storage pools via /1.0/storage-volumes or
/1.0/storage-volumes/{type} to filter by volume type. Also adds a pool field to storage volumes.

instances_files_modify_permissions

Adds the ability for POST /1.0/instances/{name}/files to modify the permissions of files that already exist via
the X-LXD-modify-perm header.

X-LXD-modify-perm should be a comma-separated list of 0 or more of mode, uid, and gid.

480 Chapter 2. Project and community

Canonical LXD

image_restriction_nesting

This extension adds a new image restriction, requirements.nesting which when true indicates that an image
cannot be run without nesting.

container_syscall_intercept_finit_module

Adds the linux.kernel_modules.load container configuration option. If the option is set to ondemand, the
finit_modules() syscall is intercepted and a privileged user in the container’s user namespace can load the Linux
kernel modules specified in the allow list linux.kernel_modules.

device_usb_serial

This adds new configuration keys serial, busnum and devnum for device type usb. The feature has been added to
make it possible to distinguish between devices with identical vendorid and productid .

network_allocate_external_ips

Adds the ability to use an unspecified IPv4 (0.0.0.0) or IPv6 (::) address in the listen_address field
of the request body for POST /1.0/networks/{networkName}/load-balancers and POST /1.0/networks/
{networkName}/forwards. If an unspecified IP address is used, supported drivers will allocate an available listen
address automatically. Allocation of external IP addresses is currently supported by the OVN network driver. The OVN
driver will allocate IP addresses from the subnets specified in the uplink network’s ipv4.routes and ipv6.routes
configuration options.

Events

Introduction

Events are messages about actions that have occurred over LXD. Using the API endpoint /1.0/events directly or via
lxc monitor will connect to a WebSocket through which logs and life-cycle messages will be streamed.

Event types

LXD Currently supports three event types.

• logging: Shows all logging messages regardless of the server logging level.

• operation: Shows all ongoing operations from creation to completion (including updates to their state and
progress metadata).

• lifecycle: Shows an audit trail for specific actions occurring over LXD.

2.4. Reference 481

Canonical LXD

Event structure

Example

location: cluster_name
metadata:
action: network-updated
requestor:
protocol: unix
username: root

source: /1.0/networks/lxdbr0
timestamp: "2021-03-14T00:00:00Z"
type: lifecycle

• location: The cluster member name (if clustered).

• timestamp: Time that the event occurred in RFC3339 format.

• type: The type of event this is (one of logging, operation, or lifecycle).

• metadata: Information about the specific event type.

Logging event structure

• message: The log message.

• level: The log-level of the log.

• context: Additional information included in the event.

Operation event structure

• id: The UUID of the operation.

• class: The type of operation (task, token, or websocket).

• description: A description of the operation.

• created_at: The operation’s creation date.

• updated_at: The operation’s date of last change.

• status: The current state of the operation.

• status_code: The operation status code.

• resources: Resources affected by this operation.

• metadata: Operation specific metadata.

• may_cancel: Whether the operation may be canceled.

• err: Error message of the operation.

• location: The cluster member name (if clustered).

482 Chapter 2. Project and community

Canonical LXD

Life-cycle event structure

• action: The life-cycle action that occurred.

• requestor: Information about who is making the request (if applicable).

• source: Path to what is being acted upon.

• context: Additional information included in the event.

Supported life-cycle events

Name Description Additional Information
certificate-created A new certificate has been added to the server trust store.
certificate-deleted The certificate has been deleted from the trust store.
certificate-updated The certificate’s configuration has been updated.
cluster-certificate-updated The certificate for the whole cluster has changed.
cluster-disabled Clustering has been disabled for this machine.
cluster-enabled Clustering has been enabled for this machine.
cluster-group-created A new cluster group has been created.
cluster-group-deleted A cluster group has been deleted.
cluster-group-renamed A cluster group has been renamed.
cluster-group-updated A cluster group has been updated.
cluster-member-added A new machine has joined the cluster.
cluster-member-removed The cluster member has been removed from the cluster.
cluster-member-renamed The cluster member has been renamed. old_name: the previous name.
cluster-member-updated The cluster member’s configuration been edited.
cluster-token-created A join token for adding a cluster member has been created.
config-updated The server configuration has changed.
image-alias-created An alias has been created for an existing image. target: the original instance.
image-alias-deleted An alias has been deleted for an existing image. target: the original instance.
image-alias-renamed The alias for an existing image has been renamed. old_name: the previous name.
image-alias-updated The configuration for an image alias has changed. target: the original instance.
image-created A new image has been added to the image store. type: container or vm.
image-deleted The image has been deleted from the image store.
image-refreshed The local image copy has updated to the current source image version.
image-retrieved The raw image file has been downloaded from the server. target: destination server.
image-secret-created A one-time key to fetch this image has been created.
image-updated The image’s configuration has changed.
instance-backup-created A backup of the instance has been created.
instance-backup-deleted The instance backup has been deleted.
instance-backup-renamed The instance backup has been renamed. old_name: the previous name.
instance-backup-retrieved The raw instance backup file has been downloaded.
instance-console Connected to the console of the instance. type: console or vga.
instance-console-reset The console buffer has been reset.
instance-console-retrieved The console log has been downloaded.
instance-created A new instance has been created.
instance-deleted The instance has been deleted.
instance-exec A command has been executed on the instance. command: the command to be executed.
instance-file-deleted A file on the instance has been deleted. file: path to the file.
instance-file-pushed The file has been pushed to the instance. file-source: local file path. file-destination: destination file path. info: file information.
instance-file-retrieved The file has been downloaded from the instance. file-source: instance file path. file-destination: destination file path.

continues on next page

2.4. Reference 483

Canonical LXD

Table 2 – continued from previous page
Name Description Additional Information
instance-log-deleted The instance’s specified log file has been deleted.
instance-log-retrieved The instance’s specified log file has been downloaded.
instance-metadata-retrieved The instance’s image metadata has been downloaded.
instance-metadata-template-created A new image template file for the instance has been created. path: relative file path.
instance-metadata-template-deleted The image template file for the instance has been deleted. path: relative file path.
instance-metadata-template-retrieved The image template file for the instance has been downloaded. path: relative file path.
instance-metadata-updated The instance’s image metadata has changed.
instance-paused The instance has been put in a paused state.
instance-ready The instance is ready.
instance-renamed The instance has been renamed. old_name: the previous name.
instance-restarted The instance has restarted.
instance-restored The instance has been restored from a snapshot. snapshot: name of the snapshot being restored.
instance-resumed The instance has resumed after being paused.
instance-shutdown The instance has shut down.
instance-snapshot-created A snapshot of the instance has been created.
instance-snapshot-deleted The instance snapshot has been deleted.
instance-snapshot-renamed The instance snapshot has been renamed. old_name: the previous name.
instance-snapshot-updated The instance snapshot’s configuration has changed.
instance-started The instance has started.
instance-stopped The instance has stopped.
instance-updated The instance’s configuration has changed.
network-acl-created A new network ACL has been created.
network-acl-deleted The network ACL has been deleted.
network-acl-renamed The network ACL has been renamed. old_name: the previous name.
network-acl-updated The network ACL configuration has changed.
network-created A network device has been created.
network-deleted The network device has been deleted.
network-forward-created A new network forward has been created.
network-forward-deleted The network forward has been deleted.
network-forward-updated The network forward has been updated.
network-peer-created A new network peer has been created.
network-peer-deleted The network peer has been deleted.
network-peer-updated The network peer has been updated.
network-renamed The network device has been renamed. old_name: the previous name.
network-updated The network device’s configuration has changed.
network-zone-created A new network zone has been created.
network-zone-deleted The network zone has been deleted.
network-zone-record-created A new network zone record has been created.
network-zone-record-deleted The network zone record has been deleted.
network-zone-record-updated The network zone record has been updated.
network-zone-updated The network zone has been updated.
operation-cancelled The operation has been canceled.
profile-created A new profile has been created.
profile-deleted The profile has been deleted.
profile-renamed The profile has been renamed . old_name: the previous name.
profile-updated The profile’s configuration has changed.
project-created A new project has been created.
project-deleted The project has been deleted.
project-renamed The project has been renamed. old_name: the previous name.
project-updated The project’s configuration has changed.

continues on next page

484 Chapter 2. Project and community

Canonical LXD

Table 2 – continued from previous page
Name Description Additional Information
storage-pool-created A new storage pool has been created. target: cluster member name.
storage-pool-deleted The storage pool has been deleted.
storage-pool-updated The storage pool’s configuration has changed. target: cluster member name.
storage-volume-backup-created A new backup for the storage volume has been created. type: container, virtual-machine, image, or custom.
storage-volume-backup-deleted The storage volume’s backup has been deleted.
storage-volume-backup-renamed The storage volume’s backup has been renamed. old_name: the previous name.
storage-volume-backup-retrieved The storage volume’s backup has been downloaded.
storage-volume-created A new storage volume has been created. type: container, virtual-machine, image, or custom.
storage-volume-deleted The storage volume has been deleted.
storage-volume-renamed The storage volume has been renamed. old_name: the previous name.
storage-volume-restored The storage volume has been restored from a snapshot. snapshot: name of the snapshot being restored.
storage-volume-snapshot-created A new storage volume snapshot has been created. type: container, virtual-machine, image, or custom.
storage-volume-snapshot-deleted The storage volume’s snapshot has been deleted.
storage-volume-snapshot-renamed The storage volume’s snapshot has been renamed. old_name: the previous name.
storage-volume-snapshot-updated The configuration for the storage volume’s snapshot has changed.
storage-volume-updated The storage volume’s configuration has changed.
warning-acknowledged The warning’s status has been set to “acknowledged”.
warning-deleted The warning has been deleted.
warning-reset The warning’s status has been set to “new”.

Communication between instance and host

Communication between the hosted workload (instance) and its host while not strictly needed is a pretty useful feature.

In LXD, this feature is implemented through a /dev/lxd/sock node which is created and set up for all LXD instances.

This file is a Unix socket which processes inside the instance can connect to. It’s multi-threaded so multiple clients can
be connected at the same time.

Note: security.devlxd must be set to true (which is the default) for an instance to allow access to the socket.

Implementation details

LXD on the host binds /var/lib/lxd/devlxd/sock and starts listening for new connections on it.

This socket is then exposed into every single instance started by LXD at /dev/lxd/sock.

The single socket is required so we can exceed 4096 instances, otherwise, LXD would have to bind a different socket
for every instance, quickly reaching the FD limit.

2.4. Reference 485

Canonical LXD

Authentication

Queries on /dev/lxd/sock will only return information related to the requesting instance. To figure out where a
request comes from, LXD will extract the initial socket’s user credentials and compare that to the list of instances it
manages.

Protocol

The protocol on /dev/lxd/sock is plain-text HTTP with JSON messaging, so very similar to the local version of the
LXD protocol.

Unlike the main LXD API, there is no background operation and no authentication support in the /dev/lxd/sock
API.

REST-API

API structure

• /

– /1.0

∗ /1.0/config

· /1.0/config/{key}

∗ /1.0/devices

∗ /1.0/events

∗ /1.0/images/{fingerprint}/export

∗ /1.0/meta-data

API details

/

GET

• Description: List of supported APIs

• Return: list of supported API endpoint URLs (by default ['/1.0'])

Return value:

[
"/1.0"

]

486 Chapter 2. Project and community

Canonical LXD

/1.0

GET

• Description: Information about the 1.0 API

• Return: JSON object

Return value:

{
"api_version": "1.0",
"location": "foo.example.com",
"instance_type": "container",
"state": "Started",

}

PATCH

• Description: Update instance state (valid states are Ready and Started)

• Return: none

Input:

{
"state": "Ready"

}

/1.0/config

GET

• Description: List of configuration keys

• Return: list of configuration keys URL

Note that the configuration key names match those in the instance configuration, however not all configuration names-
paces will be exported to /dev/lxd/sock. Currently only the cloud-init.* and user.* keys are accessible to the
instance.

At this time, there also aren’t any instance-writable namespace.

Return value:

[
"/1.0/config/user.a"

]

2.4. Reference 487

Canonical LXD

/1.0/config/<KEY>

GET

• Description: Value of that key

• Return: Plain-text value

Return value:

blah

/1.0/devices

GET

• Description: Map of instance devices

• Return: JSON object

Return value:

{
"eth0": {

"name": "eth0",
"network": "lxdbr0",
"type": "nic"

},
"root": {

"path": "/",
"pool": "default",
"type": "disk"

}
}

/1.0/events

GET

• Description: WebSocket upgrade

• Return: none (never ending flow of events)

Supported arguments are:

• type: comma-separated list of notifications to subscribe to (defaults to all)

The notification types are:

• config (changes to any of the user.* configuration keys)

• device (any device addition, change or removal)

This never returns. Each notification is sent as a separate JSON object:

488 Chapter 2. Project and community

Canonical LXD

{
"timestamp": "2017-12-21T18:28:26.846603815-05:00",
"type": "device",
"metadata": {

"name": "kvm",
"action": "added",
"config": {

"type": "unix-char",
"path": "/dev/kvm"

}
}

}

{
"timestamp": "2017-12-21T18:28:26.846603815-05:00",
"type": "config",
"metadata": {

"key": "user.foo",
"old_value": "",
"value": "bar"

}
}

/1.0/images/<FINGERPRINT>/export

GET

• Description: Download a public/cached image from the host

• Return: raw image or error

• Access: Requires security.devlxd.images set to true

Return value:

See /1.0/images/<FINGERPRINT>/export in the daemon API.

/1.0/meta-data

GET

• Description: Container meta-data compatible with cloud-init

• Return: cloud-init meta-data

Return value:

#cloud-config
instance-id: af6a01c7-f847-4688-a2a4-37fddd744625
local-hostname: abc

2.4. Reference 489

Canonical LXD

Related topics

How-to guides:

• LXD server and client

Explanation:

• About lxd and lxc

• About the LXD database

2.4.5 Man pages

lxc is the command line client for LXD. Its usage is documented in the help pages for the lxc commands and sub-
commands.

Man pages

lxc

Command line client for LXD

Synopsis

Description: Command line client for LXD

All of LXD’s features can be driven through the various commands below. For help with any of those, simply call them
with –help.

Options

--all Show less common commands
--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

490 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc alias - Manage command aliases

• lxc auth - Manage user authorization

• lxc cluster - Manage cluster members

• lxc config - Manage instance and server configuration options

• lxc console - Attach to instance consoles

• lxc copy - Copy instances within or in between LXD servers

• lxc delete - Delete instances and snapshots

• lxc exec - Execute commands in instances

• lxc export - Export instance backups

• lxc file - Manage files in instances

• lxc image - Manage images

• lxc import - Import instance backups

• lxc info - Show instance or server information

• lxc init - Create instances from images

• lxc launch - Create and start instances from images

• lxc list - List instances

• lxc monitor - Monitor a local or remote LXD server

• lxc move - Move instances within or in between LXD servers

• lxc network - Manage and attach instances to networks

• lxc operation - List, show and delete background operations

• lxc pause - Pause instances

• lxc profile - Manage profiles

• lxc project - Manage projects

• lxc publish - Publish instances as images

• lxc query - Send a raw query to LXD

• lxc rebuild - Rebuild instances

• lxc remote - Manage the list of remote servers

• lxc rename - Rename instances and snapshots

• lxc restart - Restart instances

• lxc restore - Restore instances from snapshots

• lxc snapshot - Create instance snapshots

• lxc start - Start instances

• lxc stop - Stop instances

• lxc storage - Manage storage pools and volumes

• lxc version - Show local and remote versions

2.4. Reference 491

Canonical LXD

• lxc warning - Manage warnings

lxc alias

Manage command aliases

Synopsis

Description: Manage command aliases

lxc alias [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

• lxc alias add - Add new aliases

• lxc alias list - List aliases

• lxc alias remove - Remove aliases

• lxc alias rename - Rename aliases

lxc alias add

Add new aliases

Synopsis

Description: Add new aliases

lxc alias add <alias> <target> [flags]

492 Chapter 2. Project and community

Canonical LXD

Examples

lxc alias add list "list -c ns46S"
Overwrite the "list" command to pass -c ns46S.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc alias - Manage command aliases

lxc alias list

List aliases

Synopsis

Description: List aliases

lxc alias list [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 493

Canonical LXD

SEE ALSO

• lxc alias - Manage command aliases

lxc alias remove

Remove aliases

Synopsis

Description: Remove aliases

lxc alias remove <alias> [flags]

Examples

lxc alias remove my-list
Remove the "my-list" alias.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc alias - Manage command aliases

lxc alias rename

Rename aliases

494 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Rename aliases

lxc alias rename <old alias> <new alias> [flags]

Examples

lxc alias rename list my-list
Rename existing alias "list" to "my-list".

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc alias - Manage command aliases

lxc auth

Manage user authorization

Synopsis

Description: Manage user authorization

lxc auth [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

2.4. Reference 495

Canonical LXD

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

• lxc auth group - Manage groups

• lxc auth identity - Manage identities

• lxc auth identity-provider-group - Manage groups

• lxc auth permission - Inspect permissions

lxc auth group

Manage groups

Synopsis

Description: Manage groups

lxc auth group [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth - Manage user authorization

• lxc auth group create - Create groups

• lxc auth group delete - Delete groups

• lxc auth group edit - Edit groups as YAML

• lxc auth group list - List groups

• lxc auth group permission - Manage permissions

• lxc auth group rename - Rename groups

496 Chapter 2. Project and community

Canonical LXD

• lxc auth group show - Show group configurations

lxc auth group create

Create groups

Synopsis

Description: Create groups

lxc auth group create [<remote>:]<group> [flags]

Options

-d, --description string Group description

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group - Manage groups

lxc auth group delete

Delete groups

Synopsis

Description: Delete groups

lxc auth group delete [<remote>:]<group> [flags]

2.4. Reference 497

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group - Manage groups

lxc auth group edit

Edit groups as YAML

Synopsis

Description: Edit groups as YAML

lxc auth group edit [<remote>:]<group> [flags]

Examples

lxc auth group edit <group> < group.yaml
Update a group using the content of group.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

498 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc auth group - Manage groups

lxc auth group list

List groups

Synopsis

Description: List groups

lxc auth group list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group - Manage groups

lxc auth group permission

Manage permissions

2.4. Reference 499

Canonical LXD

Synopsis

Description: Manage permissions

lxc auth group permission [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group - Manage groups

• lxc auth group permission add - Add permissions to groups

• lxc auth group permission remove - Remove permissions from groups

lxc auth group permission add

Add permissions to groups

Synopsis

Description: Add permissions to groups

lxc auth group permission add [<remote>:]<group> <entity_type> [<entity_name>]
→˓<entitlement> [<key>=<value>...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

500 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc auth group permission - Manage permissions

lxc auth group permission remove

Remove permissions from groups

Synopsis

Description: Remove permissions from groups

lxc auth group permission remove [<remote>:]<group> <entity_type> [<entity_name>]
→˓<entitlement> [<key>=<value>...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group permission - Manage permissions

lxc auth group rename

Rename groups

Synopsis

Description: Rename groups

lxc auth group rename [<remote>:]<group> <new_name> [flags]

2.4. Reference 501

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group - Manage groups

lxc auth group show

Show group configurations

Synopsis

Description: Show group configurations

lxc auth group show [<remote>:]<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group - Manage groups

502 Chapter 2. Project and community

Canonical LXD

lxc auth identity

Manage identities

Synopsis

Description: Manage identities

lxc auth identity [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth - Manage user authorization

• lxc auth identity edit - Edit an identity as YAML

• lxc auth identity group - Manage groups for the identity

• lxc auth identity info - View the current identity

• lxc auth identity list - List identities

• lxc auth identity show - View an identity

lxc auth identity edit

Edit an identity as YAML

Synopsis

Description: Edit an identity as YAML

lxc auth identity edit [<remote>:]<group> [flags]

2.4. Reference 503

Canonical LXD

Examples

lxc auth identity edit <authentication_method>/<name_or_identifier> < identity.yaml
Update an identity using the content of identity.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity - Manage identities

lxc auth identity group

Manage groups for the identity

Synopsis

Description: Manage groups for the identity

lxc auth identity group [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

504 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc auth identity - Manage identities

• lxc auth identity group add - Add a group to an identity

• lxc auth identity group remove - Remove a group from an identity

lxc auth identity group add

Add a group to an identity

Synopsis

Description: Add a group to an identity

lxc auth identity group add [<remote>:]<authentication_method>/<name_or_identifier>
→˓<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity group - Manage groups for the identity

lxc auth identity group remove

Remove a group from an identity

Synopsis

Description: Remove a group from an identity

lxc auth identity group remove [<remote>:]<authentication_method>/<name_or_identifier>
→˓<group> [flags]

2.4. Reference 505

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity group - Manage groups for the identity

lxc auth identity info

View the current identity

Synopsis

Description: Show the current identity

This command will display permissions for the current user. This includes contextual information, such as effective
groups and permissions that are granted via identity provider group mappings.

lxc auth identity info [<remote>:] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

506 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc auth identity - Manage identities

lxc auth identity list

List identities

Synopsis

Description: List identities

lxc auth identity list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity - Manage identities

lxc auth identity show

View an identity

2.4. Reference 507

Canonical LXD

Synopsis

Description: Show identity configurations

The argument must be a concatenation of the authentication method and either the name or identifier of the identity,
delimited by a forward slash. This command will fail if an identity name is used that is not unique within the authenti-
cation method. Use the identifier instead if this occurs.

lxc auth identity show [<remote>:]<authentication_method>/<name_or_identifier> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity - Manage identities

lxc auth identity-provider-group

Manage groups

Synopsis

Description: Manage groups

lxc auth identity-provider-group [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

508 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc auth - Manage user authorization

• lxc auth identity-provider-group create - Create identity provider groups

• lxc auth identity-provider-group delete - Delete identity provider groups

• lxc auth identity-provider-group edit - Edit identity provider groups as YAML

• lxc auth identity-provider-group group - Manage identity provider group mappings

• lxc auth identity-provider-group list - List identity provider groups

• lxc auth identity-provider-group rename - Rename identity provider groups

• lxc auth identity-provider-group show - Show an identity provider group

lxc auth identity-provider-group create

Create identity provider groups

Synopsis

Description: Create identity provider groups

lxc auth identity-provider-group create [<remote>:]<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group - Manage groups

2.4. Reference 509

Canonical LXD

lxc auth identity-provider-group delete

Delete identity provider groups

Synopsis

Description: Delete identity provider groups

lxc auth identity-provider-group delete [<remote>:]<identity_provider_group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group - Manage groups

lxc auth identity-provider-group edit

Edit identity provider groups as YAML

Synopsis

Description: Edit identity provider groups as YAML

lxc auth identity-provider-group edit [<remote>:]<identity_provider_group> [flags]

Examples

lxc auth identity-provider-group edit <identity_provider_group> < identity-provider-
→˓group.yaml

Update an identity provider group using the content of identity-provider-group.yaml

510 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group - Manage groups

lxc auth identity-provider-group group

Manage identity provider group mappings

Synopsis

Description: Manage identity provider group mappings

lxc auth identity-provider-group group [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group - Manage groups

• lxc auth identity-provider-group group add - Add a group to an identity provider group

• lxc auth identity-provider-group group remove - Remove identities from groups

2.4. Reference 511

Canonical LXD

lxc auth identity-provider-group group add

Add a group to an identity provider group

Synopsis

Description: Add a group to an identity provider group

lxc auth identity-provider-group group add [<remote>:]<identity_provider_group> <group>␣
→˓[flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group group - Manage identity provider group mappings

lxc auth identity-provider-group group remove

Remove identities from groups

Synopsis

Description: Remove identities from groups

lxc auth identity-provider-group group remove [<remote>:]<authentication_method>/<name_
→˓or_identifier> <group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

512 Chapter 2. Project and community

Canonical LXD

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group group - Manage identity provider group mappings

lxc auth identity-provider-group list

List identity provider groups

Synopsis

Description: List identity provider groups

lxc auth identity-provider-group list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group - Manage groups

2.4. Reference 513

Canonical LXD

lxc auth identity-provider-group rename

Rename identity provider groups

Synopsis

Description: Rename identity provider groups

lxc auth identity-provider-group rename [<remote>:]<identity_provider_group> <new_name>␣
→˓[flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group - Manage groups

lxc auth identity-provider-group show

Show an identity provider group

Synopsis

Description: Show an identity provider group

lxc auth identity-provider-group show [<remote>:]<identity_provider_group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

514 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc auth identity-provider-group - Manage groups

lxc auth permission

Inspect permissions

Synopsis

Description: Inspect permissions

lxc auth permission [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth - Manage user authorization

• lxc auth permission list - List permissions

lxc auth permission list

List permissions

Synopsis

Description: List permissions

lxc auth permission list [<remote>:] [project=<project_name>] [entity_type=<entity_type>
→˓] [flags]

2.4. Reference 515

Canonical LXD

Options

-f, --format string Display format (json, yaml, table, compact, csv) (default
→˓"table")

--max-entitlements int Maximum number of unassigned entitlements to display␣
→˓before overflowing (set to zero to display all) (default 3)

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth permission - Inspect permissions

lxc cluster

Manage cluster members

Synopsis

Description: Manage cluster members

lxc cluster [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

516 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc - Command line client for LXD

• lxc cluster add - Request a join token for adding a cluster member

• lxc cluster edit - Edit cluster member configurations as YAML

• lxc cluster enable - Enable clustering on a single non-clustered LXD server

• lxc cluster evacuate - Evacuate cluster member

• lxc cluster get - Get values for cluster member configuration keys

• lxc cluster group - Manage cluster groups

• lxc cluster info - Show useful information about a cluster member

• lxc cluster list - List all the cluster members

• lxc cluster list-tokens - List all active cluster member join tokens

• lxc cluster remove - Remove a member from the cluster

• lxc cluster rename - Rename a cluster member

• lxc cluster restore - Restore cluster member

• lxc cluster revoke-token - Revoke cluster member join token

• lxc cluster role - Manage cluster roles

• lxc cluster set - Set a cluster member’s configuration keys

• lxc cluster show - Show details of a cluster member

• lxc cluster unset - Unset a cluster member’s configuration keys

• lxc cluster update-certificate - Update cluster certificate

lxc cluster add

Request a join token for adding a cluster member

Synopsis

Description: Request a join token for adding a cluster member

lxc cluster add [[<remote>:]<name>] [flags]

Options

--name Cluster member name (alternative to passing it as an argument)

2.4. Reference 517

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster edit

Edit cluster member configurations as YAML

Synopsis

Description: Edit cluster member configurations as YAML

lxc cluster edit [<remote>:]<cluster member> [flags]

Examples

lxc cluster edit <cluster member> < member.yaml
Update a cluster member using the content of member.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

518 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster enable

Enable clustering on a single non-clustered LXD server

Synopsis

Description: Enable clustering on a single non-clustered LXD server

This command turns a non-clustered LXD server into the first member of a new
LXD cluster, which will have the given name.

It's required that the LXD is already available on the network. You can check
that by running 'lxc config get core.https_address', and possibly set a value
for the address if not yet set.

lxc cluster enable [<remote>:] <name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster evacuate

Evacuate cluster member

2.4. Reference 519

Canonical LXD

Synopsis

Description: Evacuate cluster member

lxc cluster evacuate [<remote>:]<member> [flags]

Options

--action Force a particular evacuation action
--force Force evacuation without user confirmation

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster get

Get values for cluster member configuration keys

Synopsis

Description: Get values for cluster member configuration keys

lxc cluster get [<remote>:]<member> <key> [flags]

Options

-p, --property Get the key as a cluster property

520 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster group

Manage cluster groups

Synopsis

Description: Manage cluster groups

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

• lxc cluster group add - Add member to group

• lxc cluster group assign - Assign sets of groups to cluster members

• lxc cluster group create - Create a cluster group

• lxc cluster group delete - Delete a cluster group

• lxc cluster group edit - Edit a cluster group

• lxc cluster group list - List all the cluster groups

• lxc cluster group remove - Remove member from group

2.4. Reference 521

Canonical LXD

• lxc cluster group rename - Rename a cluster group

• lxc cluster group show - Show cluster group configurations

lxc cluster group add

Add member to group

Synopsis

Description: Add a cluster member to a cluster group

lxc cluster group add [<remote>:]<member> <group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group - Manage cluster groups

lxc cluster group assign

Assign sets of groups to cluster members

Synopsis

Description: Assign sets of groups to cluster members

lxc cluster group assign [<remote>:]<member> <group> [flags]

522 Chapter 2. Project and community

Canonical LXD

Examples

lxc cluster group assign foo default,bar
Set the groups for "foo" to "default" and "bar".

lxc cluster group assign foo default
Reset "foo" to only using the "default" cluster group.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group - Manage cluster groups

lxc cluster group create

Create a cluster group

Synopsis

Description: Create a cluster group

lxc cluster group create [<remote>:]<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 523

Canonical LXD

SEE ALSO

• lxc cluster group - Manage cluster groups

lxc cluster group delete

Delete a cluster group

Synopsis

Description: Delete a cluster group

lxc cluster group delete [<remote>:]<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group - Manage cluster groups

lxc cluster group edit

Edit a cluster group

Synopsis

Description: Edit a cluster group

lxc cluster group edit [<remote>:]<group> [flags]

524 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group - Manage cluster groups

lxc cluster group list

List all the cluster groups

Synopsis

Description: List all the cluster groups

lxc cluster group list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 525

Canonical LXD

SEE ALSO

• lxc cluster group - Manage cluster groups

lxc cluster group remove

Remove member from group

Synopsis

Description: Remove a cluster member from a cluster group

lxc cluster group remove [<remote>:]<member> <group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group - Manage cluster groups

lxc cluster group rename

Rename a cluster group

Synopsis

Description: Rename a cluster group

lxc cluster group rename [<remote>:]<group> <new-name> [flags]

526 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group - Manage cluster groups

lxc cluster group show

Show cluster group configurations

Synopsis

Description: Show cluster group configurations

lxc cluster group show [<remote>:]<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group - Manage cluster groups

2.4. Reference 527

Canonical LXD

lxc cluster info

Show useful information about a cluster member

Synopsis

Description: Show useful information about a cluster member

lxc cluster info [<remote>:]<member> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster list

List all the cluster members

Synopsis

Description: List all the cluster members

lxc cluster list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

528 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster list-tokens

List all active cluster member join tokens

Synopsis

Description: List all active cluster member join tokens

lxc cluster list-tokens [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 529

Canonical LXD

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster remove

Remove a member from the cluster

Synopsis

Description: Remove a member from the cluster

lxc cluster remove [<remote>:]<member> [flags]

Options

-f, --force Force removing a member, even if degraded
--yes Don't require user confirmation for using --force

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster rename

Rename a cluster member

530 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Rename a cluster member

lxc cluster rename [<remote>:]<member> <new-name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster restore

Restore cluster member

Synopsis

Description: Restore cluster member

lxc cluster restore [<remote>:]<member> [flags]

Options

--force Force restoration without user confirmation

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 531

Canonical LXD

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster revoke-token

Revoke cluster member join token

Synopsis

Description: Revoke cluster member join token

lxc cluster revoke-token [<remote>:]<member> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster role

Manage cluster roles

Synopsis

Description: Manage cluster roles

lxc cluster role [flags]

532 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

• lxc cluster role add - Add roles to a cluster member

• lxc cluster role remove - Remove roles from a cluster member

lxc cluster role add

Add roles to a cluster member

Synopsis

Description: Add roles to a cluster member

lxc cluster role add [<remote>:]<member> <role[,role...]> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 533

Canonical LXD

SEE ALSO

• lxc cluster role - Manage cluster roles

lxc cluster role remove

Remove roles from a cluster member

Synopsis

Description: Remove roles from a cluster member

lxc cluster role remove [<remote>:]<member> <role[,role...]> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster role - Manage cluster roles

lxc cluster set

Set a cluster member’s configuration keys

Synopsis

Description: Set a cluster member’s configuration keys

lxc cluster set [<remote>:]<member> <key>=<value>... [flags]

534 Chapter 2. Project and community

Canonical LXD

Options

-p, --property Set the key as a cluster property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster show

Show details of a cluster member

Synopsis

Description: Show details of a cluster member

lxc cluster show [<remote>:]<member> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 535

Canonical LXD

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster unset

Unset a cluster member’s configuration keys

Synopsis

Description: Unset a cluster member’s configuration keys

lxc cluster unset [<remote>:]<member> <key> [flags]

Options

-p, --property Unset the key as a cluster property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

lxc cluster update-certificate

Update cluster certificate

536 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Update cluster certificate with PEM certificate and key read from input files.

lxc cluster update-certificate [<remote>:] <cert.crt> <cert.key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster - Manage cluster members

lxc config

Manage instance and server configuration options

Synopsis

Description: Manage instance and server configuration options

lxc config [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 537

Canonical LXD

SEE ALSO

• lxc - Command line client for LXD

• lxc config device - Manage devices

• lxc config edit - Edit instance or server configurations as YAML

• lxc config get - Get values for instance or server configuration keys

• lxc config metadata - Manage instance metadata files

• lxc config set - Set instance or server configuration keys

• lxc config show - Show instance or server configurations

• lxc config template - Manage instance file templates

• lxc config trust - Manage trusted clients

• lxc config uefi - Manage instance UEFI variables

• lxc config unset - Unset instance or server configuration keys

lxc config device

Manage devices

Synopsis

Description: Manage devices

lxc config device [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

538 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc config - Manage instance and server configuration options

• lxc config device add - Add instance devices

• lxc config device get - Get values for device configuration keys

• lxc config device list - List instance devices

• lxc config device override - Copy profile inherited devices and override configuration keys

• lxc config device remove - Remove instance devices

• lxc config device set - Set device configuration keys

• lxc config device show - Show full device configuration

• lxc config device unset - Unset device configuration keys

lxc config device add

Add instance devices

Synopsis

Description: Add instance devices

lxc config device add [<remote>:]<instance> <device> <type> [key=value...] [flags]

Examples

lxc config device add [<remote>:]instance1 <device-name> disk source=/share/c1 path=/
→˓opt

Will mount the host's /share/c1 onto /opt in the instance.

lxc config device add [<remote>:]instance1 <device-name> disk pool=some-pool␣
→˓source=some-volume path=/opt

Will mount the some-volume volume on some-pool onto /opt in the instance.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 539

Canonical LXD

SEE ALSO

• lxc config device - Manage devices

lxc config device get

Get values for device configuration keys

Synopsis

Description: Get values for device configuration keys

lxc config device get [<remote>:]<instance> <device> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device - Manage devices

lxc config device list

List instance devices

Synopsis

Description: List instance devices

lxc config device list [<remote>:]<instance> [flags]

540 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device - Manage devices

lxc config device override

Copy profile inherited devices and override configuration keys

Synopsis

Description: Copy profile inherited devices and override configuration keys

lxc config device override [<remote>:]<instance> <device> [key=value...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device - Manage devices

2.4. Reference 541

Canonical LXD

lxc config device remove

Remove instance devices

Synopsis

Description: Remove instance devices

lxc config device remove [<remote>:]<instance> <name>... [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device - Manage devices

lxc config device set

Set device configuration keys

Synopsis

Description: Set device configuration keys

For backward compatibility, a single configuration key may still be set with: lxc config device set [:]

lxc config device set [<remote>:]<instance> <device> <key>=<value>... [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

542 Chapter 2. Project and community

Canonical LXD

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device - Manage devices

lxc config device show

Show full device configuration

Synopsis

Description: Show full device configuration

lxc config device show [<remote>:]<instance> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device - Manage devices

lxc config device unset

Unset device configuration keys

2.4. Reference 543

Canonical LXD

Synopsis

Description: Unset device configuration keys

lxc config device unset [<remote>:]<instance> <device> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device - Manage devices

lxc config edit

Edit instance or server configurations as YAML

Synopsis

Description: Edit instance or server configurations as YAML

lxc config edit [<remote>:][<instance>[/<snapshot>]] [flags]

Examples

lxc config edit <instance> < instance.yaml
Update the instance configuration from config.yaml.

Options

--target Cluster member name

544 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config - Manage instance and server configuration options

lxc config get

Get values for instance or server configuration keys

Synopsis

Description: Get values for instance or server configuration keys

lxc config get [<remote>:][<instance>] <key> [flags]

Options

-e, --expanded Access the expanded configuration
-p, --property Get the key as an instance property

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 545

Canonical LXD

SEE ALSO

• lxc config - Manage instance and server configuration options

lxc config metadata

Manage instance metadata files

Synopsis

Description: Manage instance metadata files

lxc config metadata [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config - Manage instance and server configuration options

• lxc config metadata edit - Edit instance metadata files

• lxc config metadata show - Show instance metadata files

lxc config metadata edit

Edit instance metadata files

Synopsis

Description: Edit instance metadata files

lxc config metadata edit [<remote>:]<instance> [flags]

546 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config metadata - Manage instance metadata files

lxc config metadata show

Show instance metadata files

Synopsis

Description: Show instance metadata files

lxc config metadata show [<remote>:]<instance> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config metadata - Manage instance metadata files

2.4. Reference 547

Canonical LXD

lxc config set

Set instance or server configuration keys

Synopsis

Description: Set instance or server configuration keys

For backward compatibility, a single configuration key may still be set with: lxc config set [:][]

lxc config set [<remote>:][<instance>] <key>=<value>... [flags]

Examples

lxc config set [<remote>:]<instance> limits.cpu=2
Will set a CPU limit of "2" for the instance.

lxc config set core.https_address=[::]:8443
Will have LXD listen on IPv4 and IPv6 port 8443.

lxc config set core.trust_password=blah
Will set the server's trust password to blah.

Options

-p, --property Set the key as an instance property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

548 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc config - Manage instance and server configuration options

lxc config show

Show instance or server configurations

Synopsis

Description: Show instance or server configurations

lxc config show [<remote>:][<instance>[/<snapshot>]] [flags]

Options

-e, --expanded Show the expanded configuration
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config - Manage instance and server configuration options

lxc config template

Manage instance file templates

2.4. Reference 549

Canonical LXD

Synopsis

Description: Manage instance file templates

lxc config template [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config - Manage instance and server configuration options

• lxc config template create - Create new instance file templates

• lxc config template delete - Delete instance file templates

• lxc config template edit - Edit instance file templates

• lxc config template list - List instance file templates

• lxc config template show - Show content of instance file templates

lxc config template create

Create new instance file templates

Synopsis

Description: Create new instance file templates

lxc config template create [<remote>:]<instance> <template> [flags]

550 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config template - Manage instance file templates

lxc config template delete

Delete instance file templates

Synopsis

Description: Delete instance file templates

lxc config template delete [<remote>:]<instance> <template> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config template - Manage instance file templates

2.4. Reference 551

Canonical LXD

lxc config template edit

Edit instance file templates

Synopsis

Description: Edit instance file templates

lxc config template edit [<remote>:]<instance> <template> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config template - Manage instance file templates

lxc config template list

List instance file templates

Synopsis

Description: List instance file templates

lxc config template list [<remote>:]<instance> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

552 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config template - Manage instance file templates

lxc config template show

Show content of instance file templates

Synopsis

Description: Show content of instance file templates

lxc config template show [<remote>:]<instance> <template> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config template - Manage instance file templates

2.4. Reference 553

Canonical LXD

lxc config trust

Manage trusted clients

Synopsis

Description: Manage trusted clients

lxc config trust [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config - Manage instance and server configuration options

• lxc config trust add - Add new trusted client

• lxc config trust edit - Edit trust configurations as YAML

• lxc config trust list - List trusted clients

• lxc config trust list-tokens - List all active certificate add tokens

• lxc config trust remove - Remove trusted client

• lxc config trust revoke-token - Revoke certificate add token

• lxc config trust show - Show trust configurations

lxc config trust add

Add new trusted client

554 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Add new trusted client

The following certificate types are supported:

• client (default)

• metrics

If the certificate is omitted, a token will be generated and returned. A client providing a valid token will have its client
certificate added to the trusted list and the consumed token will be invalidated. Similar to certificates, tokens can be
restricted to one or more projects.

lxc config trust add [<remote>:] [<cert>] [flags]

Options

--name Alternative certificate name
--projects List of projects to restrict the certificate to
--restricted Restrict the certificate to one or more projects
--type Type of certificate (default "client")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config trust - Manage trusted clients

lxc config trust edit

Edit trust configurations as YAML

2.4. Reference 555

Canonical LXD

Synopsis

Description: Edit trust configurations as YAML

lxc config trust edit [<remote>:]<fingerprint> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config trust - Manage trusted clients

lxc config trust list

List trusted clients

Synopsis

Description: List trusted clients

lxc config trust list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

556 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc config trust - Manage trusted clients

lxc config trust list-tokens

List all active certificate add tokens

Synopsis

Description: List all active certificate add tokens

lxc config trust list-tokens [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config trust - Manage trusted clients

lxc config trust remove

Remove trusted client

2.4. Reference 557

Canonical LXD

Synopsis

Description: Remove trusted client

lxc config trust remove [<remote>:]<fingerprint> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config trust - Manage trusted clients

lxc config trust revoke-token

Revoke certificate add token

Synopsis

Description: Revoke certificate add token

lxc config trust revoke-token [<remote>:] <name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

558 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc config trust - Manage trusted clients

lxc config trust show

Show trust configurations

Synopsis

Description: Show trust configurations

lxc config trust show [<remote>:]<fingerprint> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config trust - Manage trusted clients

lxc config uefi

Manage instance UEFI variables

Synopsis

Description: Manage instance UEFI variables

lxc config uefi [flags]

2.4. Reference 559

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config - Manage instance and server configuration options

• lxc config uefi edit - Edit instance UEFI variables

• lxc config uefi get - Get UEFI variables for instance

• lxc config uefi set - Set UEFI variables for instance

• lxc config uefi show - Show instance UEFI variables

• lxc config uefi unset - Unset UEFI variables for instance

lxc config uefi edit

Edit instance UEFI variables

Synopsis

Description: Edit instance UEFI variables

lxc config uefi edit [<remote>:]<instance> [flags]

Examples

lxc config uefi edit <instance> < instance_uefi_vars.yaml
Set the instance UEFI variables from instance_uefi_vars.yaml.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

560 Chapter 2. Project and community

Canonical LXD

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config uefi - Manage instance UEFI variables

lxc config uefi get

Get UEFI variables for instance

Synopsis

Description: Get UEFI variables for instance

lxc config uefi get [<remote>:]<instance> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config uefi - Manage instance UEFI variables

lxc config uefi set

Set UEFI variables for instance

2.4. Reference 561

Canonical LXD

Synopsis

Description: Set UEFI variables for instance

lxc config uefi set [<remote>:]<instance> <key>=<value>... [flags]

Examples

lxc config uefi set [<remote>:]<instance> testvar-9073e4e0-60ec-4b6e-9903-
→˓4c223c260f3c=aabb

Set a UEFI variable with name "testvar", GUID 9073e4e0-60ec-4b6e-9903-4c223c260f3c␣
→˓and value "aabb" (HEX-encoded) for the instance.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config uefi - Manage instance UEFI variables

lxc config uefi show

Show instance UEFI variables

Synopsis

Description: Show instance UEFI variables

lxc config uefi show [<remote>:]<instance> [flags]

562 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config uefi - Manage instance UEFI variables

lxc config uefi unset

Unset UEFI variables for instance

Synopsis

Description: Unset UEFI variables for instance

lxc config uefi unset [<remote>:]<instance> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config uefi - Manage instance UEFI variables

2.4. Reference 563

Canonical LXD

lxc config unset

Unset instance or server configuration keys

Synopsis

Description: Unset instance or server configuration keys

lxc config unset [<remote>:][<instance>] <key> [flags]

Options

-p, --property Unset the key as an instance property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config - Manage instance and server configuration options

lxc console

Attach to instance consoles

Synopsis

Description: Attach to instance consoles

This command allows you to interact with the boot console of an instance as well as retrieve past log entries from it.

lxc console [<remote>:]<instance> [flags]

564 Chapter 2. Project and community

Canonical LXD

Options

--show-log Retrieve the instance's console log
-t, --type Type of connection to establish: 'console' for serial console, 'vga'␣

→˓for SPICE graphical output (default "console")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc copy

Copy instances within or in between LXD servers

Synopsis

Description: Copy instances within or in between LXD servers

Transfer modes (–mode):

• pull: Target server pulls the data from the source server (source must listen on network)

• push: Source server pushes the data to the target server (target must listen on network)

• relay: The CLI connects to both source and server and proxies the data (both source and target must listen on
network)

The pull transfer mode is the default as it is compatible with all LXD versions.

lxc copy [<remote>:]<source>[/<snapshot>] [[<remote>:]<destination>] [flags]

2.4. Reference 565

Canonical LXD

Options

--allow-inconsistent Ignore copy errors for volatile files
-c, --config Config key/value to apply to the new instance
-d, --device New key/value to apply to a specific device
-e, --ephemeral Ephemeral instance

--instance-only Copy the instance without its snapshots
--mode Transfer mode. One of pull, push or relay (default "pull")
--no-profiles Create the instance with no profiles applied

-p, --profile Profile to apply to the new instance
--refresh Perform an incremental copy
--stateless Copy a stateful instance stateless

-s, --storage Storage pool name
--target Cluster member name
--target-project Copy to a project different from the source

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc delete

Delete instances and snapshots

Synopsis

Description: Delete instances and snapshots

lxc delete [<remote>:]<instance>[/<snapshot>] [[<remote>:]<instance>[/<snapshot>]...]␣
→˓[flags]

566 Chapter 2. Project and community

Canonical LXD

Options

-f, --force Force the removal of running instances
-i, --interactive Require user confirmation

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc exec

Execute commands in instances

Synopsis

Description: Execute commands in instances

The command is executed directly using exec, so there is no shell and shell patterns (variables, file redirects, . . .) won’t
be understood. If you need a shell environment you need to execute the shell executable, passing the shell commands
as arguments, for example:

lxc exec <instance> -- sh -c "cd /tmp && pwd"

Mode defaults to non-interactive, interactive mode is selected if both stdin AND stdout are terminals (stderr is ignored).

lxc exec [<remote>:]<instance> [flags] [--] <command line>

Options

--cwd Directory to run the command in (default /root)
-n, --disable-stdin Disable stdin (reads from /dev/null)

--env Environment variable to set (e.g. HOME=/home/foo)
-t, --force-interactive Force pseudo-terminal allocation
-T, --force-noninteractive Disable pseudo-terminal allocation

--group Group ID to run the command as (default 0)
(continues on next page)

2.4. Reference 567

Canonical LXD

(continued from previous page)

--mode Override the terminal mode (auto, interactive or non-
→˓interactive) (default "auto")

--user User ID to run the command as (default 0)

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc export

Export instance backups

Synopsis

Description: Export instances as backup tarballs.

lxc export [<remote>:]<instance> [target] [--instance-only] [--optimized-storage] [flags]

Examples

lxc export u1 backup0.tar.gz
Download a backup tarball of the u1 instance.

Options

--compression Compression algorithm to use (none for uncompressed)
--instance-only Whether or not to only backup the instance (without␣

→˓snapshots)
--optimized-storage Use storage driver optimized format (can only be restored on␣

→˓a similar pool)

568 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc file

Manage files in instances

Synopsis

Description: Manage files in instances

lxc file [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

• lxc file delete - Delete files in instances

• lxc file edit - Edit files in instances

• lxc file mount - Mount files from instances

• lxc file pull - Pull files from instances

• lxc file push - Push files into instances

2.4. Reference 569

Canonical LXD

lxc file delete

Delete files in instances

Synopsis

Description: Delete files in instances

lxc file delete [<remote>:]<instance>/<path> [[<remote>:]<instance>/<path>...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc file - Manage files in instances

lxc file edit

Edit files in instances

Synopsis

Description: Edit files in instances

lxc file edit [<remote>:]<instance>/<path> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

570 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc file - Manage files in instances

lxc file mount

Mount files from instances

Synopsis

Description: Mount files from instances

lxc file mount [<remote>:]<instance>[/<path>] [<target path>] [flags]

Examples

lxc file mount foo/root fooroot
To mount /root from the instance foo onto the local fooroot directory.

Options

--auth-user string Set authentication user when using SSH SFTP listener
--listen string Setup SSH SFTP listener on address:port instead of mounting
--no-auth Disable authentication when using SSH SFTP listener

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc file - Manage files in instances

2.4. Reference 571

Canonical LXD

lxc file pull

Pull files from instances

Synopsis

Description: Pull files from instances

lxc file pull [<remote>:]<instance>/<path> [[<remote>:]<instance>/<path>...] <target␣
→˓path> [flags]

Examples

lxc file pull foo/etc/hosts .
To pull /etc/hosts from the instance and write it to the current directory.

Options

-p, --create-dirs Create any directories necessary
-r, --recursive Recursively transfer files

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc file - Manage files in instances

572 Chapter 2. Project and community

Canonical LXD

lxc file push

Push files into instances

Synopsis

Description: Push files into instances

lxc file push <source path>... [<remote>:]<instance>/<path> [flags]

Examples

lxc file push /etc/hosts foo/etc/hosts
To push /etc/hosts into the instance "foo".

Options

-p, --create-dirs Create any directories necessary
--gid Set the file's gid on push (default -1)
--mode Set the file's perms on push

-r, --recursive Recursively transfer files
--uid Set the file's uid on push (default -1)

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc file - Manage files in instances

2.4. Reference 573

Canonical LXD

lxc image

Manage images

Synopsis

Description: Manage images

In LXD instances are created from images. Those images were themselves either generated from an existing instance
or downloaded from an image server.

When using remote images, LXD will automatically cache images for you and remove them upon expiration.

The image unique identifier is the hash (sha-256) of its representation as a compressed tarball (or for split images, the
concatenation of the metadata and rootfs tarballs).

Images can be referenced by their full hash, shortest unique partial hash or alias name (if one is set).

lxc image [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

• lxc image alias - Manage image aliases

• lxc image copy - Copy images between servers

• lxc image delete - Delete images

• lxc image edit - Edit image properties

• lxc image export - Export and download images

• lxc image get-property - Get image properties

• lxc image import - Import images into the image store

• lxc image info - Show useful information about images

• lxc image list - List images

• lxc image refresh - Refresh images

• lxc image set-property - Set image properties

• lxc image show - Show image properties

574 Chapter 2. Project and community

Canonical LXD

• lxc image unset-property - Unset image properties

lxc image alias

Manage image aliases

Synopsis

Description: Manage image aliases

lxc image alias [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image - Manage images

• lxc image alias create - Create aliases for existing images

• lxc image alias delete - Delete image aliases

• lxc image alias list - List image aliases

• lxc image alias rename - Rename aliases

lxc image alias create

Create aliases for existing images

Synopsis

Description: Create aliases for existing images

lxc image alias create [<remote>:]<alias> <fingerprint> [flags]

2.4. Reference 575

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image alias - Manage image aliases

lxc image alias delete

Delete image aliases

Synopsis

Description: Delete image aliases

lxc image alias delete [<remote>:]<alias> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image alias - Manage image aliases

576 Chapter 2. Project and community

Canonical LXD

lxc image alias list

List image aliases

Synopsis

Description: List image aliases

Filters may be part of the image hash or part of the image alias name.

lxc image alias list [<remote>:] [<filters>...] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image alias - Manage image aliases

lxc image alias rename

Rename aliases

Synopsis

Description: Rename aliases

lxc image alias rename [<remote>:]<alias> <new-name> [flags]

2.4. Reference 577

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image alias - Manage image aliases

lxc image copy

Copy images between servers

Synopsis

Description: Copy images between servers

The auto-update flag instructs the server to keep this image up to date. It requires the source to be an alias and for it to
be public.

lxc image copy [<remote>:]<image> <remote>: [flags]

Options

--alias New aliases to add to the image
--auto-update Keep the image up to date after initial copy
--copy-aliases Copy aliases from source
--mode Transfer mode. One of pull (default), push or relay (default

→˓"pull")
-p, --profile Profile to apply to the new image

--public Make image public
--target-project Copy to a project different from the source
--vm Copy virtual machine images

578 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image - Manage images

lxc image delete

Delete images

Synopsis

Description: Delete images

lxc image delete [<remote>:]<image> [[<remote>:]<image>...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image - Manage images

2.4. Reference 579

Canonical LXD

lxc image edit

Edit image properties

Synopsis

Description: Edit image properties

lxc image edit [<remote>:]<image> [flags]

Examples

lxc image edit <image>
Launch a text editor to edit the properties

lxc image edit <image> < image.yaml
Load the image properties from a YAML file

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image - Manage images

lxc image export

Export and download images

580 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Export and download images

The output target is optional and defaults to the working directory.

lxc image export [<remote>:]<image> [<target>] [flags]

Options

--vm Query virtual machine images

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image - Manage images

lxc image get-property

Get image properties

Synopsis

Description: Get image properties

lxc image get-property [<remote>:]<image> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

2.4. Reference 581

Canonical LXD

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image - Manage images

lxc image import

Import images into the image store

Synopsis

Description: Import image into the image store

Directory import is only available on Linux and must be performed as root.

lxc image import <tarball>|<directory>|<URL> [<rootfs tarball>] [<remote>:] [key=value...
→˓] [flags]

Options

--alias New aliases to add to the image
--public Make image public

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

582 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc image - Manage images

lxc image info

Show useful information about images

Synopsis

Description: Show useful information about images

lxc image info [<remote>:]<image> [flags]

Options

--vm Query virtual machine images

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image - Manage images

lxc image list

List images

2.4. Reference 583

Canonical LXD

Synopsis

Description: List images

Filters may be of the = form for property based filtering, or part of the image hash or part of the image alias name.

The -c option takes a (optionally comma-separated) list of arguments that control which image attributes to output
when displaying in table or csv format.

Default column layout is: lfpdasu

Column shorthand chars:

l - Shortest image alias (and optionally number of other aliases)
L - Newline-separated list of all image aliases
f - Fingerprint (short)
F - Fingerprint (long)
p - Whether image is public
d - Description
a - Architecture
s - Size
u - Upload date
t - Type

lxc image list [<remote>:] [<filter>...] [flags]

Options

-c, --columns Columns (default "lfpdatsu")
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

584 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc image - Manage images

lxc image refresh

Refresh images

Synopsis

Description: Refresh images

lxc image refresh [<remote>:]<image> [[<remote>:]<image>...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image - Manage images

lxc image set-property

Set image properties

Synopsis

Description: Set image properties

lxc image set-property [<remote>:]<image> <key> <value> [flags]

2.4. Reference 585

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image - Manage images

lxc image show

Show image properties

Synopsis

Description: Show image properties

lxc image show [<remote>:]<image> [flags]

Options

--vm Query virtual machine images

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

586 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc image - Manage images

lxc image unset-property

Unset image properties

Synopsis

Description: Unset image properties

lxc image unset-property [<remote>:]<image> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image - Manage images

lxc import

Import instance backups

Synopsis

Description: Import backups of instances including their snapshots.

lxc import [<remote>:] <backup file> [<instance name>] [flags]

2.4. Reference 587

Canonical LXD

Examples

lxc import backup0.tar.gz
Create a new instance using backup0.tar.gz as the source.

Options

-d, --device New key/value to apply to a specific device
-s, --storage Storage pool name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc info

Show instance or server information

Synopsis

Description: Show instance or server information

lxc info [<remote>:][<instance>] [flags]

Examples

lxc info [<remote>:]<instance> [--show-log]
For instance information.

lxc info [<remote>:] [--resources]
For LXD server information.

588 Chapter 2. Project and community

Canonical LXD

Options

--resources Show the resources available to the server
--show-log Show the instance's last 100 log lines?
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc init

Create instances from images

Synopsis

Description: Create instances from images

lxc init [<remote>:]<image> [<remote>:][<name>] [flags]

Examples

lxc init ubuntu:24.04 u1
Create a container (but do not start it)

lxc init ubuntu:24.04 u1 < config.yaml
Create a container with configuration from config.yaml

lxc init ubuntu:24.04 v1 --vm -c limits.cpu=4 -c limits.memory=4GiB
Create a virtual machine with 4 vCPUs and 4GiB of RAM

lxc init ubuntu:24.04 v1 --vm -c limits.cpu=2 -c limits.memory=8GiB -d root,size=32GiB
Create a virtual machine with 2 vCPUs, 8GiB of RAM and a root disk of 32GiB

2.4. Reference 589

Canonical LXD

Options

-c, --config Config key/value to apply to the new instance
-d, --device New key/value to apply to a specific device

--empty Create an empty instance
-e, --ephemeral Ephemeral instance
-n, --network Network name

--no-profiles Create the instance with no profiles applied
-p, --profile Profile to apply to the new instance
-s, --storage Storage pool name

--target Cluster member name
-t, --type Instance type

--vm Create a virtual machine

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc launch

Create and start instances from images

Synopsis

Description: Create and start instances from images

lxc launch [<remote>:]<image> [<remote>:][<name>] [flags]

590 Chapter 2. Project and community

Canonical LXD

Examples

lxc launch ubuntu:24.04 u1
Create and start a container

lxc launch ubuntu:24.04 u1 < config.yaml
Create and start a container with configuration from config.yaml

lxc launch ubuntu:24.04 u2 -t aws:t2.micro
Create and start a container using the same size as an AWS t2.micro (1 vCPU, 1GiB␣

→˓of RAM)

lxc launch ubuntu:24.04 v1 --vm -c limits.cpu=4 -c limits.memory=4GiB
Create and start a virtual machine with 4 vCPUs and 4GiB of RAM

lxc launch ubuntu:24.04 v1 --vm -c limits.cpu=2 -c limits.memory=8GiB -d root,
→˓size=32GiB

Create and start a virtual machine with 2 vCPUs, 8GiB of RAM and a root disk of␣
→˓32GiB

Options

-c, --config Config key/value to apply to the new instance
--console[="console"] Immediately attach to the console

-d, --device New key/value to apply to a specific device
--empty Create an empty instance

-e, --ephemeral Ephemeral instance
-n, --network Network name

--no-profiles Create the instance with no profiles applied
-p, --profile Profile to apply to the new instance
-s, --storage Storage pool name

--target Cluster member name
-t, --type Instance type

--vm Create a virtual machine

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 591

Canonical LXD

SEE ALSO

• lxc - Command line client for LXD

lxc list

List instances

Synopsis

Description: List instances

Default column layout: ns46tS Fast column layout: nsacPt

A single keyword like “web” which will list any instance with a name starting by “web”. A regular expression on the
instance name. (e.g. .*web.*01$). A key/value pair referring to a configuration item. For those, the namespace can
be abbreviated to the smallest unambiguous identifier. A key/value pair where the key is a shorthand. Multiple values
must be delimited by ‘,’. Available shorthands: - type={instance type} - status={instance current lifecycle status} -
architecture={instance architecture} - location={location name} - ipv4={ip or CIDR} - ipv6={ip or CIDR}

Examples: - “user.blah=abc” will list all instances with the “blah” user property set to “abc”. - “u.blah=abc” will
do the same - “security.privileged=true” will list all privileged instances - “s.privileged=true” will do the same -
“type=container” will list all container instances - “type=container status=running” will list all running container in-
stances

A regular expression matching a configuration item or its value. (e.g. volatile.eth0.hwaddr=00:16:3e:.*).

When multiple filters are passed, they are added one on top of the other, selecting instances which satisfy them all.

== Columns == The -c option takes a comma separated list of arguments that control which instance attributes to output
when displaying in table or csv format.

Column arguments are either pre-defined shorthand chars (see below), or (extended) config keys.

Commas between consecutive shorthand chars are optional.

Pre-defined column shorthand chars: 4 - IPv4 address 6 - IPv6 address a - Architecture b - Storage pool c - Creation
date d - Description D - disk usage e - Project name l - Last used date m - Memory usage M - Memory usage (%) n -
Name N - Number of Processes p - PID of the instance’s init process P - Profiles s - State S - Number of snapshots t
- Type (persistent or ephemeral) u - CPU usage (in seconds) L - Location of the instance (e.g. its cluster member) f -
Base Image Fingerprint (short) F - Base Image Fingerprint (long)

Custom columns are defined with “[config:|devices:]key[:name][:maxWidth]”: KEY: The (extended) config or devices
key to display. If [config:|devices:] is omitted then it defaults to config key. NAME: Name to display in the column
header. Defaults to the key if not specified or empty.

MAXWIDTH: Max width of the column (longer results are truncated).
Defaults to -1 (unlimited). Use 0 to limit to the column header size.

lxc list [<remote>:] [<filter>...] [flags]

592 Chapter 2. Project and community

Canonical LXD

Examples

lxc list -c nFs46,volatile.eth0.hwaddr:MAC,config:image.os,devices:eth0.parent:ETHP
Show instances using the "NAME", "BASE IMAGE", "STATE", "IPV4", "IPV6" and "MAC"␣

→˓columns.
"BASE IMAGE", "MAC" and "IMAGE OS" are custom columns generated from instance␣

→˓configuration keys.
"ETHP" is a custom column generated from a device key.

lxc list -c ns,user.comment:comment
List instances with their running state and user comment.

Options

--all-projects Display instances from all projects
-c, --columns Columns (default "ns46tSL")

--fast Fast mode (same as --columns=nsacPt)
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc monitor

Monitor a local or remote LXD server

2.4. Reference 593

Canonical LXD

Synopsis

Description: Monitor a local or remote LXD server

By default the monitor will listen to all message types.

lxc monitor [<remote>:] [flags]

Examples

lxc monitor --type=logging
Only show log messages.

lxc monitor --pretty --type=logging --loglevel=info
Show a pretty log of messages with info level or higher.

lxc monitor --type=lifecycle
Only show lifecycle events.

Options

--all-projects Show events from all projects
-f, --format Format (json|pretty|yaml) (default "yaml")

--loglevel Minimum level for log messages (only available when using pretty␣
→˓format)

--pretty Pretty rendering (short for --format=pretty)
--type Event type to listen for

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

594 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc - Command line client for LXD

lxc move

Move instances within or in between LXD servers

Synopsis

Description: Move instances within or in between LXD servers

Transfer modes (–mode):

• pull: Target server pulls the data from the source server (source must listen on network)

• push: Source server pushes the data to the target server (target must listen on network)

• relay: The CLI connects to both source and server and proxies the data (both source and target must listen on
network)

The pull transfer mode is the default as it is compatible with all LXD versions.

lxc move [<remote>:]<instance>[/<snapshot>] [<remote>:][<instance>[/<snapshot>]] [flags]

Examples

lxc move [<remote>:]<source instance> [<remote>:][<destination instance>] [--instance-
→˓only]

Move an instance between two hosts, renaming it if destination name differs.

lxc move <old name> <new name> [--instance-only]
Rename a local instance.

lxc move <instance>/<old snapshot name> <instance>/<new snapshot name>
Rename a snapshot.

Options

--allow-inconsistent Ignore copy errors for volatile files
-c, --config Config key/value to apply to the target instance
-d, --device New key/value to apply to a specific device

--instance-only Move the instance without its snapshots
--mode Transfer mode. One of pull, push or relay. (default "pull")
--no-profiles Unset all profiles on the target instance

-p, --profile Profile to apply to the target instance
--stateless Copy a stateful instance stateless

-s, --storage Storage pool name
--target Cluster member name
--target-project Copy to a project different from the source

2.4. Reference 595

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc network

Manage and attach instances to networks

Synopsis

Description: Manage and attach instances to networks

lxc network [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

• lxc network acl - Manage network ACLs

• lxc network attach - Attach network interfaces to instances

• lxc network attach-profile - Attach network interfaces to profiles

• lxc network create - Create new networks

• lxc network delete - Delete networks

596 Chapter 2. Project and community

Canonical LXD

• lxc network detach - Detach network interfaces from instances

• lxc network detach-profile - Detach network interfaces from profiles

• lxc network edit - Edit network configurations as YAML

• lxc network forward - Manage network forwards

• lxc network get - Get values for network configuration keys

• lxc network info - Get runtime information on networks

• lxc network list - List available networks

• lxc network list-allocations - List network allocations in use

• lxc network list-leases - List DHCP leases

• lxc network load-balancer - Manage network load balancers

• lxc network peer - Manage network peerings

• lxc network rename - Rename networks

• lxc network set - Set network configuration keys

• lxc network show - Show network configurations

• lxc network unset - Unset network configuration keys

• lxc network zone - Manage network zones

lxc network acl

Manage network ACLs

Synopsis

Description: Manage network ACLs

lxc network acl [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 597

Canonical LXD

SEE ALSO

• lxc network - Manage and attach instances to networks

• lxc network acl create - Create new network ACLs

• lxc network acl delete - Delete network ACLs

• lxc network acl edit - Edit network ACL configurations as YAML

• lxc network acl get - Get values for network ACL configuration keys

• lxc network acl list - List available network ACLS

• lxc network acl rename - Rename network ACLs

• lxc network acl rule - Manage network ACL rules

• lxc network acl set - Set network ACL configuration keys

• lxc network acl show - Show network ACL configurations

• lxc network acl show-log - Show network ACL log

• lxc network acl unset - Unset network ACL configuration keys

lxc network acl create

Create new network ACLs

Synopsis

Description: Create new network ACLs

lxc network acl create [<remote>:]<ACL> [key=value...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

598 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network acl - Manage network ACLs

lxc network acl delete

Delete network ACLs

Synopsis

Description: Delete network ACLs

lxc network acl delete [<remote>:]<ACL> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl - Manage network ACLs

lxc network acl edit

Edit network ACL configurations as YAML

Synopsis

Description: Edit network ACL configurations as YAML

lxc network acl edit [<remote>:]<ACL> [flags]

2.4. Reference 599

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl - Manage network ACLs

lxc network acl get

Get values for network ACL configuration keys

Synopsis

Description: Get values for network ACL configuration keys

lxc network acl get [<remote>:]<ACL> <key> [flags]

Options

-p, --property Get the key as a network ACL property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

600 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network acl - Manage network ACLs

lxc network acl list

List available network ACLS

Synopsis

Description: List available network ACL

lxc network acl list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl - Manage network ACLs

lxc network acl rename

Rename network ACLs

2.4. Reference 601

Canonical LXD

Synopsis

Description: Rename network ACLs

lxc network acl rename [<remote>:]<ACL> <new-name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl - Manage network ACLs

lxc network acl rule

Manage network ACL rules

Synopsis

Description: Manage network ACL rules

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

602 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network acl - Manage network ACLs

• lxc network acl rule add - Add rules to an ACL

• lxc network acl rule remove - Remove rules from an ACL

lxc network acl rule add

Add rules to an ACL

Synopsis

Description: Add rules to an ACL

lxc network acl rule add [<remote>:]<ACL> <direction> <key>=<value>... [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl rule - Manage network ACL rules

lxc network acl rule remove

Remove rules from an ACL

Synopsis

Description: Remove rules from an ACL

lxc network acl rule remove [<remote>:]<ACL> <direction> <key>=<value>... [flags]

2.4. Reference 603

Canonical LXD

Options

--force Remove all rules that match

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl rule - Manage network ACL rules

lxc network acl set

Set network ACL configuration keys

Synopsis

Description: Set network ACL configuration keys

For backward compatibility, a single configuration key may still be set with: lxc network set [:]

lxc network acl set [<remote>:]<ACL> <key>=<value>... [flags]

Options

-p, --property Set the key as a network ACL property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

604 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network acl - Manage network ACLs

lxc network acl show

Show network ACL configurations

Synopsis

Description: Show network ACL configurations

lxc network acl show [<remote>:]<ACL> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl - Manage network ACLs

lxc network acl show-log

Show network ACL log

Synopsis

Description: Show network ACL log

lxc network acl show-log [<remote>:]<ACL> [flags]

2.4. Reference 605

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl - Manage network ACLs

lxc network acl unset

Unset network ACL configuration keys

Synopsis

Description: Unset network ACL configuration keys

lxc network acl unset [<remote>:]<ACL> <key> [flags]

Options

-p, --property Unset the key as a network ACL property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

606 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network acl - Manage network ACLs

lxc network attach

Attach network interfaces to instances

Synopsis

Description: Attach new network interfaces to instances

lxc network attach [<remote>:]<network> <instance> [<device name>] [<interface name>]␣
→˓[flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network attach-profile

Attach network interfaces to profiles

Synopsis

Description: Attach network interfaces to profiles

lxc network attach-profile [<remote>:]<network> <profile> [<device name>] [<interface␣
→˓name>] [flags]

2.4. Reference 607

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network create

Create new networks

Synopsis

Description: Create new networks

lxc network create [<remote>:]<network> [key=value...] [flags]

Examples

lxc network create foo
Create a new network called foo

lxc network create bar network=baz --type ovn
Create a new OVN network called bar using baz as its uplink network

Options

--target Cluster member name
-t, --type Network type

608 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network delete

Delete networks

Synopsis

Description: Delete networks

lxc network delete [<remote>:]<network> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

2.4. Reference 609

Canonical LXD

lxc network detach

Detach network interfaces from instances

Synopsis

Description: Detach network interfaces from instances

lxc network detach [<remote>:]<network> <instance> [<device name>] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network detach-profile

Detach network interfaces from profiles

Synopsis

Description: Detach network interfaces from profiles

lxc network detach-profile [<remote>:]<network> <profile> [<device name>] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

610 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network edit

Edit network configurations as YAML

Synopsis

Description: Edit network configurations as YAML

lxc network edit [<remote>:]<network> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network forward

Manage network forwards

Synopsis

Description: Manage network forwards

lxc network forward [flags]

2.4. Reference 611

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

• lxc network forward create - Create new network forwards

• lxc network forward delete - Delete network forwards

• lxc network forward edit - Edit network forward configurations as YAML

• lxc network forward get - Get values for network forward configuration keys

• lxc network forward list - List available network forwards

• lxc network forward port - Manage network forward ports

• lxc network forward set - Set network forward keys

• lxc network forward show - Show network forward configurations

• lxc network forward unset - Unset network forward configuration keys

lxc network forward create

Create new network forwards

Synopsis

Description: Create new network forwards

lxc network forward create [<remote>:]<network> [<listen_address>] [key=value...] [flags]

Options

--allocate Auto-allocate an IPv4 or IPv6 listen address. One of 'ipv4', 'ipv6'.
--target Cluster member name

612 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward - Manage network forwards

lxc network forward delete

Delete network forwards

Synopsis

Description: Delete network forwards

lxc network forward delete [<remote>:]<network> <listen_address> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 613

Canonical LXD

SEE ALSO

• lxc network forward - Manage network forwards

lxc network forward edit

Edit network forward configurations as YAML

Synopsis

Description: Edit network forward configurations as YAML

lxc network forward edit [<remote>:]<network> <listen_address> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward - Manage network forwards

lxc network forward get

Get values for network forward configuration keys

614 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Get values for network forward configuration keys

lxc network forward get [<remote>:]<network> <listen_address> <key> [flags]

Options

-p, --property Get the key as a network forward property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward - Manage network forwards

lxc network forward list

List available network forwards

Synopsis

Description: List available network forwards

lxc network forward list [<remote>:]<network> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

2.4. Reference 615

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward - Manage network forwards

lxc network forward port

Manage network forward ports

Synopsis

Description: Manage network forward ports

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward - Manage network forwards

• lxc network forward port add - Add ports to a forward

• lxc network forward port remove - Remove ports from a forward

616 Chapter 2. Project and community

Canonical LXD

lxc network forward port add

Add ports to a forward

Synopsis

Description: Add ports to a forward

lxc network forward port add [<remote>:]<network> <listen_address> <protocol> <listen_
→˓port(s)> <target_address> [<target_port(s)>] [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward port - Manage network forward ports

lxc network forward port remove

Remove ports from a forward

Synopsis

Description: Remove ports from a forward

lxc network forward port remove [<remote>:]<network> <listen_address> [<protocol>] [
→˓<listen_port(s)>] [flags]

2.4. Reference 617

Canonical LXD

Options

--force Remove all ports that match
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward port - Manage network forward ports

lxc network forward set

Set network forward keys

Synopsis

Description: Set network forward keys

For backward compatibility, a single configuration key may still be set with: lxc network set [:] <listen_address>

lxc network forward set [<remote>:]<network> <listen_address> <key>=<value>... [flags]

Options

-p, --property Set the key as a network forward property
--target Cluster member name

618 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward - Manage network forwards

lxc network forward show

Show network forward configurations

Synopsis

Description: Show network forward configurations

lxc network forward show [<remote>:]<network> <listen_address> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 619

Canonical LXD

SEE ALSO

• lxc network forward - Manage network forwards

lxc network forward unset

Unset network forward configuration keys

Synopsis

Description: Unset network forward keys

lxc network forward unset [<remote>:]<network> <listen_address> <key> [flags]

Options

-p, --property Unset the key as a network forward property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward - Manage network forwards

lxc network get

Get values for network configuration keys

620 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Get values for network configuration keys

lxc network get [<remote>:]<network> <key> [flags]

Options

-p, --property Get the key as a network property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network info

Get runtime information on networks

Synopsis

Description: Get runtime information on networks

lxc network info [<remote>:]<network> [flags]

Options

--target Cluster member name

2.4. Reference 621

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network list

List available networks

Synopsis

Description: List available networks

lxc network list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

622 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network list-allocations

List network allocations in use

Synopsis

Description: List network allocations in use

lxc network list-allocations [flags]

Options

--all-projects Run against all projects
-f, --format Format (csv|json|table|yaml|compact) (default "table")
-p, --project string Run again a specific project (default "default")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
-q, --quiet Don't show progress information

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network list-leases

List DHCP leases

2.4. Reference 623

Canonical LXD

Synopsis

Description: List DHCP leases

lxc network list-leases [<remote>:]<network> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network load-balancer

Manage network load balancers

Synopsis

Description: Manage network load balancers

lxc network load-balancer [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

624 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network - Manage and attach instances to networks

• lxc network load-balancer backend - Manage network load balancer backends

• lxc network load-balancer create - Create new network load balancers

• lxc network load-balancer delete - Delete network load balancers

• lxc network load-balancer edit - Edit network load balancer configurations as YAML

• lxc network load-balancer get - Get values for network load balancer configuration keys

• lxc network load-balancer list - List available network load balancers

• lxc network load-balancer port - Manage network load balancer ports

• lxc network load-balancer set - Set network load balancer keys

• lxc network load-balancer show - Show network load balancer configurations

• lxc network load-balancer unset - Unset network load balancer configuration keys

lxc network load-balancer backend

Manage network load balancer backends

Synopsis

Description: Manage network load balancer backends

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer - Manage network load balancers

• lxc network load-balancer backend add - Add backends to a load balancer

• lxc network load-balancer backend remove - Remove backends from a load balancer

2.4. Reference 625

Canonical LXD

lxc network load-balancer backend add

Add backends to a load balancer

Synopsis

Description: Add backend to a load balancer

lxc network load-balancer backend add [<remote>:]<network> <listen_address> <backend_
→˓name> <target_address> [<target_port(s)>] [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer backend - Manage network load balancer backends

lxc network load-balancer backend remove

Remove backends from a load balancer

Synopsis

Description: Remove backend from a load balancer

lxc network load-balancer backend remove [<remote>:]<network> <listen_address> <backend_
→˓name> [flags]

626 Chapter 2. Project and community

Canonical LXD

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer backend - Manage network load balancer backends

lxc network load-balancer create

Create new network load balancers

Synopsis

Description: Create new network load balancers

lxc network load-balancer create [<remote>:]<network> [<listen_address>] [key=value...]␣
→˓[flags]

Options

--allocate Auto-allocate an IPv4 or IPv6 listen address. One of 'ipv4', 'ipv6'.
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 627

Canonical LXD

SEE ALSO

• lxc network load-balancer - Manage network load balancers

lxc network load-balancer delete

Delete network load balancers

Synopsis

Description: Delete network load balancers

lxc network load-balancer delete [<remote>:]<network> <listen_address> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer - Manage network load balancers

lxc network load-balancer edit

Edit network load balancer configurations as YAML

628 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Edit network load balancer configurations as YAML

lxc network load-balancer edit [<remote>:]<network> <listen_address> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer - Manage network load balancers

lxc network load-balancer get

Get values for network load balancer configuration keys

Synopsis

Description: Get values for network load balancer configuration keys

lxc network load-balancer get [<remote>:]<network> <listen_address> <key> [flags]

Options

-p, --property Get the key as a network load balancer property

2.4. Reference 629

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer - Manage network load balancers

lxc network load-balancer list

List available network load balancers

Synopsis

Description: List available network load balancers

lxc network load-balancer list [<remote>:]<network> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

630 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network load-balancer - Manage network load balancers

lxc network load-balancer port

Manage network load balancer ports

Synopsis

Description: Manage network load balancer ports

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer - Manage network load balancers

• lxc network load-balancer port add - Add ports to a load balancer

• lxc network load-balancer port remove - Remove ports from a load balancer

lxc network load-balancer port add

Add ports to a load balancer

Synopsis

Description: Add ports to a load balancer

lxc network load-balancer port add [<remote>:]<network> <listen_address> <protocol>
→˓<listen_port(s)> <backend_name>[,<backend_name>...] [flags]

2.4. Reference 631

Canonical LXD

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer port - Manage network load balancer ports

lxc network load-balancer port remove

Remove ports from a load balancer

Synopsis

Description: Remove ports from a load balancer

lxc network load-balancer port remove [<remote>:]<network> <listen_address> [<protocol>]␣
→˓[<listen_port(s)>] [flags]

Options

--force Remove all ports that match
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

632 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network load-balancer port - Manage network load balancer ports

lxc network load-balancer set

Set network load balancer keys

Synopsis

Description: Set network load balancer keys

For backward compatibility, a single configuration key may still be set with: lxc network set [:] <listen_address>

lxc network load-balancer set [<remote>:]<network> <listen_address> <key>=<value>...␣
→˓[flags]

Options

-p, --property Set the key as a network load balancer property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer - Manage network load balancers

lxc network load-balancer show

Show network load balancer configurations

2.4. Reference 633

Canonical LXD

Synopsis

Description: Show network load balancer configurations

lxc network load-balancer show [<remote>:]<network> <listen_address> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer - Manage network load balancers

lxc network load-balancer unset

Unset network load balancer configuration keys

Synopsis

Description: Unset network load balancer keys

lxc network load-balancer unset [<remote>:]<network> <listen_address> <key> [flags]

Options

-p, --property Unset the key as a network load balancer property

634 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer - Manage network load balancers

lxc network peer

Manage network peerings

Synopsis

Description: Manage network peerings

lxc network peer [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

• lxc network peer create - Create new network peering

• lxc network peer delete - Delete network peerings

• lxc network peer edit - Edit network peer configurations as YAML

• lxc network peer get - Get values for network peer configuration keys

• lxc network peer list - List available network peers

2.4. Reference 635

Canonical LXD

• lxc network peer set - Set network peer keys

• lxc network peer show - Show network peer configurations

• lxc network peer unset - Unset network peer configuration keys

lxc network peer create

Create new network peering

Synopsis

Description: Create new network peering

lxc network peer create [<remote>:]<network> <peer_name> <[target project/]target_
→˓network> [key=value...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer - Manage network peerings

lxc network peer delete

Delete network peerings

Synopsis

Description: Delete network peerings

lxc network peer delete [<remote>:]<network> <peer_name> [flags]

636 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer - Manage network peerings

lxc network peer edit

Edit network peer configurations as YAML

Synopsis

Description: Edit network peer configurations as YAML

lxc network peer edit [<remote>:]<network> <peer_name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer - Manage network peerings

2.4. Reference 637

Canonical LXD

lxc network peer get

Get values for network peer configuration keys

Synopsis

Description: Get values for network peer configuration keys

lxc network peer get [<remote>:]<network> <peer_name> <key> [flags]

Options

-p, --property Get the key as a network peer property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer - Manage network peerings

lxc network peer list

List available network peers

Synopsis

Description: List available network peers

lxc network peer list [<remote>:]<network> [flags]

638 Chapter 2. Project and community

Canonical LXD

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer - Manage network peerings

lxc network peer set

Set network peer keys

Synopsis

Description: Set network peer keys

For backward compatibility, a single configuration key may still be set with: lxc network set [:] <peer_name>

lxc network peer set [<remote>:]<network> <peer_name> <key>=<value>... [flags]

Options

-p, --property Set the key as a network peer property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 639

Canonical LXD

SEE ALSO

• lxc network peer - Manage network peerings

lxc network peer show

Show network peer configurations

Synopsis

Description: Show network peer configurations

lxc network peer show [<remote>:]<network> <peer name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer - Manage network peerings

lxc network peer unset

Unset network peer configuration keys

Synopsis

Description: Unset network peer keys

lxc network peer unset [<remote>:]<network> <peer_name> <key> [flags]

640 Chapter 2. Project and community

Canonical LXD

Options

-p, --property Unset the key as a network peer property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer - Manage network peerings

lxc network rename

Rename networks

Synopsis

Description: Rename networks

lxc network rename [<remote>:]<network> <new-name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 641

Canonical LXD

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network set

Set network configuration keys

Synopsis

Description: Set network configuration keys

For backward compatibility, a single configuration key may still be set with: lxc network set [:]

lxc network set [<remote>:]<network> <key>=<value>... [flags]

Options

-p, --property Set the key as a network property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network show

Show network configurations

642 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Show network configurations

lxc network show [<remote>:]<network> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network unset

Unset network configuration keys

Synopsis

Description: Unset network configuration keys

lxc network unset [<remote>:]<network> <key> [flags]

Options

-p, --property Unset the key as a network property
--target Cluster member name

2.4. Reference 643

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

lxc network zone

Manage network zones

Synopsis

Description: Manage network zones

lxc network zone [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network - Manage and attach instances to networks

• lxc network zone create - Create new network zones

• lxc network zone delete - Delete network zones

• lxc network zone edit - Edit network zone configurations as YAML

• lxc network zone get - Get values for network zone configuration keys

• lxc network zone list - List available network zoneS

644 Chapter 2. Project and community

Canonical LXD

• lxc network zone record - Manage network zone records

• lxc network zone set - Set network zone configuration keys

• lxc network zone show - Show network zone configurations

• lxc network zone unset - Unset network zone configuration keys

lxc network zone create

Create new network zones

Synopsis

Description: Create new network zones

lxc network zone create [<remote>:]<Zone> [key=value...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone - Manage network zones

lxc network zone delete

Delete network zones

Synopsis

Description: Delete network zones

lxc network zone delete [<remote>:]<Zone> [flags]

2.4. Reference 645

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone - Manage network zones

lxc network zone edit

Edit network zone configurations as YAML

Synopsis

Description: Edit network zone configurations as YAML

lxc network zone edit [<remote>:]<Zone> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone - Manage network zones

646 Chapter 2. Project and community

Canonical LXD

lxc network zone get

Get values for network zone configuration keys

Synopsis

Description: Get values for network zone configuration keys

lxc network zone get [<remote>:]<Zone> <key> [flags]

Options

-p, --property Get the key as a network zone property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone - Manage network zones

lxc network zone list

List available network zoneS

Synopsis

Description: List available network zone

lxc network zone list [<remote>:] [flags]

2.4. Reference 647

Canonical LXD

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone - Manage network zones

lxc network zone record

Manage network zone records

Synopsis

Description: Manage network zone records

lxc network zone record [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

648 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network zone - Manage network zones

• lxc network zone record create - Create new network zone record

• lxc network zone record delete - Delete network zone record

• lxc network zone record edit - Edit network zone record configurations as YAML

• lxc network zone record entry - Manage network zone record entries

• lxc network zone record get - Get values for network zone record configuration keys

• lxc network zone record list - List available network zone records

• lxc network zone record set - Set network zone record configuration keys

• lxc network zone record show - Show network zone record configuration

• lxc network zone record unset - Unset network zone record configuration keys

lxc network zone record create

Create new network zone record

Synopsis

Description: Create new network zone record

lxc network zone record create [<remote>:]<zone> <record> [key=value...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record - Manage network zone records

2.4. Reference 649

Canonical LXD

lxc network zone record delete

Delete network zone record

Synopsis

Description: Delete network zone record

lxc network zone record delete [<remote>:]<zone> <record> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record - Manage network zone records

lxc network zone record edit

Edit network zone record configurations as YAML

Synopsis

Description: Edit network zone record configurations as YAML

lxc network zone record edit [<remote>:]<zone> <record> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

650 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network zone record - Manage network zone records

lxc network zone record entry

Manage network zone record entries

Synopsis

Description: Manage network zone record entries

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record - Manage network zone records

• lxc network zone record entry add - Add a network zone record entry

• lxc network zone record entry remove - Remove a network zone record entry

lxc network zone record entry add

Add a network zone record entry

Synopsis

Description: Add entries to a network zone record

lxc network zone record entry add [<remote>:]<zone> <record> <type> <value> [flags]

2.4. Reference 651

Canonical LXD

Options

--ttl Entry TTL

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record entry - Manage network zone record entries

lxc network zone record entry remove

Remove a network zone record entry

Synopsis

Description: Remove entries from a network zone record

lxc network zone record entry remove [<remote>:]<zone> <record> <type> <value> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

652 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc network zone record entry - Manage network zone record entries

lxc network zone record get

Get values for network zone record configuration keys

Synopsis

Description: Get values for network zone record configuration keys

lxc network zone record get [<remote>:]<zone> <record> <key> [flags]

Options

-p, --property Get the key as a network zone record property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record - Manage network zone records

lxc network zone record list

List available network zone records

2.4. Reference 653

Canonical LXD

Synopsis

Description: List available network zone records

lxc network zone record list [<remote>:]<zone> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record - Manage network zone records

lxc network zone record set

Set network zone record configuration keys

Synopsis

Description: Set network zone record configuration keys

lxc network zone record set [<remote>:]<zone> <record> <key>=<value>... [flags]

Options

-p, --property Set the key as a network zone record property

654 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record - Manage network zone records

lxc network zone record show

Show network zone record configuration

Synopsis

Description: Show network zone record configurations

lxc network zone record show [<remote>:]<zone> <record> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record - Manage network zone records

2.4. Reference 655

Canonical LXD

lxc network zone record unset

Unset network zone record configuration keys

Synopsis

Description: Unset network zone record configuration keys

lxc network zone record unset [<remote>:]<zone> <record> <key> [flags]

Options

-p, --property Unset the key as a network zone record property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record - Manage network zone records

lxc network zone set

Set network zone configuration keys

Synopsis

Description: Set network zone configuration keys

For backward compatibility, a single configuration key may still be set with: lxc network set [:]

lxc network zone set [<remote>:]<Zone> <key>=<value>... [flags]

656 Chapter 2. Project and community

Canonical LXD

Options

-p, --property Set the key as a network zone property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone - Manage network zones

lxc network zone show

Show network zone configurations

Synopsis

Description: Show network zone configurations

lxc network zone show [<remote>:]<Zone> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 657

Canonical LXD

SEE ALSO

• lxc network zone - Manage network zones

lxc network zone unset

Unset network zone configuration keys

Synopsis

Description: Unset network zone configuration keys

lxc network zone unset [<remote>:]<Zone> <key> [flags]

Options

-p, --property Unset the key as a network zone property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone - Manage network zones

lxc operation

List, show and delete background operations

658 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: List, show and delete background operations

lxc operation [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

• lxc operation delete - Delete a background operation (will attempt to cancel)

• lxc operation list - List background operations

• lxc operation show - Show details on a background operation

lxc operation delete

Delete a background operation (will attempt to cancel)

Synopsis

Description: Delete a background operation (will attempt to cancel)

lxc operation delete [<remote>:]<operation> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 659

Canonical LXD

SEE ALSO

• lxc operation - List, show and delete background operations

lxc operation list

List background operations

Synopsis

Description: List background operations

lxc operation list [<remote>:] [flags]

Options

--all-projects List operations from all projects
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc operation - List, show and delete background operations

lxc operation show

Show details on a background operation

660 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Show details on a background operation

lxc operation show [<remote>:]<operation> [flags]

Examples

lxc operation show 344a79e4-d88a-45bf-9c39-c72c26f6ab8a
Show details on that operation UUID

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc operation - List, show and delete background operations

lxc pause

Pause instances

Synopsis

Description: Pause instances

lxc pause [<remote>:]<instance> [[<remote>:]<instance>...] [flags]

Options

--all Run against all instances

2.4. Reference 661

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc profile

Manage profiles

Synopsis

Description: Manage profiles

lxc profile [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

• lxc profile add - Add profiles to instances

• lxc profile assign - Assign sets of profiles to instances

• lxc profile copy - Copy profiles

• lxc profile create - Create profiles

• lxc profile delete - Delete profiles

662 Chapter 2. Project and community

Canonical LXD

• lxc profile device - Manage devices

• lxc profile edit - Edit profile configurations as YAML

• lxc profile get - Get values for profile configuration keys

• lxc profile list - List profiles

• lxc profile remove - Remove profiles from instances

• lxc profile rename - Rename profiles

• lxc profile set - Set profile configuration keys

• lxc profile show - Show profile configurations

• lxc profile unset - Unset profile configuration keys

lxc profile add

Add profiles to instances

Synopsis

Description: Add profiles to instances

lxc profile add [<remote>:]<instance> <profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

2.4. Reference 663

Canonical LXD

lxc profile assign

Assign sets of profiles to instances

Synopsis

Description: Assign sets of profiles to instances

lxc profile assign [<remote>:]<instance> <profiles> [flags]

Examples

lxc profile assign foo default,bar
Set the profiles for "foo" to "default" and "bar".

lxc profile assign foo default
Reset "foo" to only using the "default" profile.

lxc profile assign foo ''
Remove all profile from "foo"

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

lxc profile copy

Copy profiles

664 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Copy profiles

lxc profile copy [<remote>:]<profile> [<remote>:]<profile> [flags]

Options

--refresh Update the target profile from the source if it already exists
--target-project Copy to a project different from the source

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

lxc profile create

Create profiles

Synopsis

Description: Create profiles

lxc profile create [<remote>:]<profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

2.4. Reference 665

Canonical LXD

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

lxc profile delete

Delete profiles

Synopsis

Description: Delete profiles

lxc profile delete [<remote>:]<profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

lxc profile device

Manage devices

666 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Manage devices

lxc profile device [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

• lxc profile device add - Add instance devices

• lxc profile device get - Get values for device configuration keys

• lxc profile device list - List instance devices

• lxc profile device remove - Remove instance devices

• lxc profile device set - Set device configuration keys

• lxc profile device show - Show full device configuration

• lxc profile device unset - Unset device configuration keys

lxc profile device add

Add instance devices

Synopsis

Description: Add instance devices

lxc profile device add [<remote>:]<profile> <device> <type> [key=value...] [flags]

2.4. Reference 667

Canonical LXD

Examples

lxc profile device add [<remote>:]profile1 <device-name> disk source=/share/c1 path=/
→˓opt

Will mount the host's /share/c1 onto /opt in the instance.

lxc profile device add [<remote>:]profile1 <device-name> disk pool=some-pool␣
→˓source=some-volume path=/opt

Will mount the some-volume volume on some-pool onto /opt in the instance.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile device - Manage devices

lxc profile device get

Get values for device configuration keys

Synopsis

Description: Get values for device configuration keys

lxc profile device get [<remote>:]<profile> <device> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

668 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc profile device - Manage devices

lxc profile device list

List instance devices

Synopsis

Description: List instance devices

lxc profile device list [<remote>:]<profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile device - Manage devices

lxc profile device remove

Remove instance devices

Synopsis

Description: Remove instance devices

lxc profile device remove [<remote>:]<profile> <name>... [flags]

2.4. Reference 669

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile device - Manage devices

lxc profile device set

Set device configuration keys

Synopsis

Description: Set device configuration keys

For backward compatibility, a single configuration key may still be set with: lxc profile device set [:]

lxc profile device set [<remote>:]<profile> <device> <key>=<value>... [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile device - Manage devices

670 Chapter 2. Project and community

Canonical LXD

lxc profile device show

Show full device configuration

Synopsis

Description: Show full device configuration

lxc profile device show [<remote>:]<profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile device - Manage devices

lxc profile device unset

Unset device configuration keys

Synopsis

Description: Unset device configuration keys

lxc profile device unset [<remote>:]<profile> <device> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 671

Canonical LXD

SEE ALSO

• lxc profile device - Manage devices

lxc profile edit

Edit profile configurations as YAML

Synopsis

Description: Edit profile configurations as YAML

lxc profile edit [<remote>:]<profile> [flags]

Examples

lxc profile edit <profile> < profile.yaml
Update a profile using the content of profile.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

lxc profile get

Get values for profile configuration keys

672 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Get values for profile configuration keys

lxc profile get [<remote>:]<profile> <key> [flags]

Options

-p, --property Get the key as a profile property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

lxc profile list

List profiles

Synopsis

Description: List profiles

lxc profile list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

2.4. Reference 673

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

lxc profile remove

Remove profiles from instances

Synopsis

Description: Remove profiles from instances

lxc profile remove [<remote>:]<instance> <profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

674 Chapter 2. Project and community

Canonical LXD

lxc profile rename

Rename profiles

Synopsis

Description: Rename profiles

lxc profile rename [<remote>:]<profile> <new-name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

lxc profile set

Set profile configuration keys

Synopsis

Description: Set profile configuration keys

For backward compatibility, a single configuration key may still be set with: lxc profile set [:]

lxc profile set [<remote>:]<profile> <key><value>... [flags]

Options

-p, --property Set the key as a profile property

2.4. Reference 675

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

lxc profile show

Show profile configurations

Synopsis

Description: Show profile configurations

lxc profile show [<remote>:]<profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

676 Chapter 2. Project and community

Canonical LXD

lxc profile unset

Unset profile configuration keys

Synopsis

Description: Unset profile configuration keys

lxc profile unset [<remote>:]<profile> <key> [flags]

Options

-p, --property Unset the key as a profile property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile - Manage profiles

lxc project

Manage projects

Synopsis

Description: Manage projects

lxc project [flags]

2.4. Reference 677

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

• lxc project create - Create projects

• lxc project delete - Delete projects

• lxc project edit - Edit project configurations as YAML

• lxc project get - Get values for project configuration keys

• lxc project info - Get a summary of resource allocations

• lxc project list - List projects

• lxc project rename - Rename projects

• lxc project set - Set project configuration keys

• lxc project show - Show project options

• lxc project switch - Switch the current project

• lxc project unset - Unset project configuration keys

lxc project create

Create projects

Synopsis

Description: Create projects

lxc project create [<remote>:]<project> [flags]

678 Chapter 2. Project and community

Canonical LXD

Options

-c, --config Config key/value to apply to the new project

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project - Manage projects

lxc project delete

Delete projects

Synopsis

Description: Delete projects

lxc project delete [<remote>:]<project> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 679

Canonical LXD

SEE ALSO

• lxc project - Manage projects

lxc project edit

Edit project configurations as YAML

Synopsis

Description: Edit project configurations as YAML

lxc project edit [<remote>:]<project> [flags]

Examples

lxc project edit <project> < project.yaml
Update a project using the content of project.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project - Manage projects

lxc project get

Get values for project configuration keys

680 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Get values for project configuration keys

lxc project get [<remote>:]<project> <key> [flags]

Options

-p, --property Get the key as a project property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project - Manage projects

lxc project info

Get a summary of resource allocations

Synopsis

Description: Get a summary of resource allocations

lxc project info [<remote>:]<project> <key> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

2.4. Reference 681

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project - Manage projects

lxc project list

List projects

Synopsis

Description: List projects

lxc project list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

682 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc project - Manage projects

lxc project rename

Rename projects

Synopsis

Description: Rename projects

lxc project rename [<remote>:]<project> <new-name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project - Manage projects

lxc project set

Set project configuration keys

Synopsis

Description: Set project configuration keys

For backward compatibility, a single configuration key may still be set with: lxc project set [:]

lxc project set [<remote>:]<project> <key>=<value>... [flags]

2.4. Reference 683

Canonical LXD

Options

-p, --property Set the key as a project property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project - Manage projects

lxc project show

Show project options

Synopsis

Description: Show project options

lxc project show [<remote>:]<project> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

684 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc project - Manage projects

lxc project switch

Switch the current project

Synopsis

Description: Switch the current project

lxc project switch [<remote>:]<project> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project - Manage projects

lxc project unset

Unset project configuration keys

Synopsis

Description: Unset project configuration keys

lxc project unset [<remote>:]<project> <key> [flags]

2.4. Reference 685

Canonical LXD

Options

-p, --property Unset the key as a project property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project - Manage projects

lxc publish

Publish instances as images

Synopsis

Description: Publish instances as images

lxc publish [<remote>:]<instance>[/<snapshot>] [<remote>:] [flags] [key=value...]

Options

--alias New alias to define at target
--compression none Compression algorithm to use (none for uncompressed)
--expire Image expiration date (format: rfc3339)

-f, --force Stop the instance if currently running
--public Make the image public
--reuse If the image alias already exists, delete and create a new one

686 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc query

Send a raw query to LXD

Synopsis

Description: Send a raw query to LXD

lxc query [<remote>:]<API path> [flags]

Examples

lxc query -X DELETE --wait /1.0/instances/c1
Delete local instance "c1".

Options

-d, --data Input data
--raw Print the raw response

-X, --request Action (defaults to GET) (default "GET")
--wait Wait for the operation to complete

2.4. Reference 687

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc rebuild

Rebuild instances

Synopsis

Description: Wipe the instance root disk and re-initialize. The original image is used to re-initialize the instance if a
different image or –empty is not specified.

lxc rebuild [<remote>:]<image> [<remote>:]<instance> [flags]

Options

--empty Rebuild as an empty instance
-f, --force If an instance is running, stop it and then rebuild it

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

688 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc - Command line client for LXD

lxc remote

Manage the list of remote servers

Synopsis

Description: Manage the list of remote servers

lxc remote [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

• lxc remote add - Add new remote servers

• lxc remote get-default - Show the default remote

• lxc remote list - List the available remotes

• lxc remote remove - Remove remotes

• lxc remote rename - Rename remotes

• lxc remote set-url - Set the URL for the remote

• lxc remote switch - Switch the default remote

2.4. Reference 689

Canonical LXD

lxc remote add

Add new remote servers

Synopsis

Description: Add new remote servers

URL for remote resources must be HTTPS (https://).

Basic authentication can be used when combined with the “simplestreams” protocol: lxc remote add some-name https:
//LOGIN:PASSWORD@example.com/some/path –protocol=simplestreams

lxc remote add [<remote>] <IP|FQDN|URL|token> [flags]

Options

--accept-certificate Accept certificate
--auth-type Server authentication type (tls or oidc)
--password Remote admin password
--project Project to use for the remote
--protocol Server protocol (lxd or simplestreams)
--public Public image server

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
-q, --quiet Don't show progress information

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc remote - Manage the list of remote servers

lxc remote get-default

Show the default remote

690 Chapter 2. Project and community

https://LOGIN:PASSWORD@example.com/some/path
https://LOGIN:PASSWORD@example.com/some/path

Canonical LXD

Synopsis

Description: Show the default remote

lxc remote get-default [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc remote - Manage the list of remote servers

lxc remote list

List the available remotes

Synopsis

Description: List the available remotes

lxc remote list [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 691

Canonical LXD

SEE ALSO

• lxc remote - Manage the list of remote servers

lxc remote remove

Remove remotes

Synopsis

Description: Remove remotes

lxc remote remove <remote> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc remote - Manage the list of remote servers

lxc remote rename

Rename remotes

Synopsis

Description: Rename remotes

lxc remote rename <remote> <new-name> [flags]

692 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc remote - Manage the list of remote servers

lxc remote set-url

Set the URL for the remote

Synopsis

Description: Set the URL for the remote

lxc remote set-url <remote> <URL> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc remote - Manage the list of remote servers

2.4. Reference 693

Canonical LXD

lxc remote switch

Switch the default remote

Synopsis

Description: Switch the default remote

lxc remote switch <remote> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc remote - Manage the list of remote servers

lxc rename

Rename instances and snapshots

Synopsis

Description: Rename instances and snapshots

lxc rename [<remote>:]<instance>[/<snapshot>] <instance>[/<snapshot>] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

694 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc - Command line client for LXD

lxc restart

Restart instances

Synopsis

Description: Restart instances

The opposite of “lxc pause” is “lxc start”.

lxc restart [<remote>:]<instance> [[<remote>:]<instance>...] [flags]

Options

--all Run against all instances
--console[="console"] Immediately attach to the console

-f, --force Force the instance to stop
--timeout Time to wait for the instance to shutdown cleanly (default␣

→˓-1)

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

2.4. Reference 695

Canonical LXD

lxc restore

Restore instances from snapshots

Synopsis

Description: Restore instances from snapshots

If –stateful is passed, then the running state will be restored too.

lxc restore [<remote>:]<instance> <snapshot> [flags]

Examples

lxc snapshot u1 snap0
Create the snapshot.

lxc restore u1 snap0
Restore the snapshot.

Options

--stateful Whether or not to restore the instance's running state from snapshot␣
→˓(if available)

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

696 Chapter 2. Project and community

Canonical LXD

lxc snapshot

Create instance snapshots

Synopsis

Description: Create instance snapshots

When –stateful is used, LXD attempts to checkpoint the instance’s running state, including process memory state, TCP
connections, . . .

lxc snapshot [<remote>:]<instance> [<snapshot name>] [flags]

Examples

lxc snapshot u1 snap0
Create a snapshot of "u1" called "snap0".

Options

--no-expiry Ignore any configured auto-expiry for the instance
--reuse If the snapshot name already exists, delete and create a new one
--stateful Whether or not to snapshot the instance's running state

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

2.4. Reference 697

Canonical LXD

lxc start

Start instances

Synopsis

Description: Start instances

lxc start [<remote>:]<instance> [[<remote>:]<instance>...] [flags]

Options

--all Run against all instances
--console[="console"] Immediately attach to the console
--stateless Ignore the instance state

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc stop

Stop instances

Synopsis

Description: Stop instances

lxc stop [<remote>:]<instance> [[<remote>:]<instance>...] [flags]

698 Chapter 2. Project and community

Canonical LXD

Options

--all Run against all instances
--console[="console"] Immediately attach to the console

-f, --force Force the instance to stop
--stateful Store the instance state
--timeout Time to wait for the instance to shutdown cleanly (default␣

→˓-1)

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

lxc storage

Manage storage pools and volumes

Synopsis

Description: Manage storage pools and volumes

lxc storage [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 699

Canonical LXD

SEE ALSO

• lxc - Command line client for LXD

• lxc storage bucket - Manage storage buckets

• lxc storage create - Create storage pools

• lxc storage delete - Delete storage pools

• lxc storage edit - Edit storage pool configurations as YAML

• lxc storage get - Get values for storage pool configuration keys

• lxc storage info - Show useful information about storage pools

• lxc storage list - List available storage pools

• lxc storage set - Set storage pool configuration keys

• lxc storage show - Show storage pool configurations and resources

• lxc storage unset - Unset storage pool configuration keys

• lxc storage volume - Manage storage volumes

lxc storage bucket

Manage storage buckets

Synopsis

Description: Manage storage buckets.

lxc storage bucket [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

700 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc storage - Manage storage pools and volumes

• lxc storage bucket create - Create new custom storage buckets

• lxc storage bucket delete - Delete storage buckets

• lxc storage bucket edit - Edit storage bucket configurations as YAML

• lxc storage bucket get - Get values for storage bucket configuration keys

• lxc storage bucket key - Manage storage bucket keys

• lxc storage bucket list - List storage buckets

• lxc storage bucket set - Set storage bucket configuration keys

• lxc storage bucket show - Show storage bucket configurations

• lxc storage bucket unset - Unset storage bucket configuration keys

lxc storage bucket create

Create new custom storage buckets

Synopsis

Description: Create new custom storage buckets

lxc storage bucket create [<remote>:]<pool> <bucket> [key=value...] [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 701

Canonical LXD

SEE ALSO

• lxc storage bucket - Manage storage buckets

lxc storage bucket delete

Delete storage buckets

Synopsis

Description: Delete storage buckets

lxc storage bucket delete [<remote>:]<pool> <bucket> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket - Manage storage buckets

lxc storage bucket edit

Edit storage bucket configurations as YAML

702 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Edit storage bucket configurations as YAML

lxc storage bucket edit [<remote>:]<pool> <bucket> [flags]

Examples

lxc storage bucket edit [<remote>:]<pool> <bucket> < bucket.yaml
Update a storage bucket using the content of bucket.yaml.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket - Manage storage buckets

lxc storage bucket get

Get values for storage bucket configuration keys

Synopsis

Description: Get values for storage bucket configuration keys

lxc storage bucket get [<remote>:]<pool> <bucket> <key> [flags]

2.4. Reference 703

Canonical LXD

Options

-p, --property Get the key as a storage bucket property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket - Manage storage buckets

lxc storage bucket key

Manage storage bucket keys

Synopsis

Description: Manage storage bucket keys.

lxc storage bucket key [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

704 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc storage bucket - Manage storage buckets

• lxc storage bucket key create - Create key for a storage bucket

• lxc storage bucket key delete - Delete key from a storage bucket

• lxc storage bucket key edit - Edit storage bucket key as YAML

• lxc storage bucket key list - List storage bucket keys

• lxc storage bucket key show - Show storage bucket key configurations

lxc storage bucket key create

Create key for a storage bucket

Synopsis

Description: Create key for a storage bucket

lxc storage bucket key create [<remote>:]<pool> <bucket> <key> [flags]

Options

--access-key Access key (auto-generated if empty)
--role Role (admin or read-only) (default "read-only")
--secret-key Secret key (auto-generated if empty)
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 705

Canonical LXD

SEE ALSO

• lxc storage bucket key - Manage storage bucket keys

lxc storage bucket key delete

Delete key from a storage bucket

Synopsis

Description: Delete key from a storage bucket

lxc storage bucket key delete [<remote>:]<pool> <bucket> <key> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket key - Manage storage bucket keys

lxc storage bucket key edit

Edit storage bucket key as YAML

706 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Edit storage bucket key as YAML

lxc storage bucket key edit [<remote>:]<pool> <bucket> <key> [flags]

Examples

lxc storage bucket edit [<remote>:]<pool> <bucket> <key> < key.yaml
Update a storage bucket key using the content of key.yaml.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket key - Manage storage bucket keys

lxc storage bucket key list

List storage bucket keys

Synopsis

Description: List storage bucket keys

lxc storage bucket key list [<remote>:]<pool> <bucket> [flags]

2.4. Reference 707

Canonical LXD

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket key - Manage storage bucket keys

lxc storage bucket key show

Show storage bucket key configurations

Synopsis

Description: Show storage bucket key configurations

lxc storage bucket key show [<remote>:]<pool> <bucket> <key> [flags]

Examples

lxc storage bucket key show default data foo
Will show the properties of a bucket key called "foo" for a bucket called "data"␣

→˓in the "default" pool.

Options

--target Cluster member name

708 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket key - Manage storage bucket keys

lxc storage bucket list

List storage buckets

Synopsis

Description: List storage buckets

lxc storage bucket list [<remote>:]<pool> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 709

Canonical LXD

SEE ALSO

• lxc storage bucket - Manage storage buckets

lxc storage bucket set

Set storage bucket configuration keys

Synopsis

Description: Set storage bucket configuration keys

For backward compatibility, a single configuration key may still be set with: lxc storage bucket set [:]

lxc storage bucket set [<remote>:]<pool> <bucket> <key>=<value>... [flags]

Options

-p, --property Set the key as a storage bucket property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket - Manage storage buckets

lxc storage bucket show

Show storage bucket configurations

710 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Show storage bucket configurations

lxc storage bucket show [<remote>:]<pool> <bucket> [flags]

Examples

lxc storage bucket show default data
Will show the properties of a bucket called "data" in the "default" pool.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket - Manage storage buckets

lxc storage bucket unset

Unset storage bucket configuration keys

Synopsis

Description: Unset storage bucket configuration keys

lxc storage bucket unset [<remote>:]<pool> <bucket> <key> [flags]

2.4. Reference 711

Canonical LXD

Options

-p, --property Unset the key as a storage bucket property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket - Manage storage buckets

lxc storage create

Create storage pools

Synopsis

Description: Create storage pools

lxc storage create [<remote>:]<pool> <driver> [key=value...] [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

712 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc storage - Manage storage pools and volumes

lxc storage delete

Delete storage pools

Synopsis

Description: Delete storage pools

lxc storage delete [<remote>:]<pool> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage - Manage storage pools and volumes

lxc storage edit

Edit storage pool configurations as YAML

Synopsis

Description: Edit storage pool configurations as YAML

lxc storage edit [<remote>:]<pool> [flags]

2.4. Reference 713

Canonical LXD

Examples

lxc storage edit [<remote>:]<pool> < pool.yaml
Update a storage pool using the content of pool.yaml.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage - Manage storage pools and volumes

lxc storage get

Get values for storage pool configuration keys

Synopsis

Description: Get values for storage pool configuration keys

lxc storage get [<remote>:]<pool> <key> [flags]

Options

-p, --property Get the key as a storage property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

714 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc storage - Manage storage pools and volumes

lxc storage info

Show useful information about storage pools

Synopsis

Description: Show useful information about storage pools

lxc storage info [<remote>:]<pool> [flags]

Options

--bytes Show the used and free space in bytes
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage - Manage storage pools and volumes

lxc storage list

List available storage pools

2.4. Reference 715

Canonical LXD

Synopsis

Description: List available storage pools

lxc storage list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage - Manage storage pools and volumes

lxc storage set

Set storage pool configuration keys

Synopsis

Description: Set storage pool configuration keys

For backward compatibility, a single configuration key may still be set with: lxc storage set [:]

lxc storage set [<remote>:]<pool> <key> <value> [flags]

Options

-p, --property Set the key as a storage property
--target Cluster member name

716 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage - Manage storage pools and volumes

lxc storage show

Show storage pool configurations and resources

Synopsis

Description: Show storage pool configurations and resources

lxc storage show [<remote>:]<pool> [flags]

Options

--resources Show the resources available to the storage pool
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 717

Canonical LXD

SEE ALSO

• lxc storage - Manage storage pools and volumes

lxc storage unset

Unset storage pool configuration keys

Synopsis

Description: Unset storage pool configuration keys

lxc storage unset [<remote>:]<pool> <key> [flags]

Options

-p, --property Unset the key as a storage property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage - Manage storage pools and volumes

lxc storage volume

Manage storage volumes

718 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Manage storage volumes

Unless specified through a prefix, all volume operations affect “custom” (user created) volumes.

lxc storage volume [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage - Manage storage pools and volumes

• lxc storage volume attach - Attach new storage volumes to instances

• lxc storage volume attach-profile - Attach new storage volumes to profiles

• lxc storage volume copy - Copy storage volumes

• lxc storage volume create - Create new custom storage volumes

• lxc storage volume delete - Delete storage volumes

• lxc storage volume detach - Detach storage volumes from instances

• lxc storage volume detach-profile - Detach storage volumes from profiles

• lxc storage volume edit - Edit storage volume configurations as YAML

• lxc storage volume export - Export custom storage volume

• lxc storage volume get - Get values for storage volume configuration keys

• lxc storage volume import - Import custom storage volumes

• lxc storage volume info - Show storage volume state information

• lxc storage volume list - List storage volumes

• lxc storage volume move - Move storage volumes between pools

• lxc storage volume rename - Rename storage volumes and storage volume snapshots

• lxc storage volume restore - Restore storage volume snapshots

• lxc storage volume set - Set storage volume configuration keys

• lxc storage volume show - Show storage volume configurations

• lxc storage volume snapshot - Snapshot storage volumes

2.4. Reference 719

Canonical LXD

• lxc storage volume unset - Unset storage volume configuration keys

lxc storage volume attach

Attach new storage volumes to instances

Synopsis

Description: Attach new storage volumes to instances

lxc storage volume attach [<remote>:]<pool> <volume> <instance> [<device name>] [<path>]␣
→˓[flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume attach-profile

Attach new storage volumes to profiles

Synopsis

Description: Attach new storage volumes to profiles

lxc storage volume attach-profile [<remote:>]<pool> <volume> <profile> [<device name>] [
→˓<path>] [flags]

720 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume copy

Copy storage volumes

Synopsis

Description: Copy storage volumes

lxc storage volume copy [<remote>:]<pool>/<volume>[/<snapshot>] [<remote>:]<pool>/
→˓<volume> [flags]

Options

--destination-target Destination cluster member name
--mode Transfer mode. One of pull (default), push or relay.␣

→˓(default "pull")
--refresh Refresh and update the existing storage volume copies
--target Cluster member name
--target-project Copy to a project different from the source
--volume-only Copy the volume without its snapshots

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 721

Canonical LXD

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume create

Create new custom storage volumes

Synopsis

Description: Create new custom storage volumes

lxc storage volume create [<remote>:]<pool> <volume> [key=value...] [flags]

Options

--target Cluster member name
--type Content type, block or filesystem (default "filesystem")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume delete

Delete storage volumes

722 Chapter 2. Project and community

Canonical LXD

Synopsis

Description: Delete storage volumes

lxc storage volume delete [<remote>:]<pool> <volume>[/<snapshot>] [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume detach

Detach storage volumes from instances

Synopsis

Description: Detach storage volumes from instances

lxc storage volume detach [<remote>:]<pool> <volume> <instance> [<device name>] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 723

Canonical LXD

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume detach-profile

Detach storage volumes from profiles

Synopsis

Description: Detach storage volumes from profiles

lxc storage volume detach-profile [<remote:>]<pool> <volume> <profile> [<device name>]␣
→˓[flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume edit

Edit storage volume configurations as YAML

Synopsis

Description: Edit storage volume configurations as YAML

lxc storage volume edit [<remote>:]<pool> [<type>/]<volume> [flags]

724 Chapter 2. Project and community

Canonical LXD

Examples

Provide the type of the storage volume if it is not custom.
Supported types are custom, image, container and virtual-machine.

lxc storage volume edit [<remote>:]<pool> [<type>/]<volume> < volume.yaml
Update a storage volume using the content of pool.yaml.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume export

Export custom storage volume

Synopsis

Description: Export custom storage volume

lxc storage volume export [<remote>:]<pool> <volume> [<path>] [flags]

2.4. Reference 725

Canonical LXD

Options

--compression Define a compression algorithm: for backup or none
--optimized-storage Use storage driver optimized format (can only be restored on␣

→˓a similar pool)
--target Cluster member name
--volume-only Export the volume without its snapshots

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume get

Get values for storage volume configuration keys

Synopsis

Description: Get values for storage volume configuration keys

lxc storage volume get [<remote>:]<pool> [<type>/]<volume>[/<snapshot>] <key> [flags]

Examples

Provide the type of the storage volume if it is not custom.
Supported types are custom, image, container and virtual-machine.

Add the name of the snapshot if type is one of custom, container or virtual-machine.

lxc storage volume get default data size
Returns the size of a custom volume "data" in pool "default".

lxc storage volume get default virtual-machine/data snapshots.expiry
Returns the snapshot expiration period for a virtual machine "data" in pool

→˓"default".

726 Chapter 2. Project and community

Canonical LXD

Options

-p, --property Get the key as a storage volume property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume import

Import custom storage volumes

Synopsis

Description: Import backups of custom volumes including their snapshots.

lxc storage volume import [<remote>:]<pool> <backup file> [<volume name>] [flags]

Examples

lxc storage volume import default backup0.tar.gz
Create a new custom volume using backup0.tar.gz as the source.

Options

--target Cluster member name
--type Import type, backup or iso (default "backup")

2.4. Reference 727

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume info

Show storage volume state information

Synopsis

Description: Show storage volume state information

lxc storage volume info [<remote>:]<pool> [<type>/]<volume> [flags]

Examples

Provide the type of the storage volume if it is not custom.
Supported types are custom, container and virtual-machine.

lxc storage volume info default data
Returns state information for a custom volume "data" in pool "default".

lxc storage volume info default virtual-machine/data
Returns state information for a virtual machine "data" in pool "default".

Options

--target Cluster member name

728 Chapter 2. Project and community

Canonical LXD

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume list

List storage volumes

Synopsis

Description: List storage volumes

The -c option takes a (optionally comma-separated) list of arguments that control which image attributes to output
when displaying in table or csv format.

Column shorthand chars: p - Storage pool name c - Content type (filesystem or block) d - Description e - Project
name L - Location of the instance (e.g. its cluster member) n - Name t - Type of volume (custom, image, container or
virtual-machine) u - Number of references (used by) U - Current disk usage

lxc storage volume list [<remote>:][<pool>] [<filter>...] [flags]

Options

--all-projects All projects
-c, --columns Columns (default "petndcuL")
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

2.4. Reference 729

Canonical LXD

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume move

Move storage volumes between pools

Synopsis

Description: Move storage volumes between pools

lxc storage volume move [<remote>:]<pool>/<volume> [<remote>:]<pool>/<volume> [flags]

Options

--destination-target Destination cluster member name
--mode Transfer mode, one of pull (default), push or relay␣

→˓(default "pull")
--target Cluster member name
--target-project Move to a project different from the source

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

730 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume rename

Rename storage volumes and storage volume snapshots

Synopsis

Description: Rename storage volumes

lxc storage volume rename [<remote>:]<pool> <old name>[/<old snapshot name>] <new name>[/
→˓<new snapshot name>] [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume restore

Restore storage volume snapshots

2.4. Reference 731

Canonical LXD

Synopsis

Description: Restore storage volume snapshots

lxc storage volume restore [<remote>:]<pool> <volume> <snapshot> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume set

Set storage volume configuration keys

Synopsis

Description: Set storage volume configuration keys

For backward compatibility, a single configuration key may still be set with: lxc storage volume set [:] [/]

lxc storage volume set [<remote>:]<pool> [<type>/]<volume> <key>=<value>... [flags]

Examples

Provide the type of the storage volume if it is not custom.
Supported types are custom, image, container and virtual-machine.

lxc storage volume set default data size=1GiB
Sets the size of a custom volume "data" in pool "default" to 1 GiB.

(continues on next page)

732 Chapter 2. Project and community

Canonical LXD

(continued from previous page)

lxc storage volume set default virtual-machine/data snapshots.expiry=7d
Sets the snapshot expiration period for a virtual machine "data" in pool "default"␣

→˓to seven days.

Options

-p, --property Set the key as a storage volume property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume show

Show storage volume configurations

Synopsis

Description: Show storage volume configurations

lxc storage volume show [<remote>:]<pool> [<type>/]<volume>[/<snapshot>] [flags]

Examples

Provide the type of the storage volume if it is not custom.
Supported types are custom, image, container and virtual-machine.

Add the name of the snapshot if type is one of custom, container or virtual-machine.

lxc storage volume show default data
Will show the properties of a custom volume called "data" in the "default" pool.

(continues on next page)

2.4. Reference 733

Canonical LXD

(continued from previous page)

lxc storage volume show default container/data
Will show the properties of the filesystem for a container called "data" in the

→˓"default" pool.

lxc storage volume show default virtual-machine/data/snap0
Will show the properties of snapshot "snap0" for a virtual machine called "data"␣

→˓in the "default" pool.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume snapshot

Snapshot storage volumes

Synopsis

Description: Snapshot storage volumes

lxc storage volume snapshot [<remote>:]<pool> <volume> [<snapshot>] [flags]

734 Chapter 2. Project and community

Canonical LXD

Options

--no-expiry Ignore any configured auto-expiry for the storage volume
--reuse If the snapshot name already exists, delete and create a new one
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc storage volume unset

Unset storage volume configuration keys

Synopsis

Description: Unset storage volume configuration keys

lxc storage volume unset [<remote>:]<pool> [<type>/]<volume> <key> [flags]

Examples

Provide the type of the storage volume if it is not custom.
Supported types are custom, image, container and virtual-machine.

lxc storage volume unset default data size
Remotes the size/quota of a custom volume "data" in pool "default".

lxc storage volume unset default virtual-machine/data snapshots.expiry
Removes the snapshot expiration period for a virtual machine "data" in pool

→˓"default".

2.4. Reference 735

Canonical LXD

Options

-p, --property Unset the key as a storage volume property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume - Manage storage volumes

lxc version

Show local and remote versions

Synopsis

Description: Show local and remote versions

lxc version [<remote>:] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

736 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc - Command line client for LXD

lxc warning

Manage warnings

Synopsis

Description: Manage warnings

lxc warning [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc - Command line client for LXD

• lxc warning acknowledge - Acknowledge warning

• lxc warning delete - Delete warning

• lxc warning list - List warnings

• lxc warning show - Show warning

lxc warning acknowledge

Acknowledge warning

2.4. Reference 737

Canonical LXD

Synopsis

Description: Acknowledge warning

lxc warning acknowledge [<remote>:]<warning-uuid> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc warning - Manage warnings

lxc warning delete

Delete warning

Synopsis

Description: Delete warning

lxc warning delete [<remote>:]<warning-uuid> [flags]

Options

-a, --all Delete all warnings

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

738 Chapter 2. Project and community

Canonical LXD

SEE ALSO

• lxc warning - Manage warnings

lxc warning list

List warnings

Synopsis

Description: List warnings

The -c option takes a (optionally comma-separated) list of arguments that control which warning attributes to output
when displaying in table or csv format.

Default column layout is: utSscpLl

Column shorthand chars:

c - Count
l - Last seen
L - Location
f - First seen
p - Project
s - Severity
S - Status
u - UUID
t - Type

lxc warning list [<remote>:] [flags]

Options

-a, --all List all warnings
-c, --columns Columns (default "utSscpLl")
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

2.4. Reference 739

Canonical LXD

SEE ALSO

• lxc warning - Manage warnings

lxc warning show

Show warning

Synopsis

Description: Show warning

lxc warning show [<remote>:]<warning-uuid> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc warning - Manage warnings

2.4.6 Implementation details

You don’t need to be aware of the internal implementation details to use LXD. However, advanced users might be
interested in knowing what happens internally.

Internals

Environment variables

The LXD client and daemon respect some environment variables to adapt to the user’s environment and to turn some
advanced features on and off.

Note: These environment variables are not available if you use the LXD snap.

740 Chapter 2. Project and community

Canonical LXD

Common

Name Description
LXD_DIR The LXD data directory
LXD_INSECURE_TLSIf set to true, allows all default Go ciphers both for client <-> server communication and server <->

image servers (server <-> server and clustering are not affected)
PATH List of paths to look into when resolving binaries
http_proxy Proxy server URL for HTTP
https_proxy Proxy server URL for HTTPS
no_proxy List of domains, IP addresses or CIDR ranges that don’t require the use of a proxy

Client environment variable

Name Description
EDITOR What text editor to use
VISUAL What text editor to use (if EDITOR isn’t set)
LXD_CONF Path to the LXC configuration directory
LXD_GLOBAL_CONF Path to the global LXC configuration directory
LXC_REMOTE Name of the remote to use (overrides configured default remote)

Server environment variable

Name Description
LXD_EXEC_PATHFull path to the LXD binary (used when forking subcommands)
LXD_LXC_TEMPLATE_CONFIGPath to the LXC template configuration directory
LXD_SECURITY_APPARMORIf set to false, forces AppArmor off
LXD_UNPRIVILEGED_ONLYIf set to true, enforces that only unprivileged containers can be created. Note that any privileged

containers that have been created before setting LXD_UNPRIVILEGED_ONLY will continue to be
privileged. To use this option effectively it should be set when the LXD daemon is first set up.

LXD_OVMF_PATHPath to an OVMF build including OVMF_CODE.fd and OVMF_VARS.ms.fd (deprecated, please use
LXD_QEMU_FW_PATH instead)

LXD_QEMU_FW_PATHPath (or : separated list of paths) to firmware (OVMF, SeaBIOS) to be used by QEMU
LXD_IDMAPPED_MOUNTS_DISABLEDisable idmapped mounts support (useful when testing traditional UID shifting)
LXD_DEVMONITOR_DIRPath to be monitored by the device monitor. This is primarily for testing.

UEFI variables for VMs

UEFI (Unified Extensible Firmware Interface) variables store and represent configuration settings of the UEFI firmware.
See UEFI for more information.

You can see a list of UEFI variables on your system by running ls -l /sys/firmware/efi/efivars/. Usually,
you don’t need to touch these variables, but in specific cases they can be useful to debug UEFI, SHIM, or boot loader
issues in virtual machines.

To configure UEFI variables for a VM, use the lxc config uefi command or the /1.0/instances/
<instance_name>/uefi-vars endpoint.

2.4. Reference 741

https://en.wikipedia.org/wiki/UEFI

Canonical LXD

For example, to set a variable to a value (hexadecimal):

CLI

API

lxc config uefi set <instance_name> <variable_name>-<GUID>=<value>

lxc query --request PUT /1.0/instances/<instance_name>/uefi-vars --data '{
"variables": {
"<variable_name>-<GUID>": {
"attr": 3,
"data": "<value>"

},
}

}'

See PUT /1.0/instances/{name}/uefi-vars for more information.

To display the variables that are set for a specific VM:

CLI

API

lxc config uefi show <instance_name>

lxc query --request GET /1.0/instances/<instance_name>/uefi-vars

See GET /1.0/instances/{name}/uefi-vars for more information.

Example

You can use UEFI variables to disable secure boot, for example.

Important: Use this method only for debugging purposes. LXD provides the security.secureboot option to
control the secure boot behavior.

The following command checks the secure boot state:

lxc config uefi get v1 SecureBootEnable-f0a30bc7-af08-4556-99c4-001009c93a44

A value of 01 indicates that secure boot is active. You can then turn it off with the following command:

lxc config uefi set v1 SecureBootEnable-f0a30bc7-af08-4556-99c4-001009c93a44=00

742 Chapter 2. Project and community

Canonical LXD

Daemon behavior

This specification covers some of the LXD daemon’s behavior.

Startup

On every start, LXD checks that its directory structure exists. If it doesn’t, it creates the required directories, generates
a key pair and initializes the database.

Once the daemon is ready for work, LXD scans the instances table for any instance for which the stored power state
differs from the current one. If an instance’s power state was recorded as running and the instance isn’t running, LXD
starts it.

Signal handling

SIGINT, SIGQUIT, SIGTERM

For those signals, LXD assumes that it’s being temporarily stopped and will be restarted at a later time to continue
handling the instances.

The instances will keep running and LXD will close all connections and exit cleanly.

SIGPWR

Indicates to LXD that the host is going down.

LXD will attempt a clean shutdown of all the instances. After 30 seconds, it kills any remaining instance.

The instance power_state in the instances table is kept as it was so that LXD can restore the instances as they were
after the host is done rebooting.

SIGUSR1

Write a memory profile dump to the file specified with --memprofile.

System call interception

LXD supports intercepting some specific system calls from unprivileged containers. If they’re considered to be safe, it
executes them with elevated privileges on the host.

Doing so comes with a performance impact for the syscall in question and will cause some work for LXD to evaluate
the request and if allowed, process it with elevated privileges.

Enabling of specific system call interception options is done on a per-container basis through container configuration
options.

2.4. Reference 743

Canonical LXD

Available system calls

mknod / mknodat

The mknod and mknodat system calls can be used to create a variety of special files.

Most commonly inside containers, they may be called to create block or character devices. Creating such devices isn’t
allowed in unprivileged containers as this is a very easy way to escalate privileges by allowing direct write access to
resources like disks or memory.

But there are files which are safe to create. For those, intercepting this syscall may unblock some specific workloads
and allow them to run inside an unprivileged containers.

The devices which are currently allowed are:

• OverlayFS whiteout (char 0:0)

• /dev/console (char 5:1)

• /dev/full (char 1:7)

• /dev/null (char 1:3)

• /dev/random (char 1:8)

• /dev/tty (char 5:0)

• /dev/urandom (char 1:9)

• /dev/zero (char 1:5)

All file types other than character devices are currently sent to the kernel as usual, so enabling this feature doesn’t
change their behavior at all.

This can be enabled by setting security.syscalls.intercept.mknod to true.

bpf

The bpf system call is used to manage eBPF programs in the kernel. Those can be attached to a variety of kernel
subsystems.

In general, loading of eBPF programs that are not trusted can be problematic as it can facilitate timing based attacks.

LXD’s eBPF support is currently restricted to programs managing devices cgroup entries. To enable it, you need to set
both security.syscalls.intercept.bpf and security.syscalls.intercept.bpf.devices to true.

mount

The mount system call allows for mounting both physical and virtual file systems. By default, unprivileged containers
are restricted by the kernel to just a handful of virtual and network file systems.

To allow mounting physical file systems, system call interception can be used. LXD offers a variety of options to handle
this.

security.syscalls.intercept.mount is used to control the entire feature and needs to be turned on for any of the
other options to work.

security.syscalls.intercept.mount.allowed allows specifying a list of file systems which can be directly
mounted in the container. This is the most dangerous option as it allows the user to feed data that is not trusted at

744 Chapter 2. Project and community

Canonical LXD

the kernel. This can easily be used to crash the host system or to attack it. It should only ever be used in trusted
environments.

security.syscalls.intercept.mount.shift can be set on top of that so the resulting mount is shifted to the
UID/GID map used by the container. This is needed to avoid everything showing up as nobody/nogroup inside of
unprivileged containers.

The much safer alternative to those is security.syscalls.intercept.mount.fuse which can be set to pairs of
file-system name and FUSE handler. When this is set, an attempt at mounting one of the configured file systems will
be transparently redirected to instead calling the FUSE equivalent of that file system.

As this is all running as the caller, it avoids the entire issue around the kernel attack surface and so is generally considered
to be safe, though you should keep in mind that any kind of system call interception makes for an easy way to overload
the host system.

sched_setscheduler

The sched_setscheduler system call is used to manage process priority.

Granting this may allow a user to significantly increase the priority of their processes, potentially taking a lot of system
resources.

It also allows access to schedulers like SCHED_FIFO which are generally considered to be flawed and can significantly
impact overall system stability. This is why under normal conditions, only the real root user (or global CAP_SYS_NICE)
would allow its use.

setxattr

The setxattr system call is used to set extended attributes on files.

The attributes which are handled by this currently are:

• trusted.overlay.opaque (OverlayFS directory whiteout)

Note that because the mediation must happen on a number of character strings, there is no easy way at present to only
intercept the few attributes we care about. As we only allow the attributes above, this may result in breakage for other
attributes that would have been previously allowed by the kernel.

This can be enabled by setting security.syscalls.intercept.setxattr to true.

sysinfo

The sysinfo system call is used by some distributions instead of /proc/ entries to report on resource usage.

In order to provide resource usage information specific to the container, rather than the whole system, this syscall
interception mode uses cgroup-based resource usage information to fill in the system call response.

2.4. Reference 745

Canonical LXD

Idmaps for user namespace

LXD runs safe containers. This is achieved mostly through the use of user namespaces which make it possible to run
containers unprivileged, greatly limiting the attack surface.

User namespaces work by mapping a set of UIDs and GIDs on the host to a set of UIDs and GIDs in the container.

For example, we can define that the host UIDs and GIDs from 100000 to 165535 may be used by LXD and should be
mapped to UID/GID 0 through 65535 in the container.

As a result a process running as UID 0 in the container will actually be running as UID 100000.

Allocations should always be of at least 65536 UIDs and GIDs to cover the POSIX range including root (0) and nobody
(65534).

Kernel support

User namespaces require a kernel >= 3.12, LXD will start even on older kernels but will refuse to start containers.

Allowed ranges

On most hosts, LXD will check /etc/subuid and /etc/subgid for allocations for the lxd user and on first start, set
the default profile to use the first 65536 UIDs and GIDs from that range.

If the range is shorter than 65536 (which includes no range at all), then LXD will fail to create or start any container
until this is corrected.

If some but not all of /etc/subuid, /etc/subgid, newuidmap (path lookup) and newgidmap (path lookup) can be
found on the system, LXD will fail the startup of any container until this is corrected as this shows a broken shadow
setup.

If none of those files can be found, then LXD will assume a 1000000000 UID/GID range starting at a base UID/GID
of 1000000.

This is the most common case and is usually the recommended setup when not running on a system which also hosts
fully unprivileged containers (where the container runtime itself runs as a user).

Varying ranges between hosts

The source map is sent when moving containers between hosts so that they can be remapped on the receiving host.

Different idmaps per container

LXD supports using different idmaps per container, to further isolate containers from each other. This is controlled
with two per-container configuration keys, security.idmap.isolated and security.idmap.size.

Containers with security.idmap.isolated will have a unique ID range computed for them among the other con-
tainers with security.idmap.isolated set (if none is available, setting this key will simply fail).

Containers with security.idmap.size set will have their ID range set to this size. Isolated containers without this
property set default to a ID range of size 65536; this allows for POSIX compliance and a nobody user inside the
container.

To select a specific map, the security.idmap.base key will let you override the auto-detection mechanism and tell
LXD what host UID/GID you want to use as the base for the container.

746 Chapter 2. Project and community

Canonical LXD

These properties require a container reboot to take effect.

Custom idmaps

LXD also supports customizing bits of the idmap, e.g. to allow users to bind mount parts of the host’s file system into a
container without the need for any UID-shifting file system. The per-container configuration key for this is raw.idmap,
and looks like:

both 1000 1000
uid 50-60 500-510
gid 100000-110000 10000-20000

The first line configures both the UID and GID 1000 on the host to map to UID 1000 inside the container (this can be
used for example to bind mount a user’s home directory into a container).

The second and third lines map only the UID or GID ranges into the container, respectively. The second entry per line
is the source ID, i.e. the ID on the host, and the third entry is the range inside the container. These ranges must be the
same size.

This property requires a container reboot to take effect.

Related topics

How-to guides:

• Troubleshooting

2.4. Reference 747

Canonical LXD

748 Chapter 2. Project and community

CONFIGURATION OPTIONS

cluster
scheduler.instance, 414
user.*, 414

device
acceleration, 304
address, 342
bind, 337
boot.priority (Type: <code

class="literal">disk</code>: <code
class="literal">disk-device-conf</code>),
320

boot.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 292

boot.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-macvlan-device-
conf</code>), 297

boot.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-conf</code>),
304

boot.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-conf</code>),
311

boot.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-physical-device-
conf</code>), 302

boot.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-sriov-device-
conf</code>), 300

busnum, 328
ceph.cluster_name, 320
ceph.user_name, 320
connect, 337
devnum, 328
gid (Type: <code class="literal">gpu</code>:

<code class="literal">gpu-physical-device-
conf</code>), 330

gid (Type: <code class="literal">proxy</code>: <code
class="literal">proxy-device-conf</code>),
338

gid (Type: <code class="literal">unix-block</code>:
<code class="literal">unix-block-device-
conf</code>), 326

gid (Type: <code class="literal">unix-char</code>:
<code class="literal">unix-char-device-
conf</code>), 324

gid (Type: <code class="literal">unix-hotplug</code>:
<code class="literal">unix-hotplug-device-
conf</code>), 340

gid (Type: <code class="literal">usb</code>:
<code class="literal">unix-usb-device-
conf</code>), 328

gvrp (Type: <code class="literal">nic</code>:
<code class="literal">nic-ipvlan-device-
conf</code>), 308

gvrp (Type: <code class="literal">nic</code>:
<code class="literal">nic-macvlan-device-
conf</code>), 297

gvrp (Type: <code class="literal">nic</code>:
<code class="literal">nic-physical-device-
conf</code>), 302

gvrp (Type: <code class="literal">nic</code>:
<code class="literal">nic-routed-device-
conf</code>), 314

host_name (Type: <code class="literal">nic</code>:
<code class="literal">nic-bridged-device-
conf</code>), 292

host_name (Type: <code class="literal">nic</code>:
<code class="literal">nic-ovn-device-
conf</code>), 305

host_name (Type: <code class="literal">nic</code>:
<code class="literal">nic-p2p-device-
conf</code>), 311

host_name (Type: <code class="literal">nic</code>:
<code class="literal">nic-routed-device-
conf</code>), 314

hwaddr (Type: <code

749

Canonical LXD

class="literal">infiniband</code>:
<code class="literal">infiniband-device-
conf</code>), 335

hwaddr (Type: <code class="literal">nic</code>:
<code class="literal">nic-bridged-device-
conf</code>), 293

hwaddr (Type: <code class="literal">nic</code>:
<code class="literal">nic-ipvlan-device-
conf</code>), 308

hwaddr (Type: <code class="literal">nic</code>:
<code class="literal">nic-macvlan-device-
conf</code>), 297

hwaddr (Type: <code class="literal">nic</code>:
<code class="literal">nic-ovn-device-
conf</code>), 305

hwaddr (Type: <code class="literal">nic</code>:
<code class="literal">nic-p2p-device-
conf</code>), 311

hwaddr (Type: <code class="literal">nic</code>:
<code class="literal">nic-physical-device-
conf</code>), 302

hwaddr (Type: <code class="literal">nic</code>:
<code class="literal">nic-routed-device-
conf</code>), 314

hwaddr (Type: <code class="literal">nic</code>:
<code class="literal">nic-sriov-device-
conf</code>), 300

id (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-mdev-device-
conf</code>), 331

id (Type: <code class="literal">gpu</code>: <code
class="literal">gpu-mig-device-conf</code>),
332

id (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-physical-device-
conf</code>), 330

id (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-sriov-device-
conf</code>), 334

initial.*, 320
io.bus, 320
io.cache, 320
ipv4.address (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 293

ipv4.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 308

ipv4.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-conf</code>),
305

ipv4.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 314

ipv4.gateway (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 308

ipv4.gateway (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 314

ipv4.host_address, 314
ipv4.host_table (Type: <code

class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 309

ipv4.host_table (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 315

ipv4.neighbor_probe, 315
ipv4.routes (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 293

ipv4.routes (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-conf</code>),
305

ipv4.routes (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-conf</code>),
311

ipv4.routes (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 315

ipv4.routes.external (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 293

ipv4.routes.external (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-conf</code>),
305

ipv6.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 293

ipv6.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 309

750 Configuration options

Canonical LXD

ipv6.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-conf</code>),
305

ipv6.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 315

ipv6.gateway (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 309

ipv6.gateway (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 315

ipv6.host_address, 315
ipv6.host_table (Type: <code

class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 309

ipv6.host_table (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 315

ipv6.neighbor_probe, 315
ipv6.routes (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 293

ipv6.routes (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-conf</code>),
305

ipv6.routes (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-conf</code>),
311

ipv6.routes (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 316

ipv6.routes.external (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 294

ipv6.routes.external (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-conf</code>),
306

limits.egress (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 294

limits.egress (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-conf</code>),
311

limits.egress (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 316

limits.ingress (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 294

limits.ingress (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-conf</code>),
311

limits.ingress (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 316

limits.max (Type: <code
class="literal">disk</code>: <code
class="literal">disk-device-conf</code>),
321

limits.max (Type: <code class="literal">nic</code>:
<code class="literal">nic-bridged-device-
conf</code>), 294

limits.max (Type: <code class="literal">nic</code>:
<code class="literal">nic-p2p-device-
conf</code>), 311

limits.max (Type: <code class="literal">nic</code>:
<code class="literal">nic-routed-device-
conf</code>), 316

limits.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 294

limits.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-conf</code>),
312

limits.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 316

limits.read, 321
limits.write, 321
listen, 338
maas.subnet.ipv4 (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 294

maas.subnet.ipv4 (Type: <code
class="literal">nic</code>: <code

Configuration options 751

Canonical LXD

class="literal">nic-macvlan-device-
conf</code>), 298

maas.subnet.ipv4 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-physical-device-
conf</code>), 302

maas.subnet.ipv4 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-sriov-device-
conf</code>), 300

maas.subnet.ipv6 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 295

maas.subnet.ipv6 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-macvlan-device-
conf</code>), 298

maas.subnet.ipv6 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-physical-device-
conf</code>), 302

maas.subnet.ipv6 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-sriov-device-
conf</code>), 300

major (Type: <code class="literal">unix-
block</code>: <code class="literal">unix-
block-device-conf</code>), 326

major (Type: <code class="literal">unix-char</code>:
<code class="literal">unix-char-device-
conf</code>), 324

mdev, 331
mig.ci, 332
mig.gi, 332
mig.uuid, 332
minor (Type: <code class="literal">unix-

block</code>: <code class="literal">unix-
block-device-conf</code>), 326

minor (Type: <code class="literal">unix-char</code>:
<code class="literal">unix-char-device-
conf</code>), 324

mode (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-physical-device-
conf</code>), 330

mode (Type: <code class="literal">nic</code>:
<code class="literal">nic-ipvlan-device-
conf</code>), 309

mode (Type: <code class="literal">proxy</code>:
<code class="literal">proxy-device-
conf</code>), 338

mode (Type: <code class="literal">unix-block</code>:
<code class="literal">unix-block-device-
conf</code>), 326

mode (Type: <code class="literal">unix-char</code>:
<code class="literal">unix-char-device-
conf</code>), 324

mode (Type: <code class="literal">unix-
hotplug</code>: <code class="literal">unix-
hotplug-device-conf</code>), 340

mode (Type: <code class="literal">usb</code>:
<code class="literal">unix-usb-device-
conf</code>), 328

mtu (Type: <code class="literal">infiniband</code>:
<code class="literal">infiniband-device-
conf</code>), 335

mtu (Type: <code class="literal">nic</code>:
<code class="literal">nic-bridged-device-
conf</code>), 295

mtu (Type: <code class="literal">nic</code>:
<code class="literal">nic-ipvlan-device-
conf</code>), 309

mtu (Type: <code class="literal">nic</code>:
<code class="literal">nic-macvlan-device-
conf</code>), 298

mtu (Type: <code class="literal">nic</code>: <code
class="literal">nic-p2p-device-conf</code>),
312

mtu (Type: <code class="literal">nic</code>:
<code class="literal">nic-physical-device-
conf</code>), 302

mtu (Type: <code class="literal">nic</code>:
<code class="literal">nic-routed-device-
conf</code>), 316

mtu (Type: <code class="literal">nic</code>:
<code class="literal">nic-sriov-device-
conf</code>), 300

name (Type: <code class="literal">infiniband</code>:
<code class="literal">infiniband-device-
conf</code>), 335

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-bridged-device-
conf</code>), 295

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-ipvlan-device-
conf</code>), 310

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-macvlan-device-
conf</code>), 298

name (Type: <code class="literal">nic</code>: <code
class="literal">nic-ovn-device-conf</code>),
306

name (Type: <code class="literal">nic</code>: <code
class="literal">nic-p2p-device-conf</code>),
312

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-physical-device-
conf</code>), 302

752 Configuration options

Canonical LXD

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-routed-device-
conf</code>), 316

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-sriov-device-
conf</code>), 300

nat, 338
nested, 306
network (Type: <code class="literal">nic</code>:

<code class="literal">nic-bridged-device-
conf</code>), 295

network (Type: <code class="literal">nic</code>:
<code class="literal">nic-macvlan-device-
conf</code>), 298

network (Type: <code class="literal">nic</code>:
<code class="literal">nic-ovn-device-
conf</code>), 306

network (Type: <code class="literal">nic</code>:
<code class="literal">nic-physical-device-
conf</code>), 303

network (Type: <code class="literal">nic</code>:
<code class="literal">nic-sriov-device-
conf</code>), 300

nictype, 335
parent (Type: <code

class="literal">infiniband</code>:
<code class="literal">infiniband-device-
conf</code>), 335

parent (Type: <code class="literal">nic</code>:
<code class="literal">nic-bridged-device-
conf</code>), 295

parent (Type: <code class="literal">nic</code>:
<code class="literal">nic-ipvlan-device-
conf</code>), 310

parent (Type: <code class="literal">nic</code>:
<code class="literal">nic-macvlan-device-
conf</code>), 298

parent (Type: <code class="literal">nic</code>:
<code class="literal">nic-physical-device-
conf</code>), 303

parent (Type: <code class="literal">nic</code>:
<code class="literal">nic-routed-device-
conf</code>), 317

parent (Type: <code class="literal">nic</code>:
<code class="literal">nic-sriov-device-
conf</code>), 301

path (Type: <code class="literal">disk</code>: <code
class="literal">disk-device-conf</code>), 321

path (Type: <code class="literal">tpm</code>: <code
class="literal">tpm-device-conf</code>), 341

path (Type: <code class="literal">unix-block</code>:
<code class="literal">unix-block-device-
conf</code>), 326

path (Type: <code class="literal">unix-char</code>:

<code class="literal">unix-char-device-
conf</code>), 325

pathrm, 341
pci (Type: <code class="literal">gpu</code>:

<code class="literal">gpu-mdev-device-
conf</code>), 331

pci (Type: <code class="literal">gpu</code>: <code
class="literal">gpu-mig-device-conf</code>),
333

pci (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-physical-device-
conf</code>), 330

pci (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-sriov-device-
conf</code>), 334

pool, 321
productid (Type: <code class="literal">gpu</code>:

<code class="literal">gpu-mdev-device-
conf</code>), 331

productid (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-mig-device-
conf</code>), 333

productid (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-physical-device-
conf</code>), 330

productid (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-sriov-device-
conf</code>), 334

productid (Type: <code class="literal">unix-
hotplug</code>: <code class="literal">unix-
hotplug-device-conf</code>), 340

productid (Type: <code class="literal">usb</code>:
<code class="literal">unix-usb-device-
conf</code>), 328

propagation, 322
proxy_protocol, 338
queue.tx.length (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 295

queue.tx.length (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-conf</code>),
312

queue.tx.length (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 317

raw.mount.options, 322
readonly, 322
recursive, 322
required (Type: <code class="literal">disk</code>:

<code class="literal">disk-device-
conf</code>), 322

Configuration options 753

Canonical LXD

required (Type: <code class="literal">unix-
block</code>: <code class="literal">unix-
block-device-conf</code>), 326

required (Type: <code class="literal">unix-
char</code>: <code class="literal">unix-
char-device-conf</code>), 325

required (Type: <code class="literal">unix-
hotplug</code>: <code class="literal">unix-
hotplug-device-conf</code>), 340

required (Type: <code class="literal">usb</code>:
<code class="literal">unix-usb-device-
conf</code>), 328

security.acls, 306
security.acls.default.egress.action, 306
security.acls.default.egress.logged, 306
security.acls.default.ingress.action, 307
security.acls.default.ingress.logged, 307
security.gid, 338
security.ipv4_filtering, 295
security.ipv6_filtering, 296
security.mac_filtering (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 296

security.mac_filtering (Type: <code
class="literal">nic</code>: <code
class="literal">nic-sriov-device-
conf</code>), 301

security.port_isolation, 296
security.uid, 339
serial, 328
shift, 322
size, 322
size.state, 323
source (Type: <code class="literal">disk</code>:

<code class="literal">disk-device-
conf</code>), 323

source (Type: <code class="literal">unix-
block</code>: <code class="literal">unix-
block-device-conf</code>), 327

source (Type: <code class="literal">unix-
char</code>: <code class="literal">unix-
char-device-conf</code>), 325

uid (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-physical-device-
conf</code>), 330

uid (Type: <code class="literal">proxy</code>: <code
class="literal">proxy-device-conf</code>),
339

uid (Type: <code class="literal">unix-block</code>:
<code class="literal">unix-block-device-
conf</code>), 327

uid (Type: <code class="literal">unix-char</code>:
<code class="literal">unix-char-device-

conf</code>), 325
uid (Type: <code class="literal">unix-hotplug</code>:

<code class="literal">unix-hotplug-device-
conf</code>), 340

uid (Type: <code class="literal">usb</code>:
<code class="literal">unix-usb-device-
conf</code>), 329

vendorid (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-mdev-device-
conf</code>), 332

vendorid (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-mig-device-
conf</code>), 333

vendorid (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-physical-device-
conf</code>), 330

vendorid (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-sriov-device-
conf</code>), 334

vendorid (Type: <code class="literal">unix-
hotplug</code>: <code class="literal">unix-
hotplug-device-conf</code>), 340

vendorid (Type: <code class="literal">usb</code>:
<code class="literal">unix-usb-device-
conf</code>), 329

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-bridged-device-
conf</code>), 296

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-ipvlan-device-
conf</code>), 310

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-macvlan-device-
conf</code>), 298

vlan (Type: <code class="literal">nic</code>: <code
class="literal">nic-ovn-device-conf</code>),
307

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-physical-device-
conf</code>), 303

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-routed-device-
conf</code>), 317

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-sriov-device-
conf</code>), 301

vlan.tagged, 296

instance
agent.nic_config, 265
architecture, 264
boot.autostart, 266
boot.autostart.delay, 266
boot.autostart.priority, 267

754 Configuration options

Canonical LXD

boot.debug_edk2, 267
boot.host_shutdown_timeout, 267
boot.stop.priority, 267
cloud-init.network-config, 268
cloud-init.user-data, 268
cloud-init.vendor-data, 268
cluster.evacuate, 265
environment.*, 266
limits.cpu, 269
limits.cpu.allowance, 269
limits.cpu.nodes, 269
limits.cpu.priority, 269
limits.disk.priority, 270
limits.hugepages.1GB, 270
limits.hugepages.1MB, 270
limits.hugepages.2MB, 270
limits.hugepages.64KB, 271
limits.kernel.*, 272
limits.memory, 271
limits.memory.enforce, 271
limits.memory.hugepages, 271
limits.memory.swap, 271
limits.memory.swap.priority, 272
limits.processes, 272
linux.kernel_modules, 265
linux.kernel_modules.load, 266
linux.sysctl.*, 266
migration.incremental.memory, 275
migration.incremental.memory.goal, 275
migration.incremental.memory.iterations, 276
migration.stateful, 276
name, 264
nvidia.driver.capabilities, 276
nvidia.require.cuda, 276
nvidia.require.driver, 276
nvidia.runtime, 277
raw.apparmor, 277
raw.idmap, 277
raw.lxc, 277
raw.qemu, 277
raw.qemu.conf, 277
raw.seccomp, 278
security.agent.metrics, 279
security.csm, 279
security.devlxd, 280
security.devlxd.images, 280
security.idmap.base, 280
security.idmap.isolated, 280
security.idmap.size, 280
security.nesting, 281
security.privileged, 281
security.protection.delete, 281
security.protection.shift, 281
security.secureboot, 281

security.sev, 281
security.sev.policy.es, 282
security.sev.session.data, 282
security.sev.session.dh, 282
security.syscalls.allow, 282
security.syscalls.deny, 282
security.syscalls.deny_compat, 282
security.syscalls.deny_default, 283
security.syscalls.intercept.bpf, 283
security.syscalls.intercept.bpf.devices, 283
security.syscalls.intercept.mknod, 283
security.syscalls.intercept.mount, 283
security.syscalls.intercept.mount.allowed,

284
security.syscalls.intercept.mount.fuse, 284
security.syscalls.intercept.mount.shift, 284
security.syscalls.intercept.sched_setscheduler,

284
security.syscalls.intercept.setxattr, 284
security.syscalls.intercept.sysinfo, 285
snapshots.expiry, 285
snapshots.pattern, 285
snapshots.schedule, 285
snapshots.schedule.stopped, 286
user.*, 266
user.network-config, 268
user.user-data, 268
user.vendor-data, 268
volatile.<name>.apply_quota, 286
volatile.<name>.ceph_rbd, 286
volatile.<name>.host_name, 286
volatile.<name>.hwaddr, 286
volatile.<name>.last_state.created, 287
volatile.<name>.last_state.hwaddr, 287
volatile.<name>.last_state.ip_addresses, 287
volatile.<name>.last_state.mtu, 287
volatile.<name>.last_state.vdpa.name, 287
volatile.<name>.last_state.vf.hwaddr, 287
volatile.<name>.last_state.vf.id, 287
volatile.<name>.last_state.vf.spoofcheck, 287
volatile.<name>.last_state.vf.vlan, 288
volatile.apply_nvram, 288
volatile.apply_template, 288
volatile.base_image, 288
volatile.cloud_init.instance-id, 288
volatile.evacuate.origin, 288
volatile.idmap.base, 288
volatile.idmap.current, 289
volatile.idmap.next, 289
volatile.last_state.idmap, 289
volatile.last_state.power, 289
volatile.uuid, 289
volatile.uuid.generation, 289
volatile.vsock_id, 289

Configuration options 755

Canonical LXD

network
action, 140
backends, 163
bgp.ipv4.nexthop, 392
bgp.ipv6.nexthop, 392
bgp.peers.NAME.address (Bridge network: <code

class="literal">bridge-network-conf</code>),
392

bgp.peers.NAME.address (Physical network:
<code class="literal">physical-network-
conf</code>), 409

bgp.peers.NAME.asn (Bridge network: <code
class="literal">bridge-network-conf</code>),
392

bgp.peers.NAME.asn (Physical network: <code
class="literal">physical-network-
conf</code>), 409

bgp.peers.NAME.holdtime (Bridge network: <code
class="literal">bridge-network-conf</code>),
393

bgp.peers.NAME.holdtime (Physical network:
<code class="literal">physical-network-
conf</code>), 409

bgp.peers.NAME.password (Bridge network: <code
class="literal">bridge-network-conf</code>),
393

bgp.peers.NAME.password (Physical network:
<code class="literal">physical-network-
conf</code>), 410

bridge.driver, 393
bridge.external_interfaces, 393
bridge.hwaddr (Bridge network: <code

class="literal">bridge-network-conf</code>),
393

bridge.hwaddr (OVN network: <code
class="literal">ovn-network-conf</code>),
403

bridge.mode, 393
bridge.mtu (Bridge network: <code

class="literal">bridge-network-conf</code>),
394

bridge.mtu (OVN network: <code class="literal">ovn-
network-conf</code>), 403

config (How to configure network ACLs: <code
class="literal">acl-acl-properties</code>),
139

config (How to configure network forwards:
<code class="literal">forward-forward-
properties</code>), 145

config (How to configure network load balancers:
<code class="literal">load-balancer-load-
balancer-properties</code>), 163

config (How to create OVN peer routing relation-
ships: <code class="literal">peering-peering-

properties</code>), 167
config (How to configure network zones:

<code class="literal">zone-record-
properties</code>), 151

description (How to configure network ACLs: <code
class="literal">acl-acl-properties</code>),
139

description (How to configure network ACLs: <code
class="literal">acl-rule-properties</code>),
140

description (How to configure network forwards:
<code class="literal">forward-forward-
properties</code>), 145

description (How to configure network forwards:
<code class="literal">forward-port-
properties</code>), 146

description (How to configure network load balancers:
<code class="literal">load-balancer-load-
balancer-backend-properties</code>), 164

description (How to configure network load bal-
ancers: <code class="literal">load-balancer-
load-balancer-port-properties</code>), 165

description (How to configure network load bal-
ancers: <code class="literal">load-balancer-
load-balancer-properties</code>), 163

description (How to create OVN peer routing relation-
ships: <code class="literal">peering-peering-
properties</code>), 167

description (How to configure network zones:
<code class="literal">zone-record-
properties</code>), 151

destination, 140
destination_port, 140
dns.domain (Bridge network: <code

class="literal">bridge-network-conf</code>),
394

dns.domain (OVN network: <code class="literal">ovn-
network-conf</code>), 403

dns.mode, 394
dns.nameservers (Physical network: <code

class="literal">physical-network-
conf</code>), 410

dns.nameservers (How to configure network
zones: <code class="literal">zone-config-
options</code>), 150

dns.search (Bridge network: <code
class="literal">bridge-network-conf</code>),
394

dns.search (OVN network: <code class="literal">ovn-
network-conf</code>), 403

dns.zone.forward (Bridge network: <code
class="literal">bridge-network-conf</code>),
394

dns.zone.forward (OVN network: <code

756 Configuration options

Canonical LXD

class="literal">ovn-network-conf</code>),
403

dns.zone.reverse.ipv4 (Bridge network: <code
class="literal">bridge-network-conf</code>),
394

dns.zone.reverse.ipv4 (OVN network: <code
class="literal">ovn-network-conf</code>),
404

dns.zone.reverse.ipv6 (Bridge network: <code
class="literal">bridge-network-conf</code>),
394

dns.zone.reverse.ipv6 (OVN network: <code
class="literal">ovn-network-conf</code>),
404

egress, 139
entries, 151
fan.overlay_subnet, 395
fan.type, 395
fan.underlay_subnet, 395
gvrp (Macvlan network: <code

class="literal">macvlan-network-
conf</code>), 407

gvrp (Physical network: <code class="literal">physical-
network-conf</code>), 410

icmp_code, 141
icmp_type, 141
ingress, 139
ipv4.address (Bridge network: <code

class="literal">bridge-network-conf</code>),
395

ipv4.address (OVN network: <code
class="literal">ovn-network-conf</code>),
404

ipv4.dhcp (Bridge network: <code
class="literal">bridge-network-conf</code>),
395

ipv4.dhcp (OVN network: <code class="literal">ovn-
network-conf</code>), 404

ipv4.dhcp.expiry, 395
ipv4.dhcp.gateway, 396
ipv4.dhcp.ranges, 396
ipv4.firewall, 396
ipv4.gateway, 410
ipv4.l3only, 404
ipv4.nat (Bridge network: <code

class="literal">bridge-network-conf</code>),
396

ipv4.nat (OVN network: <code class="literal">ovn-
network-conf</code>), 404

ipv4.nat.address (Bridge network: <code
class="literal">bridge-network-conf</code>),
396

ipv4.nat.address (OVN network: <code
class="literal">ovn-network-conf</code>),

404
ipv4.nat.order, 396
ipv4.ovn.ranges (Bridge network: <code

class="literal">bridge-network-conf</code>),
397

ipv4.ovn.ranges (Physical network: <code
class="literal">physical-network-
conf</code>), 410

ipv4.routes (Bridge network: <code
class="literal">bridge-network-conf</code>),
397

ipv4.routes (Physical network: <code
class="literal">physical-network-
conf</code>), 410

ipv4.routes.anycast, 410
ipv4.routing, 397
ipv6.address (Bridge network: <code

class="literal">bridge-network-conf</code>),
397

ipv6.address (OVN network: <code
class="literal">ovn-network-conf</code>),
405

ipv6.dhcp (Bridge network: <code
class="literal">bridge-network-conf</code>),
397

ipv6.dhcp (OVN network: <code class="literal">ovn-
network-conf</code>), 405

ipv6.dhcp.expiry, 397
ipv6.dhcp.ranges, 397
ipv6.dhcp.stateful (Bridge network: <code

class="literal">bridge-network-conf</code>),
398

ipv6.dhcp.stateful (OVN network: <code
class="literal">ovn-network-conf</code>),
405

ipv6.firewall, 398
ipv6.gateway, 411
ipv6.l3only, 405
ipv6.nat (Bridge network: <code

class="literal">bridge-network-conf</code>),
398

ipv6.nat (OVN network: <code class="literal">ovn-
network-conf</code>), 405

ipv6.nat.address (Bridge network: <code
class="literal">bridge-network-conf</code>),
398

ipv6.nat.address (OVN network: <code
class="literal">ovn-network-conf</code>),
405

ipv6.nat.order, 398
ipv6.ovn.ranges (Bridge network: <code

class="literal">bridge-network-conf</code>),
398

ipv6.ovn.ranges (Physical network: <code

Configuration options 757

Canonical LXD

class="literal">physical-network-
conf</code>), 411

ipv6.routes (Bridge network: <code
class="literal">bridge-network-conf</code>),
399

ipv6.routes (Physical network: <code
class="literal">physical-network-
conf</code>), 411

ipv6.routes.anycast, 411
ipv6.routing, 399
listen_address (How to configure network forwards:

<code class="literal">forward-forward-
properties</code>), 145

listen_address (How to configure network load bal-
ancers: <code class="literal">load-balancer-
load-balancer-properties</code>), 163

listen_port (How to configure network forwards:
<code class="literal">forward-port-
properties</code>), 146

listen_port (How to configure network load bal-
ancers: <code class="literal">load-balancer-
load-balancer-port-properties</code>), 165

maas.subnet.ipv4 (Bridge network: <code
class="literal">bridge-network-conf</code>),
399

maas.subnet.ipv4 (Macvlan network: <code
class="literal">macvlan-network-
conf</code>), 408

maas.subnet.ipv4 (Physical network: <code
class="literal">physical-network-
conf</code>), 411

maas.subnet.ipv4 (SR-IOV network: <code
class="literal">sriov-network-conf</code>),
413

maas.subnet.ipv6 (Bridge network: <code
class="literal">bridge-network-conf</code>),
399

maas.subnet.ipv6 (Macvlan network: <code
class="literal">macvlan-network-
conf</code>), 408

maas.subnet.ipv6 (Physical network: <code
class="literal">physical-network-
conf</code>), 411

maas.subnet.ipv6 (SR-IOV network: <code
class="literal">sriov-network-conf</code>),
413

mtu (Macvlan network: <code class="literal">macvlan-
network-conf</code>), 408

mtu (Physical network: <code class="literal">physical-
network-conf</code>), 412

mtu (SR-IOV network: <code class="literal">sriov-
network-conf</code>), 413

name (How to configure network ACLs: <code
class="literal">acl-acl-properties</code>),

139
name (How to configure network load balancers: <code

class="literal">load-balancer-load-balancer-
backend-properties</code>), 164

name (How to create OVN peer routing relation-
ships: <code class="literal">peering-peering-
properties</code>), 167

name (How to configure network zones:
<code class="literal">zone-record-
properties</code>), 152

network, 405
network.nat, 150
ovn.ingress_mode, 412
parent (Macvlan network: <code

class="literal">macvlan-network-
conf</code>), 408

parent (Physical network: <code
class="literal">physical-network-
conf</code>), 412

parent (SR-IOV network: <code class="literal">sriov-
network-conf</code>), 413

peers.NAME.address, 150
peers.NAME.key, 150
ports (How to configure network forwards:

<code class="literal">forward-forward-
properties</code>), 145

ports (How to configure network load balancers: <code
class="literal">load-balancer-load-balancer-
properties</code>), 163

protocol (How to configure network ACLs: <code
class="literal">acl-rule-properties</code>),
141

protocol (How to configure network forwards:
<code class="literal">forward-port-
properties</code>), 146

protocol (How to configure network load balancers:
<code class="literal">load-balancer-load-
balancer-port-properties</code>), 165

raw.dnsmasq, 399
security.acls (Bridge network: <code

class="literal">bridge-network-conf</code>),
399

security.acls (OVN network: <code
class="literal">ovn-network-conf</code>),
406

security.acls.default.egress.action (Bridge
network: <code class="literal">bridge-
network-conf</code>), 399

security.acls.default.egress.action (OVN
network: <code class="literal">ovn-network-
conf</code>), 406

security.acls.default.egress.logged (Bridge
network: <code class="literal">bridge-
network-conf</code>), 399

758 Configuration options

Canonical LXD

security.acls.default.egress.logged (OVN
network: <code class="literal">ovn-network-
conf</code>), 406

security.acls.default.ingress.action (Bridge
network: <code class="literal">bridge-
network-conf</code>), 400

security.acls.default.ingress.action (OVN
network: <code class="literal">ovn-network-
conf</code>), 406

security.acls.default.ingress.logged (Bridge
network: <code class="literal">bridge-
network-conf</code>), 400

security.acls.default.ingress.logged (OVN
network: <code class="literal">ovn-network-
conf</code>), 406

source, 141
source_port, 141
state, 141
status, 167
target_address (How to configure network for-

wards: <code class="literal">forward-port-
properties</code>), 146

target_address (How to configure network load bal-
ancers: <code class="literal">load-balancer-
load-balancer-backend-properties</code>),
164

target_backend, 165
target_network, 167
target_port (How to configure network forwards:

<code class="literal">forward-port-
properties</code>), 147

target_port (How to configure network load balancers:
<code class="literal">load-balancer-load-
balancer-backend-properties</code>), 164

target_project, 167
tunnel.NAME.group, 400
tunnel.NAME.id, 400
tunnel.NAME.interface, 400
tunnel.NAME.local, 400
tunnel.NAME.port, 400
tunnel.NAME.protocol, 401
tunnel.NAME.remote, 401
tunnel.NAME.ttl, 401
user.* (Bridge network: <code class="literal">bridge-

network-conf</code>), 401
user.* (Macvlan network: <code

class="literal">macvlan-network-
conf</code>), 408

user.* (OVN network: <code class="literal">ovn-
network-conf</code>), 406

user.* (Physical network: <code
class="literal">physical-network-
conf</code>), 412

user.* (SR-IOV network: <code class="literal">sriov-

network-conf</code>), 413
user.* (How to configure network zones: <code

class="literal">zone-config-options</code>),
150

vlan (Macvlan network: <code
class="literal">macvlan-network-
conf</code>), 408

vlan (Physical network: <code class="literal">physical-
network-conf</code>), 412

vlan (SR-IOV network: <code class="literal">sriov-
network-conf</code>), 413

project
backups.compression_algorithm, 354
features.images, 346
features.networks, 346
features.networks.zones, 346
features.profiles, 346
features.storage.buckets, 346
features.storage.volumes, 346
images.auto_update_cached, 354
images.auto_update_interval, 354
images.compression_algorithm, 354
images.default_architecture, 354
images.remote_cache_expiry, 354
limits.containers, 347
limits.cpu, 347
limits.disk, 347
limits.instances, 348
limits.memory, 348
limits.networks, 348
limits.processes, 348
limits.virtual-machines, 348
restricted, 349
restricted.backups, 349
restricted.cluster.groups, 349
restricted.cluster.target, 349
restricted.containers.interception, 349
restricted.containers.lowlevel, 349
restricted.containers.nesting, 350
restricted.containers.privilege, 350
restricted.devices.disk, 350
restricted.devices.disk.paths, 350
restricted.devices.gpu, 351
restricted.devices.infiniband, 351
restricted.devices.nic, 351
restricted.devices.pci, 351
restricted.devices.proxy, 351
restricted.devices.unix-block, 351
restricted.devices.unix-char, 352
restricted.devices.unix-hotplug, 352
restricted.devices.usb, 352
restricted.idmap.gid, 352
restricted.idmap.uid, 352

Configuration options 759

Canonical LXD

restricted.networks.access, 352
restricted.networks.subnets, 353
restricted.networks.uplinks, 353
restricted.networks.zones, 353
restricted.snapshots, 353
restricted.virtual-machines.lowlevel, 353
user.*, 354

server
acme.agree_tos, 256
acme.ca_url, 256
acme.domain, 256
acme.email, 256
backups.compression_algorithm, 261
cluster.healing_threshold, 257
cluster.https_address, 257
cluster.images_minimal_replica, 257
cluster.join_token_expiry, 258
cluster.max_standby, 258
cluster.max_voters, 258
cluster.offline_threshold, 258
core.bgp_address, 252
core.bgp_asn, 252
core.bgp_routerid, 253
core.debug_address, 253
core.dns_address, 253
core.https_address, 253
core.https_allowed_credentials, 253
core.https_allowed_headers, 253
core.https_allowed_methods, 253
core.https_allowed_origin, 254
core.https_trusted_proxy, 254
core.metrics_address, 254
core.metrics_authentication, 254
core.proxy_http, 254
core.proxy_https, 254
core.proxy_ignore_hosts, 255
core.remote_token_expiry, 255
core.shutdown_timeout, 255
core.storage_buckets_address, 255
core.syslog_socket, 255
core.trust_ca_certificates, 255
core.trust_password, 255
images.auto_update_cached, 258
images.auto_update_interval, 258
images.compression_algorithm, 259
images.default_architecture, 259
images.remote_cache_expiry, 259
instances.migration.stateful, 261
instances.nic.host_name, 261
instances.placement.scriptlet, 261
loki.api.ca_cert, 259
loki.api.url, 259
loki.auth.password, 259

loki.auth.username, 260
loki.instance, 260
loki.labels, 260
loki.loglevel, 260
loki.types, 260
maas.api.key, 261
maas.api.url, 261
maas.machine, 262
network.ovn.ca_cert, 262
network.ovn.client_cert, 262
network.ovn.client_key, 262
network.ovn.integration_bridge, 262
network.ovn.northbound_connection, 262
oidc.audience, 256
oidc.client.id, 256
oidc.groups.claim, 257
oidc.issuer, 257
storage.backups_volume, 262
storage.images_volume, 263

storage
block.filesystem (Ceph RBD - <code

class="literal">ceph</code>: <code
class="literal">ceph-volume-conf</code>),
368

block.filesystem (LVM - <code
class="literal">lvm</code>: <code
class="literal">lvm-volume-conf</code>),
380

block.filesystem (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-volume-
conf</code>), 373

block.filesystem (ZFS - <code
class="literal">zfs</code>: <code
class="literal">zfs-volume-conf</code>),
386

block.mount_options (Ceph RBD - <code
class="literal">ceph</code>: <code
class="literal">ceph-volume-conf</code>),
368

block.mount_options (LVM - <code
class="literal">lvm</code>: <code
class="literal">lvm-volume-conf</code>),
380

block.mount_options (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-volume-
conf</code>), 373

block.mount_options (ZFS - <code
class="literal">zfs</code>: <code
class="literal">zfs-volume-conf</code>),
386

block.type, 373

760 Configuration options

Canonical LXD

btrfs.mount_options, 356
ceph.cluster_name, 366
ceph.osd.data_pool_name, 366
ceph.osd.pg_num, 366
ceph.osd.pool_name, 366
ceph.rbd.clone_copy, 367
ceph.rbd.du, 367
ceph.rbd.features, 367
ceph.user.name, 367
cephfs.cluster_name, 360
cephfs.create_missing, 360
cephfs.data_pool, 360
cephfs.fscache, 360
cephfs.meta_pool, 360
cephfs.osd_pg_num, 360
cephfs.path, 361
cephfs.user.name, 361
cephobject.bucket.name_prefix, 364
cephobject.cluster_name, 364
cephobject.radosgw.endpoint, 364
cephobject.radosgw.endpoint_cert_file, 364
cephobject.user.name, 364
lvm.stripes, 381
lvm.stripes.size, 381
lvm.thinpool_metadata_size, 379
lvm.thinpool_name, 379
lvm.use_thinpool, 379
lvm.vg.force_reuse, 379
lvm.vg_name, 379
powerflex.clone_copy, 371
powerflex.domain, 371
powerflex.gateway, 372
powerflex.gateway.verify, 372
powerflex.mode, 372
powerflex.pool, 372
powerflex.sdt, 372
powerflex.user.name, 372
powerflex.user.password, 372
rsync.bwlimit (Directory - <code

class="literal">dir</code>: <code
class="literal">dir-pool-conf</code>), 376

rsync.bwlimit (LVM - <code
class="literal">lvm</code>: <code
class="literal">lvm-pool-conf</code>),
379

rsync.bwlimit (Dell PowerFlex - <code
class="literal">powerflex</code>: <code
class="literal">powerflex-pool-conf</code>),
372

rsync.compression (Directory - <code
class="literal">dir</code>: <code
class="literal">dir-pool-conf</code>), 376

rsync.compression (LVM - <code
class="literal">lvm</code>: <code

class="literal">lvm-pool-conf</code>),
379

rsync.compression (Dell PowerFlex - <code
class="literal">powerflex</code>: <code
class="literal">powerflex-pool-conf</code>),
373

security.shifted (Btrfs - <code
class="literal">btrfs</code>: <code
class="literal">btrfs-volume-conf</code>),
357

security.shifted (Ceph RBD - <code
class="literal">ceph</code>: <code
class="literal">ceph-volume-conf</code>),
368

security.shifted (CephFS - <code
class="literal">cephfs</code>: <code
class="literal">cephfs-volume-conf</code>),
361

security.shifted (Directory - <code
class="literal">dir</code>: <code
class="literal">dir-volume-conf</code>),
376

security.shifted (LVM - <code
class="literal">lvm</code>: <code
class="literal">lvm-volume-conf</code>),
381

security.shifted (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-volume-
conf</code>), 374

security.shifted (ZFS - <code
class="literal">zfs</code>: <code
class="literal">zfs-volume-conf</code>),
386

security.unmapped (Btrfs - <code
class="literal">btrfs</code>: <code
class="literal">btrfs-volume-conf</code>),
357

security.unmapped (Ceph RBD - <code
class="literal">ceph</code>: <code
class="literal">ceph-volume-conf</code>),
368

security.unmapped (CephFS - <code
class="literal">cephfs</code>: <code
class="literal">cephfs-volume-conf</code>),
361

security.unmapped (Directory - <code
class="literal">dir</code>: <code
class="literal">dir-volume-conf</code>),
376

security.unmapped (LVM - <code
class="literal">lvm</code>: <code
class="literal">lvm-volume-conf</code>),
381

Configuration options 761

Canonical LXD

security.unmapped (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-volume-
conf</code>), 374

security.unmapped (ZFS - <code
class="literal">zfs</code>: <code
class="literal">zfs-volume-conf</code>),
386

size (Btrfs - <code class="literal">btrfs</code>:
<code class="literal">btrfs-bucket-
conf</code>), 358

size (Btrfs - <code class="literal">btrfs</code>:
<code class="literal">btrfs-pool-
conf</code>), 356

size (Btrfs - <code class="literal">btrfs</code>:
<code class="literal">btrfs-volume-
conf</code>), 357

size (Ceph RBD - <code class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 368

size (CephFS - <code class="literal">cephfs</code>:
<code class="literal">cephfs-volume-
conf</code>), 361

size (Ceph Object - <code
class="literal">cephobject</code>:
<code class="literal">cephobject-bucket-
conf</code>), 365

size (Directory - <code class="literal">dir</code>:
<code class="literal">dir-volume-
conf</code>), 376

size (LVM - <code class="literal">lvm</code>: <code
class="literal">lvm-bucket-conf</code>), 382

size (LVM - <code class="literal">lvm</code>: <code
class="literal">lvm-pool-conf</code>), 380

size (LVM - <code class="literal">lvm</code>: <code
class="literal">lvm-volume-conf</code>),
381

size (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-volume-
conf</code>), 374

size (ZFS - <code class="literal">zfs</code>: <code
class="literal">zfs-bucket-conf</code>), 388

size (ZFS - <code class="literal">zfs</code>: <code
class="literal">zfs-pool-conf</code>), 384

size (ZFS - <code class="literal">zfs</code>: <code
class="literal">zfs-volume-conf</code>), 386

snapshots.expiry (Btrfs - <code
class="literal">btrfs</code>: <code
class="literal">btrfs-volume-conf</code>),
357

snapshots.expiry (Ceph RBD - <code
class="literal">ceph</code>: <code
class="literal">ceph-volume-conf</code>),

368
snapshots.expiry (CephFS - <code

class="literal">cephfs</code>: <code
class="literal">cephfs-volume-conf</code>),
362

snapshots.expiry (Directory - <code
class="literal">dir</code>: <code
class="literal">dir-volume-conf</code>),
377

snapshots.expiry (LVM - <code
class="literal">lvm</code>: <code
class="literal">lvm-volume-conf</code>),
381

snapshots.expiry (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-volume-
conf</code>), 374

snapshots.expiry (ZFS - <code
class="literal">zfs</code>: <code
class="literal">zfs-volume-conf</code>),
386

snapshots.pattern (Btrfs - <code
class="literal">btrfs</code>: <code
class="literal">btrfs-volume-conf</code>),
358

snapshots.pattern (Ceph RBD - <code
class="literal">ceph</code>: <code
class="literal">ceph-volume-conf</code>),
368

snapshots.pattern (CephFS - <code
class="literal">cephfs</code>: <code
class="literal">cephfs-volume-conf</code>),
362

snapshots.pattern (Directory - <code
class="literal">dir</code>: <code
class="literal">dir-volume-conf</code>),
377

snapshots.pattern (LVM - <code
class="literal">lvm</code>: <code
class="literal">lvm-volume-conf</code>),
382

snapshots.pattern (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-volume-
conf</code>), 374

snapshots.pattern (ZFS - <code
class="literal">zfs</code>: <code
class="literal">zfs-volume-conf</code>),
386

snapshots.schedule (Btrfs - <code
class="literal">btrfs</code>: <code
class="literal">btrfs-volume-conf</code>),
358

snapshots.schedule (Ceph RBD - <code

762 Configuration options

Canonical LXD

class="literal">ceph</code>: <code
class="literal">ceph-volume-conf</code>),
369

snapshots.schedule (CephFS - <code
class="literal">cephfs</code>: <code
class="literal">cephfs-volume-conf</code>),
362

snapshots.schedule (Directory - <code
class="literal">dir</code>: <code
class="literal">dir-volume-conf</code>),
377

snapshots.schedule (LVM - <code
class="literal">lvm</code>: <code
class="literal">lvm-volume-conf</code>),
382

snapshots.schedule (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-volume-
conf</code>), 374

snapshots.schedule (ZFS - <code
class="literal">zfs</code>: <code
class="literal">zfs-volume-conf</code>),
387

source (Btrfs - <code class="literal">btrfs</code>:
<code class="literal">btrfs-pool-
conf</code>), 356

source (Ceph RBD - <code
class="literal">ceph</code>: <code
class="literal">ceph-pool-conf</code>),
367

source (CephFS - <code
class="literal">cephfs</code>: <code
class="literal">cephfs-pool-conf</code>),
361

source (Directory - <code class="literal">dir</code>:
<code class="literal">dir-pool-conf</code>),
376

source (LVM - <code class="literal">lvm</code>:
<code class="literal">lvm-pool-
conf</code>), 380

source (ZFS - <code class="literal">zfs</code>:
<code class="literal">zfs-pool-conf</code>),
385

source.wipe (Btrfs - <code
class="literal">btrfs</code>: <code
class="literal">btrfs-pool-conf</code>),
357

source.wipe (LVM - <code
class="literal">lvm</code>: <code
class="literal">lvm-pool-conf</code>),
380

source.wipe (ZFS - <code class="literal">zfs</code>:
<code class="literal">zfs-pool-conf</code>),
385

volatile.pool.pristine (Ceph RBD - <code
class="literal">ceph</code>: <code
class="literal">ceph-pool-conf</code>),
367

volatile.pool.pristine (CephFS - <code
class="literal">cephfs</code>: <code
class="literal">cephfs-pool-conf</code>),
361

volatile.pool.pristine (Ceph Object - <code
class="literal">cephobject</code>:
<code class="literal">cephobject-pool-
conf</code>), 364

volatile.uuid (Btrfs - <code
class="literal">btrfs</code>: <code
class="literal">btrfs-volume-conf</code>),
358

volatile.uuid (Ceph RBD - <code
class="literal">ceph</code>: <code
class="literal">ceph-volume-conf</code>),
369

volatile.uuid (CephFS - <code
class="literal">cephfs</code>: <code
class="literal">cephfs-volume-conf</code>),
362

volatile.uuid (Directory - <code
class="literal">dir</code>: <code
class="literal">dir-volume-conf</code>),
377

volatile.uuid (LVM - <code
class="literal">lvm</code>: <code
class="literal">lvm-volume-conf</code>),
382

volatile.uuid (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-volume-
conf</code>), 375

volatile.uuid (ZFS - <code
class="literal">zfs</code>: <code
class="literal">zfs-volume-conf</code>),
387

volume.size, 373
zfs.block_mode, 387
zfs.blocksize, 387
zfs.clone_copy, 385
zfs.delegate, 388
zfs.export, 385
zfs.pool_name, 385
zfs.remove_snapshots, 388
zfs.reserve_space, 388
zfs.use_refquota, 388

sysctl
fs.aio-max-nr, 415
fs.inotify.max_queued_events, 415

Configuration options 763

Canonical LXD

fs.inotify.max_user_instances, 416
fs.inotify.max_user_watches, 416
kernel.dmesg_restrict, 416
kernel.keys.maxbytes, 416
kernel.keys.maxkeys, 416
net.core.bpf_jit_limit, 417
net.ipv4.neigh.default.gc_thresh3, 417
net.ipv6.neigh.default.gc_thresh3, 417
vm.max_map_count, 417

764 Configuration options

	In this documentation
	Project and community
	First steps with LXD
	Install and initialize LXD
	Launch and inspect instances
	Configure instances
	Interact with instances
	Manage snapshots
	Next steps

	How-to guides
	Get started
	Getting started
	How to install LXD
	Choose your release
	Install LXD from a package
	Linux
	Snap package
	Other installation options
	Other operating systems
	Install LXD from source
	From source: Build the latest version
	From source: Build a release
	Start the build
	From source: Install
	Machine setup
	Manage access to LXD
	Upgrade LXD

	How to initialize LXD
	Interactive configuration
	Minimal setup
	Non-interactive configuration
	Re-configuring an existing LXD installation
	Rollback
	Default profile
	Configuration format

	How to manage the LXD snap
	Control updates of the snap
	Choose the right channel and track
	Hold and schedule updates
	Schedule updates
	Keep cluster members in sync
	Use a Snap Store Proxy
	Configure the snap
	Start and stop the daemon

	How to access the LXD web UI
	Enable or disable the UI

	How to access the local LXD documentation
	How to get support
	Support and community
	Bug reports
	Forum
	IRC
	Commercial support
	Documentation

	How to contribute to LXD
	Code of Conduct
	License and copyright
	Pull requests
	Commit structure
	Developer Certificate of Origin
	Contribute to the code
	Install LXD from source
	Add your fork as a remote
	Build LXD
	Important notes for new LXD contributors
	Contribute to the documentation
	Documentation framework
	Build the documentation
	Automatic documentation checks
	Document configuration options

	Related topics

	LXD server and client
	How to expose LXD to the network
	Authenticate with the LXD server

	How to configure the LXD server
	Configure server options
	Display the server configuration
	Edit the full server configuration

	How to add remote servers
	Authentication
	List configured remotes
	Add a remote LXD server
	Select a default remote
	Configure a global remote

	How to add command aliases
	Related topics

	Work with LXD
	Instances
	How to create instances
	Examples
	Create a container
	Create a virtual machine
	Create a container with specific configuration options
	Create a VM on a specific cluster member
	Create a container with a specific instance type
	Create a VM that boots from an ISO

	How to configure instances
	Configure instance options
	Configure instance properties
	Configure devices
	Display instance configuration
	Edit the full instance configuration

	How to manage instances
	Show information about an instance
	Start an instance
	Stop an instance
	Delete an instance
	Prevent accidental deletion of instances
	Rebuild an instance

	How to use profiles
	View profiles
	Create an empty profile
	Edit a profile
	Set specific options for a profile
	Edit the full profile
	Apply a profile to an instance
	Remove a profile from an instance

	How to troubleshoot failing instances
	Troubleshooting example

	How to access files in an instance
	Edit instance files
	Delete files from the instance
	Pull files from the instance to the local machine
	Push files from the local machine to the instance
	Mount a file system from the instance

	How to access the console
	Access the graphical console (for virtual machines)

	How to run commands in an instance
	Run commands inside your instance
	Execution mode
	User, groups and working directory
	Environment
	Get shell access to your instance

	How to use cloud-init
	cloud-init support in images
	Configuration options
	Vendor data and user data
	How to configure cloud-init
	YAML format for cloud-init configuration
	Configure cloud-init through the API
	How to check the cloud-init status
	How to specify user or vendor data
	Examples
	Upgrade packages
	Install packages
	Set the time zone
	Run commands
	Add a user account
	How to specify network configuration data
	Example

	How to add a routed NIC device to a virtual machine
	How to back up instances
	Use snapshots for instance backup
	Create a snapshot
	View, edit or delete snapshots
	Schedule instance snapshots
	Restore an instance snapshot
	Use export files for instance backup
	Export an instance
	Restore an instance from an export file
	Copy an instance to a backup server

	How to move existing LXD instances between servers
	Live migration
	Live migration for virtual machines
	Live migration for containers

	How to import physical or virtual machines to LXD instances
	How to migrate containers from LXC to LXD
	Get the tool
	Prepare your LXC containers
	Start the migration process
	Check the configuration

	Related topics

	Images
	How to use remote images
	List configured remotes
	List available images on a remote
	Add a remote server
	Add a simple streams server
	Add a remote LXD server
	Reference an image
	Select a default remote

	How to manage images
	List available images
	Filter available images
	View image information
	Edit image properties
	Delete an image
	Configure image aliases
	Export an image to a set of files

	How to associate profiles with an image
	How to copy and import images
	Copy an image from a remote
	Import an image from files
	Import from the local file system
	Import from a file on a remote web server
	Custom HTTP headers

	How to create images
	Publish an image from an instance or snapshot
	Prepare the instance for publishing
	Build an image

	Related topics

	Projects
	How to create and configure projects
	Create a project
	Configure a project
	Set specific configuration options
	Edit the project

	How to work with different projects
	List projects
	Switch projects
	Target a project
	List instances in a project
	Move an instance to another project
	Copy a profile to another project

	How to confine projects to specific users
	Confine projects to specific TLS clients
	Confine projects to specific LXD users

	Related topics

	Storage
	How to manage storage pools
	Create a storage pool
	Examples
	Create a storage pool in a cluster
	Configure storage pool settings
	View storage pools
	Resize a storage pool

	How to manage storage volumes
	Create a custom storage volume
	Create the volume
	Attach the volume to an instance
	Attach the volume as a device
	Configure I/O limits
	Use the volume for backups or images
	Configure storage volume settings
	Configure default values for storage volumes
	View storage volumes
	Resize a storage volume

	How to manage storage buckets and keys
	Install requirements for local storage buckets
	Configure the S3 address
	Manage storage buckets
	Create a storage bucket
	Configure storage bucket settings
	View storage buckets
	Resize a storage bucket
	Manage storage bucket keys
	Create storage bucket keys
	Edit or delete storage bucket keys
	View storage bucket keys

	How to create an instance in a specific storage pool
	Move instance storage volumes to another pool

	How to back up custom storage volumes
	Use snapshots for volume backup
	Create a snapshot of a custom storage volume
	View, edit or delete snapshots
	Schedule snapshots of a custom storage volume
	Restore a snapshot of a custom storage volume
	Use export files for volume backup
	Export a custom storage volume
	Restore a custom storage volume from an export file

	How to move or copy storage volumes
	Copy custom storage volumes
	Move or rename custom storage volumes
	Copy or move between cluster members
	Copy or move between projects
	Copy or move between LXD servers
	Move instance storage volumes to another pool

	Related topics

	Networking
	How to create a network
	Network types
	Create a network
	Create a network in a cluster
	Attach a network to an instance
	Attach the network as a device

	How to configure a network
	How to configure LXD as a BGP server
	Configure the BGP server
	Configure next-hop (bridge only)
	Configure BGP peers for OVN networks

	How to configure network ACLs
	Create an ACL
	ACL properties
	Add or remove rules
	Rule ordering and priorities
	Rule properties
	Use selectors in rules
	ACL groups
	Network selectors
	Log traffic
	Edit an ACL
	Assign an ACL
	Configure default actions
	Bridge limitations

	How to configure network forwards
	Create a network forward
	Forward properties
	Requirements for listen addresses
	Configure ports
	Port properties
	Edit a network forward
	Delete a network forward

	How to configure network zones
	Project views
	Generated records
	Forward records
	Reverse records
	Enable the built-in DNS server
	Create and configure a network zone
	Configuration options
	Add a network zone to a network
	Add custom records
	Create a record
	Record properties
	Add or remove entries

	How to configure your firewall
	xtables vs. nftables
	Use LXD’s firewall
	Use another firewall
	Disable LXD’s firewall rules
	firewalld: Add the bridge to the trusted zone
	UFW: Add rules for the bridge
	Prevent connectivity issues with LXD and Docker

	How to integrate with systemd-resolved
	Configure resolved
	Make the resolved configuration persistent

	How to set up OVN with LXD
	Set up a standalone OVN network
	Set up a LXD cluster on OVN
	Send OVN logs to LXD

	How to configure network load balancers
	Create a network load balancer
	Load balancer properties
	Requirements for listen addresses
	Configure backends
	Backend properties
	Configure ports
	Port properties
	Edit a network load balancer
	Delete a network load balancer

	How to create OVN peer routing relationships
	Create a routing relationship between networks
	Peering properties
	List routing relationships
	Edit a routing relationship

	How to display IPAM information of a LXD deployment
	Related topics

	Troubleshooting
	How to debug LXD
	Debugging lxc and lxd
	lxc --debug
	lxc monitor
	REST API through local socket
	REST API through HTTPS
	With command line tools
	With browser
	Debug the LXD database
	Dumping the database content or schema
	Running custom queries from the console
	Running custom queries at LXD daemon startup
	Syncing the cluster database to disk

	Frequently asked questions
	Why do my instances not have network access?
	How to enable the LXD server for remote access?
	When I do a lxc remote add, it asks for a password or token?
	Why should I not run privileged containers?
	Can I bind-mount my home directory in a container?
	How can I run Docker inside a LXD container?
	Where does the LXD client (lxc) store its configuration?
	Why can I not ping my LXD instance from another host?
	How can I monitor what LXD is doing?
	Why does LXD stall when creating an instance?
	Why does starting containers suddenly fail?
	Why does LXD not start on Ubuntu 20.04 or earlier?

	Get ready for production
	Clustering
	How to form a cluster
	Configure the cluster interactively
	Initialize the bootstrap server
	Join additional servers
	Configure the cluster through preseed files
	Initialize the bootstrap server
	Join additional servers
	Use MicroCloud

	How to manage a cluster
	Configure your cluster
	Assign member roles
	Edit the cluster member configuration
	Evacuate and restore cluster members
	Automatic evacuation
	Delete cluster members
	Deal with offline cluster members
	Upgrade cluster members
	Update the cluster certificate

	How to configure networks for a cluster
	Separate REST API and clustering networks

	How to configure storage for a cluster
	View member-specific pool configuration
	Create storage volumes

	How to manage instances in a cluster
	Launch an instance on a specific cluster member
	Check where an instance is located
	Move an instance

	How to set up cluster groups
	Launch an instance on a cluster group member

	How to recover a cluster
	Recover from quorum loss
	Recover cluster members with changed addresses
	Manually alter Raft membership

	Related topics

	Production setup
	How to benchmark performance
	Get the tool
	Run the tool
	Select an image
	Create and launch containers
	Delete containers

	How to increase the network bandwidth
	Increase the network bandwidth on the LXD host
	Increase the transmit queue length on the instances

	How to monitor metrics
	Query the raw data
	Set up Prometheus
	Expose the metrics endpoint
	Add a metrics certificate to LXD
	Make the metrics certificate available for Prometheus
	Configure Prometheus to scrape from LXD

	How to send logs to Loki
	Configure LXD to send logs
	Query Loki logs
	Add labels

	Set up a Grafana dashboard
	How to back up a LXD server
	What to back up
	Full backup
	Export a snapshot
	Partial backup
	Back up instances and volumes
	Secondary backup LXD server
	Export tarballs
	Snapshots
	Back up the database

	How to recover instances in case of disaster
	Recovery process
	Example

	Related topics

	Explanation
	Important concepts
	About lxd and lxc
	LXD vs. LXC
	LXD daemon
	lxd vs. lxc

	About containers and VMs
	Application containers vs. system containers
	Virtual machines vs. system containers
	Instance types in LXD
	Related topics

	Entities in LXD
	About images
	Caching
	Auto-update
	Special image properties
	Related topics

	About storage pools, volumes and buckets
	Storage pools
	Data storage location
	Shared with the host
	Dedicated disk or partition
	Loop disk
	Remote storage
	Default storage pool

	Storage volumes
	Storage volume types
	Content types

	Storage buckets
	Related topics

	About networking
	Network devices
	Managed networks
	Fully controlled networks
	External networks

	Recommendations
	Related topics

	About the LXD database
	Dqlite
	File location
	Backup

	About lxc show and info

	Access management
	Remote API authentication
	TLS client certificates
	Communication protocol
	Trusted TLS clients
	Adding trusted certificates to the server
	Adding client certificates using a trust password
	Adding client certificates using tokens
	Using a PKI system

	OpenID Connect authentication
	TLS server certificate
	Failure scenarios
	Server certificate changed
	Server trust relationship revoked

	Related topics

	Remote API authorization
	Restricted TLS certificates
	Fine-grained authorization
	Explore permissions
	Explore identities
	Manage permissions
	Use groups defined by the identity provider

	About projects
	Isolation of projects
	Confined projects in a multi-user environment
	Authentication methods for projects

	Related topics

	Production setup
	About clustering
	Cluster members
	Member roles
	Offline members and fault tolerance
	Failure domains
	Member configuration

	Images
	Cluster groups
	Automatic placement of instances
	Instance placement scriptlet

	Related topics

	About performance tuning
	Run benchmarks
	Monitor instance metrics
	Tune server settings
	Tune the network bandwidth
	Related topics

	About security
	Supported versions
	Access to the LXD daemon
	Local access to the LXD daemon
	Access to the remote API

	Container security
	Unprivileged containers
	Privileged containers
	Container name leakage

	Network security
	Bridged NIC security
	Routed NIC security

	Related topics

	Reference
	General information
	Requirements
	Go
	Kernel requirements
	LXC
	QEMU
	ZFS
	Additional libraries (and development headers)
	Related topics

	Architectures
	Remote image servers
	Remote server types
	Related topics

	Image format
	Content
	Metadata
	Root file system
	Templates (optional)
	Template rules
	Template files

	Image tarballs
	Unified tarball
	Split tarballs

	Related topics

	Container runtime environment
	File system
	Devices
	Network
	Container-to-host communication

	Mounts
	LXCFS

	PID1
	Related topics

	Configuration options
	Index
	Server configuration
	Core configuration
	ACME configuration
	OpenID Connect configuration
	Cluster configuration
	Images configuration
	Loki configuration
	Miscellaneous options
	Related topics

	Instance configuration
	Instance properties
	Instance name requirements

	Instance options
	Miscellaneous options
	Boot-related options
	cloud-init configuration
	Resource limits
	CPU limits
	CPU pinning
	CPU limits for virtual machines
	Allowance and priority (container only)
	Huge page limits
	Kernel resource limits
	Migration options
	NVIDIA and CUDA configuration
	Raw instance configuration overrides
	Override QEMU configuration
	Security policies
	Snapshot scheduling and configuration
	Automatic snapshot names
	Volatile internal data

	Devices
	Standard devices
	Type: none
	Configuration examples
	Type: nic
	nictype vs. network
	Available NIC types
	nictype: bridged
	Device options
	Configuration examples
	nictype: macvlan
	Device options
	Configuration examples
	nictype: sriov
	Device options
	Configuration examples
	nictype: physical
	Device options
	Configuration examples
	nictype: ovn
	Device options
	Configuration examples
	nictype: ipvlan
	Device options
	Configuration examples
	nictype: p2p
	Device options
	Configuration examples
	nictype: routed
	Device options
	Configuration examples
	bridged, macvlan or ipvlan for connection to physical network
	MAAS integration
	Type: disk
	Types of disk devices
	Initial volume configuration for instance root disk devices
	Device options
	Configuration examples
	Type: unix-char
	Device options
	Configuration examples
	Hotplugging
	Type: unix-block
	Device options
	Configuration examples
	Hotplugging
	Type: usb
	Device options
	Configuration examples
	Type: gpu
	gputype: physical
	Device options
	Configuration examples
	gputype: mdev
	Device options
	Configuration examples
	gputype: mig
	Device options
	Configuration examples
	gputype: sriov
	Device options
	Configuration examples
	Type: infiniband
	Device options
	Configuration examples
	Type: proxy
	NAT mode
	Specifying IP addresses
	Device options
	Configuration examples
	Type: unix-hotplug
	Device options
	Configuration examples
	Type: tpm
	Device options
	Configuration examples
	Type: pci
	Device options
	Configuration examples

	Units for storage and network limits
	Related topics

	Preseed YAML file fields
	Related topics

	Project configuration
	Project features
	Project limits
	Project restrictions
	Project-specific configuration
	Related topics

	Storage drivers
	Btrfs - btrfs
	Terminology
	btrfs driver in LXD
	Quotas
	Configuration options
	Storage pool configuration
	Storage volume configuration
	Storage bucket configuration

	CephFS - cephfs
	Terminology
	cephfs driver in LXD
	Configuration options
	Storage pool configuration
	Storage volume configuration

	Ceph Object - cephobject
	Terminology
	cephobject driver in LXD
	Configuration options
	Storage pool configuration
	Storage bucket configuration

	Ceph RBD - ceph
	Terminology
	ceph driver in LXD
	Limitations
	Configuration options
	Storage pool configuration
	Storage volume configuration

	Dell PowerFlex - powerflex
	Terminology
	powerflex driver in LXD
	Volume names
	Limitations
	Configuration options
	Storage pool configuration
	Storage volume configuration

	Directory - dir
	dir driver in LXD
	Quotas
	Configuration options
	Storage pool configuration
	Storage volume configuration
	Storage bucket configuration

	LVM - lvm
	Terminology
	lvm driver in LXD
	Configuration options
	Storage pool configuration
	Storage volume configuration
	Storage bucket configuration

	ZFS - zfs
	Terminology
	zfs driver in LXD
	Limitations
	Quotas
	Configuration options
	Storage pool configuration
	Storage volume configuration
	Storage bucket configuration

	Feature comparison
	Optimized image storage
	Optimized volume transfer
	Optimized volume refresh

	Recommended setup
	Security considerations
	Related topics

	Networks
	Fully controlled networks
	Bridge network
	IPv6 prefix size
	Configuration options
	Supported features
	Firewall issues
	OVN network
	OVN networking architecture
	Configuration options
	Supported features

	External networks
	Macvlan network
	Configuration options
	Physical network
	Configuration options
	Supported features
	SR-IOV network
	Configuration options

	Related topics

	Cluster member configuration
	Related topics

	Production setup
	Server settings for a LXD production setup
	/etc/security/limits.conf
	/etc/sysctl.conf
	Related topics

	Provided metrics
	Instance metrics
	Internal metrics
	Related topics

	REST API
	REST API
	REST API
	API versioning
	Return values
	Standard return value
	Background operation
	Error
	Status codes
	List of current status codes
	Recursion
	Filtering
	Asynchronous operations
	Notifications
	PUT vs PATCH
	Instances, containers and virtual-machines
	API structure

	Main API specification
	API extensions
	storage_zfs_remove_snapshots
	container_host_shutdown_timeout
	container_stop_priority
	container_syscall_filtering
	auth_pki
	container_last_used_at
	etag
	patch
	usb_devices
	https_allowed_credentials
	image_compression_algorithm
	directory_manipulation
	container_cpu_time
	storage_zfs_use_refquota
	storage_lvm_mount_options
	network
	profile_usedby
	container_push
	container_exec_recording
	certificate_update
	container_exec_signal_handling
	gpu_devices
	container_image_properties
	migration_progress
	id_map
	network_firewall_filtering
	network_routes
	storage
	file_delete
	file_append
	network_dhcp_expiry
	storage_lvm_vg_rename
	storage_lvm_thinpool_rename
	network_vlan
	image_create_aliases
	container_stateless_copy
	container_only_migration
	storage_zfs_clone_copy
	unix_device_rename
	storage_rsync_bwlimit
	network_vxlan_interface
	storage_btrfs_mount_options
	entity_description
	image_force_refresh
	storage_lvm_lv_resizing
	id_map_base
	file_symlinks
	container_push_target
	network_vlan_physical
	storage_images_delete
	container_edit_metadata
	container_snapshot_stateful_migration
	storage_driver_ceph
	storage_ceph_user_name
	instance_types
	storage_volatile_initial_source
	storage_ceph_force_osd_reuse
	storage_block_filesystem_btrfs
	resources
	kernel_limits
	storage_api_volume_rename
	network_sriov
	console
	restrict_devlxd
	migration_pre_copy
	infiniband
	maas_network
	devlxd_events
	proxy
	network_dhcp_gateway
	file_get_symlink
	network_leases
	unix_device_hotplug
	storage_api_local_volume_handling
	operation_description
	clustering
	event_lifecycle
	storage_api_remote_volume_handling
	nvidia_runtime
	container_mount_propagation
	container_backup
	devlxd_images
	container_local_cross_pool_handling
	proxy_unix
	proxy_udp
	clustering_join
	proxy_tcp_udp_multi_port_handling
	network_state
	proxy_unix_dac_properties
	container_protection_delete
	proxy_priv_drop
	pprof_http
	proxy_haproxy_protocol
	network_hwaddr
	proxy_nat
	network_nat_order
	container_full
	backup_compression
	nvidia_runtime_config
	storage_api_volume_snapshots
	storage_unmapped
	projects
	network_vxlan_ttl
	container_incremental_copy
	usb_optional_vendorid
	snapshot_scheduling
	snapshots_schedule_aliases
	container_copy_project
	clustering_server_address
	clustering_image_replication
	container_protection_shift
	snapshot_expiry
	snapshot_expiry_creation
	network_leases_location
	resources_cpu_socket
	resources_gpu
	resources_numa
	kernel_features
	id_map_current
	event_location
	storage_api_remote_volume_snapshots
	network_nat_address
	container_nic_routes
	cluster_internal_copy
	seccomp_notify
	lxc_features
	container_nic_ipvlan
	network_vlan_sriov
	storage_cephfs
	container_nic_ipfilter
	resources_v2
	container_exec_user_group_cwd
	container_syscall_intercept
	container_disk_shift
	storage_shifted
	resources_infiniband
	daemon_storage
	instances
	image_types
	resources_disk_sata
	clustering_roles
	images_expiry
	resources_network_firmware
	backup_compression_algorithm
	ceph_data_pool_name
	container_syscall_intercept_mount
	compression_squashfs
	container_raw_mount
	container_nic_routed
	container_syscall_intercept_mount_fuse
	container_disk_ceph
	virtual-machines
	image_profiles
	clustering_architecture
	resources_disk_id
	storage_lvm_stripes
	vm_boot_priority
	unix_hotplug_devices
	api_filtering
	instance_nic_network
	clustering_sizing
	firewall_driver
	storage_lvm_vg_force_reuse
	container_syscall_intercept_hugetlbfs
	limits_hugepages
	container_nic_routed_gateway
	projects_restrictions
	custom_volume_snapshot_expiry
	volume_snapshot_scheduling
	trust_ca_certificates
	snapshot_disk_usage
	clustering_edit_roles
	container_nic_routed_host_address
	container_nic_ipvlan_gateway
	resources_usb_pci
	resources_cpu_threads_numa
	resources_cpu_core_die
	api_os
	container_nic_routed_host_table
	container_nic_ipvlan_host_table
	container_nic_ipvlan_mode
	resources_system
	images_push_relay
	network_dns_search
	container_nic_routed_limits
	instance_nic_bridged_vlan
	network_state_bond_bridge
	resources_cpu_isolated
	usedby_consistency
	custom_block_volumes
	clustering_failure_domains
	container_syscall_filtering_allow_deny_syntax
	resources_gpu_mdev
	console_vga_type
	projects_limits_disk
	network_type_macvlan
	network_type_sriov
	container_syscall_intercept_bpf_devices
	network_type_ovn
	projects_networks
	projects_networks_restricted_uplinks
	custom_volume_backup
	backup_override_name
	storage_rsync_compression
	network_type_physical
	network_ovn_external_subnets
	network_ovn_nat
	network_ovn_external_routes_remove
	tpm_device_type
	storage_zfs_clone_copy_rebase
	gpu_mdev
	resources_pci_iommu
	resources_network_usb
	resources_disk_address
	network_physical_ovn_ingress_mode
	network_ovn_dhcp
	network_physical_routes_anycast
	projects_limits_instances
	network_state_vlan
	instance_nic_bridged_port_isolation
	instance_bulk_state_change
	network_gvrp
	instance_pool_move
	gpu_sriov
	pci_device_type
	storage_volume_state
	network_acl
	migration_stateful
	disk_state_quota
	storage_ceph_features
	projects_compression
	projects_images_remote_cache_expiry
	certificate_project
	network_ovn_acl
	projects_images_auto_update
	projects_restricted_cluster_target
	images_default_architecture
	network_ovn_acl_defaults
	gpu_mig
	project_usage
	network_bridge_acl
	warnings
	projects_restricted_backups_and_snapshots
	clustering_join_token
	clustering_description
	server_trusted_proxy
	clustering_update_cert
	storage_api_project
	server_instance_driver_operational
	server_supported_storage_drivers
	event_lifecycle_requestor_address
	resources_gpu_usb
	clustering_evacuation
	network_ovn_nat_address
	network_bgp
	network_forward
	custom_volume_refresh
	network_counters_errors_dropped
	metrics
	image_source_project
	clustering_config
	network_peer
	linux_sysctl
	network_dns
	ovn_nic_acceleration
	certificate_self_renewal
	instance_project_move
	storage_volume_project_move
	cloud_init
	network_dns_nat
	database_leader
	instance_all_projects
	clustering_groups
	ceph_rbd_du
	instance_get_full
	qemu_metrics
	gpu_mig_uuid
	event_project
	clustering_evacuation_live
	instance_allow_inconsistent_copy
	network_state_ovn
	storage_volume_api_filtering
	image_restrictions
	storage_zfs_export
	network_dns_records
	storage_zfs_reserve_space
	network_acl_log
	storage_zfs_blocksize
	metrics_cpu_seconds
	instance_snapshot_never
	certificate_token
	instance_nic_routed_neighbor_probe
	event_hub
	agent_nic_config
	projects_restricted_intercept
	metrics_authentication
	images_target_project
	cluster_migration_inconsistent_copy
	cluster_ovn_chassis
	container_syscall_intercept_sched_setscheduler
	storage_lvm_thinpool_metadata_size
	storage_volume_state_total
	instance_file_head
	instances_nic_host_name
	image_copy_profile
	container_syscall_intercept_sysinfo
	clustering_evacuation_mode
	resources_pci_vpd
	qemu_raw_conf
	storage_cephfs_fscache
	network_load_balancer
	vsock_api
	instance_ready_state
	network_bgp_holdtime
	storage_volumes_all_projects
	metrics_memory_oom_total
	storage_buckets
	storage_buckets_create_credentials
	metrics_cpu_effective_total
	projects_networks_restricted_access
	storage_buckets_local
	loki
	acme
	internal_metrics
	cluster_join_token_expiry
	remote_token_expiry
	storage_volumes_created_at
	cpu_hotplug
	projects_networks_zones
	instance_nic_txqueuelength
	cluster_member_state
	instances_placement_scriptlet
	storage_pool_source_wipe
	zfs_block_mode
	instance_generation_id
	disk_io_cache
	amd_sev
	storage_pool_loop_resize
	migration_vm_live
	ovn_nic_nesting
	oidc
	network_ovn_l3only
	ovn_nic_acceleration_vdpa
	cluster_healing
	instances_state_total
	auth_user
	security_csm
	instances_rebuild
	numa_cpu_placement
	custom_volume_iso
	network_allocations
	storage_api_remote_volume_snapshot_copy
	zfs_delegate
	operations_get_query_all_projects
	metadata_configuration
	syslog_socket
	event_lifecycle_name_and_project
	instances_nic_limits_priority
	disk_initial_volume_configuration
	operation_wait
	cluster_internal_custom_volume_copy
	disk_io_bus
	storage_cephfs_create_missing
	instance_move_config
	ovn_ssl_config
	init_preseed_storage_volumes
	metrics_instances_count
	server_instance_type_info
	resources_disk_mounted
	server_version_lts
	oidc_groups_claim
	loki_config_instance
	storage_volatile_uuid
	import_instance_devices
	instances_uefi_vars
	instances_migration_stateful
	access_management
	vm_disk_io_limits
	storage_volumes_all
	instances_files_modify_permissions
	image_restriction_nesting
	container_syscall_intercept_finit_module
	device_usb_serial
	network_allocate_external_ips

	Events
	Introduction
	Event types
	Event structure
	Example
	Logging event structure
	Operation event structure
	Life-cycle event structure
	Supported life-cycle events

	Communication between instance and host
	Implementation details
	Authentication
	Protocol
	REST-API
	API structure
	API details
	/
	GET
	/1.0
	GET
	PATCH
	/1.0/config
	GET
	/1.0/config/<KEY>
	GET
	/1.0/devices
	GET
	/1.0/events
	GET
	/1.0/images/<FINGERPRINT>/export
	GET
	/1.0/meta-data
	GET

	Related topics

	Man pages
	Man pages
	lxc
	Synopsis
	Options
	SEE ALSO
	lxc alias
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc alias add
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc alias list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc alias remove
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc alias rename
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc auth
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group create
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc auth group delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc auth group list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc auth group permission
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group permission add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group permission remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity group
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity group add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity group remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity info
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group group
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group group add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group group remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth permission
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth permission list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc cluster enable
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster evacuate
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group assign
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster info
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster list-tokens
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster remove
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster restore
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster revoke-token
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster role
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster role add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster role remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster update-certificate
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device add
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc config device get
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device list
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device override
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device set
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device unset
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config edit
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config metadata
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config metadata edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config metadata show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config set
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config show
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config template
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config template create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config template delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config template edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config template list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config template show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config trust
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config trust add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config trust edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config trust list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config trust list-tokens
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config trust remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config trust revoke-token
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config trust show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config uefi
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config uefi edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc config uefi get
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config uefi set
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc config uefi show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config uefi unset
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc console
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc copy
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc exec
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc export
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc file
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc file delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc file edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc file mount
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc file pull
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc file push
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image alias
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image alias create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image alias delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image alias list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image alias rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image copy
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc image export
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image get-property
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image import
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image info
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image refresh
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image set-property
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image show
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image unset-property
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc import
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc info
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc init
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc launch
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc list
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc monitor
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc move
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network acl list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network acl rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl rule
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl rule add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl rule remove
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network acl set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network acl show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl show-log
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network attach
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network attach-profile
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network detach
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network detach-profile
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network forward
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network forward create
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward edit
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward port
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network forward port add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward port remove
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward show
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network info
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network list-allocations
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network list-leases
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer backend
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer backend add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer backend remove
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer create
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer edit
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer port
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer port add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer port remove
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer show
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network peer
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network peer create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network peer delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network peer edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network peer get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network peer list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network peer set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network peer show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network peer unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network show
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record entry
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record entry add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record entry remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc operation
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc operation delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc operation list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc operation show
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc pause
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc profile
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile assign
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc profile copy
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc profile create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device add
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc profile device get
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device list
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device set
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device unset
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc profile get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc profile list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc profile remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc profile show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc project
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc project create
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc project delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc project edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc project get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc project info
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc project list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc project rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc project set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc project show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc project switch
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc project unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc publish
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc query
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc rebuild
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc remote
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc remote add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc remote get-default
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc remote list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc remote remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc remote rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc remote set-url
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc remote switch
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc restart
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc restore
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc snapshot
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc start
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc stop
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket create
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket edit
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket key
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket key create
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket key delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket key edit
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket key list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket key show
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket show
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage create
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc storage get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage info
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage show
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume attach
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume attach-profile
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume copy
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume create
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume detach
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume detach-profile
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume edit
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume export
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume get
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume import
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume info
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume move
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume rename
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume restore
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume set
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume show
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume snapshot
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume unset
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc version
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc warning
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc warning acknowledge
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc warning delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc warning list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc warning show
	Synopsis
	Options inherited from parent commands
	SEE ALSO

	Implementation details
	Internals
	Environment variables
	Common
	Client environment variable
	Server environment variable

	UEFI variables for VMs
	Example

	Daemon behavior
	Startup
	Signal handling
	SIGINT, SIGQUIT, SIGTERM
	SIGPWR
	SIGUSR1

	System call interception
	Available system calls
	mknod / mknodat
	bpf
	mount
	sched_setscheduler
	setxattr
	sysinfo

	Idmaps for user namespace
	Kernel support
	Allowed ranges
	Varying ranges between hosts
	Different idmaps per container
	Custom idmaps

	Related topics

	Configuration options

