
LXD

© 2024 Canonical Ltd.
All rights reserved.

Contents
1 Tutorials 4

1.1 First steps with LXD . 4
1.2 Getting started with the UI . 11

2 How-to guides 28
2.1 Get started . 28
2.2 Work with LXD . 73
2.3 Get ready for production . 279
2.4 Miscellaneous . 321

3 Explanation 345
3.1 Important concepts . 345
3.2 Entities in LXD . 348
3.3 Access management . 358
3.4 Production setup . 370

4 Reference 385
4.1 General information . 385
4.2 Configuration options . 400
4.3 Production setup . 602
4.4 Fine-grained permissions . 609
4.5 REST API . 618
4.6 Man pages . 690
4.7 Implementation details . 917

Configuration options 936

1 of 954

LXD ([l�ks'di:]�) is a modern, secure and powerful system container and virtual machine
manager.

It provides aunifiedexperience for runningandmanaging full Linux systems inside containers
or virtual machines. LXD supports images for a large number of Linux distributions (official
Ubuntu images and images provided by the community) and is built around a very powerful,
yet pretty simple, REST API. LXD scales from one instance on a single machine to a cluster in
a full data center rack, making it suitable for running workloads both for development and
in production.

LXD allows you to easily set up a system that feels like a small private cloud. You can run any
type of workload in an efficient way while keeping your resources optimized.

You should consider using LXD if you want to containerize different environments or run
virtual machines, or in general run and manage your infrastructure in a cost-effective way.

In this documentation

Tutorials (page 4) Start here: a hands-on introduction to LXD for new users, guiding you
through your first steps using the CLI or the UI

• First steps with LXD (page 4)

• Getting started with the UI (page 11)

How-to guides (page 28) Step-by-step guides covering key operations and common tasks

• Get started (page 28)

• Work with LXD (page 73)

• Get ready for production (page 279)

Reference (page 385) Technical information

• General information (page 385)

• Configuration options (page 400)

• Releases and snap (page 388)

• Production setup (page 602)

• REST API (page 618)

• Man pages (page 690)

• Implementation details (page 917)

Explanation (page 345) Discussion and clarification of key topics

• Important concepts (page 345)

• Entities in LXD (page 348)

• Access management (page 358)

• Production setup (page 370) (including Security (page 376))

2 of 954

Project and community

LXD is free software and released under AGPL-3.0-only14 (it may contain some contributions
that are licensed under the Apache-2.0 license, see License and copyright (page 335)). It’s an
open source project that warmly welcomes community projects, contributions, suggestions,
fixes and constructive feedback.

The LXD project is sponsored by Canonical Ltd15.

• Ubuntu Code of Conduct16

• Contribute to the project (page 335)

• Release announcements17

• Release tarballs18

• Get support (page 334)

• Watch tutorials and announcements on YouTube19

• Discuss on IRC20 (see Getting started with IRC21 if needed)

• Ask and answer questions on the forum22

14 https://www.gnu.org/licenses/agpl-3.0.en.html
15 https://canonical.com/
16 https://ubuntu.com/community/ethos/code-of-conduct
17 https://discourse.ubuntu.com/c/lxd/news/143
18 https://github.com/canonical/lxd/releases/
19 https://www.youtube.com/c/LXDvideos
20 https://web.libera.chat/#lxd
21 https://discourse.ubuntu.com/t/getting-started-with-irc/37907
22 https://discourse.ubuntu.com/c/lxd/126

3 of 954

https://www.gnu.org/licenses/agpl-3.0.en.html
https://canonical.com/
https://ubuntu.com/community/ethos/code-of-conduct
https://discourse.ubuntu.com/c/lxd/news/143
https://github.com/canonical/lxd/releases/
https://www.youtube.com/c/LXDvideos
https://web.libera.chat/#lxd
https://discourse.ubuntu.com/t/getting-started-with-irc/37907
https://discourse.ubuntu.com/c/lxd/126

1. Tutorials
The following tutorial guides you through installing and initializing LXD, creating and config-
uring some instances, interacting with the instances, and creating snapshots:

1.1. First steps with LXD
This tutorial guides you through the first steps with LXD. It covers installing and initializing
LXD, creating and configuring some instances, interacting with the instances, and creating
snapshots.

After going through these steps, you will have a general idea of how to use LXD, and you can
start exploring more advanced use cases!

Note

Ensure that you have 20 GiB free disk space before starting this tutorial.

1.1.1. Install and initialize LXD
The easiest way to install LXD is to install the snap package. If you prefer a different installa-
tion method, or use a Linux distribution that is not supported by the snap package, see How
to install LXD (page 28).

1. Install snapd:

1. Run snap version to find out if snap is installed on your system:

~$ snap version snap 2.63+24.04ubuntu0.1snapd
2.63+24.04ubuntu0.1series 16ubuntu 24.04kernel 5.15.0-117-generic

If you see a table of version numbers, snap is installed and you can continue with
the next step of installing LXD.

2. If the command returns an error, run the following commands to install the latest
version of snapd on Ubuntu:

sudo apt update
sudo apt install snapd

Note

For other Linux distributions, see the installation instructions23 in the Snapcraft
documentation.

2. Enter the following command to install LXD:

sudo snap install lxd

23 https://snapcraft.io/docs/installing-snapd

4 of 954

https://snapcraft.io/docs/installing-snapd

If you get an error message that the LXD snap is already installed, run the following
command to refresh it and ensure that you are running an up-to-date version:

sudo snap refresh lxd

3. Check if the current user is part of the lxd group (the group was automatically created
during the previous step):

getent group lxd | grep "$USER"

If this command returns a result, you’re set up correctly and can continue with the next
step.

If there is no result, enter the following commands to add the current user to the lxd
group (which is needed to grant the user permission to interact with LXD):

sudo usermod -aG lxd "$USER"
newgrp lxd

4. Enter the following command to initialize LXD:

lxd init --minimal

This will create a minimal setup with default options. If you want to tune the initializa-
tion options, see How to initialize LXD (page 35) for more information.

5. LXD supports both Containers and VMs (page 346). For LXD virtual machines, your host
system must be capable of KVM virtualization. To check this, run the following com-
mand:

lxc info | grep -FA2 'instance_types'

The following output indicates that your host system is capable of virtualization:

instance_types:
- container
- virtual-machine

If virtual-machine fails to appear in the output, this indicates that the host system is
not capable of virtualization. In this case, LXD can only be used for containers. You can
proceed with this tutorial to learn about using containers, but disregard the steps that
refer to virtual machines.

1.1.2. Launch and inspect instances
LXD is image based and can load images from different image servers. In this tutorial, wewill
use the official ubuntu:24 image server.

You can list all images (long list) that are available on this image server with:

lxc image list ubuntu:

You can list the images used in this tutorial with:

24 https://cloud-images.ubuntu.com/releases/

5 of 954

https://cloud-images.ubuntu.com/releases/

lxc image list ubuntu: 24.04 architecture=$(uname -m)

See Images (page 148) for more information about the images that LXD uses.

Now, let’s start by launching a few instances. With instance, we mean either a container or
a virtual machine. See Containers and VMs (page 346) for information about the difference
between the two instance types.

For managing instances, we use the LXD command line client lxc. See About lxd and lxc
(page 345) if you are confused about when to use the lxc command and when to use the lxd
command.

1. Launch a container called first using the Ubuntu 24.04 LTS image:

lxc launch ubuntu:24.04 first

Note

Launching this container takes a few seconds, because the image must be down-
loaded and unpacked first.

2. Launch a container called second using the same image:

lxc launch ubuntu:24.04 second

Note

Launching this container is quicker than launching the first, because the image is
already available locally.

3. Copy the first container into a container called third:

lxc copy first third

4. Launch a VM called ubuntu-vm using the Ubuntu 24.04 LTS image:

lxc launch ubuntu:24.04 ubuntu-vm --vm

Note

Even though you are using the same image name to launch the instance, LXD down-
loads a slightly different image that is compatible with VMs.

5. Check the list of instances that you launched:

lxc list

Youwill see that all but the third container are running. This is because you created the
third container by copying the first, but you didn’t start it.

You can start the third container with:

6 of 954

lxc start third

6. Query more information about each instance with:

lxc info first
lxc info second
lxc info third
lxc info ubuntu-vm

7. We don’t need all of these instances for the remainder of the tutorial, so let’s clean
some of them up:

1. Stop the second container:

lxc stop second

2. Delete the second container:

lxc delete second

3. Delete the third container:

lxc delete third

Since this container is running, you get an errormessage that youmust stop it first.
Alternatively, you can force-delete it:

lxc delete third --force

See How to create instances (page 73) and How tomanage instances (page 92) for more infor-
mation.

1.1.3. Configure instances
There are several limits and configuration options that you can set for your instances. See
Instance options (page 415) for an overview.

Let’s create another container with some resource limits:

1. Launch a container and limit it to one vCPU and 192 MiB of RAM:

lxc launch ubuntu:24.04 limited --config limits.cpu=1 --config limits.
memory=192MiB

2. Check the current configuration and compare it to the configuration of the first (unlim-
ited) container:

lxc config show limited
lxc config show first

3. Check the amount of free and used memory on the parent system and on the two con-
tainers:

free -m
lxc exec first -- free -m
lxc exec limited -- free -m

7 of 954

Note

The total amount of memory is identical for the parent system and the first con-
tainer, because by default, the container inherits the resources from its parent en-
vironment. The limited container, on the other hand, has only 192 MiB available.

4. Check the number of CPUs available on the parent system and on the two containers:

nproc
lxc exec first -- nproc
lxc exec limited -- nproc

Note

Again, the number is identical for the parent system and the first container, but re-
duced for the limited container.

5. You can also update the configuration while your container is running:

1. Configure a memory limit for your container:

lxc config set limited limits.memory=128MiB

2. Check that the configuration has been applied:

lxc config show limited

3. Check the amount of memory that is available to the container:

lxc exec limited -- free -m

Note that the number has changed.

6. Depending on the instance type and the storage drivers that you use, there are more
configuration options that you can specify. For example, you can configure the size
(quota) of the root disk device for a VM:

1. Check the current size of the root disk device of the Ubuntu VM:

~$ lxc exec ubuntu-vm -- df -h Filesystem Size Used Avail Use%
Mounted on/dev/root 9.6G 1.4G 8.2G 15% /tmpfs 483M 0 483M 0%
/dev/shmtmpfs 193M 604K 193M 1% /runtmpfs 5.0M 0 5.0M 0%
/run/locktmpfs 50M 14M 37M 27% /run/lxd_agent/dev/sda15 105M 6.1M
99M 6% /boot/efi

2. Override the size of the root disk device:

lxc config device override ubuntu-vm root size=30GiB

3. Restart the VM:

8 of 954

lxc restart ubuntu-vm

4. Check the size of the root disk device again:

~$ lxc exec ubuntu-vm -- df -h Filesystem Size Used Avail Use%
Mounted on/dev/root 29G 1.4G 28G 5% /tmpfs 483M 0 483M 0%
/dev/shmtmpfs 193M 588K 193M 1% /runtmpfs 5.0M 0 5.0M 0%
/run/locktmpfs 50M 14M 37M 27% /run/lxd_agent/dev/sda15 105M 6.1M
99M 6% /boot/efi

See How to configure instances (page 84) and Instance configuration (page 414) for more in-
formation.

1.1.4. Interact with instances
You can interact with your instances by running commands in them (including an interactive
shell) or accessing the files in the instance.

Start by launching an interactive shell in your instance:

1. Run the bash command in your container:

lxc exec first -- bash

2. Enter some commands, for example, display information about the operating system:

cat /etc/*release

3. Exit the interactive shell:

exit

Instead of logging on to the instance and running commands there, you can run commands
directly from the host.

For example, you can install a command line tool on the instance and run it:

lxc exec first -- apt-get update
lxc exec first -- apt-get install sl -y
lxc exec first -- /usr/games/sl

See How to run commands in an instance (page 111) for more information.

You can also access the files from your instance and interact with them:

1. Pull a file from the container:

lxc file pull first/etc/hosts .

2. Add an entry to the file:

echo "1.2.3.4 my-example" >> hosts

3. Push the file back to the container:

lxc file push hosts first/etc/hosts

9 of 954

4. Use the same mechanism to access log files:

lxc file pull first/var/log/syslog - | less

Note

Press q to exit the less command.

See How to access files in an instance (page 105) for more information.

1.1.5. Manage snapshots
You can create a snapshot of your instance, which makes it easy to restore the instance to a
previous state.

1. Create a snapshot called “clean”:

lxc snapshot first clean

2. Confirm that the snapshot has been created:

lxc list first
lxc info first

Note

lxc list shows the number of snapshots. lxc info displays information about each
snapshot.

3. Break the container:

lxc exec first -- rm /usr/bin/bash

4. Confirm the breakage:

lxc exec first -- bash

Note

You do not get a shell, because you deleted the bash command.

5. Restore the container to the state of the snapshot:

lxc restore first clean

6. Confirm that everything is back to normal:

lxc exec first -- bash
exit

7. Delete the snapshot:

10 of 954

lxc delete first/clean

See Use snapshots for instance backup (page 128) for more information.

1.1.6. Next steps
Now that you’ve done your first experiments with LXD, you should read up on important
concepts in the Explanation (page 345) section and check out the How-to guides (page 28) to
start working with LXD!

1.2. Getting started with the UI
This tutorial gives a quick introduction to using the LXD UI. It covers installing and initializ-
ing LXD, getting access to the UI, and carrying out some standard operations like creating,
configuring, and interacting with instances, configuring storage, and using projects.

After going through these steps, you will have a general idea of how to use LXD through its
UI, and you can start exploring more advanced use cases!

Note

Ensure that you have 20 GiB free disk space before starting this tutorial.

1.2.1. Install and initialize LXD
The easiest way to install LXD is to install the snap package. If you prefer a different installa-
tion method, or use a Linux distribution that is not supported by the snap package, see How
to install LXD (page 28).

1. Install snapd:

1. Run snap version to find out if snap is installed on your system:

~$ snap version snap 2.63+24.04ubuntu0.1snapd
2.63+24.04ubuntu0.1series 16ubuntu 24.04kernel 5.15.0-117-generic

If you see a table of version numbers, snap is installed and you can continue with
the next step of installing LXD.

2. If the command returns an error, run the following commands to install the latest
version of snapd on Ubuntu:

sudo apt update
sudo apt install snapd

Note

For other Linux distributions, see the installation instructions25 in the Snapcraft
documentation.

2. Enter the following command to install LXD:

25 https://snapcraft.io/docs/installing-snapd

11 of 954

https://snapcraft.io/docs/installing-snapd

sudo snap install lxd

If you get an error message that the LXD snap is already installed, run the following
command to refresh it and ensure that you are running an up-to-date version:

sudo snap refresh lxd

3. Check if the current user is part of the lxd group (the group was automatically created
during the previous step):

getent group lxd | grep "$USER"

If this command returns a result, you’re set up correctly and can continue with the next
step.

If there is no result, enter the following commands to add the current user to the lxd
group (which is needed to grant the user permission to interact with LXD):

sudo usermod -aG lxd "$USER"
newgrp lxd

4. Enter the following command to initialize LXD:

lxd init --minimal

This will create a minimal setup with default options. If you want to tune the initializa-
tion options, see How to initialize LXD (page 35) for more information.

5. LXD supports both Containers and VMs (page 346). For LXD virtual machines, your host
system must be capable of KVM virtualization. To check this, run the following com-
mand:

lxc info | grep -FA2 'instance_types'

The following output indicates that your host system is capable of virtualization:

instance_types:
- container
- virtual-machine

If virtual-machine fails to appear in the output, this indicates that the host system is
not capable of virtualization. In this case, LXD can only be used for containers. You can
proceed with this tutorial to learn about using containers, but disregard the steps that
refer to virtual machines.

1.2.2. Access the UI
You access the LXD UI through your browser. See How to access the LXDweb UI (page 40) for
more information.

1. Expose LXD to the network by setting the core.https_address (page 402) server con-
figuration option:

lxc config set core.https_address :8443

12 of 954

2. Access theUI in your browserbyentering the server address (for example, https://127.
0.0.1:8443 for a local server, or an address like https://192.0.2.10:8443 for a server
running on 192.0.2.10).

If you have not set up a secure TLS server certificate (page 361), LXD uses a self-signed
certificate, which will cause a security warning in your browser. Use your browser’s
mechanism to continue despite the security warning.

3. Set up the certificates that are required for the UI client to authenticate with the LXD
server by following the steps presented in the UI.

You have two options, depending on whether you already have a client certificate se-
lected in your browser:

• If you don’t have a certificate yet, click Create a new certificate to get instructions
for creating a set of certificates, adding the public key to the server’s trust store,
and adding the private key to your browser.

• If you already have a client certificate in your browser, select “use an existing cer-
tificate” to authorize the certificate with the server and re-use it.

See Remote API authentication (page 358) for more information.

1.2.3. Create and start instances
Let’s start by launching a few instances. With instance, wemean either a container or a virtual
machine. See Containers and VMs (page 346) for information about the difference between
the two instance types.

1. Select Instances from the navigation.

13 of 954

https://127.0.0.1:8443
https://127.0.0.1:8443

14 of 954

2. Click Create instance to launch a container called first using the Ubuntu 24.04 LTS im-
age:

To select the base image, click Browse images. Click Select next to the Ubuntu 24.04 LTS
image.

Note

The images that are displayed are hosted on pre-configured Remote image servers
(page 391). You can filter which images are displayed.

You can also upload a custom ISO file to boot from. See Create a VM that boots from
an ISO (page 80) for more information.

3. To launch the container, click Create and start.

Note

Launching this container takes a few seconds, because the image must be down-
loaded and unpacked first.

4. Create another container called second, using the same image. After entering the name
and selecting the image, click Create instead of Create and start.

This container will be created but not started.

Note

15 of 954

Creating this container is quicker than launching the first, because the image is al-
ready available locally.

5. Create and start a VM called ubuntu-vm using the Ubuntu 24.04 LTS image. To create a
VM instead of a container, select VM as the instance type:

Note

Even though you are using the same image name to launch the instance, LXD down-
loads a slightly different image that is compatible with VMs.

6. Start creating (do not click Create and start yet) a VM called ubuntu-desktop. When
selecting the image, filter by variant “desktop” to find the Ubuntu 24.04 LTS desktop
image. Note that after you select the image, the instance type is automatically set to
VM:

To run smoothly, the desktop VM needs more RAM. Therefore, navigate to Advanced
> Resource limits and set theMemory limit to 4 GiB. Then click Create and start to start
the instance.

7. Check the list of instances that you created:

You will see that all but the second container are running. This is because you created
the second container but didn’t start it.

You can start the second container by clicking the Start button (�) next to it.

See How to create instances (page 73) for more information.

16 of 954

17 of 954

1.2.4. Inspect instances
In the list of instances, click on one of the lines to seemore information about the respective
instance:

Click on an instance name to go to the instance detail page, where you can inspect your in-
stance:

• The Overview tab shows general information and usage statistics about the instance.

• The Configuration tab contains the instance configuration. For now, just click through
to inspect the configuration. We’ll do some updates later.

If you want to see the full instance configuration, go to the YAML configuration:

• The Snapshots tab shows available snapshots. You can ignore this for now; we’ll look
into snapshots later.

• The Terminal tab allows you to interact with your instance. For example, enter the fol-
lowing command to display information about the operating system:

cat /etc/*release

Or have some fun:

apt update
apt install fortune
/usr/games/fortune

See Get shell access to your instance (page 115) for more information.

Note

18 of 954

Whenyounavigate away fromtheTerminal tab, youare asked to confirm. The reason
for this confirmation prompt is that the terminal session is not saved, so once you
navigate away, your command history is lost.

• The Console tab is mainly relevant during startup of an instance, and for VMs.

Go to the instance detail page of the ubuntu-desktopVMand check the graphic console:

See How to access the console (page 109) for more information.

• The Logs tab contains log files for inspection and download. Running instances have
only limited information. More log files are added if an instance ends up in error state.

See How to troubleshoot failing instances (page 102) for more information.

1.2.5. Stop and delete instances
For the remainder of the tutorial, we don’t need all of the instanceswe created. So let’s clean
some of them up:

1. Go back to the instances list.

2. Stop the second container by clicking the Stop button (�) next to it.

3. Delete the second container. To do so, click the instance name to go to the instance
detail page. Then click the Delete instance button at the top.

4. Go to the instance detail page of the ubuntu-vm VM to delete it.

You will see that the Delete instance button at the top is not active. This is because the
instance is still running.

Stop it by clicking the Stop button (�) at the top, then click Delete instance.

19 of 954

Tip

If stopping an instance takes a long time, click the spinning Stop button to go back to the
confirmation prompt, where you can select to force-stop the instance.

See How to manage instances (page 92) for more information.

1.2.6. Configure instances
There are several limits and configuration options that you can set for your instances. See
Instance options (page 415) for an overview.

Let’s create another container with some resource limits:

1. On the instances list, click Create instance. Enter limited as the instance name and
select the Ubuntu 24.04 LTS image.

2. Expand Advanced and go to Resource limits.

3. Change the Exposed CPU limit to 1 and theMemory limit to 4 GiB:

4. Click Create and start.

5. When the instance is running, go to its instance detail page and select Configuration >
Advanced > Resource limits. Confirm that the limits you set are visible.

6. Go to the Terminal tab and enter the following commands:

free -m
nproc

You should see that the total memory is limited to 4096, and the number of available
CPUs is 1.

20 of 954

7. Go to the instance detail page of the first container and enter the same commands.

You should see that the values differ from those of the limited container. The exact
values depend on your host system (so if your host system has only one CPU, for exam-
ple, you might see one CPU for the first container as well).

8. You can also update the configuration while your container is running:

1. Go back to the instance detail page of the limited container and select Configura-
tion > Advanced > Resource limits.

2. Click Edit instance and change the memory limit to 2 GiB. Then save.

3. Go to the Terminal tab and enter the following command:

free -m

Note that the number has changed.

Depending on the instance type and the storage drivers that you use, there are more config-
uration options that you can specify. For example, you can configure the size (quota) of the
root disk device for a VM:

1. Go to the terminal for the ubuntu-desktop VM and check the current size of the root
disk device (/dev/sda2):

df -h

2. Navigate to Configuration > Advanced > Disk devices.

Tip

21 of 954

By default, the size of the root disk is inherited from the default profile. Profiles
store a set of configuration options and can be applied to instances instead of spec-
ifying the configuration option for each instance separately.

See How to use profiles (page 97) for more information.

3. Override the size of the root disk device to be 30 GiB:

4. Save the configuration, and then restart the VM by clicking the Restart button ().

5. In the terminal, check the size of the root disk device again:

df -h

Note that the size has changed.

See How to configure instances (page 84) and Instance configuration (page 414) for more in-
formation.

1.2.7. Manage snapshots
You can create a snapshot of your instance, which makes it easy to restore the instance to a
previous state.

1. Go to the instance detail page of the first container and select the Snapshots tab.

2. Click Create snapshot and enter the snapshot name clean. Leave the other options un-
changed and create the snapshot.

You should now see the snapshot in the list.

3. Go to the Terminal tab and break the container:

22 of 954

rm /usr/bin/bash

4. Confirm the breakage by reloading the page:

The UI cannot open a terminal in your container anymore, because you deleted the bash
command.

5. Go back to the Snapshots tab and restore the container to the state of the snapshot by
clicking the Restore snapshot button () next to it.

6. Go back to the Terminal tab. The terminal should now load again.

7. Go to the Snapshots tab and delete the snapshot by clicking theDelete snapshot button
() next to it.

See Use snapshots for instance backup (page 128) for more information.

1.2.8. Add a custom storage volume
You can add additional storage to your instance, and also share storage between different
instances. See Storage volumes (page 352) for more information.

Let’s start by creating a custom storage volume:

1. Navigate to Storage > Volumes.

Even though you have not created any custom storage volumes yet, you should see
several storage volumes in the list. These are instance volumes (which contain the root
disks of your instances) and image volumes (which contain the cached base images).

2. Click Create volume and enter a name and a size. Leave the default content type
(filesystem).

After creating the instance, we can attach it to some instances:

1. Go to the instance detail page of the first container.

23 of 954

2. Go to Configuration > Advanced > Disk devices.

3. Click Edit instance and then Attach disk device.

4. Select the disk device that you just created.

Tip

You can create a custom volume directly from this screen as well.

5. Enter /data as the mount point and save your changes:

6. Go to the Terminal tab and enter the following command to create a file on the custom
volume:

touch /data/hello_world

7. Go to the instance detail page of the ubuntu-desktop VM and add the same custom
storage volume with the same mount point (/data).

8. Go to the Terminal tab and enter the following command to see the file you created
from your first container:

ls /data/

Note

You can also look at the directory in the file browser. To do so, enter the following
command in the terminal first:

24 of 954

chown ubuntu /data /data/*

Then switch to the console, open the file browser, and navigate to the /data folder:

1.2.9. Use projects
You can use projects to group related instances, and other entities, on your LXD server.
See Instances grouping with projects (page 368) and How to create and configure projects
(page 161) for more information.

Originally, there is only a default project on the server. All the instances you created so far
are part of this project.

Now, let’s create another project:

1. Expand the Project dropdown and click Create project :

2. Enter tutorial as the project name.

3. For features, select Customised.

You can then select which features should be isolated. “Isolated” in this context means
that if you select one of the features, entities of this type are confined to the project.
So when you use a project where, for example, storage volumes are isolated, you can
see only the storage volumes that are defined within the project.

4. Deselect Storage volumes and create the project.

The new project is automatically selected for you. Let’s check its content:

1. Go to Instances.

You will see that there are no instances in your project, because instances are always
isolated, and the instances you created earlier are in the default project.

2. Create an instance in the new project.

25 of 954

You should notice that you get an error about missing root storage. The reason for this
is that the root storage is usually defined in the default profile, but profiles are isolated
in the project.

3. To resolve the error, edit the root storage. Use the default pool and leave the size
empty.

Then create the instance.

4. Go to Storage > Volumes.

Remember that in the default project, you saw three different kinds of storage volumes
in the volume list:

• Instance (container or VM) volumes

• Image volumes

• Custom volumes

You should see the same three types in the tutorial project. However, note the fol-
lowing:

• You can see only one instance volume and one image volume. These are for the
one instance you created in the tutorial project.

You cannot see the instance and image volumes for the instances you created in
thedefault project, becauseboth instances and imagesare isolated in the tutorial
project, so you cannot see the corresponding storagevolumes fromotherprojects.

• You can see the custom storage volume that you created in the default project.

Because you deselected Storage volumes when creating the project, storage vol-
umes are not isolated, and you can therefore see storage volumes from other
projects.

26 of 954

1.2.10. Clean up entities
Now that we’ve run through the basic functionality of LXD, let’s clean up the entities we
created throughout the tutorial.

1. With the tutorial project still selected, go to the instances list and stop and delete the
instance you created in this project.

2. Go to Images and click the Delete button () next to it.

3. Go to Configuration and click the Delete project button in the top-right corner.

After deleting the project, you are automatically switched back to the default project.

4. Stop and delete all instances in the default project. To do this all at once, go to the
instance list and select all instances. Then click Stop at the top. Finally, click Delete at
the top.

5. Go to Storage > Volumes and click the Delete button () next to the tutorial_volume
storage volume.

Note

Optionally, you can also delete the images that you used. However, this isn’t really
needed. If you keep them, they will eventually expire (by default, when they haven’t been
used for ten days).

1.2.11. Next steps
Now that you’ve done your first experiments with LXD, you should read up on important
concepts in the Explanation (page 345) section and check out the How-to guides (page 28) to
start working with LXD!

27 of 954

2. How-to guides
These how-to guides cover key operations and processes in LXD.

2.1. Get started
To get started with LXD, install and initialize it. Then do some basic configuration of the
server and the command-line client.

2.1.1. Getting started
To get started with LXD, see the documentation in this section.

How to install and initialize LXD:

How to install LXD

There are multiple approaches to installing LXD, depending on your Linux distribution, oper-
ating system, and use case.

Install the LXD snap package

The recommended way to install LXD is its snap package26, available for many Linux distribu-
tions. For alternative methods, see: Other Linux installation options (page 29), Other operat-
ing systems (page 30), or Install LXD from source (page 31).

Requirements

• The LXD snap must be available for your Linux distribution27.

• The snapd daemon28 must be installed.

Install

Use this command to install LXD from the recommended default snap track (page 390) (cur-
rently 5.21):

sudo snap install lxd

If you are installing LXD on a cluster member (page 370), add the --cohort="+" flag to keep
cluster members synchronized (page 323) to the same snap version:

sudo snap install lxd --cohort="+"

Next, follow the Post-installation (page 29) steps below.

26 https://snapcraft.io/lxd
27 https://snapcraft.io/lxd#distros
28 https://snapcraft.io/docs/installing-snapd

28 of 954

https://snapcraft.io/lxd
https://snapcraft.io/lxd#distros
https://snapcraft.io/docs/installing-snapd

Optionally specify a channel

Channels correspond to different LXD releases (page 388). When unspecified, the LXD snap
defaults to the most recent stable LTS, which is recommended for most use cases.

To specify a different channel, add the --channel flag at installation:

sudo snap install lxd --channel=<target channel> [--cohort="+"]

For example, to use the 6/stable channel, run:

sudo snap install lxd --channel=6/stable

For details about LXD snap channels, see: Channels (page 389).

Post-installation

Follow these steps after installing the LXD snap.

Add the current user

To allow the current user to interact with the LXD daemon, update the lxd group:

getent group lxd | grep -qwF "$USER" || sudo usermod -aG lxd "$USER"

Afterward, apply the change to your current shell session by running:

newgrp lxd

For more information, see theManage access to LXD (page 34) section below.

Hold or schedule updates

When a new release is published to a snap channel, installed snaps following that channel
update automatically by default.

For LXD clusters (page 370), or on any machine where you want control over updates, you
should override this default behavior by either holding or scheduling updates. See: Manage
updates (page 321).

Other Linux installation options

Some Linux installations can use package managers other than Snap to install LXD. These
managers all install the latest feature release (page 388).

Alpine Linux

Arch Linux

Fedora

Gentoo

Run:

29 of 954

apk add lxd

Run:

pacman -S lxd

Fedora RPM packages for LXC/LXD are available in the COPR repository29. These are unoffi-
cial and minimally tested; use at your own risk.

View the installation guide30 for details.

Run:

emerge --ask lxd

Following installation, make sure tomanage access to LXD (page 34).

Other operating systems

Builds of the lxc (page 690) client are available for non-Linux operating systems to enable in-
teractionwith remote LXD servers. Formore information, see: About lxd and lxc (page 345).

macOS

Windows

The Homebrew31 package manager must be installed on your system.

To install the client from the latest feature release (page 388) of LXD, run:

brew install lxc

The Chocolatey32 package manager must be installed on your system.

To install the client from the latest feature release (page 388) of LXD, run:

choco install lxc

Native builds of the client

You can find native builds of the lxc (page 690) client on GitHub33:

• Linux: bin.linux.lxc.aarch6434, bin.linux.lxc.x86_6435

• Windows: bin.windows.lxc.aarch64.exe36, bin.windows.lxc.x86_64.exe37

• macOS: bin.macos.lxc.aarch6438, bin.macos.lxc.x86_6439

29 https://copr.fedorainfracloud.org/coprs/ganto/lxc4/
30 https://github.com/ganto/copr-lxc4/wiki
31 https://brew.sh
32 https://chocolatey.org
33 https://github.com/canonical/lxd
34 https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxc.aarch64
35 https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxc.x86_64
36 https://github.com/canonical/lxd/releases/latest/download/bin.windows.lxc.aarch64.exe
37 https://github.com/canonical/lxd/releases/latest/download/bin.windows.lxc.x86_64.exe
38 https://github.com/canonical/lxd/releases/latest/download/bin.macos.lxc.aarch64
39 https://github.com/canonical/lxd/releases/latest/download/bin.macos.lxc.x86_64

30 of 954

https://copr.fedorainfracloud.org/coprs/ganto/lxc4/
https://github.com/ganto/copr-lxc4/wiki
https://brew.sh
https://chocolatey.org
https://github.com/canonical/lxd
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxc.aarch64
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxc.x86_64
https://github.com/canonical/lxd/releases/latest/download/bin.windows.lxc.aarch64.exe
https://github.com/canonical/lxd/releases/latest/download/bin.windows.lxc.x86_64.exe
https://github.com/canonical/lxd/releases/latest/download/bin.macos.lxc.aarch64
https://github.com/canonical/lxd/releases/latest/download/bin.macos.lxc.x86_64

To download a specific build:

1. Make sure that you are logged into your GitHub account.

2. Filter for the branch or tag that you are interested in (for example, the latest release
tag or main).

3. Select the latest build and download the suitable artifact.

These builds are for the lxc (page 690) client only, not the LXD daemon. For an explanation
of the differences, see: About lxd and lxc (page 345).

Install LXD from source

These instructions for building and installing from source are suitable for developers who
want to build the latest version of LXD, or to build a specific release of LXD which may not
be offered by their Linux distribution. Source builds for integration into Linux distributions
are not covered.

We recommend having the latest versions of liblxc (see LXC requirements (page 385)) avail-
able for LXD development. For convenience, make deps will pull the appropriate versions of
liblxc and dqlite from their corresponding upstream Git repository. Additionally, LXD re-
quires amodernGolang (seeGo (page 385)) version towork. OnUbuntu, you can install these
with:

sudo apt update
sudo apt install \

autoconf \
automake \
build-essential \
gettext \
git \
libacl1-dev \
libapparmor-dev \
libcap-dev \
liblz4-dev \
libseccomp-dev \
libsqlite3-dev \
libtool \
libudev-dev \
libuv1-dev \
make \
meson \
ninja-build \
pkg-config \
python3-venv

command -v snap >/dev/null || sudo apt-get install snapd
sudo snap install --classic go

Note

If you use the liblxc-dev package and get compile time errors when building the go-lxc
module, ensure that the value for LXC_DEVEL is 0 for your liblxcbuild. To check this, look at

31 of 954

/usr/include/lxc/version.h. If the LXC_DEVEL value is 1, replace it with 0 to work around
the problem. It’s a packaging bug that is now fixed, see LP: #203987340.

There are a few storage drivers for LXD besides the default dir driver. Installing these tools
adds a bit to initramfs and may slow down your host boot, but are needed if you’d like to
use a particular driver:

sudo apt install lvm2 thin-provisioning-tools
sudo apt install btrfs-progs

At runtime, LXD might need the following packages to be installed on the host system:

sudo apt update
sudo apt install \

attr \
iproute2 \
nftables \
rsync \
squashfs-tools \
tar \
xz-utils

`nftables` can be replaced by `iptables` on older systems

To run the test suite or test related make targets, you’ll also need:

sudo apt update
sudo apt install \

acl \
bind9-dnsutils \
btrfs-progs \
busybox-static \
curl \
dnsmasq-base \
dosfstools \
e2fsprogs \
iputils-ping \
jq \
netcat-openbsd \
openvswitch-switch \
s3cmd \
shellcheck \
socat \
sqlite3 \
swtpm \
xfsprogs \
yq

40 https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/2039873

32 of 954

https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/2039873

From source: Build the latest version

These instructions for building from source are suitable for individual developers who want
to build the latest version of LXD, or build a specific release of LXD which may not be of-
fered by their Linux distribution. Source builds for integration into Linux distributions are
not covered here and may be covered in detail in a separate document in the future.

git clone https://github.com/canonical/lxd
cd lxd

This will download the current development tree of LXD and place you in the source tree.
Then proceed to the instructions below to actually build and install LXD.

From source: Build a release

The LXD release tarballs bundle a complete dependency tree aswell as a local copy libdqlite
for LXD’s database setup.

tar zxvf lxd-4.18.tar.gz
cd lxd-4.18

This will unpack the release tarball and place you inside of the source tree. Then proceed to
the instructions below to actually build and install LXD.

Start the build

The actual building is done by two separate invocations of the Makefile: make deps – which
builds libraries required by LXD – and make, which builds LXD itself. At the end of make deps,
a message will be displayed which will specify environment variables that should be set prior
to invoking make. As new versions of LXD are released, these environment variable settings
may change, so be sure to use the ones displayed at the end of the make deps process, as the
ones below (shown for example purposes) may not exactly match what your version of LXD
requires:

We recommend having at least 2GiB of RAM to allow the build to complete.

~$ make deps ...make[1]: Leaving directory '/root/go/deps/dqlite'#
environment Please set the following in your environment (possibly
~/.bashrc)# export CGO_CFLAGS="${CGO_CFLAGS} -I$(go env
GOPATH)/deps/dqlite/include/"# export CGO_LDFLAGS="${CGO_LDFLAGS} -L$(go env
GOPATH)/deps/dqlite/.libs/"# export LD_LIBRARY_PATH="$(go env
GOPATH)/deps/dqlite/.libs/${LD_LIBRARY_PATH}"# export
CGO_LDFLAGS_ALLOW="(-Wl,-wrap,pthread_create)|(-Wl,-z,now)" ~$ make

From source: Install

Once the build completes, you simply keep the source tree, add the directory referenced by
$(go env GOPATH)/bin to your shell path, and set the LD_LIBRARY_PATH variable printed by
make deps to your environment. This might look something like this for a ~/.bashrc file:

export PATH="${PATH}:$(go env GOPATH)/bin"
export LD_LIBRARY_PATH="$(go env GOPATH)/deps/dqlite/.libs/:${LD_LIBRARY_PATH}"

33 of 954

Now, the lxd and lxc binaries will be available to you and can be used to set up LXD. The
binaries will automatically find and use the dependencies built in $(go env GOPATH)/deps
thanks to the LD_LIBRARY_PATH environment variable.

Machine setup

You’ll need sub{u,g}ids for root, so that LXD can create the unprivileged containers:

echo "root:1000000:1000000000" | sudo tee -a /etc/subuid /etc/subgid

By default, only users added to the lxd group can interact with the LXD daemon. Installing
from source doesn’t guarantee that the lxd group exists in the system. If you want the cur-
rent user (or any other user) to be able to interact with the LXD daemon, create the group
and add the user to it:

getent group lxd >/dev/null || sudo groupadd --system lxd # create the group if
needed
getent group lxd | grep -qwF "$USER" || sudo usermod -aG lxd "$USER"

Afterward, apply the change to your current shell session by running:

newgrp lxd

Now you can run the daemon (the --group sudo bit allows everyone in the sudo group to talk
to LXD; you can create your own group if you want):

sudo -E PATH=${PATH} LD_LIBRARY_PATH=${LD_LIBRARY_PATH} $(go env GOPATH)/bin/lxd -
-group sudo

Note

If newuidmap/newgidmap tools are present on your system and /etc/subuid, etc/subgid ex-
ist, they must be configured to allow the root user a contiguous range of at least 10M
UID/GID.

Shell completions

Shell completionprofiles canbegeneratedwith lxc completion <shell> (e.g. lxc completion
bash). Supported shells are bash, zsh, fish, and powershell.

lxc completion bash > /etc/bash_completion.d/lxc # generating completions for bash
as an example
. /etc/bash_completion.d/lxc

Manage access to LXD

Access control for LXD is based on groupmembership. The root user and all members of the
lxd group can interact with the local daemon.

On Ubuntu images, the lxd group already exists and the root user is automatically added to
it. The group is also created during installation if you installed LXD from the snap (page 28).

34 of 954

To check if the lxd group exists, run:

getent group lxd

If this command returns no result, the lxd group is missing from your system. This might be
the case if you installed LXD from source (page 31). To create the group and restart the LXD
daemon, run:

getent group lxd >/dev/null || sudo groupadd --system lxd

Afterward, add trusted users to the group so they can use LXD. The following command adds
the current user:

getent group lxd | grep -qwF "$USER" || sudo usermod -aG lxd "$USER"

Afterward, apply the change to your current shell session by running:

newgrp lxd

Important security notice

Local access to LXD through theUnix socket always grants full access to LXD. This includes
the ability to attach file system paths or devices to any instance as well as tweak the se-
curity features on any instance.

Therefore, you should only give such access to users who you’d trust with root access to
your system.

For more information, see Access to the LXD daemon (page 377).

Upgrade LXD

After upgrading LXD to a newer version, LXD might need to update its database to a new
schema. This update happens automatically when the daemon starts up after a LXD up-
grade. A backup of the database before the update is stored in the same location as the
active database (for example, at /var/snap/lxd/common/lxd/database for the snap installa-
tion).

Important

After a schema update, older versions of LXD might regard the database as invalid. That
means that downgrading LXD might render your LXD installation unusable.

In that case, if you need to downgrade, restore the database backup before starting the
downgrade.

How to initialize LXD

Before you can create a LXD instance, you must configure and initialize LXD.

35 of 954

Interactive configuration

Run the following command to start the interactive configuration process:

lxd init

Note

For simple configurations, you can run this command as a normal user. However, some
more advanced operations during the initialization process (for example, joining an exist-
ing cluster) require root privileges. In this case, run the command with sudo or as root.

The tool asks a series of questions to determine the required configuration. The questions
are dynamically adapted to the answers that you give. They cover the following areas:

Clustering (see Clusters (page 370) and How to form a cluster (page 280))
A cluster combines several LXD servers. The cluster members share the same dis-
tributed database and can be managed uniformly using the LXD client (lxc (page 690))
or the REST API.

The default answer is no, which means clustering is not enabled. If you answer yes, you
can either connect to an existing cluster or create one.

MAAS support (see maas.io41 and MAAS - Setting up LXD for VMs42)
MAAS is an open-source tool that lets you build a data center from bare-metal servers.

The default answer is no, which meansMAAS support is not enabled. If you answer yes,
you can connect to an existing MAAS server and specify the name, URL and API key.

Networking (see Networking setups (page 353) and Network devices (page 449))
Provides network access for the instances.

You can let LXD create a new bridge (recommended) or use an existing network bridge
or interface.

You can create additional bridges and assign them to instances later.

Storage pools (see Storage pools, volumes, and buckets (page 349) and Storage drivers
(page 521))

Instances (and other data) are stored in storage pools.

For testing purposes, you can create a loop-backed storage pool. For production use,
however, you should use an empty partition (or full disk) insteadof loop-backed storage
(because loop-backed pools are slower and their size/quota can’t be reduced).

The recommended backends are zfs and btrfs.

You can create additional storage pools later.

Remote access (see Access to the remote API (page 377) and Remote API
authentication (page 358))

Allows remote access to the server over the network.

The default answer is no, which means remote access is not allowed. If you answer yes,
you can connect to the server over the network.

41 https://maas.io/
42 https://maas.io/docs/how-to-manage-machines#p-9078-use-lxd-vms

36 of 954

https://maas.io/
https://maas.io/docs/how-to-manage-machines#p-9078-use-lxd-vms

You can choose to add client certificates to the server either manually or through to-
kens.

Automatic image update (see Local and remote images (page 348))
You can download images from image servers. In this case, images can be updated au-
tomatically.

The default answer is yes, which means that LXD will update the downloaded images
regularly.

YAML lxd init preseed (see Non-interactive configuration (page 37))
If you answer yes, the command displays a summary of your chosen configuration op-
tions in the terminal.

Minimal setup

To create aminimal setupwithdefault options, you can skip the configuration stepsby adding
the --minimal flag to the lxd init command:

lxd init --minimal

Note

The minimal setup provides a basic configuration, but the configuration is not optimized
for speed or functionality. Especially the dir storage driver (page 553), which is used by
default, is slower than other drivers and doesn’t provide fast snapshots, fast copy/launch,
quotas and optimized backups.

If you want to use an optimized setup, go through the interactive configuration process
instead.

Non-interactive configuration

The lxd init command supports a --preseed command line flag that makes it possible to
fully configure the LXD daemon settings, storage pools, network devices and profiles, in a
non-interactive way through a preseed YAML file.

For example, starting from a brand new LXD installation, you could configure LXD with the
following command:

cat <<EOF | lxd init --preseed
config:
core.https_address: 192.0.2.1:9999
images.auto_update_interval: 15

networks:
- name: lxdbr0
type: bridge
config:

ipv4.address: auto
ipv6.address: none

EOF

37 of 954

This preseed configuration initializes the LXD daemon to listen for HTTPS connections on
port 9999 of the 192.0.2.1 address, to automatically update images every 15 hours and to
create a network bridge device named lxdbr0, which gets assigned an IPv4 address automat-
ically.

Re-configuring an existing LXD installation

If you are configuring a newLXD installation, thepreseed commandapplies the configuration
as specified (as long as the given YAML contains valid keys and values). There is no existing
state that might conflict with the specified configuration.

However, if you are re-configuring an existing LXD installation using the preseed command,
the provided YAML configuration might conflict with the existing configuration. To avoid
such conflicts, the following rules are in place:

• The provided YAML configuration overwrites existing entities. This means that if you
are re-configuring an existing entity, you must provide the full configuration for the
entity and not just the different keys.

• If the provided YAML configuration contains entities that do not exist, they are created.

This is the same behavior as for a PUT request in the REST API (page 618).

Rollback

If some parts of the new configuration conflict with the existing state (for example, they
try to change the driver of a storage pool from dir to zfs), the preseed command fails and
automatically attempts to roll back any changes that were applied so far.

For example, it deletes entities that were created by the new configuration and reverts over-
written entities back to their original state.

Failuremodes when overwriting entities are the same as for the PUT requests in the REST API
(page 618).

Note

The rollback process might potentially fail, although rarely (typically due to backend bugs
or limitations). You should therefore be careful when trying to reconfigure a LXD daemon
via preseed.

Default profile

Unlike the interactive initializationmode, the lxd init --preseed command does notmodify
the default profile, unless you explicitly express that in the provided YAML payload.

For instance, you will typically want to attach a root disk device and a network interface to
your default profile. See the following section for an example.

38 of 954

Configuration format

The supported keys and values of the various entities are the same as the ones documented
in the REST API (page 618), but converted to YAML for convenience. However, you can also
use JSON, since YAML is a superset of JSON.

The following snippet gives an example of a preseed payload that contains most of the pos-
sible configurations. You can use it as a template for your own preseed file and add, change
or remove what you need:

Daemon settings
config:
core.https_address: 192.0.2.1:9999
images.auto_update_interval: 6

Storage pools
storage_pools:
- name: data
driver: zfs
config:

source: my-zfs-pool/my-zfs-dataset

Storage volumes
storage_volumes:
- name: my-vol
pool: data

Network devices
networks:
- name: lxd-my-bridge
type: bridge
config:

ipv4.address: auto
ipv6.address: none

Profiles
profiles:
- name: default
devices:

root:
path: /
pool: data
type: disk

- name: test-profile
description: "Test profile"
config:

limits.memory: 2GiB
devices:

test0:
name: test0
nictype: bridged

(continues on next page)

39 of 954

(continued from previous page)

parent: lxd-my-bridge
type: nic

See Preseed YAML file fields (page 508) for the complete fields of the preseed YAML file.

How to access the UI and the local, offline copy of the documentation:

How to access the LXD web UI

Note

The LXD web UI is available as part of the LXD snap.

See the LXD-UI GitHub repository43 for the source code.

Fig. 1: Graphical console of an instance in the LXD web UI

The LXD web UI provides you with a graphical interface to manage your LXD server and in-
stances. It does not provide full functionality yet, but it is constantly evolving, already cover-
ing many of the features of the LXD command-line client.

Complete the following steps to access the LXD web UI:

1. Make sure that your LXD server is exposed to the network (page 44). You can expose the
server during initialization (page 35), or afterwards by setting the core.https_address
(page 402) server configuration option.

43 https://github.com/canonical/lxd-ui

40 of 954

https://github.com/canonical/lxd-ui

2. Access theUI in your browserbyentering the server address (for example, https://127.
0.0.1:8443 for a local server, or an address like https://192.0.2.10:8443 for a server
running on 192.0.2.10).

If you have not set up a secure TLS server certificate (page 361), LXD uses a self-signed
certificate, which will cause a security warning in your browser. Use your browser’s
mechanism to continue despite the security warning.

3. Set up the certificates that are required for the UI client to authenticate with the LXD
server by following the steps presented in the UI.

You have two options, depending on whether you already have a client certificate se-
lected in your browser:

• If you don’t have a certificate yet, click Create a new certificate to get instructions
for creating a set of certificates, adding the public key to the server’s trust store,
and adding the private key to your browser.

• If you already have a client certificate in your browser, select “use an existing cer-
tificate” to authorize the certificate with the server and re-use it.

See Remote API authentication (page 358) for more information.

After setting up the certificates, you can start creating instances, editing profiles, or config-
uring your server.

41 of 954

https://127.0.0.1:8443
https://127.0.0.1:8443

42 of 954

Enable or disable the UI

The snap configuration option (page 324) lxd ui.enable controls whether the UI is enabled
for LXD.

Starting with LXD 5.21, the UI is enabled by default. If you want to disable it, set the option
to false:

sudo snap set lxd ui.enable=false
sudo systemctl reload snap.lxd.daemon

To enable it again, or to enable it for older LXD versions (that include the UI), set the option
to true:

sudo snap set lxd ui.enable=true
sudo systemctl reload snap.lxd.daemon

How to access the local LXD documentation

The latest version of the LXDdocumentation is available at documentation.ubuntu.com/lxd44.

Alternatively, you can access a local version of the LXD documentation that is embedded in
the LXD snap. This version of the documentation exactly matches the version of your LXD
deployment, butmight bemissing additions, fixes, or clarifications thatwere added after the
release of the snap.

Complete the following steps to access the local LXD documentation:

1. Make sure that your LXD server is exposed to the network (page 44). You can expose the
server during initialization (page 35), or afterwards by setting the core.https_address
(page 402) server configuration option.

2. Access the documentation in your browser by entering the server address followed by
/documentation/ (for example, https://192.0.2.10:8443/documentation/).

If you have not set up a secure TLS server certificate (page 361), LXD uses a self-signed
certificate, which will cause a security warning in your browser. Use your browser’s
mechanism to continue despite the security warning.

In addition, the following clip gives a quick and easy introduction for standard use cases:

You can also find a series of demos and tutorials on YouTube:

Related topics

Tutorials:

• First steps with LXD (page 4)

• Getting started with the UI (page 11)

Explanation:

• Containers and VMs (page 346)

Reference:

• Requirements (page 385)

44 https://documentation.ubuntu.com/lxd/

43 of 954

https://documentation.ubuntu.com/lxd/

• Releases and snap (page 388)

2.1.2. LXD server and client
The following how-to guides cover common operations related to the LXD server:

How to expose LXD to the network

By default, LXD can be used only by local users through a Unix socket and is not accessible
over the network.

To expose LXD to the network, you must configure it to listen to addresses other than the
local Unix socket. To do so, set the core.https_address (page 402) server configuration op-
tion.

For example, allow access to the LXD server on port 8443:

CLI

API

UI

lxc config set core.https_address :8443

lxc query --request PATCH /1.0 --data '{
"config": {

"core.https_address": ":8443"
}

}'

Note

The UI requires LXD to be exposed to the network. Therefore, youmust use the CLI or API
to originally expose LXD to the network.

Once you have access to the UI, you can use it to update the setting. However, be careful
when changing the configured value, because using an invalid value might cause you to
lose access to the UI.

Go to Settings and edit the value for core.https_address.

To allow access through a specific IP address, use ip addr to find an available address and
then set it. For example:

~$ ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd
00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever
preferred_lft forever inet6 ::1/128 scope host valid_lft forever
preferred_lft forever2: enp5s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc mq state UP group default qlen 1000 link/ether 00:16:3e:e3:f3:3f brd
ff:ff:ff:ff:ff:ff inet 10.68.216.12/24 metric 100 brd 10.68.216.255 scope
global dynamic enp5s0 valid_lft 3028sec preferred_lft 3028sec inet6
fd42:e819:7a51:5a7b:216:3eff:fee3:f33f/64 scope global mngtmpaddr
noprefixroute valid_lft forever preferred_lft forever inet6

44 of 954

fe80::216:3eff:fee3:f33f/64 scope link valid_lft forever preferred_lft
forever3: lxdbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue
state DOWN group default qlen 1000 link/ether 00:16:3e:8d:f3:72 brd
ff:ff:ff:ff:ff:ff inet 10.64.82.1/24 scope global lxdbr0 valid_lft forever
preferred_lft forever inet6 fd42:f4ab:4399:e6eb::1/64 scope global valid_lft
forever preferred_lft forever ~$ lxc config set core.https_address
10.68.216.12

All remote clients can then connect to LXD and access any image that is marked for public
use.

Authenticate with the LXD server

To be able to access the remote API, clients must authenticate with the LXD server. There
are several authentication methods; see Remote API authentication (page 358) for detailed
information.

The recommended method is to add the client’s TLS certificate to the server’s trust store
through a trust token. There are two ways to create a token. Create a pending fine-grained
TLS identity if you would like to manage client permissions via Fine-grained authorization
(page 364). Create a certificate add token if you would like to grant the client full access
to LXD, or manage their permissions via Restricted TLS certificates (page 364).

See How to access the LXD web UI (page 40) for instructions on how to authenticate with the
LXD server using the UI. To authenticate a CLI or API client using a trust token, complete the
following steps:

1. On the server, generate a trust token.

CLI

API

There are currently two ways to retrieve a trust token in LXD.

Create a certificate add token

To generate a trust token, enter the following command on the server:

lxc config trust add

Enter the name of the client that you want to add. The command generates and prints
a token that can be used to add the client certificate.

Note

The recipient of this token will have full access to LXD. To restrict the access of the
client, you must use the --restricted flag. See Confine users to specific projects on
the HTTPS API (page 169) for more details.

Create a pending fine-grained TLS identity

To create a pending fine-grained TLS identity, enter the following command on the
server:

45 of 954

lxc auth identity create tls/<client_name>

The command generates and prints a token that can be used to add the client certifi-
cate.

Note

The recipient of this token is not authorized toperformany actions in the LXD server.
To grant access, the identity must be added to one ormore groups with permissions
assigned. See Fine-grained authorization (page 364).

Create a certificate add token

To generate a trust token, send a POST request to the /1.0/certificates endpoint:

lxc query --request POST /1.0/certificates --data '{
"name": "<client_name>",
"token": true,
"type": "client"

}'

See POST /1.0/certificates for more information.

The return value of this query contains an operation that has the information that is
required to generate the trust token:

{
"class": "token",
...
"metadata": {

"addresses": [
"<server_address>"

],
"fingerprint": "<fingerprint>",
...
"secret": "<secret>"

},
...
}

Use this information to generate the trust token:

echo -n '{"client_name":"<client_name>","fingerprint":"<fingerprint>",'\
'"addresses":["<server_address>"],'\
'"secret":"<secret>","expires_at":"0001-01-01T00:00:00Z"}' | base64 -w0

Create a pending fine-grained TLS identity

To generate a trust token, send a POST request to the /1.0/auth/identities/tls end-
point:

46 of 954

lxc query --request POST /1.0/auth/identities/tls --data '{
"name": "<client_name>",
"token": true

}'

See POST /1.0/auth/identities/tls for more information.

The return value of this query contains the information that is required to generate the
trust token:

{
"client_name": "<client_name>",
"addresses": [

"<server_address>"
],
"expires_at": "<expiry_date>"
"fingerprint": "<fingerprint>",
"type": "<type>",
"secret": "<secret>"

}

Use this information to generate the trust token:

echo -n '{"client_name":"<client_name>","fingerprint":"<fingerprint>",'\
'"addresses":["<server_address>"],'\
'"secret":"<secret>","expires_at":"0001-01-01T00:00:00Z","type":"<type>"}' |
base64 -w0

2. Authenticate the client.

CLI

API

On the client, add the server with the following command:

lxc remote add <remote_name> <token>

Note

If your LXD server is behind NAT, you must specify its external public address when
adding it as a remote for a client:

lxc remote add <name> <IP_address>

When you are prompted for the token, specify the generated token from the previ-
ous step. Alternatively, use the --token flag:

lxc remote add <name> <IP_address> --token <token>

When generating the token on the server, LXD includes a list of IP addresses that
the client can use to access the server. However, if the server is behind NAT, these
addresses might be local addresses that the client cannot connect to. In this case,
you must specify the external address manually.

47 of 954

On the client, generate a certificate to use for the connection:

openssl req -x509 -newkey rsa:2048 -keyout "<keyfile_name>" -nodes \
-out "<crtfile_name>" -subj "/CN=<client_name>"

Trust store entries

Then send a POST request to the /1.0/certificates?public endpoint to authenticate:

curl -k -s --key "<keyfile_name>" --cert "<crtfile_name>" \
-X POST https://<server_address>/1.0/certificates \
--data '{ "trust_token": "<trust_token>" }'

See POST /1.0/certificates?public for more information.

TLS identities

Send a POST request to the /1.0/auth/identities/tls?public endpoint to authenti-
cate:

curl --insecure --key "<keyfile_name>" --cert "<crtfile_name>" \
-X POST https://<server_address>/1.0/auth/identities/tls \
--data '{ "trust_token": "<trust_token>" }'

See POST /1.0/auth/identities/tls?public for more information.

See Remote API authentication (page 358) for detailed information and other authentication
methods.

How to configure the LXD server

See Server configuration (page 401) for all configuration options that are available for the
LXD server.

If the LXD server is part of a cluster, some of the options apply to the cluster, while others
apply only to the local server, thus the clustermember. In the Server configuration (page 401)
option tables, options that apply to the cluster aremarkedwith a global scope, while options
that apply to the local server are marked with a local scope.

Configure server options

CLI

API

UI

You can configure a server option with the following command:

lxc config set <key> <value>

For example, to allow remote access to the LXD server on port 8443, enter the following
command:

lxc config set core.https_address :8443

48 of 954

In a cluster setup, to configure a server option for a cluster member only, add the --target
flag. For example, to configure where to store image tarballs on a specific cluster member,
enter a command similar to the following:

lxc config set storage.images_volume my-pool/my-volume --target member02

Send a PATCH request to the /1.0 endpoint to update one or more server options:

lxc query --request PATCH /1.0 --data '{
"config": {

"<key>": "<value>",
"<key>": "<value>"

}
}'

For example, to allow remote access to the LXD server on port 8443, send the following
request:

lxc query --request PATCH /1.0 --data '{
"config": {

"core.https_address": ":8443"
}

}'

In a cluster setup, to configure a server option for a cluster member only, add the target
parameter to the query. For example, to configurewhere to store image tarballs on a specific
cluster member, send a request similar to the following:

lxc query --request PATCH /1.0?target=member02 --data '{
"config": {

"storage.images_volume": "my-pool/my-volume"
}

}'

See PATCH /1.0 for more information.

Go to Settings to configure the server options.

In a cluster setup, server options that apply to the local server are updated only for the server
on which you are accessing the UI. For example, if you access the UI on server1 and update
the location for storing image tarballs (storage.images_volume (page 413), which has a local
scope) from local/pool1 to local/pool2, storage.images_volume will still be configured to
local/pool1 on server2.

Display the server configuration

CLI

API

UI

To display the current server configuration, enter the following command:

49 of 954

lxc config show

In a cluster setup, to show the local configuration for a specific cluster member, add the
--target flag.

Send a GET request to the /1.0 endpoint to display the current server environment and con-
figuration:

lxc query --request GET /1.0

In a cluster setup, to show the local environment and configuration for a specific clustermem-
ber, add the target parameter to the query:

lxc query --request GET /1.0?target=<cluster_member>

See GET /1.0 for more information.

Go to Settings to view the current server configuration.

In a cluster setup, this view shows the local configuration for the cluster member on which
you are accessing the UI.

Edit the full server configuration

CLI

API

UI

To edit the full server configuration as a YAML file, enter the following command:

lxc config edit

In a cluster setup, to edit the local configuration for a specific cluster member, add the
--target flag.

To update the full server configuration, send a PUT request to the /1.0 endpoint:

lxc query --request PUT /1.0 --data '<server_configuration>'

In a cluster setup, to update the full server configuration for a specific cluster member, add
the target parameter to the query:

lxc query --request PUT /1.0?target=<cluster_member> '<server_configuration>'

See PUT /1.0 for more information.

The UI does not currently support editing the full server configuration.

How to configure Auth0 as login method for the LXD UI and CLI

Auth0 is a flexible, drop-in solution to add authentication and authorization services to your
applications. Auth0 supports OIDC and can be used to authenticate users for the LXD UI and
CLI. This guide shows you how to set up Auth0.com as the login method for the LXD UI and
CLI.

50 of 954

Using Auth0.com to access LXD

1. Open a free account on Auth0.com45.

2. Once logged into the Auth0web interface, from themain navigation’s Applications sec-
tion, select Applications > Create application.

• Use the default type of Native and click Create.

3. Go to the Settings tab of your new application.

• Scroll to the Allowed Callback URLs field in this tab and enter your LXD UI address,
followed by /oidc/callback.

– Example: https://example.com:8443/oidc/callback

– An IP address can be used instead of a domain name.

– Note :8443 is the default listening port for the LXD server. It might differ for
your setup. You can verify the LXD configuration value core.https_address to
find the correct port for your LXD server.

• Enable Allow Refresh Token Rotation.

• Scroll down to Advanced Settings and select the Grant Types tab. Enable Device
code. The device code grant type is required for OIDC authentication using the
LXD CLI.

• Select Save Changes.

4. Near the top of the Settings tab, locate the Domain field. Copy the value and add the
https:// prefix and the / suffix as in the example below. This is your OIDC issuer for
LXD. Set this value in your LXD server configuration with the command:

lxc config set oidc.issuer=https://dev-example.us.auth0.com/

5. From your Auth0 application’s Settings tab, copy the Client ID and use it in your LXD
server configuration:

lxc config set oidc.client.id=6f6f6f6f6f6f

6. Finally, in the Auth0 interface’s main navigation, under Applications, select Applications
>APIs. Copy theAPI Audience value, then use it as theOIDC audience in your LXD server
configuration:

lxc config set oidc.audience=https://dev-example.us.auth0.com/api/v2/

Now you can access the LXD UI with any browser and use SSO (single sign-on) login. Enter
the credentials for Auth0. You can also access LXD using the CLI with

lxc remote add <remote-name> <LXD-address> --auth-type oidc

This will open a browser where you must confirm the device code displayed in the terminal
window, and log in with the credentials for Auth0.

45 https://auth0.com/

51 of 954

https://auth0.com/

Users will have no permissions by default. You must set up LXD authorization groups
(page 366) to grant access to projects and instances. For connecting the LXD authorization
groups to a user you have two options:

1. Map a LXD authorization group to the user directly. Note, that the user object in LXD
will only be created on the first login of that user to LXD.

2. Configure roles in Auth0 and use automatic mapping to LXD authorization groups as
described below.

Set up automatic group mappings

An admin can set up multiple users in Auth0 and allocate roles to those users. When a user
logs in via OIDC, their allocated Auth0 roles can be mapped to LXD authorization groups
through custom claims. This section details the steps for configuring roles in Auth0 and set-
ting up a custom claim so that LXD can map those roles to its authorization groups.

1. In Auth0 interface for the application used with LXD, select User Management > Roles,
create some roles with suitable names.

2. Under User Management > Users, click Create User. Provide an email and password and
create the user.

3. Select on the Roles tab in the user detail page, then click theAssign Roles button. Select
the roles you created in step 1.

4. You must set up a custom action on Auth0 to set the custom claim on the id_token
during the OIDC login flow.

• In the main navigation, under Actions > Library, click the Create Action button. Se-
lect Build from scratch.

– Name: Give the action a suitable name like roles-in-id-token.

– Trigger: Login / Post Login

– Runtime: The recommended default

• Click Create. This causes a code editor to open.

• In the code editor, insert the code snippet shown below:

exports.onExecutePostLogin = async (event, api) => {
if (event.authorization) {

api.idToken.setCustomClaim(`lxd-idp-groups`, event.authorization.roles);
api.accessToken.setCustomClaim(`lxd-idp-groups`, event.authorization.

roles);
}

};

• Select Deploy.

• Once the action is deployed, go to Actions > Triggers > post-login. Under the Add
Action > Custom tab, drag the action you just created and drop it in between the
Start and Complete nodes of the Login flow. Select Apply to save the changes.

5. Navigate to the LXD UI. First authenticate with the UI using a trusted certificate so that
you can configure server settings without permission issues.

52 of 954

6. In the LXD UI, under settings, find oidc.groups.claim. Set it to the custom claim config-
ured in step 4. Using the current example, the custom claim is lxd-idp-groups. Alter-
natively, use the command line: lxc config set oidc.groups.claim=lxd-idp-groups.

7. Continuing in the LXD UI, navigate to Permissions > IDP groups and click Create IDP
Group. Here you can map roles from Auth0 to LXD authorization groups. For each iden-
tity provider group (page 367) created in LXD, the name of the identity provider group
must match a role you have created in Auth0, and it should also map to one or more
LXD authorization groups. Alternatively, use the command line:

lxc auth identity-provider-group create <auth0-role-name>
lxc auth identity-provider-group group add <auth0-role-name> <LXD-group-name>

8. Lastly, you log in as a user with roles assigned in Auth0. During the OIDC flow, LXD
automatically extracts the custom claim from the user’s id_token based on the LXD
oidc.groups.claim configuration value. The extracted custom claim is an array of roles
for your user from Auth0. Those roles are then mapped to LXD authorization groups
using the identity provider group created in step 7.

How to configure Ory Hydra as login method for the LXD UI

Ory Hydra is an easy solution to authenticate users for the LXD UI. It supports local users and
social sign in through Google, Facebook, Microsoft, GitHub, Apple or others. It does not yet
work for the LXD command line. This guide shows you how to set up Ory Hydra as the login
method for the LXD UI.

Using Ory Hydra to access LXD UI

1. Open a free account on Ory.sh/Hydra46.

2. Once logged into the Ory Console, navigate to OAuth 2 > OAuth2 Clients > Create
OAuth2 Client.

3. Select the typeMobile / SPA and click Create. Enter the details for the client:

• Client Name: Choose a name, such as lxd-ory-client.

• Scope: Enter email and click Add, then add profile as well.

• Redirect URIs: Enter your LXD UI address, followed by /oidc/callback, then click
Add.

– Example: https://example.com:8443/oidc/callback

– An IP address can be used instead of a domain name.

– Note: :8443 is the default listening port for the LXD server. It might differ for
your setup. Use lxc config get core.https_address to find the correct port
for your LXD server.

4. Select Create Client on the bottom of the page.

5. On theOAuth2 Clients list, find the ID for the client you created. Copy the value and set
it in your LXD server configuration with the command:

46 https://www.ory.sh/hydra/

53 of 954

https://www.ory.sh/hydra/

lxc config set oidc.client.id=<your OAuth2 Client ID>

6. In the Ory Console, navigate to OAuth 2 > Overview. Find the Issuer URL and copy the
value. Set this value in your LXD server configuration as issuer with the commands:

lxc config set oidc.issuer=https://<ory-id>.projects.oryapis.com

Now you can access the LXD UI with any browser and use SSO login.

No users exist within ORY by default. New users can use the sign-up link during login. Al-
ternatively, configure Google, Facebook, Microsoft, GitHub, Apple, or another social sign-in
provider as described in the ORY documentation47.

Users authenticated through ORY have no default permissions in the LXD UI. Set up LXD au-
thorization groups (page 366) to grant access to projects and instances andmap a LXD autho-
rization group to the user. Note that the user object in LXD is only created on the first login
of that user to LXD.

How to configure Keycloak as login method for LXD

Keycloak is a self-hosted open source tool for authentication. Keycloak supports OIDC and
can be used to authenticate users for LXD UI and CLI. This guide shows you how to set up
Keycloak as the login method for LXD.

Using Keycloak to access LXD

1. Set up Keycloak. For this guide, it is assumed that Keycloak is available over HTTPS.

• If you already have Keycloak installed, follow their guide on configuring Keycloak
for production48.

• Alternatively, run the development version:

– Download Keycloak-25.0.449.

– Extract the files and run bin/kc.sh start-dev.

– Open http://localhost:8080 in your browser and create an admin user with a
password.

2. Open the Keycloak Admin Console. For the development version, you can access this
at http://localhost:8080/admin. Sign in with the admin user that you created.

3. From the Keycloak dropdown in the top left corner of the Admin Console, select Create
realm. Enter a Realm name, such as lxd-ui-realm, then click Create.

4. From the main navigation, select Clients, then click Create client. Enter a Client ID, such
as lxd-ui-client, then click Next.

5. Enable the OAuth 2.0 Device Authorization Grant to allow the LXD CLI login. Click Next.

6. In the field for Valid redirect URIs, enter your LXD UI address, followed by /oidc/
callback.

• Example: https://example.com:8443/oidc/callback

47 https://www.ory.sh/docs/kratos/social-signin/overview
48 https://www.keycloak.org/server/configuration-production
49 https://github.com/keycloak/keycloak/releases/download/25.0.4/keycloak-25.0.4.zip

54 of 954

https://www.ory.sh/docs/kratos/social-signin/overview
https://www.keycloak.org/server/configuration-production
https://www.keycloak.org/server/configuration-production
https://github.com/keycloak/keycloak/releases/download/25.0.4/keycloak-25.0.4.zip
http://localhost:8080
http://localhost:8080/admin

• An IP address can be used instead of a domain name.

• Note :8443 is the default listening port for the LXD server. It might differ for your
setup. You can verify the LXD configuration value core.https_address to find the
correct port for your LXD server.

Click Save.

7. From the main navigation, select Users, then click Create new user. Enter a Username,
then click Create.

8. Select the Credentials tab for the new user and click Set password. Save the new pass-
word.

9. Configure the issuer on your LXD server via theCLI. For <keycloak-realm>, use the name
that you created in step 2. For the <keycloak-frontend-url>, use the URL for your Key-
cloak server, such as http://192.0.2.1:8080. If you are running the development ver-
sion of Keycloak, use http://localhost:8080.

lxc config set oidc.issuer=<keycloak-frontend-url>/realms/<keycloak-realm>

10. Configure the client in LXD with the command below. Use the client id from step 4.

lxc config set oidc.client.id=<keycloak-client-id>.

Now you can access the LXD UI with any browser and use SSO login. To use OIDC on the LXD
CLI, run lxc remote add <LXD address> --auth-type oidc and follow the instructions to
authenticate.

Users authenticated through Keycloak have no default permissions in the LXD UI. Set up LXD
authorization groups (page 366) to grant access to projects and instances and map a LXD
authorization group to the user. Note that the user object in LXD is only created on the first
login of that user to LXD.

How to configure authentication with Entra ID

Entra ID50 is an Identity and Access Management offering from Microsoft. It is commonly
used as a central location for managing users, groups, roles, and their privileges across many
applications and deployments.

LXD supports authentication via OpenID Connect (OIDC)51 (see OpenID Connect authentica-
tion (page 361)). Entra ID is an OIDC provider; however, some aspects of the Entra ID OIDC
service are non-standard. In particular, the access_token that is returned when a user suc-
cessfully authenticates using the device authorization grant52 flow is an opaque string53, and
not a JSONWeb Token (JWT)54.

The LXD CLI uses the device authorization grant flow to obtain an access token. When a com-
mand is issued, the CLI adds this token to all requests to the LXD API. For Entra ID, since the
token is opaque, LXD is unable to verify it and the command will fail. Therefore, authenti-
cation with Entra ID is only directly supported for the user interface (LXD UI) and not the
CLI.

50 https://www.microsoft.com/en-gb/security/business/identity-access/microsoft-entra-id
51 https://openid.net/
52 https://tools.ietf.org/html/rfc8628
53 https://learn.microsoft.com/en-us/entra/identity-platform/v2-oauth2-device-code#

successful-authentication-response
54 https://datatracker.ietf.org/doc/html/rfc7519

55 of 954

https://www.microsoft.com/en-gb/security/business/identity-access/microsoft-entra-id
https://openid.net/
https://tools.ietf.org/html/rfc8628
https://learn.microsoft.com/en-us/entra/identity-platform/v2-oauth2-device-code#successful-authentication-response
https://datatracker.ietf.org/doc/html/rfc7519

We are working toward full Entra ID support for LXD. In the meantime, it is possible to use
Entra ID if OIDC is only required for the LXD UI. Alternatively, it is possible to use Entra ID for
both the CLI and the user interface by deploying an identity broker such as Keycloak55.

This how-to guide covers configuring Entra ID for authentication in the LXD UI only (page 56),
and cover configuring Keycloak to act as a broker for Entra ID (page 61). In both cases, it is
assumed that LXD has been initialized and is available remotely via the HTTPS API on port
8443 (see How to expose LXD to the network (page 44) for instructions). It is also assumed
that you have access to an Entra ID tenant.

Using Entra ID directly (LXD UI only)

1. In your Entra ID tenant, go to Identity > Applications > App registrations in the left
panel.

2. Click + New registration. Then choose a name for the application (for example LXD).

3. Under Redirect URI (optional), select Public client/native (mobile & desktop) and
type:

https://<your-LXD-hostname>/oidc/callback

4. Click Register.

5. In the configuration page for your new application, go to Authentication in the Manage
menu.

6. Scroll down to Advanced settings. Under Allow public client flows, toggle Yes and
click Save.

7. In the configuration page for your new application, go to API permissions in the Manage
menu.

8. Go to Configured permissions and click + Add a permission.

9. Click Microsoft Graph in the right panel.

10. Click Delegated permissions.

11. Select all OpenId permissions, then click Add permissions.

12. Above the Managemenu, go to Overview and copy the Application (client) ID.

13. Set this as the client ID in LXD:

lxc config set oidc.client.id <your-client-id>

14. While still in Overview, click Endpoints and copy theURL under OpenID Connect metadata
document.

15. Navigate to the URL that you copied. This URLwill display some output in JSON format.

16. Copy the URL from the issuer field. Then set this as the oidc.issuer in LXD:

lxc config set oidc.issuer <your-issuer>

Alternatively, execute this command:
55 https://www.keycloak.org/

56 of 954

https://www.keycloak.org/

Fig. 2: Entra ID App registrations

Fig. 3: Entra ID set application name

57 of 954

Fig. 4: Entra ID set redirection URI

Fig. 5: Entra ID authentication

Fig. 6: Entra ID enable public client flows

58 of 954

Fig. 7: Entra ID API permissions

Fig. 8: Entra ID add a permission

Fig. 9: Entra ID Graph API permissions

59 of 954

Fig. 10: Entra ID Graph API delegated permissions

Fig. 11: Entra ID OpenID permissions

Fig. 12: Entra ID copy client ID

Fig. 13: Entra ID tenant discovery URL

60 of 954

lxc config set oidc.issuer "$(curl <URL that you copied> | jq -r .issuer)"

You can now navigate to the LXD UI in your browser. When you click Login with SSO, you will
be redirected to Entra ID to authenticate.

Using Keycloak as an Identity Broker for Entra ID

If you plan to use Keycloak as an identity provider for your production systems, you should
follow their guide on configuring Keycloak for production56. For this guide, it is assumed that
Keycloak is available over HTTPS and that you have created a Keycloak realm with default
settings.

1. In your Keycloak realm, go to Identity providers.

Fig. 14: Keycloak realm Identity providers

2. Click Microsoft.

Fig. 15: Keycloak Microsoft provider

56 https://www.keycloak.org/server/configuration-production

61 of 954

https://www.keycloak.org/server/configuration-production

3. On this page, copy the Redirect URI. Keep the tab open so that you can return to this
page to continue setting up Keycloak.

Fig. 16: Keycloak broker redirect URI

4. In your Entra ID tenant, go to Identity > Applications > App registrations in the left
panel.

5. Click + New registration. Then choose a name for the application (for example Key-
cloak).

6. Under Redirect URI (optional), select Web and paste the URL that you copied from
Keycloak. Then click Register.

7. Go to Certificates & secrets under Manage in your Entra ID tenant.

8. Click + New client secret.

9. In the right panel, click Add. A new client secret will be displayed. Copy the value.

Note

After navigating away from this page, you will no longer be able to view or copy the
secret. If you forget to copy it, you can delete it and create another one.

10. In the Keycloak identity provider configuration tab, paste the secret into the Client
secret field.

11. In Entra ID, go to the app Overview and copy the Application (client) ID.

12. Paste the value into the Client ID field in the Keycloak tab.

13. In Entra ID, go to the app Overview and copy the Directory (tenant) ID.

14. Paste the value into the Tenant ID field in the Keycloak tab.

15. Click Add.

16. Follow steps 7 to 11 in the above guide (page 56). This allows Keycloak to request the
required OpenID scopes.

We have now configured Keycloak to act as a broker for Entra ID. The remaining steps
configure Keycloak as the OIDC provider for LXD.

17. In your Keycloak realm, go to Clients.

18. Click Create client.

19. Set a Client ID and a name for the client, then click Next. The client ID in this example
is a random value. You can type any value, but it must be unique within the Keycloak
realm.

20. In Authentication flow, check the OAuth 2.0 Device Authorization Grant setting, then
click Next.

62 of 954

Fig. 17: Entra ID App registrations

Fig. 18: Entra ID App name

63 of 954

Fig. 19: Entra ID set redirection URI

Fig. 20: Entra ID certificates and secrets

64 of 954

Fig. 21: Entra ID client secret

Fig. 22: Entra ID copy client secret

Fig. 23: Keycloak paste client secret

65 of 954

Fig. 24: Entra ID copy client ID

Fig. 25: Keycloak paste client ID

Fig. 26: Entra ID copy tenant ID

66 of 954

Fig. 27: Keycloak paste tenant ID

Fig. 28: Keycloak clients

67 of 954

Fig. 29: Keycloak create client

Fig. 30: Keycloak client name and ID

Fig. 31: Keycloak device flow

68 of 954

21. In Valid redirect URIs, type https://<your-LXD-hostname>/oidc/callback, then click
Save.

Fig. 32: Keycloak redirect URI

22. Go to Realm settings under Configure in the left panel.

Fig. 33: Keycloak realm settings

23. Next to Endpoints, click OpenID Endpoint Configuration. This will display some output
in JSON format. Copy the URL from the issuer field, and set this in LXD:

lxc config set oidc.issuer <your-issuer>

Alternatively, execute this command:

lxc config set oidc.issuer "$(curl <configuration-url> | jq -r .issuer)"

24. Configure LXD with the client ID that you configured in Keycloak in step 19.

lxc config set oidc.client.id <client-id>

You can now log in to LXD via the user interface or via the CLI. LXD will redirect you to Key-

69 of 954

cloak to authenticate. A Microsoft logo will be displayed that will, when clicked, allow you to
log in to Keycloak (and therefore LXD) with Entra ID.

Additional Keycloak settings

It is important to remember that Keycloak is an identity provider in its own right. Once a user
has signed in to Keycloak, information about that user is stored and a session is created. By
default, even with a brokered identity provider, a user may edit their profile details on first
log in. This includes editing their email address.

The information that Keycloak stores about the user is configurable in realm settings. When
using Keycloak as a broker, you should consider preventing users from editing their infor-
mation in Keycloak. It might be necessary to configure mappers57 for the identity provider.
Identity provider mappers configure Keycloak to automatically populate user profile infor-
mation with fields from the brokered provider.

Formore information on identity brokeringwith Keycloak, please see their documentation58.

The following how-to guides cover common operations related to the LXD client (lxc):

How to add remote servers

Note

Remote servers are a concept in the LXD CLI.

If you are using the UI or the API, you can interact with different remotes by using their
exposed UI or API addresses instead.

By default, the command-line client interacts with the local LXD daemon, but you can add
other servers or clusters to interact with.

One use case for remote servers is to distribute images that can be used to create instances
on local servers. See Remote image servers (page 391) for more information.

You can also add a full LXD server as a remote server to your client. In this case, you can
interact with the remote server in the sameway as with your local daemon. For example, you
can manage instances or update the server configuration on the remote server.

Authentication

To be able to add a LXD server as a remote server, the server’s API must be exposed, which
means that its core.https_address (page 402) server configuration option must be set.

When adding the server, you must then authenticate with it using the chosen method for
Remote API authentication (page 358).

See How to expose LXD to the network (page 44) for more information.

57 https://www.keycloak.org/docs/latest/server_admin/index.html#_mappers
58 https://www.keycloak.org/docs/latest/server_admin/index.html#_identity_broker

70 of 954

https://www.keycloak.org/docs/latest/server_admin/index.html#_mappers
https://www.keycloak.org/docs/latest/server_admin/index.html#_identity_broker

List configured remotes

To see all configured remote servers, enter the following command:

lxc remote list

Remote servers that use the simple streams format59 are pure image servers. Servers that
use the lxd format are LXD servers, which either serve solely as image servers or might pro-
vide some images in addition to serving as regular LXD servers. See Remote server types
(page 391) for more information.

Add a remote LXD server

To add a LXD server as a remote, enter the following command:

lxc remote add <remote_name> <IP|FQDN|URL|token> [flags]

Some authentication methods require specific flags (for example, use lxc remote add
<remote_name> <IP|FQDN|URL> --auth-type=oidc (page 872) for OIDC authentication). See
Authenticatewith the LXD server (page45) andRemoteAPI authentication (page358) formore
information.

For example, enter the following command to add a remote through an IP address:

lxc remote add my-remote 192.0.2.10

You are prompted to confirm the remote server fingerprint and then asked for the token.

Select a default remote

The LXD command-line client is pre-configured with the local remote, which is the local LXD
daemon.

To select a different remote as the default remote, enter the following command:

lxc remote switch <remote_name>

To see which server is configured as the default remote, enter the following command:

lxc remote get-default

Configure a global remote

You can configure remotes on a global, per-system basis. These remotes are available for
every user of the LXD server for which you add the configuration.

Users can override these system remotes (for example, by running lxc remote rename
(page 874) or lxc remote set-url (page 875)), which results in the remote and its associ-
ated certificates being copied to the user configuration.

To configure a global remote, edit the config.yml file that is located in one of the following
directories:

• the directory specified by LXD_GLOBAL_CONF (if defined)

59 https://git.launchpad.net/simplestreams/tree/

71 of 954

https://git.launchpad.net/simplestreams/tree/

• /var/snap/lxd/common/global-conf/ (if you use the snap)

• /etc/lxd/ (otherwise)

Certificates for the remotesmust be stored in the servercerts directory in the same location
(for example, /etc/lxd/servercerts/). Theymustmatch the remote name (for example, foo.
crt).

See the following example configuration:

remotes:
foo:

addr: https://192.0.2.4:8443
auth_type: tls
project: default
protocol: lxd
public: false

bar:
addr: https://192.0.2.5:8443
auth_type: tls
project: default
protocol: lxd
public: false

How to add command aliases

Note

Command aliases are a concept in the LXD CLI. They are not applicable to the UI or API.

The LXD command-line client supports adding aliases for commands that you use frequently.
You can use aliases as shortcuts for longer commands, or to automatically add flags to exist-
ing commands.

To manage command aliases, you use the lxc alias (page 72) command.

For example, to always ask for confirmationwhen deleting an instance, create an alias for lxc
delete that always runs lxc delete -i:

lxc alias add delete "delete -i"

To see all configured aliases, run lxc alias list (page 693). Run lxc alias --help (page 72)
to see all available subcommands.

Related topics

Explanation:

• About lxd and lxc (page 345)

• The LXD Dqlite database (page 356)

Reference:

• Architectures (page 386)

72 of 954

• Server configuration (page 401)

• REST API (page 618)

2.2. Work with LXD
After the initial setup, you can start working with LXD by creating instances. You’ll also need
to set up and configure other entities.

2.2.1. Instances
The following how-to guides cover common operations related to instances.

How to create and manage instances:

How to create instances

When creating an instance, you must specify the image (page 348) on which the instance
should be based.

Images contain a basic operating system (for example, a Linux distribution) and some LXD-
related information. Images for various operating systems are available on the built-in re-
mote image servers. See Images (page 148) for more information.

If you don’t specify a name for the instance, LXD will automatically generate one. Instance
names must be unique within a LXD deployment (also within a cluster). See Instance name
requirements (page 415) for additional requirements.

CLI

API

UI

To create an instance, you can use either the lxc init (page 783) or the lxc launch (page 784)
command. The lxc init (page 783) command only creates the instance, while the lxc launch
(page 784) command creates and starts it.

Enter the following command to create a container:

lxc launch|init <image_server>:<image_name> <instance_name> [flags]

Unless the image is available locally, you must specify the name of the image server and the
name of the image (for example, ubuntu:24.04 for the official Ubuntu 24.04 LTS image).

See lxc launch --help (page 784) or lxc init --help (page 783) for a full list of flags. The
most common flags are:

• --config to specify a configuration option for the new instance

• --device to override device options (page 447) for a device provided through a profile,
or to specify an initial configuration for the root disk device (page 480) (syntax: --device
<device_name>,<device_option>=<value>)

• --profile to specify a profile (page 97) to use for the new instance

• --networkor --storage tomake the new instance use a specific network or storage pool

• --target to create the instance on a specific cluster member

• --vm to create a virtual machine instead of a container

73 of 954

Instead of specifying the instance configuration as flags, you can pass it to the command as
a YAML file.

For example, to launch a container with the configuration from config.yaml, enter the fol-
lowing command:

lxc launch ubuntu:24.04 ubuntu-config < config.yaml

Tip

Check the contents of an existing instance configuration (lxc config show
<instance_name> --expanded (page 748)) to see the required syntax of the YAML
file.

To create an instance, send a POST request to the /1.0/instances endpoint:

lxc query --request POST /1.0/instances --data '{
"name": "<instance_name>",
"source": {

"alias": "<image_alias>",
"protocol": "simplestreams",
"server": "<server_URL>",
"type": "image"

}
}'

The return value of this query contains an operation ID, which you can use to query the status
of the operation:

lxc query --request GET /1.0/operations/<operation_ID>

Use the following query to monitor the state of the instance:

lxc query --request GET /1.0/instances/<instance_name>/state

See POST /1.0/instances and GET /1.0/instances/{name}/state for more information.

The request creates the instance, but does not start it. To start an instance, send a PUT re-
quest to change the instance state:

lxc query --request PUT /1.0/instances/<instance_name>/state --data '{"action":
"start"}'

See Start an instance (page 93) for more information.

If you would like to start the instance upon creation, set the start property to true. The
following example will create the container, then start it:

lxc query --request POST /1.0/instances --data '{
"name": "<instance_name>",
"source": {

"alias": "<image_alias>",
"protocol": "simplestreams",

(continues on next page)

74 of 954

(continued from previous page)

"server": "<server_URL>",
"type": "image"

},
"start": true

}'

To create an instance, go to the Instances section and click Create instance.

On the resulting screen, optionally enter a name and description for the instance. Then click
Browse images to select the image to be used for the instance. Depending on the selected
image, youmight be able to select the instance type (page 347) (container or virtualmachine).
You can also specify one or more profiles to use for the instance.

To further tweak the instance configuration or add devices to the instance, go to any of the
tabs under Advanced. You can also edit the full instance configuration on the YAML configu-
ration tab.

Finally, click Create or Create and start to create the instance.

Examples

The following CLI and API examples create the instances, but don’t start them. If you are
using the CLI client, you can use lxc launch (page 784) instead of lxc init (page 783) to
automatically start them after creation.

In the UI, you can choose between Create and Create and start when you are ready to create
the instance.

Create a container

To create a container with an Ubuntu 24.04 LTS image from the ubuntu server using the in-
stance name ubuntu-container:

CLI

API

UI

lxc init ubuntu:24.04 ubuntu-container

lxc query --request POST /1.0/instances --data '{
"name": "ubuntu-container",
"source": {

"alias": "24.04",
"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases/",
"type": "image"

}
}'

75 of 954

Create a virtual machine

To create a virtual machine with an Ubuntu 24.04 LTS image from the ubuntu server using the
instance name ubuntu-vm:

CLI

API

UI

lxc init ubuntu:24.04 ubuntu-vm --vm

lxc query --request POST /1.0/instances --data '{
"name": "ubuntu-vm",
"source": {

"alias": "24.04",
"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases/",
"type": "image"

},
"type": "virtual-machine"

}'

Or with a bigger disk:

CLI

API

UI

lxc init ubuntu:24.04 ubuntu-vm-big --vm --device root,size=30GiB

76 of 954

lxc query --request POST /1.0/instances --data '{
"devices": {

"root": {
"path": "/",
"pool": "default",
"size": "30GiB",
"type": "disk"

}
},
"name": "ubuntu-vm-big",
"source": {

"alias": "24.04",
"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases/",
"type": "image"

},
"type": "virtual-machine"

}'

Create a container with specific configuration options

To create a container and limit its resources to one vCPU and 8 GiB of RAM:

CLI

API

UI

lxc init ubuntu:24.04 ubuntu-limited --config limits.cpu=1 --config limits.
memory=8GiB

77 of 954

lxc query --request POST /1.0/instances --data '{
"config": {

"limits.cpu": "1",
"limits.memory": "8GiB"

},
"name": "ubuntu-limited",
"source": {

"alias": "24.04",
"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases/",
"type": "image"

}
}'

Create a VM on a specific cluster member

To create a virtual machine on the cluster member micro2, enter the following command:

CLI

API

UI

lxc init ubuntu:24.04 ubuntu-vm-server2 --vm --target micro2

lxc query --request POST /1.0/instances?target=micro2 --data '{
"name": "ubuntu-vm-server2",
"source": {

"alias": "24.04",
"protocol": "simplestreams",

(continues on next page)

78 of 954

(continued from previous page)

"server": "https://cloud-images.ubuntu.com/releases/",
"type": "image"

},
"type": "virtual-machine"

}'

79 of 954

Create a container with a specific instance type

LXD supports simple instance types for clouds. Those are represented as a string that can be
passed at instance creation time.

The list of supported clouds and instance types can be found at images.lxd.canonical.com/
meta/instance-types/all.yaml60.

The syntax allows the three following forms:

• <instance type>

• <cloud>:<instance type>

• c<CPU>-m<RAM in GiB>

For example, the following three instance types are equivalent:

• t2.micro

• aws:t2.micro

• c1-m1

To create a container with this instance type:

CLI

API

UI

lxc init ubuntu:24.04 my-instance --type t2.micro

lxc query --request POST /1.0/instances --data '{
"instance_type": "t2.micro",
"name": "my-instance",
"source": {

"alias": "24.04",
"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases/",
"type": "image"

}
}'

Creating an instance with a specific cloud instance type is currently not possible through the
UI. Configure the corresponding options manually or through a profile.

Create a VM that boots from an ISO

To create a VM that boots from an ISO:

CLI

API

UI

First, create an empty VM that we can later install from the ISO image:
60 https://images.lxd.canonical.com/meta/instance-types/all.yaml

80 of 954

https://images.lxd.canonical.com/meta/instance-types/all.yaml
https://images.lxd.canonical.com/meta/instance-types/all.yaml

lxc init iso-vm --empty --vm --config limits.cpu=2 --config limits.memory=4GiB --
device root,size=30GiB

Note

Adapt the limits.cpu, limits.memory, and root size based on the hardware recommenda-
tions for the ISO image used.

The second step is to import an ISO image that can later be attached to the VM as a storage
volume:

lxc storage volume import <pool> <path-to-image.iso> iso-volume --type=iso

Lastly, attach the custom ISO volume to the VM using the following command:

lxc config device add iso-vm iso-volume disk pool=<pool> source=iso-volume boot.
priority=10

The boot.priority (page 480) configuration key ensures that the VM will boot from the ISO
first. Start the VM and connect to the console (page 109) as there might be a menu you need
to interact with:

lxc start iso-vm --console

Once you’re done in the serial console, disconnect from the console using Ctrl+a q and con-
nect to the VGA console (page 109) using the following command:

lxc console iso-vm --type=vga

You should now see the installer. After the installation is done, detach the custom ISO vol-
ume:

lxc storage volume detach <pool> iso-volume iso-vm

Now the VM can be rebooted, and it will boot from disk.

Note

On Linux virtual machines, the LXD agent can be manually installed (page 83).

First, create an empty VM that we can later install from the ISO image:

lxc query --request POST /1.0/instances --data '{
"name": "iso-vm",
"config": {

"limits.cpu": "2",
"limits.memory": "4GiB"

},
"devices": {

"root": {

(continues on next page)

81 of 954

(continued from previous page)

"path": "/",
"pool": "default",
"size": "30GiB",
"type": "disk"

}
},
"source": {

"type": "none"
},
"type": "virtual-machine"

}'

Note

Adapt the values for limits.cpu, limits.memory, and root: size based on the hardware
recommendations for the ISO image used.

The second step is to import an ISO image that can later be attached to the VM as a storage
volume:

curl -X POST -H "Content-Type: application/octet-stream" -H "X-LXD-name: iso-
volume" \
-H "X-LXD-type: iso" --data-binary @<path-to-image.iso> --unix-socket /var/snap/
lxd/common/lxd/unix.socket \
lxd/1.0/storage-pools/<pool>/volumes/custom

Note

When importing an ISO image, you must send both binary data from a file and additional
headers. The lxc query (page 869) command cannot do this, so you need to use curl or
another tool instead.

Lastly, attach the custom ISO volume to the VM using the following command:

lxc query --request PATCH /1.0/instances/iso-vm --data '{
"devices": {

"iso-volume": {
"boot.priority": "10",
"pool": "<pool>",
"source": "iso-volume",
"type": "disk"

}
}

}'

The boot.priority (page 480) configuration key ensures that the VM will boot from the ISO
first. Start the VM and connect to the console (page 109) as there might be a menu you need
to interact with:

82 of 954

lxc query --request PUT /1.0/instances/iso-vm/state --data '{"action": "start"}'
lxc query --request POST /1.0/instances/iso-vm/console --data '{
"height": 24,
"type": "console",
"width": 80

}'

Once you’re done in the serial console, disconnect from the console using Ctrl+a q and con-
nect to the VGA console (page 109) using the following command:

lxc query --request POST /1.0/instances/iso-vm/console --data '{
"height": 24,
"type": "vga",
"width": 80

}'

You should now see the installer. After the installation is done, detach the custom ISO vol-
ume:

lxc query --request GET /1.0/instances/iso-vm
lxc query --request PUT /1.0/instances/iso-vm --data '{
[...]
"devices": {}
[...]

}'

Note

You cannot remove the device through a PATCH request, but youmust use a PUT request.
Therefore, get the current configuration first and then provide the relevant configuration
with an empty devices list through the PUT request.

Now the VM can be rebooted, and it will boot from disk.

:end-before:

In the Create instance dialog, click Use custom ISO instead of Browse images. You can then
upload your ISO file and install a VM from it.

Install the LXD agent into virtual machine instances

In order for features like direct command execution (lxc exec& lxc shell), file transfers (lxc
file) and detailed usagemetrics (lxc info) to work properly with virtual machines, an agent
software is provided by LXD.

The virtual machine images from the official remote image servers (page 391) are pre-
configured to load that agent on startup.

For other virtual machines, you may want to manually install the agent.

83 of 954

Note

The LXD agent is currently available only on Linux virtual machines using systemd.

LXD provides the agent through a remote 9p file system and a virtiofs one that are both
available under the mount name config. To install the agent, you’ll need to get access to the
virtual machine and run the following commands as root:

modprobe 9pnet_virtio
mount -t 9p config /mnt -o access=0,transport=virtio || mount -t virtiofs config /
mnt
cd /mnt
./install.sh
cd /
umount /mnt
reboot

You need to perform this task once.

Create a Windows VM

To create a Windows VM, you must first prepare a Windows image. See Repack a Windows
image (page 161).

The How to install a Windows 11 VM using LXD61 tutorial shows how to prepare the image
and create a Windows VM from it.

How to configure instances

You can configure instances by setting Instance properties (page 415), Instance options
(page 415), or by adding and configuring Devices (page 447).

See the following sections for instructions.

Note

To store and reuse different instance configurations, use profiles (page 97).

Configure instance options

You can specify instance options when you create an instance (page 73). Alternatively, you
can update the instance options after the instance is created.

CLI

API

UI

Use the lxc config set (page747) command toupdate instanceoptions. Specify the instance
name and the key and value of the instance option:

61 https://ubuntu.com/tutorials/how-to-install-a-windows-11-vm-using-lxd

84 of 954

https://ubuntu.com/tutorials/how-to-install-a-windows-11-vm-using-lxd

lxc config set <instance_name> <option_key>=<option_value> <option_key>=<option_
value> ...

Send a PATCH request to the instance to update instance options. Specify the instance name
and the key and value of the instance option:

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"config": {

"<option_key>": "<option_value>",
"<option_key>": "<option_value>"

}
}'

See PATCH /1.0/instances/{name} for more information.

To update instance options, go to the Configuration tab of the instance detail page and click
Edit instance.

Find the configuration option that you want to update and change its value. Click Save
changes to save the updated configuration.

To configure instance options that are not displayed in the UI, follow the instructions in Edit
the full instance configuration (page 91).

See Instance options (page 415) for a list of available options and information about which
options are available for which instance type.

For example, change the memory limit for your container:

CLI

API

UI

To set the memory limit to 8 GiB, enter the following command:

lxc config set my-container limits.memory=8GiB

To set the memory limit to 8 GiB, send the following request:

lxc query --request PATCH /1.0/instances/my-container --data '{
"config": {

"limits.memory": "8GiB"
}

}'

To set the memory limit to 8 GiB, go to the Configuration tab of the instance detail page and
select Advanced > Resource limits. Then click Edit instance.

Select Override for theMemory limit and enter 8 GiB as the absolute value.

Note

Some of the instance options are updated immediately while the instance is running. Oth-
ers are updated only when the instance is restarted.

85 of 954

See the “Live update” information in the Instance options (page 415) reference for infor-
mation about which options are applied immediately while the instance is running.

Configure instance properties

CLI

API

UI

Toupdate instanceproperties after the instance is created, use the lxc config set (page747)
command with the --property flag. Specify the instance name and the key and value of the
instance property:

lxc config set <instance_name> <property_key>=<property_value> <property_key>=
<property_value> ... --property

Using the same flag, you can also unset a property just like you would unset a configuration
option:

lxc config unset <instance_name> <property_key> --property

You can also retrieve a specific property value with:

lxc config get <instance_name> <property_key> --property

To update instance properties through the API, use the same mechanism as for configuring
instance options. The only difference is that properties are on the root level of the configu-
ration, while options are under the config field.

Therefore, to set an instance property, send a PATCH request to the instance:

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"<property_key>": "<property_value>",
"<property_key>": "property_value>"
}

}'

86 of 954

To unset an instance property, send a PUT request that contains the full instance configura-
tion that you want except for the property that you want to unset.

See PATCH /1.0/instances/{name} and PUT /1.0/instances/{name} for more information.

The LXD UI does not distinguish between instance options and instance properties. There-
fore, you can configure instance properties in the sameway as you configure instance options
(page 84).

Configure devices

Generally, devices can be added or removed for a container while it is running. VMs support
hotplugging for some device types, but not all.

See Devices (page 447) for a list of available device types and their options.

Note

Every device entry is identified by a name unique to the instance.

Devices from profiles are applied to the instance in the order in which the profiles are as-
signed to the instance. Devices defined directly in the instance configuration are applied
last. At each stage, if a device with the same name already exists from an earlier stage,
the whole device entry is overridden by the latest definition.

Device names are limited to a maximum of 64 characters.

CLI

API

UI

To add and configure an instance device for your instance, use the lxc config device add
(page 739) command.

Specify the instance name, a device name, the device type and maybe device options (de-
pending on the device type (page 447)):

lxc config device add <instance_name> <device_name> <device_type> <device_option_
key>=<device_option_value> <device_option_key>=<device_option_value> ...

For example, to add the storage at /share/c1 on the host system to your instance at path
/opt, enter the following command:

lxc config device add my-container disk-storage-device disk source=/share/c1
path=/opt

To configure instance device options for a device that you have added earlier, use the lxc
config device set (page 742) command:

lxc config device set <instance_name> <device_name> <device_option_key>=<device_
option_value> <device_option_key>=<device_option_value> ...

Device options for a device inherited from a profile cannot be updated within the instance.
Use the lxc config device override (page 741) command to create a copy of the profile

87 of 954

device with updated device options. The newly created instance device will override the in-
herited device.

Specify the instance name, device name and the device options that should be overridden:

lxc config device override <instance_name> <device_name> <device_option_key>=
<device_option_value> <device_option_key>=<device_option_value> ...

Note

You can also specify device options by using the --device flag when creating an instance
(page 73). This is useful if youwant to override device options for a device that is provided
through a profile (page 97).

To remove a device, use the lxc config device remove (page 742) command. See lxc config
device --help (page 738) for a full list of available commands.

To addor configure an instancedevice for your instance, use the samemechanismofpatching
the instance configuration. The device configuration is located under the devicesfield of the
configuration.

Caution

Patching a device’s configuration unsets any omitted options for that device, along with
the instance’s description property. See Effects of patching device options (page 89) for
details.

Specify the instance name, a device name, and anyRequired device options (page 89) (depend-
ing on the device type (page 447)):

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"devices": {

"<device_name>": {
"type": "<device_type>",
"<device_option_key>": "<device_option_value>",
"<device_option_key>": "device_option_value>"

}
}

}'

For example, to add the storage at /share/c1 on the host system to your instance at path
/opt, enter the following command:

lxc query --request PATCH /1.0/instances/my-container --data '{
"devices": {

"disk-storage-device": {
"type": "disk",
"source": "/share/c1",
"path": "/opt"

}

(continues on next page)

88 of 954

(continued from previous page)

}
}'

See PATCH /1.0/instances/{name} for more information.

Required device options

When using a PATCH request to update an instance’s devices property, youmust include any
required options for each device in the request body. The device’s type option is always re-
quired. To find any other required keys for a specific device type, view theDevices (page 447)
referenceguides. For example, for anOVNNICdevice, the network (page465) key is required.

Effects of patching device options

For any device in your PATCH request, the request acts similar to a conventional PUT: it re-
places all options for that device. This means that if you omit a non-required option, it is
unset. Thus, include not only the options you want to add or update in your patch, but also
any other existing options whose values you want to keep.

This behavior only affects the specific device or devices that you are patching; if there are
other devices, you don’t need to include them. It also does not affect any other instance
properties, withoneexception: if the instance includes a descriptionproperty, that property
must be passed along with devices; otherwise, it is unset.

For example, consider an instance that contains this devices property:

"devices": {
"my-bridge-nic": {

"name": "my-bridge-nic-name",
"network": "my-bridge-network",
"type": "nic"

},
"my-ovn-nic": {

"name": "my-ovn-nic-name",
"network": "my-ovn-network",
"type": "nic"

}
}

Let’s say the following PATCH request is sent for this instance:

lxc query --request PATCH /1.0/instances/my-instance --data '{
"devices": {

"my-bridge-nic": {
"type": "nic",
"network": "test-bridge",
"ipv4.address": "192.0.2.10"

}
}

}'

This PATCH request updates only the my-bridge-nic device, without affecting the my-ovn-nic

89 of 954

device. The device options defined in the request body replace the existing options. After
the request, this is the devices property’s configuration:

"devices": {
"my-bridge-nic": {

"network": "my-bridge-network",
"type": "nic",
"ipv4.address": "192.0.2.10"

},
"my-ovn-nic": {

"name": "my-ovn-nic-name",
"network": "my-ovn-network",
"type": "nic"

}
}

Notice that in the updated my-bridge-nic device, the name option is unset and no longer ap-
pears, due to not being sent in the PATCH request.

The UI does not support all device types yet, but you can configure disk and network devices
for your instances.

To attach a device to your instance, or modify an existing device, update your instance con-
figuration (in the same way as you configure instance options (page 84)). Select Advanced >
Disk devices > Attach disk device or Advanced > Network devices > Attach network to create a
device and attach it to your instance.

Note

Some of the devices that are displayed in the instance configuration are inherited from
a profile (page 97) or defined through a project (page 161). Depending on the type of
device, it might not be possible to edit these devices for an instance.

To add and configure devices that are not currently supported in the UI, follow the instruc-
tions in Edit the full instance configuration (page 91).

Display instance configuration

CLI

API

UI

To display the current configuration of your instance, including writable instance properties,
instance options, devices and device options, enter the following command:

lxc config show <instance_name> --expanded

To retrieve the current configuration of your instance, includingwritable instance properties,
instance options, devices and device options, send a GET request to the instance:

lxc query --request GET /1.0/instances/<instance_name>

90 of 954

See GET /1.0/instances/{name} for more information.

To view the current configuration of your instance, go to Instances, select your instance, and
then switch to the Configuration tab.

To see the full configuration including instance properties, instance options, devices and de-
vice options (also the ones that aren’t yet supported by the UI), select YAML configuration.
This view shows the full YAML of the instance configuration.

Edit the full instance configuration

CLI

API

UI

To edit the full instance configuration, including writable instance properties, instance op-
tions, devices and device options, enter the following command:

lxc config edit <instance_name>

Note

For convenience, the lxc config edit (page 744) command displays the full configuration
including read-only instance properties. However, you cannot edit those properties. Any
changes are ignored.

To update the full instance configuration, including writable instance properties, instance
options, devices and device options, send a PUT request to the instance:

lxc query --request PUT /1.0/instances/<instance_name> --data '<instance_
configuration>'

See PUT /1.0/instances/{name} for more information.

Note

If you include changes to any read-only instance properties in the configuration you pro-
vide, they are ignored.

Instead of using the UI forms to configure your instance, you can choose to edit the YAML
configuration of the instance. You must use this method if you need to update any configu-
rations that are not available in the UI.

Important

When doing updates, do not navigate away from the YAML configuration without saving
your changes. If you do, your updates are lost.

To edit the YAML configuration of your instance, go to the instance detail page, switch to the
Configuration tab and select YAML configuration. Then click Edit instance.

91 of 954

Edit the YAML configuration as required. Then click Save changes to save the updated con-
figuration.

Note

For convenience, the YAML contains the full configuration including read-only instance
properties. However, you cannot edit those properties. Any changes are ignored.

How to manage instances

When listing the existing instances, you can see their type, status, and location (if applicable).
You can filter the instances and display only the ones that you are interested in.

CLI

API

UI

Enter the following command to list all instances:

lxc list

You can filter the instances that are displayed, for example, by type, status or the cluster
member where the instance is located:

lxc list type=container
lxc list status=running
lxc list location=server1

You can also filter by name. To list several instances, use a regular expression for the name.
For example:

lxc list ubuntu.*

Enter lxc list --help (page 785) to see all filter options.

Query the /1.0/instances endpoint to list all instances. You can use Recursion (page 621) to
display more information about the instances:

lxc query --request GET /1.0/instances?recursion=2

You can filter (page 621) the instances that are displayed, by name, type, status or the cluster
member where the instance is located:

lxc query --request GET /1.0/instances?filter=name+eq+ubuntu
lxc query --request GET /1.0/instances?filter=type+eq+container
lxc query --request GET /1.0/instances?filter=status+eq+running
lxc query --request GET /1.0/instances?filter=location+eq+server1

To list several instances, use a regular expression for the name. For example:

lxc query --request GET /1.0/instances?filter=name+eq+ubuntu.*

92 of 954

See GET /1.0/instances for more information.

Go to Instances to see a list of all instances.

You can filter the instances that are displayed by status, instance type, or the profile they use
by selecting the corresponding filter.

In addition, you can search for instances by entering a search text. The text you enter is
matched against the name, the description, and the name of the base image.

Show information about an instance

CLI

API

UI

Enter the following command to show detailed information about an instance:

lxc info <instance_name>

Add --show-log to the command to show the latest log lines for the instance:

lxc info <instance_name> --show-log

Query the following endpoint to show detailed information about an instance:

lxc query --request GET /1.0/instances/<instance_name>

See GET /1.0/instances/{name} for more information.

Clicking an instance line in the overview will show a summary of the instance information
right next to the instance list.

Click the instancename togo to the instancedetail page,which contains detailed information
about the instance.

Start an instance

CLI

API

UI

Enter the following command to start an instance:

lxc start <instance_name>

You will get an error if the instance does not exist or if it is running already.

To immediately attach to the console when starting, pass the --console flag. For example:

lxc start <instance_name> --console

See How to access the console (page 109) for more information.

To start an instance, send a PUT request to change the instance state:

93 of 954

lxc query --request PUT /1.0/instances/<instance_name>/state --data '{"action":
"start"}'

The return value of this query contains an operation ID, which you can use to query the status
of the operation:

lxc query --request GET /1.0/operations/<operation_ID>

Use the following query to monitor the state of the instance:

lxc query --request GET /1.0/instances/<instance_name>/state

See GET /1.0/instances/{name}/state and PUT /1.0/instances/{name}/stateformore infor-
mation.

To start an instance, go to the instance list or the respective instance and click the Start but-
ton (�).

You can also start several instances at the same time by selecting them in the instance list
and clicking the Start button at the top.

On the instancedetail page, select theConsole tab to see theboot logwith information about
the instance starting up. Once it is running, you can select the Terminal tab to access the
instance.

Prevent accidental start of instances

To protect a specific instance from being started, set security.protection.start (page 437)
to true for the instance. See How to configure instances (page 84) for instructions.

Stop an instance

CLI

API

UI

Enter the following command to stop an instance:

lxc stop <instance_name>

You will get an error if the instance does not exist or if it is not running.

To stop an instance, send a PUT request to change the instance state:

lxc query --request PUT /1.0/instances/<instance_name>/state --data '{"action":
"stop"}'

The return value of this query contains an operation ID, which you can use to query the status
of the operation:

lxc query --request GET /1.0/operations/<operation_ID>

Use the following query to monitor the state of the instance:

94 of 954

lxc query --request GET /1.0/instances/<instance_name>/state

See GET /1.0/instances/{name}/state and PUT /1.0/instances/{name}/stateformore infor-
mation.

To stop an instance, go to the instance list or the respective instance and click the Stop button
(�). You are then prompted to confirm.

Tip

To skip the confirmation prompt, hold the Shift key while clicking.

You can choose to force-stop the instance. If stopping the instance takes a long time or the
instance is not responding to the stop request, click the spinning stop button to go back to
the confirmation prompt, where you can select to force-stop the instance.

You can also stop several instances at the same time by selecting them in the instance list
and clicking the Stop button at the top.

Delete an instance

If you don’t need an instance anymore, you can remove it. The instance must be stopped
before you can delete it.

CLI

API

UI

Enter the following command to delete an instance:

lxc delete <instance_name>

To delete an instance, send a DELETE request to the instance:

lxc query --request DELETE /1.0/instances/<instance_name>

See DELETE /1.0/instances/{name} for more information.

To delete an instance, go to its instance detail page and click Delete instance. You are then
prompted to confirm.

Tip

To skip the confirmation prompt, hold the Shift key while clicking.

You can also delete several instances at the same time by selecting them in the instance list
and clicking the Delete button at the top.

Caution

95 of 954

This command permanently deletes the instance and all its snapshots.

Prevent accidental deletion of instances

There are different ways to prevent accidental deletion of instances:

• To protect a specific instance from being deleted, set security.protection.delete
(page 436) to true for the instance. See How to configure instances (page 84) for in-
structions.

• In the CLI client, you can create an alias to be prompted for approval every time you use
the lxc delete (page 762) command:

lxc alias add delete "delete -i"

Rebuild an instance

If you want to wipe and re-initialize the root disk of your instance but keep the instance con-
figuration, you can rebuild the instance.

Rebuilding is only possible for instances that do not have any snapshots.

Stop your instance before rebuilding it.

CLI

API

UI

Enter the following command to rebuild the instance with a different image:

lxc rebuild <image_name> <instance_name>

Enter the following command to rebuild the instance with an empty root disk:

lxc rebuild <instance_name> --empty

For more information about the rebuild command, see lxc rebuild --help (page 870).

To rebuild the instancewith a different image, send a POST request to the instance’s rebuild
endpoint. For example:

lxc query --request POST /1.0/instances/<instance_name>/rebuild --data '{
"source": {

"alias": "<image_alias>",
"protocol": "simplestreams",
"server": "<server_URL>"

}
}'

To rebuild the instance with an empty root disk, specify the source type as none:

96 of 954

lxc query --request POST /1.0/instances/<instance_name>/rebuild --data '{
"source": {

"type": "none"
}

}'

See POST /1.0/instances/{name}/rebuild for more information.

Rebuilding an instance is not yet supported in the UI.

How to use profiles

Profiles store a set of configuration options. They can contain Instance options (page 415),
Devices (page 447), and device options.

You can apply any number of profiles to an instance. They are applied in the order they are
specified, so the last profile to specify a specific key takes precedence. However, instance-
specific configuration always overrides the configuration coming from the profiles.

Note

Profiles can be applied to containers and virtual machines. Therefore, they might contain
options and devices that are valid for either type.

When applying a profile that contains configuration that is not suitable for the instance
type, this configuration is ignored and does not result in an error.

If you don’t specify any profiles when launching a new instance, the default profile is applied
automatically. This profile defines a network interface and a root disk. The default profile
cannot be renamed or removed.

View profiles

CLI

API

UI

Enter the following command to display a list of all available profiles:

lxc profile list

Enter the following command to display the contents of a profile:

lxc profile show <profile_name>

To display all available profiles, send a request to the /1.0/profiles endpoint:

lxc query --request GET /1.0/profiles?recursion=1

To display a specific profile, send a request to that profile:

97 of 954

lxc query --request GET /1.0/profiles/<profile_name>

See GET /1.0/profiles and GET /1.0/profiles/{name} for more information.

Go to the Profiles section to view all available profiles.

To view information about a specific profile, click its line in the overview. To display the full
information about a profile, including its configuration, click the profile name to go to the
profile detail page.

Create an empty profile

CLI

API

UI

Enter the following command to create an empty profile:

lxc profile create <profile_name>

To create an empty profile, send a POST request to the /1.0/profiles endpoint:

lxc query --request POST /1.0/profiles --data '{"name": "<profile_name>"}'

See POST /1.0/profiles for more information.

To create a profile, go to the Profiles section and click Create profile.

Enter at least a profile name and click Create to save the new profile.

Edit a profile

You can either set specific configuration options for a profile or edit the full profile. See
Instance configuration (page 414) (and its subpages) for the available options.

Set specific options for a profile

CLI

API

UI

To set an instance option for a profile, use the lxc profile set (page 859) command. Specify
the profile name and the key and value of the instance option:

lxc profile set <profile_name> <option_key>=<option_value> <option_key>=<option_
value> ...

To add and configure an instance device for your profile, use the lxc profile device add
(page 852) command. Specify the profile name, a device name, the device type and maybe
device options (depending on the device type (page 447)):

lxc profile device add <profile_name> <device_name> <device_type> <device_option_
key>=<device_option_value> <device_option_key>=<device_option_value> ...

98 of 954

To configure instance device options for a device that you have added to the profile earlier,
use the lxc profile device set (page 855) command:

lxc profile device set <profile_name> <device_name> <device_option_key>=<device_
option_value> <device_option_key>=<device_option_value> ...

To set an instance option for a profile, send a PATCH request to the profile. Specify the key
and value of the instance option under the "config" field:

lxc query --request PATCH /1.0/profiles/<profile_name> --data '{
"config": {

"<option_key>": "<option_value>",
"<option_key>": "<option_value>"

}
}'

To add and configure an instance device for your profile, specify the device name, the device
type and maybe device options (depending on the device type (page 447)) under the "de-
vices" field:

lxc query --request PATCH /1.0/profiles/<profile_name> --data '{
"devices": {

"<device_name>": {
"type": "<device_type>",
"<device_option_key>": "<device_option_value>",
"<device_option_key>": "<device_option_value>"

}
}

}'

See PATCH /1.0/profiles/{name} for more information.

To configure a profile, select it from the Profiles overview, switch to the Configuration tab
and click Edit profile. You can then configure options for the profile in the same way as you
configure instance options (page 84).

Edit the full profile

Instead of setting each configuration option separately, you can provide all options at once.

Check the contents of an existing profile or instance configuration for the required fields.
For example, the default profile might look like this:

config: {}
description: Default LXD profile
devices:
eth0:

name: eth0
network: lxdbr0
type: nic

root:
path: /
pool: default

(continues on next page)

99 of 954

(continued from previous page)

type: disk
name: default
used_by:

Instance options are provided as an array under config. Instance devices and instance device
options are provided under devices.

CLI

API

UI

To edit a profile using your standard terminal editor, enter the following command:

lxc profile edit <profile_name>

Alternatively, you can create a YAML file (for example, profile.yaml) with the configuration
and write the configuration to the profile with the following command:

lxc profile edit <profile_name> < profile.yaml

To update the entire profile configuration, send a PUT request to the profile:

lxc query --request PUT /1.0/profiles/<profile_name> --data '{
"config": { ... },
"description": "<description>",
"devices": { ... }

}'

See PUT /1.0/profiles/{name} for more information.

To edit the YAML configuration of a profile, go to the profile detail page, switch to the Con-
figuration tab and select YAML configuration. Then click Edit profile.

Edit the YAML configuration as required. Then click Save changes to save the updated con-
figuration.

Important

When doing updates, do not navigate away from the YAML configuration without saving
your changes. If you do, your updates are lost.

Apply a profile to an instance

CLI

API

UI

Enter the following command to apply a profile to an instance:

lxc profile add <instance_name> <profile_name>

100 of 954

Tip

Check the configuration after adding the profile: lxc config show <instance_name>
(page 748)

You will see that your profile is now listed under profiles. However, the configuration
options from the profile are not shown under config (unless you add the --expandedflag).
The reason for this behavior is that these options are taken from the profile and not the
configuration of the instance.

Thismeans that if you edit a profile, the changes are automatically applied to all instances
that use the profile.

You can also specify profiles when launching an instance by adding the --profile flag:

lxc launch <image> <instance_name> --profile <profile> --profile <profile> ...

To apply a profile to an instance, add it to the profile list in the instance configuration:

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"profiles": ["default", "<profile_name>"]

}'

See PATCH /1.0/instances/{name} for more information.

You can also specify profiles when creating an instance (page 73):

lxc query --request POST /1.0/instances --data '{
"name": "<instance_name>",
"profiles": ["default", "<profile_name>"],
"source": {

"alias": "<image_alias>",
"protocol": "simplestreams",
"server": "<server_URL>",
"type": "image"

}
}'

To apply a profile to an instance, select the instance from the Instances overview, switch to
the Configuration tab and click Edit instance. You can then select a profile from the drop-
down list, or click Add profile to attach another profile in addition to the one (or more) that
are already attached to the instance.

If you attach more than one profile to an instance, you can specify the order in which the
profiles are applied by moving each profile up or down the list.

You can also apply profiles in the same way when creating an instance (page 73).

Remove a profile from an instance

CLI

API

UI

101 of 954

Enter the following command to remove a profile from an instance:

lxc profile remove <instance_name> <profile_name>

To remove a profile from an instance, send a PATCH request to the instance configuration
with the new profile list. For example, to revert back to using only the default profile:

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"profiles": ["default"]

}'

See PATCH /1.0/instances/{name} for more information.

To remove a profile from an instance, select the instance from the Instances overview, switch
to theConfiguration taband clickEdit instance. Click theDelete linknext toaprofile to remove
it from the instance.

How to troubleshoot failing instances

If your instance fails to start and ends up in an error state, this usually indicates a bigger issue
related to either the image that you used to create the instance or the server configuration.

To troubleshoot the problem, complete the following steps:

1. Save the relevant log files and debug information:

Instance log
Display the instance log:

CLI

API

UI

lxc info <instance_name> --show-log

lxc query --request GET /1.0/instances/<instance_name>/logs/lxc.log

Navigate to the instance detail page and switch to the Logs tab to view the avail-
able log files.

Console log
Display the console log:

CLI

API

UI

lxc console <instance_name> --show-log

This command is available only for containers.

lxc query --request GET /1.0/instances/<instance_name>/console

102 of 954

This endpoint is available only for containers.

Navigate to the instance detail page and switch to the Console tab to view the
console. The console is displayed only when the instance is running.

Detailed server information
The LXD snap includes a tool that collects the relevant server information for de-
bugging. Enter the following command to run it:

sudo lxd.buginfo

2. Reboot the machine that runs your LXD server.

3. Try starting your instance again. If the error occurs again, compare the logs to check if
it is the same error.

If it is, and if you cannot figure out the source of the error from the log information,
open a question in the forum62. Make sure to include the log files you collected.

Troubleshooting examples

See the following sections for some typical methods of troubleshooting an instance.

Debug systemd init

Here is how to enable systemd debug level messages63 for the c1 container:

lxc config set c1 raw.lxc 'lxc.init.cmd = /sbin/init systemd.log_level=debug'

lxc start c1

Now that the container has started, you can check for the debug messages in the journal:

lxc exec c1 -- journalctl

Emergency systemd shell

Here is how to get an emergency shell on an instance using systemd:

lxc config set c1 raw.lxc 'lxc.init.cmd = /sbin/init emergency'

lxc start c1

Now that the container has started, you can enter the emergency shell using the console (hit
the Enter key once in):

lxc console c1

62 https://discourse.ubuntu.com/c/lxd/126
63 https://www.freedesktop.org/wiki/Software/systemd/Debugging/

103 of 954

https://discourse.ubuntu.com/c/lxd/126
https://www.freedesktop.org/wiki/Software/systemd/Debugging/

Issue starting RHEL 7 container

In this example, let’s investigate a RHEL 7 system in which systemd cannot start.

~$ lxc console --show-log rhel7 Console log: Failed to insert module
'autofs4'Failed to insert module 'unix'Failed to mount sysfs at /sys:
Operation not permittedFailed to mount proc at /proc: Operation not
permitted[!!!!!!] Failed to mount API filesystems, freezing.

The errors here say that /sys and /proc cannot be mounted - which is correct in an unprivi-
leged container. However, LXD mounts these file systems automatically if it can.

The container requirements (page 398) specify that every containermust comewith an empty
/dev, /proc and /sys directory, and that /sbin/init must exist. If those directories don’t
exist, LXD cannot mount them, and systemd will then try to do so. As this is an unprivileged
container, systemd does not have the ability to do this, and it then freezes.

So you can see the environment before anything is changed, and you can explicitly change
the init system in a container using the raw.lxc (page 431) configuration parameter. This is
equivalent to setting init=/bin/bash on the Linux kernel command line.

lxc config set rhel7 raw.lxc 'lxc.init.cmd = /bin/bash'

Here is what it looks like:

~$ lxc config set rhel7 raw.lxc 'lxc.init.cmd = /bin/bash' ~$ lxc start rhel7
~$ lxc console --show-log rhel7 Console log: [root@rhel7 /]#

Now that the container has started, you can check it and see that things are not running as
well as expected:

~$ lxc exec rhel7 -- bash [root@rhel7 ~]# ls[root@rhel7 ~]# mountmount:
failed to read mtab: No such file or directory[root@rhel7 ~]# cd /[root@rhel7
/]# ls /proc/sys[root@rhel7 /]# exit

Because LXD tries to auto-heal, it created some of the directories when it was starting up.
Shutting down and restarting the container fixes the problem, but the original cause is still
there - the template does not contain the required files.

How to configure Ubuntu Pro guest attachment

If Ubuntu Pro is enabled on a LXD host, guest instances can be automatically attached to the
Pro subscription.

First, the Pro client on the host machine must be configured to allow guest attachment:

pro config set lxd_guest_attach=on

The allowed values are on, off, and available. If unset, this defaults to off.

Note

The Pro client must be updated to the latest version.

104 of 954

You can now launch an Ubuntu instance:

lxc launch ubuntu:24.04 pro-guest

The instance will automatically attach to the Pro subscription at start up.

Pro attachment can take some time. You can check the status using:

lxc exec pro-guest -- pro status

The lxd_guest_attach setting can be overridden by the ubuntu_pro.guest_attach (page 417)
configuration option. For example, if lxd_guest_attach is set to on on the host, to prevent
Pro attachment in the guest you can run:

lxc launch ubuntu:24.04 non-pro-guest -c ubuntu_pro.guest_attach=off

The ubuntu_pro.guest_attach configuration key has three options: on, off, and available.

All options for Pro guest attachment are described below.

on (host) available
(host)

off (host) unset (host)

on (guest) auto-attach on
start

auto-attach on
start

guest attach-
ment disabled

guest attach-
ment disabled

available
(guest)

attach on pro
auto-attach

attach on
pro-auto-attach

guest attach-
ment disabled

guest attach-
ment disabled

off (guest) guest attach-
ment disabled

guest attach-
ment disabled

guest attach-
ment disabled

guest attach-
ment disabled

unset
(guest)

auto-attach on
start

attach on
pro-auto-attach

guest attach-
ment disabled

guest attach-
ment disabled

How to work with instances:

How to access files in an instance

You can manage files inside an instance using the LXD client or the API without needing to
access the instance through the network. Files can be individually edited or deleted, pushed
from or pulled to the local machine. Alternatively, if you’re using the LXD client, you can
mount the instance’s file system onto the local machine.

Note

The UI does not currently support accessing files in an instance.

For containers, these file operations always work and are handled directly by LXD. For virtual
machines, the lxd-agent process must be running inside of the virtual machine for them to
work.

105 of 954

Edit instance files

CLI

API

To edit an instance file from your local machine, enter the following command:

lxc file edit <instance_name>/<path_to_file>

For example, to edit the /etc/hosts file in the instance, enter the following command:

lxc file edit my-instance/etc/hosts

Note

The file must already exist on the instance. You cannot use the edit command to create a
file on the instance.

There is no API endpoint that lets you edit files directly on an instance. Instead, you need
to pull the content of the file from the instance (page 106), edit it, and then push the modified
content back to the instance (page 107).

Delete files from the instance

CLI

API

To delete a file from your instance, enter the following command:

lxc file delete <instance_name>/<path_to_file>

Send the following DELETE request to delete a file from your instance:

lxc query --request DELETE /1.0/instances/<instance_name>/files?path=<path_to_
file>

See DELETE /1.0/instances/{name}/files for more information.

Pull files from the instance to the local machine

CLI

API

To pull a file from your instance to your local machine, enter the following command:

lxc file pull <instance_name>/<path_to_file> <local_file_path>

For example, to pull the /etc/hosts file to the current directory, enter the following com-
mand:

lxc file pull my-instance/etc/hosts .

106 of 954

Instead of pulling the instance file into a file on the local system, you can also pull it to stdout
and pipe it to stdin of another command. This can be useful, for example, to check a log file:

lxc file pull my-instance/var/log/syslog - | less

To pull a directory with all contents, enter the following command:

lxc file pull -r <instance_name>/<path_to_directory> <local_location>

Send the following request to pull the contents of a file from your instance to your local
machine:

lxc query --request GET /1.0/instances/<instance_name>/files?path=<path_to_file>

You can then write the contents to a local file, or pipe them to stdin of another command.

For example, to pull the contents of the /etc/hosts file and write them to a
my-instance-hosts file in the current directory, enter the following command:

lxc query --request GET /1.0/instances/my-instance/files?path=/etc/hosts > my-
instance-hosts

To examine a log file, enter the following command:

lxc query --request GET /1.0/instances/<instance_name>/files?path=<file_path> |
less

To pull the contents of a directory, send the following request:

lxc query --request GET /1.0/instances/<instance_name>/files?path=<path_to_
directory>

This request returns a list of files in the directory, and you can then pull the contents of each
file.

See GET /1.0/instances/{name}/files for more information.

Push files from the local machine to the instance

CLI

API

To push a file from your local machine to your instance, enter the following command:

lxc file push <local_file_path> <instance_name>/<path_to_file>

You can specify the file permissions by adding the --gid, --uid, and --mode flags.

To push a directory with all contents, enter the following command:

lxc file push -r <local_location> <instance_name>/<path_to_directory>

Send the following request to write content to a file on your instance:

107 of 954

lxc query --request POST /1.0/instances/<instance_name>/files?path=<path_to_file>
--data <content>

See POST /1.0/instances/{name}/files for more information.

To push content directly from a file, you must use a tool that can send raw data from a file,
which lxc query (page 869) does not support. For example, with curl:

curl -X POST -H "Content-Type: application/octet-stream" --data-binary @<local_
file_path> \
--unix-socket /var/snap/lxd/common/lxd/unix.socket \
lxd/1.0/instances/<instance_name>/files?path=<path_to_file>

Mount a file system from the instance

CLI

API

You can mount an instance file system into a local path on your client.

To do so, make sure that you have sshfs installed. Then run the following command (note
that if you’re using the snap, the command requires root permissions):

lxc file mount <instance_name>/<path_to_directory> <local_location>

You can then access the files from your local machine.

Set up an SSH SFTP listener

Alternatively, you can set up an SSH SFTP listener. This method allows you to connect with
any SFTP client and with a dedicated user name. Also, if you’re using the snap, it does not
require root permission.

To do so, first set up the listener by entering the following command:

lxc file mount <instance_name> [--listen <address>:<port>]

For example, to set up the listener on a random port on the local machine (for example, 127.
0.0.1:45467):

lxc file mount my-instance

If you want to access your instance files from outside your local network, you can pass a
specific address and port:

lxc file mount my-instance --listen 192.0.2.50:2222

Caution

Be careful when doing this, because it exposes your instance remotely.

To set up the listener on a specific address and a random port:

108 of 954

lxc file mount my-instance --listen 192.0.2.50:0

The commandprints out the assigned port and a user name and password for the connection.

Tip

You can specify a user name by passing the --auth-user flag.

Use this information to access the file system. For example, if you want to use sshfs to con-
nect, enter the following command:

sshfs <user_name>@<address>:<path_to_directory> <local_location> -p <port>

For example:

sshfs xFn8ai8c@127.0.0.1:/home my-instance-files -p 35147

You can then access the file system of your instance at the specified location on the local
machine.

Mounting a file system is not directly supported through the API, but requires additional
processing logic on the client side.

How to access the console

You can access the instance console to log in to the instance and see log messages. The con-
sole is available at boot time already, so you can use it to see bootmessages and, if necessary,
debug startup issues of a container or VM.

CLI

API

UI

Use the lxc console (page761) command toattach to instance consoles. Toget an interactive
console, enter the following command:

lxc console <instance_name>

To show new log messages (only for containers), pass the --show-log flag:

lxc console <instance_name> --show-log

You can also immediately attach to the console when you start your instance:

lxc start <instance_name> --console
lxc start <instance_name> --console=vga

Tip

To exit the console, enter Ctrl+a q.

109 of 954

To start an interactive console, send a POST request to the console endpoint:

lxc query --request POST /1.0/instances/<instance_name>/console --data '{
"height": 24,
"type": "console",
"width": 80

}'

This query sets up twoWebSockets that you can use for connection. OneWebSocket is used
for control, and the other transmits the actual console data.

See POST /1.0/instances/{name}/console for more information.

To access the WebSockets, you need the operation ID and the secrets for each socket. This
information is available in the operation started by the query, for example:

{
"class": "websocket",
"created_at": "2024-01-31T10:11:48.135150288Z",
"description": "Showing console",
"err": "",
"id": "<operation_ID>",
"location": "none",
"may_cancel": false,
"metadata": {

"fds": {
"0": "<data_socket_secret>",
"control": "<control_socket_secret>"

}
}

[...]
}

How to connect to the WebSockets depends on the tooling that you use (see GET /1.0/
operations/{id}/websocket for general information). To quickly check whether the connec-
tion is successful and you can read from the socket, you can use a tool like websocat64:

websocat --text \
--ws-c-uri=ws://unix.socket/1.0/operations/<operation_ID>/websocket?secret=<data_
socket_secret> \
- ws-c:unix:/var/snap/lxd/common/lxd/unix.socket

Alternatively, if you just want to retrieve new log messages from the console instead of con-
necting through a WebSocket, you can send a GET request to the console endpoint:

lxc query --request GET /1.0/instances/<instance_name>/console

See GET /1.0/instances/{name}/console for more information. Note that this operation is
supported only for containers, not for VMs.

Navigate to the instance detail page and switch to the Console tab to view the console.

64 https://github.com/vi/websocat

110 of 954

https://github.com/vi/websocat

Access the graphical console (for virtual machines)

On virtual machines, log on to the console to get graphical output. Using the console you
can, for example, install an operating system using a graphical interface or run a desktop
environment.

An additional advantage is that the console is available even if the lxd-agent process is not
running. This means that you can access the VM through the console before the lxd-agent
starts up, and also if the lxd-agent is not available at all.

CLI

API

UI

To start the VGA console with graphical output for your VM, you must install a SPICE client
(for example, virt-viewer or spice-gtk-client). Then enter the following command:

lxc console <vm_name> --type vga

To start the VGA console with graphical output for your VM, send a POST request to the
console endpoint:

lxc query --request POST /1.0/instances/<instance_name>/console --data '{
"height": 0,
"type": "vga",
"width": 0

}'

See POST /1.0/instances/{name}/console for more information.

Navigate to the instance detail page and switch to the Console tab to view the console.

For virtual machines, you can switch between the graphic console and the text console.

How to run commands in an instance

LXD allows to run commands inside an instance using the LXD client or theAPI, without need-
ing to access the instance through the network.

For containers, this always works and is handled directly by LXD. For virtual machines, the
lxd-agent process must be running inside of the virtual machine for this to work.

Note

TheUI does not currently support sending commands to an instance. However, it provides
a terminal that gives you shell access to your instance (page 115).

Run commands inside your instance

CLI

API

To run a single command from the terminal of the host machine, use the lxc exec (page 763)
command:

111 of 954

lxc exec <instance_name> -- <command>

For example, enter the following command to update the package list on your container:

lxc exec my-instance -- apt-get update

Send a POST request to the instance’s exec endpoint to run a single command from the ter-
minal of the host machine:

lxc query --request POST /1.0/instances/<instance_name>/exec --data '{
"command": ["<command>"]

}'

For example, enter the following command to update the package list on your container:

lxc query --request POST /1.0/instances/my-instance/exec --data '{
"command": ["apt-get", "update"]

}'

See POST /1.0/instances/{name}/exec for more information.

Execution mode

LXD can execute commands either interactively or non-interactively.

CLI

API

In interactivemode, a pseudo-terminal device (PTS) is used to handle input (stdin) and output
(stdout, stderr). Thismode is automatically selected by the CLI if connected to a terminal em-
ulator (and not run from a script). To force interactivemode, add either --force-interactive
or --mode interactive to the command.

In non-interactive mode, pipes are allocated instead (one for each of stdin, stdout and
stderr). This method allows running a command and properly getting separate stdin, std-
out and stderr as required by many scripts. To force non-interactive mode, add either
--force-noninteractive or --mode non-interactive to the command.

In both modes, the operation creates a control socket that can be used for out-of-band
communication with LXD. You can send signals and window sizing information through this
socket.

Interactive mode
In interactive mode, the operation creates an additional single bi-directional
WebSocket. To force interactive mode, add "interactive": true and
"wait-for-websocket": true to the request data. For example:

lxc query --request POST /1.0/instances/my-instance/exec --data '{
"command": ["/bin/bash"],
"interactive": true,
"wait-for-websocket": true

}'

112 of 954

Non-interactive mode
In non-interactive mode, the operation creates three additional WebSockets: one each
for stdin, stdout, and stderr. To force non-interactivemode, add "interactive": false
to the request data.

When running a command in non-interactive mode, you can instruct LXD to record the
output of the command. To do so, add "record-output": true to the request data.
You can then send a request to the exec-output endpoint to retrieve the list of files
that contain command output:

lxc query --request GET /1.0/instances/<instance_name>/logs/exec-output

To display the output of one of the files, send a request to one of the files:

lxc query --request GET /1.0/instances/<instance_name>/logs/exec-output/
<record-output-file>

When you don’t need the command output anymore, you can delete it:

lxc query --request DELETE /1.0/instances/<instance_name>/logs/exec-output/
<record-output-file>

See GET /1.0/instances/{name}/logs/exec-output, GET /1.0/instances/{name}/
logs/exec-output/{filename}, and DELETE /1.0/instances/{name}/logs/exec-output/
{filename} for more information.

User, groups and working directory

LXD has a policy not to read data from within the instances or trust anything that can be
found in the instance. Therefore, LXD does not parse files like /etc/passwd, /etc/group or
/etc/nsswitch.conf to handle user and group resolution.

As a result, LXD doesn’t know the home directory for the user or the supplementary groups
the user is in.

By default, LXD runs commands as root (UID0)with thedefault group (GID0) and theworking
directory set to /root. You can override the user, group and working directory by specifying
absolute values.

CLI

API

You can override the default settings by adding the followingflags to the lxc exec (page 763)
command:

• --user - the user ID for running the command

• --group - the group ID for running the command

• --cwd - the directory in which the command should run

You can override the default settings by adding the following fields to the request data:

• "user": <user_ID> - the user ID for running the command

• "group": <group_ID> - the group ID for running the command

• "cwd": "<directory>" - the directory in which the command should run

113 of 954

Environment

You can pass environment variables to an exec session in the following two ways:

Set environment variables as instance options
CLI

API

UI

To set the <ENVVAR> environment variable to <value> in the instance, set the
environment.<ENVVAR> instance option (see environment.* (page 418)):

lxc config set <instance_name> environment.<ENVVAR>=<value>

To set the <ENVVAR> environment variable to <value> in the instance, set the
environment.<ENVVAR> instance option (see environment.* (page 418)):

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"config": {

"environment.<ENVVAR>": "<value>"
}

}'

To set the <ENVVAR> environment variable to <value> in the instance, go to the instance
detail page, switch to the Configuration tab and select YAML configuration. Then click
Edit instance.

Add the environment.<ENVVAR> configuration under the config section. For example:

config:
environment.<ENVVAR>: "<value>"

Click Save changes.

Pass environment variables to the exec command
CLI

API

To pass an environment variable to the exec command, use the --envflag. For example:

lxc exec <instance_name> --env <ENVVAR>=<value> -- <command>

To pass an environment variable to the exec command, add an environment field to the
request data. For example:

lxc query --request POST /1.0/instances/<instance_name>/exec --data '{
"command": ["<command>"],
"environment": {

"<ENVVAR>": "<value>"
}

}'

In addition, LXD sets the following default values (unless they are passed in one of the ways
described above):

114 of 954

Variable name Condition Value

PATH - Concatenation of:
• /usr/local/sbin
• /usr/local/bin
• /usr/sbin
• /usr/bin
• /sbin
• /bin
• /snap (if applicable)
• /etc/NIXOS (if applica-
ble)

LANG - C.UTF-8
HOME running as root (UID 0) /root
USER running as root (UID 0) root

Get shell access to your instance

If you want to run commands directly in your instance, run a shell command inside it.

CLI

API

UI

Enter the following command (assuming that the /bin/bash command exists in your in-
stance):

lxc exec <instance_name> -- /bin/bash

Enter the following command (assuming that the /bin/bash command exists in your in-
stance):

lxc query --request POST /1.0/instances/<instance_name>/exec --data '{
"command": ["/bin/bash"]

}'

Navigate to the instance detail page and switch to the Terminal tab to access the shell.

By default, you are logged in as the root user. If you want to log in as a different user, enter
the following command:

CLI

API

UI

lxc exec <instance_name> -- su --login <user_name>

To exit the instance shell, enter exit or press Ctrl+d.

115 of 954

lxc query --request POST /1.0/instances/<instance_name>/exec --data '{
"command": ["su", "--login", "<user_name>"]

}'

su --login <user_name>

To exit the user shell and go back to the root shell, enter exit or press Ctrl+d.

Note

Depending on the operating system that you run in your instance, you might need to cre-
ate a user first.

How to use cloud-init

cloud-init65 is a tool for automatically initializing and customizing an instance of a Linux
distribution.

By adding cloud-init configuration to your instance, you can instruct cloud-init to execute
specific actions at the first start of an instance. Possible actions include, for example:

• Updating and installing packages

• Applying certain configurations

• Adding users

• Enabling services

• Running commands or scripts

• Automatically growing the file system of a VM to the size (quota) of the disk

See the Cloud-init documentation66 for detailed information.

Note

The cloud-init actions are run only once on the first start of the instance. Rebooting the
instance does not re-trigger the actions.

cloud-init support in images

To use cloud-init, you must base your instance on an image that has cloud-init installed:

• All images from the ubuntu and ubuntu-daily image servers (page 391) have cloud-init
support. However, images for Ubuntu releases prior to 20.04 LTS require special han-
dling to integrateproperlywith cloud-init, so that lxc execworks correctlywith virtual
machines that use those images. Refer to VM cloud-init (page 479).

65 https://cloud-init.io/
66 https://cloudinit.readthedocs.io/en/latest/index.html#index

116 of 954

https://cloud-init.io/
https://cloudinit.readthedocs.io/en/latest/index.html#index

• Images from the images remote67 have cloud-init-enabled variants, which are usually
bigger in size than the default variant. The cloud variants use the /cloud suffix, for
example, images:alpine/edge/cloud.

Configuration options

LXD supports two different sets of configuration options for configuring cloud-init:
cloud-init.* and user.*. Which of these sets you must use depends on the cloud-init sup-
port in the image that you use. As a rule of thumb, newer images support the cloud-init.*
configuration options, while older images support user.*. However, there might be excep-
tions to that rule.

The following configuration options are supported:

• cloud-init.vendor-data or user.vendor-data (see Vendor-data68)

• cloud-init.user-data or user.user-data (see User-data formats69)

• cloud-init.network-config or user.network-config (see Network configuration70)

For more information about the configuration options, see the cloud-init instance options
(page 419), and the documentation for the LXD data source71 in the cloud-init documenta-
tion.

Note

Ubuntu 20.04 and earlier have recent versions of the cloud-init package but support for
the modern cloud-init.* configuration options is disabled in those series. As such, when
using such old instances, remember to use the user.* configuration options instead.

Vendor data and user data

Both vendor-data and user-data are used to provide cloud configuration data72 to
cloud-init.

The main idea is that vendor-data is used for the general default configuration, while
user-data is used for instance-specific configuration. This means that you should specify
vendor-data in a profile and user-data in the instance configuration. LXD does not enforce
this method, but allows using both vendor-data and user-data in profiles and in the instance
configuration.

If both vendor-data and user-data are supplied for an instance, cloud-initmerges the two
configurations. However, if you use the same keys in both configurations, mergingmight not
be possible. In this case, configure how cloud-init should merge the provided data. See
Merging user-data sections73 for instructions.

67 https://images.lxd.canonical.com/
68 https://cloudinit.readthedocs.io/en/latest/explanation/vendordata.html#vendor-data
69 https://cloudinit.readthedocs.io/en/latest/explanation/format.html#user-data-formats
70 https://cloudinit.readthedocs.io/en/latest/reference/network-config.html#network-config
71 https://cloudinit.readthedocs.io/en/latest/reference/datasources/lxd.html#datasource-lxd
72 https://cloudinit.readthedocs.io/en/latest/explanation/format.html#cloud-config-data
73 https://cloudinit.readthedocs.io/en/latest/reference/merging.html#merging-user-data

117 of 954

https://images.lxd.canonical.com/
https://cloudinit.readthedocs.io/en/latest/explanation/vendordata.html#vendor-data
https://cloudinit.readthedocs.io/en/latest/explanation/format.html#user-data-formats
https://cloudinit.readthedocs.io/en/latest/reference/network-config.html#network-config
https://cloudinit.readthedocs.io/en/latest/reference/datasources/lxd.html#datasource-lxd
https://cloudinit.readthedocs.io/en/latest/explanation/format.html#cloud-config-data
https://cloudinit.readthedocs.io/en/latest/reference/merging.html#merging-user-data

How to configure cloud-init

To configure cloud-init for an instance, add the corresponding configuration options to a
profile (page 97) that the instance uses or directly to the instance configuration (page 84).

When configuring cloud-init directly for an instance, keep inmind that cloud-init runs only
on instance start. This means any changes to cloud-init configuration only take effect after
the next instance start. To ensure cloud-init configurations are applied on every boot, LXD
changes the instance ID whenever relevant cloud-init configuration keys aremodified. This
triggers cloud-init to fetch and apply the updated data from LXD as if it were the instance’s
first boot. For more information, see the cloud-init docs regarding First boot determina-
tion74.

To add your configuration:

CLI

API

UI

Write the configuration to a file and pass that file to the lxc config command. For example,
create cloud-init.ymlwith the following content:

#cloud-config
package_upgrade: true
packages:
- package1
- package2

Then run the following command:

lxc config set <instance_name> cloud-init.user-data - < cloud-init.yml

Provide the cloud-init configuration as a string with escaped newline characters.

For example:

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"config": {

"cloud-init.user-data": "#cloud-config\npackage_upgrade: true\npackages:\n -
package1\n - package2"
}

}'

Alternatively, to avoid mistakes, write the configuration to a file and include that in your
request. For example, create cloud-init.txtwith the following content:

#cloud-config
package_upgrade: true
packages:
- package1
- package2

Then send the following request:
74 https://cloudinit.readthedocs.io/en/latest/explanation/first_boot.html#first-boot-determination

118 of 954

https://cloudinit.readthedocs.io/en/latest/explanation/first_boot.html#first-boot-determination
https://cloudinit.readthedocs.io/en/latest/explanation/first_boot.html#first-boot-determination

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"config": {
"cloud-init.user-data": "'"$(awk -v ORS='\\n' '1' cloud-init.txt)"'"
}

}'

Go to the Configuration tab of the instance detail page and select Advanced > Cloud init. Then
click Edit instance and override the configuration for one or more of the cloud-init configu-
ration options.

YAML format for cloud-init configuration

The cloud-init options require YAML’s literal style format75. You use a pipe symbol (|) to
indicate that all indented text after the pipe should bepassed to cloud-init as a single string,
with new lines and indentation preserved.

The vendor-data and user-data options usually start with #cloud-config. But cloud-init has
an array of configuration formats76 available.

For example:

config:
cloud-init.user-data: |

#cloud-config
package_upgrade: true
packages:

- package1
- package2

config:
cloud-init.user-data: |

#!/usr/bin/bash
echo hello | tee -a /tmp/example.txt

Tip

See How to validate user data77 for information on how to check whether the syntax is
correct.

How to check the cloud-init status

cloud-init runs automatically on the first start of an instance. Depending on the configured
actions, it might take a while until it finishes.

To check the cloud-init status, log on to the instance and enter the following command:

cloud-init status

75 https://yaml.org/spec/1.2.2/#812-literal-style
76 https://docs.cloud-init.io/en/latest/explanation/format.html#configuration-types
77 https://cloudinit.readthedocs.io/en/latest/howto/debug_user_data.html#check-user-data-cloud-config

119 of 954

https://yaml.org/spec/1.2.2/#812-literal-style
https://docs.cloud-init.io/en/latest/explanation/format.html#configuration-types
https://cloudinit.readthedocs.io/en/latest/howto/debug_user_data.html#check-user-data-cloud-config

If the result is status: running, cloud-init is still working. If the result is status: done, it
has finished.

Alternatively, use the --wait flag to be notified only when cloud-init is finished:

root@instance:~# cloud-init status --wait
.....................................status: done

How to specify user or vendor data

The user-data and vendor-data configuration can be used to, for example, upgrade or install
packages, add users, or run commands.

The provided values must have a first line that indicates what type of user data format78

is being passed to cloud-init. For activities like upgrading packages or setting up a user,
#cloud-config is the data format to use.

The configuration data is stored in the following files in the instance’s root file system:

• /var/lib/cloud/instance/cloud-config.txt

• /var/lib/cloud/instance/user-data.txt

Examples

See the following sections for the user data (or vendor data) configuration for different ex-
ample use cases.

You can find more advanced examples79 in the cloud-init documentation.

Upgrade packages

To trigger a package upgrade from the repositories for the instance right after the instance
is created, use the package_upgrade key:

config:
cloud-init.user-data: |

#cloud-config
package_upgrade: true

Install packages

To install specific packages when the instance is set up, use the packages key and specify the
package names as a list:

config:
cloud-init.user-data: |

#cloud-config
packages:

- git
- openssh-server

78 https://cloudinit.readthedocs.io/en/latest/explanation/format.html#user-data-formats
79 https://cloudinit.readthedocs.io/en/latest/reference/examples.html#yaml-examples

120 of 954

https://cloudinit.readthedocs.io/en/latest/explanation/format.html#user-data-formats
https://cloudinit.readthedocs.io/en/latest/reference/examples.html#yaml-examples

Set the time zone

To set the time zone for the instance on instance creation, use the timezone key:

config:
cloud-init.user-data: |

#cloud-config
timezone: Europe/Rome

Run commands

To run a command (such as writing a marker file), use the runcmd key and specify the com-
mands as a list:

config:
cloud-init.user-data: |

#cloud-config
runcmd:

- [touch, /run/cloud.init.ran]

Add a user account

To add a user account, use the users key. See the Including users and groups80 example in
the cloud-init documentation for details about default users andwhich keys are supported.

config:
cloud-init.user-data: |

#cloud-config
users:

- name: documentation_example

How to specify network configuration data

By default, cloud-init configures a DHCP client on an instance’s eth0 interface. You can de-
fine your ownnetwork configuration using the network-configoption to override the default
configuration (this is due to how the template is structured).

cloud-init then renders the relevant network configurationon the systemusing either ifup-
down or netplan, depending on the Ubuntu release.

The configuration data is stored in the following files in the instance’s root file system:

• /var/lib/cloud/seed/nocloud-net/network-config

• /etc/network/interfaces.d/50-cloud-init.cfg (if using ifupdown)

• /etc/netplan/50-cloud-init.yaml (if using netplan)

80 https://cloudinit.readthedocs.io/en/latest/reference/examples.html#including-users-and-groups

121 of 954

https://cloudinit.readthedocs.io/en/latest/reference/examples.html#including-users-and-groups

Example

To configure a specific network interface with a static IPv4 address and also use a custom
name server, use the following configuration:

config:
cloud-init.network-config: |

version: 2
ethernets:

eth1:
addresses:

- 10.10.101.20/24
gateway4: 10.10.101.1
nameservers:

addresses:
- 10.10.10.254

How to inject SSH keys into instances

To inject SSH keys into LXD instances for an arbitrary user, use the configuration key
cloud-init.ssh-keys.<keyName>.

Use the format <user>:<key> for its value, where <user> is a Linux username and <key> can
be either a pure SSH public key or an import ID for a key hosted elsewhere. For example,
root:gh:githubUser and myUser:ssh-keyAlg publicKeyHash are valid values. To prevent a
particular SSH key from being inherited from a profile by an instance, edit the instance con-
figuration by setting the cloud-init.ssh-keys.<keyName> key that references the target SSH
key to none, and the key will not be injected.

The contents of the cloud-init.ssh-keys.<keyName> keys are merged into both cloud-init.
vendor-data (page 420) and cloud-init.user-data (page 420) before being passed to the
guest, following the cloud-config specification. (See the cloud-init documentation81 for
details.) Therefore, keys defined via cloud-init.ssh-keys.<keyName> cannot be applied if
LXD cannot parse the existing cloud-init.vendor-data and cloud-init.user-data for that
instance. This might occur if those keys are not in YAML format or contain invalid YAML.
Other configuration formats are not yet supported.

You can define SSH keys via cloud-init.vendor-data or cloud-init.user-data directly. Keys
defined using cloud-init.ssh-keys.<keyName> do not conflict with those defined in either of
those settings. For details on defining SSH keys with cloud-config, see the cloud-init docu-
mentation for SSH configuration82. Changing a cloud-init.* key does not remove previously
applied keys.

Since cloud-init only runs on instance start, updates to cloud-init.* keys on a running in-
stance only take effect after restart.

81 https://cloudinit.readthedocs.io/en/latest/explanation/about-cloud-config.html#about-cloud-config
82 https://cloudinit.readthedocs.io/en/latest/reference/yaml_examples/ssh.html#cce-ssh

122 of 954

https://cloudinit.readthedocs.io/en/latest/explanation/about-cloud-config.html#about-cloud-config
https://cloudinit.readthedocs.io/en/latest/reference/yaml_examples/ssh.html#cce-ssh
https://cloudinit.readthedocs.io/en/latest/reference/yaml_examples/ssh.html#cce-ssh

Examples

The following command injects someuser’s key from Launchpad into the newly created con-
tainer:

lxc launch ubuntu:24.04 container -c cloud-init.ssh-keys.mykey=root:lp:someuser

The example profile configuration below defines a key to be injected on an instance. The
injected key enables the owner of the private key to SSH into the instance as a user named
user:

config:
cloud-init.vendor-data: |

users:
- name: user
ssh_authorized_keys: ssh-ed25519

AAAAC3NzaC1lZDI1NTE5AAAAIJFDWcYmMrCZdk9JI29bAiHKD90oEUr8tqK5VvoO8Vcj

How to add a routed NIC device to a virtual machine

When adding a routed NIC device (page 472) to an instance, you must configure the instance
to use the link-local gateway IPs as default routes. For containers, this is configured for you
automatically. For virtualmachines, thegatewaysmust be configuredmanually or via amech-
anism like cloud-init.

To configure the gateways with cloud-init, firstly initialize an instance:

CLI

API

UI

lxc init ubuntu:24.04 my-vm --vm

lxc query --request POST /1.0/instances --data '{
"name": "my-vm",
"source": {

"alias": "24.04",
"protocol": "simplestreams",
"server": "https://cloud-images.ubuntu.com/releases/",
"type": "image"

},
"type": "virtual-machine"

}'

Then add the routed NIC device:

CLI

API

UI

123 of 954

124 of 954

lxc config device add my-vm eth0 nic nictype=routed parent=my-parent ipv4.
address=192.0.2.2 ipv6.address=2001:db8::2

lxc query --request PATCH /1.0/instances/my-vm --data '{
"devices": {

"eth0": {
"ipv4.address": "192.0.2.2",
"ipv6.address": "2001:db8::2",
"nictype": "routed",
"parent": "my-parent",
"type": "nic"

}
}

}'

You cannot add a routed NIC device through the UI directly. Therefore, go to the instance
detail page, switch to the Configuration tab and select YAML configuration. Then click Edit
instance and add the routed NIC device to the devices section. For example:

devices:
eth0:

ipv4.address: 192.0.2.2
ipv6.address: 2001:db8::2
nictype: routed
parent: my-parent
type: nic

In this configuration, my-parent is your parent network, and the IPv4 and IPv6 addresses are
within the subnet of the parent.

Next we will add some netplan configuration to the instance using the cloud-init.
network-config configuration key:

CLI

API

UI

cat <<EOF | lxc config set my-vm cloud-init.network-config -
network:
version: 2
ethernets:

enp5s0:
routes:
- to: default
via: 169.254.0.1
on-link: true

- to: default
via: fe80::1
on-link: true

addresses:

(continues on next page)

125 of 954

(continued from previous page)

- 192.0.2.2/32
- 2001:db8::2/128

EOF

cat > cloud-init.txt <<EOF
network:
version: 2
ethernets:

enp5s0:
routes:
- to: default
via: 169.254.0.1
on-link: true

- to: default
via: fe80::1
on-link: true

addresses:
- 192.0.2.2/32
- 2001:db8::2/128

EOF

lxc query --request PATCH /1.0/instances/my-vm --data '{
"config": {

"cloud-init.network-config": "'"$(awk -v ORS='\\n' '1' cloud-init.txt)"'"
}

}'

On the instance detail page, switch to the Advanced > Cloud-init tab and click Edit instance.

Click the Create override icon for the Network config and enter the following configuration:

network:
version: 2
ethernets:

enp5s0:
routes:
- to: default
via: 169.254.0.1
on-link: true

- to: default
via: fe80::1
on-link: true

addresses:
- 192.0.2.2/32
- 2001:db8::2/128

This netplan configuration adds the static link-local next-hop addresses (page 472) (169.254.
0.1 and fe80::1) that are required. For each of these routes we set on-link to true, which
specifies that the route is directly connected to the interface. We also add the addresses
that we configured in our routed NIC device. For more information on netplan, see their

126 of 954

https://netplan.readthedocs.io/en/latest/
https://netplan.readthedocs.io/en/latest/

documentation83.

Note

This netplan configuration does not include a name server. To enable DNS within the in-
stance, you must set a valid DNS IP address. If there is a lxdbr0 network on the host, the
name server can be set to that IP instead.

Before you start your instance, make sure that you have configured the parent network
(page 473) to enable proxy ARP/NDP.

Then start your instance:

CLI

API

UI

lxc start my-vm

lxc query --request PUT /1.0/instances/my-vm/state --data '{"action": "start"}'

Go to the instance list or the respective instance and click the Start button (�).

How to export and move instances:

How to back up instances

There are different ways of backing up your instances:

• Use snapshots for instance backup (page 128)

• Use export files for instance backup (page 132)

• Copy an instance to a backup server (page 135)

Which method to choose depends both on your use case and on the storage driver you use.

In general, snapshots are quick and space efficient (depending on the storage driver), but
they are stored in the same storage pool as the instance and therefore not too reliable. Ex-
port files can be stored on different disks and are therefore more reliable. They can also be
used to restore the instance into a different storage pool. If you have a separate, network-
connected LXD server available, regularly copying instances to this other server gives high
reliability as well, and this method can also be used to back up snapshots of the instance.

Note

Custom storage volumes might be attached to an instance, but they are not part of the
instance. Therefore, the content of a custom storage volume is not stored when you back
up your instance. You must back up the data of your storage volume separately. See How
to back up custom storage volumes (page 200) for instructions.

83 https://netplan.readthedocs.io/en/latest/

127 of 954

https://netplan.readthedocs.io/en/latest/
https://netplan.readthedocs.io/en/latest/
https://netplan.readthedocs.io/en/latest/

Use snapshots for instance backup

You can save your instance at a point in time by creating an instance snapshot, which makes
it easy to restore the instance to a previous state.

Instance snapshots are stored in the same storage pool as the instance volume itself.

Most storage drivers support optimized snapshot creation (see Feature comparison
(page 571)). For these drivers, creating snapshots is both quick and space-efficient. For the
dir driver, snapshot functionality is available but not very efficient. For the lvm driver, snap-
shot creation is quick, but restoring snapshots is efficient only when using thin-pool mode.

Create a snapshot

CLI

API

UI

Use the following command to create a snapshot of an instance:

lxc snapshot <instance_name> [<snapshot name>]

The snapshot name is optional. If you don’t specify one, the name follows the naming pattern
defined in snapshots.pattern.

Add the --reuse flag in combination with a snapshot name to replace an existing snapshot.

By default, snapshots are kept forever, unless the snapshots.expiry configuration option is
set. To retain a specific snapshot even if a general expiry time is set, use the --no-expiry
flag.

For virtual machines, you can add the --stateful flag to capture not only the data included
in the instance volume but also the running state of the instance. Note that this feature is
not fully supported for containers because of CRIU limitations.

To create a snapshot of an instance, send a POST request to the snapshots endpoint:

lxc query --request POST /1.0/instances/<instance_name>/snapshots --data '{"name":
"<snapshot_name>"}'

The snapshot name is optional. If you set it to an empty string, the name follows the naming
pattern defined in snapshots.pattern (page 442).

By default, snapshots are kept forever, unless the snapshots.expiry (page441) configuration
option is set. To set an expiration date, add theexpires_at field to the request data. To
retain a specific snapshot even if a general expiry time is set, set the expires_at field to
"0001-01-01T00:00:00Z".

If you want to replace an existing snapshot, delete it (page 129) first and then create another
snapshot with the same name.

For virtual machines, you can add "stateful": true to the request data to capture not only
the data included in the instance volume but also the running state of the instance. Note
that this feature is not fully supported for containers because of CRIU limitations.

See POST /1.0/instances/{name}/snapshots for more information.

128 of 954

To create a snapshotof an instance, go to the instancedetail pageand switch to the Snapshots
tab. Click Create snapshot to open the dialog to create a snapshot.

The snapshot name is optional. If you don’t specify one, the name follows the naming pattern
defined in snapshots.pattern (page 442). You can check and update this option by switching
to the Configuration tab and selecting Advanced > Snapshots, or simply by clicking See config-
uration.

By default, snapshots are kept forever, unless you specify an expiry date and time, or the
snapshots.expiry (page 441) configuration option is set for the instance.

For virtual machines, you can choose to create a stateful snapshot to capture not only the
data included in the instance volume but also the running state of the instance. Note that
this feature requires migration.stateful (page 429) to be enabled.

View, edit or delete snapshots

CLI

API

UI

Use the following command to display the snapshots for an instance:

lxc info <instance_name>

You can view or modify snapshots in a similar way to instances, by referring to the snapshot
with <instance_name>/<snapshot_name>.

To show configuration information about a snapshot, use the following command:

lxc config show <instance_name>/<snapshot_name>

To change the expiry date of a snapshot, use the following command:

lxc config edit <instance_name>/<snapshot_name>

Note

In general, snapshots cannot be edited, because they preserve the state of the instance.
The only exception is the expiry date. Other changes to the configuration are silently
ignored.

To delete a snapshot, use the following command:

lxc delete <instance_name>/<snapshot_name>

To retrieve the snapshots for an instance, send a GET request to the snapshots endpoint:

lxc query --request GET /1.0/instances/<instance_name>/snapshots

To show configuration information about a snapshot, send the following request:

129 of 954

lxc query --request GET /1.0/instances/<instance_name>/snapshots/<snapshot_name>

To change the expiry date of a snapshot, send a PATCH request:

lxc query --request PATCH /1.0/instances/<instance_name>/snapshots/<snapshot_name>
--data '{
"expires_at": "2029-03-23T17:38:37.753398689-04:00"

}'

Note

In general, snapshots cannot bemodified, because theypreserve the stateof the instance.
The only exception is the expiry date. Other changes to the configuration are silently
ignored.

To delete a snapshot, send a DELETE request:

lxc query --request DELETE /1.0/instances/<instance_name>/snapshots/<snapshot_
name>

See GET /1.0/instances/{name}/snapshots, GET /1.0/instances/{name}/snapshots/
{snapshot}, PATCH /1.0/instances/{name}/snapshots/{snapshot}, and DELETE /1.0/
instances/{name}/snapshots/{snapshot} for more information.

To seeall snapshots for an instance, go to the instancedetail pageand switch to theSnapshots
tab.

From the snapshot list, you can choose to edit the name or expiry date of a specific snapshot,
create an image based on the snapshot, restore it to the instance, or delete it.

Schedule instance snapshots

You can configure an instance to automatically create snapshots at specific times (at most
once every minute). To do so, set the snapshots.schedule (page 442) instance option.

For example, to configure daily snapshots:

CLI

API

UI

lxc config set <instance_name> snapshots.schedule @daily

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"config": {

"snapshots.schedule": "@daily"
}

}'

To configure taking a snapshot every day at 6 am:

CLI

130 of 954

API

UI

lxc config set <instance_name> snapshots.schedule "0 6 * * *"

lxc query --request PATCH /1.0/instances/<instance_name> --data '{
"config": {

"snapshots.schedule": "0 6 * * *"
}

}'

When scheduling regular snapshots, consider setting an automatic expiry (snapshots.expiry
(page 441)) and a naming pattern for snapshots (snapshots.pattern (page 442)). You
should also configure whether you want to take snapshots of instances that are not running
(snapshots.schedule.stopped (page 442)).

Restore an instance snapshot

You can restore an instance to any of its snapshots.

CLI

API

UI

To restore an instance to a snapshot, use the following command:

lxc restore <instance_name> <snapshot_name>

131 of 954

If the snapshot is stateful (which means that it contains information about the running state
of the instance), you can add the --stateful flag to restore the state.

To restore an instance to a snapshot, send a PUT request to the instance:

lxc query --request PUT /1.0/instances/<instance_name> --data '{
"restore": "<instance_name>/<snapshot_name>"

}'

If the snapshot is stateful (which means that it contains information about the running state
of the instance), you can add "stateful": true to the request data:

lxc query --request PUT /1.0/instances/<instance_name> --data '{
"restore": "<instance_name>/<snapshot_name>",
"stateful": true

}'

See PUT /1.0/instances/{name} for more information.

To restore an instance to a snapshot, click theRestore snapshot button () next to the snapshot
that you want to restore.

If the snapshot is stateful (which means that it contains information about the running state
of the instance), select Restore the instance state if you want to restore the state.

Use export files for instance backup

You can export the full content of your instance to a standalone file that can be stored at any
location. For highest reliability, store the backup file on a different file system to ensure that
it does not get lost or corrupted.

132 of 954

Note

The UI does not currently support exporting and importing instances.

Export an instance

CLI

API

Use the following command to export an instance to a compressed file (for example, /path/
to/my-instance.tgz):

lxc export <instance_name> [<file_path>]

If you do not specify a file path, the export file is saved as <instance_name>.<extension> in
the working directory (for example, my-container.tar.gz).

Warning

If the output file (<instance_name>.<extension> or the specified file path) already exists,
the command overwrites the existing file without warning.

You can add any of the following flags to the command:

--compression
By default, the output file uses gzip compression. You can specify a different compres-
sion algorithm (for example, bzip2) or turn off compression with --compression=none.

--optimized-storage
If your storage pool uses the btrfs or the zfs driver, add the --optimized-storage flag
to store the data as a driver-specific binary blob instead of an archive of individual files.
In this case, the export file can only be usedwith pools that use the same storage driver.

Exporting a volume in optimized mode is usually quicker than exporting the individual
files. Snapshots are exported as differences from the main volume, which decreases
their size (quota) and makes them easily accessible.

--export-version
If you intend to import the backup to an older version of LXD, set the version to 1which
will use the original (old) backup metadata format. Backups using the old format can
always be imported on newer versions of LXD. If the flag is not specified and the server
has support for the backup_metadata_version API extension, version 2 is used by de-
fault.

--instance-only
By default, the export file contains all snapshots of the instance. Add this flag to export
the instance without its snapshots.

To create a backup of an instance, send a POST request to the backups endpoint:

lxc query --request POST /1.0/instances/<instance_name>/backups --data '{"name": "
"}'

133 of 954

You can specify a name for the backup, or use the default (backup0, backup1 and so on).

You can add any of the following fields to the request data:

"compression_algorithm": "bzip2"
By default, the output file uses gzip compression. You can specify a different compres-
sion algorithm (for example, bzip2) or turn off compression with none.

"optimized-storage": true
If your storage pool uses the btrfs or the zfs driver, set the "optimized-storage" field
to true to store the data as a driver-specific binary blob instead of an archive of individ-
ual files. In this case, the backup can only be used with pools that use the same storage
driver.

Exporting a volume in optimized mode is usually quicker than exporting the individual
files. Snapshots are exported as differences from the main volume, which decreases
their size (quota) and makes them easily accessible.

"instance-only": true
By default, the backup contains all snapshots of the instance. Set this field to true to
back up the instance without its snapshots.

After creating the backup, you can download it with the following request:

lxc query --request GET /1.0/instances/<instance_name>/backups/<backup_name>/
export > <file_name>

Remember to delete the backup when you don’t need it anymore:

lxc query --request DELETE /1.0/instances/<instance_name>/backups/<backup_name>

See POST /1.0/instances/{name}/backups, GET /1.0/instances/{name}/backups/{backup}/
export, and DELETE /1.0/instances/{name}/backups/{backup} for more information.

Restore an instance from an export file

You can import an export file (for example, /path/to/my-backup.tgz) as a new instance.

CLI

API

To import an export file, use the following command:

lxc import <file_path> [<instance_name>]

If you do not specify an instance name, the original name of the exported instance is used
for the new instance. If an instance with that name already (or still) exists in the specified
storage pool, the command returns an error. In that case, either delete the existing instance
before importing the backup or specify a different instance name for the import.

Add the --storage flag to specify which storage pool to use, or the --device flag to override
the device configuration (syntax: --device <device_name>,<device_option>=<value>).

To import an export file, post it to the /1.0/instances endpoint:

134 of 954

curl -X POST -H "Content-Type: application/octet-stream" --data-binary @<file_
path> \
--unix-socket /var/snap/lxd/common/lxd/unix.socket lxd/1.0/instances

If an instance with that name already (or still) exists in the specified storage pool, the com-
mand returns an error. In this case, delete the existing instance before importing the backup.

See POST /1.0/instances for more information.

Copy an instance to a backup server

You can copy an instance to a secondary backup server to back it up.

See Secondary backup LXD server (page 318) for more information, and How to migrate LXD
instances between servers (page 135) for instructions.

How to migrate LXD instances between servers

If you use the LXD client, you can migrate or copy instances from one LXD server (remote or
local) to another.

Note

Remote servers (page 70) are a concept of the LXD client. Therefore, there is no direct
equivalent for migrating instances between servers in the API or the UI.

However, you can export an instance (page 133) from one server and import it (page 134)
to another server.

Migrate instances

To migrate an instance (move it from one LXD server to another) using the CLI, use the lxc
move (page 788) command:

lxc move [<source_remote>:]<source_instance_name> <target_remote>:[<target_
instance_name>]

When migrating a container, you must stop it first. See Live migration for containers
(page 137) for more information.

Whenmigrating a virtual machine, youmust either enable Live migration for virtual machines
(page 136) or stop it first.

Copy instances

Use the lxc copy (page 761) command if you want to duplicate the instance instead of mi-
grating it:

lxc copy [<source_remote>:]<source_instance_name> <target_remote>:[<target_
instance_name>]

If the volume already exists in the target location, use the --refresh flag to update the copy.
To learn about the benefits, see: Optimized volume transfer (page 572).

135 of 954

Migrate and copy options

For bothmigrating and copying instances, you don’t need to specify the source remote if it is
your default remote, and you can leave out the target instance name if you want to use the
same instance name on the target remote server.

If youwant tomigrate the instance to a specific clustermember, specify thatmember’s name
with the --target flag. In this case, do not specify the source and target remote.

You can add the --mode flag to choose a transfer mode, depending on your network setup:

pull (default)
Instruct the target server to connect to the source server and pull the respective in-
stance.

push
Instruct the source server to connect to the target server and push the instance.

relay
Instruct the client to connect to both the source and the target server and transfer the
data through the client.

If you need to adapt the configuration for the instance to run on the target server, you
can either specify the new configuration directly (using --config, --device, --storage or
--target-project) or through profiles (using --no-profiles or --profile). See lxc move
--help (page 788) for all available flags.

Live migration

Livemigrationmeansmigrating an instance to another serverwhile it is running. Thismethod
is supported for virtual machines. For containers, there is limited support.

Live migration for virtual machines

Virtual machines can bemigrated to another server while they are running, thus avoiding any
downtime.

For a virtual machine to be eligible for live migration, it must meet the following criteria:

• It must have support for stateful migration enabled. To enable this, set migration.
stateful (page 429) to true on the virtual machine. This setting can only be updated
when the machine is stopped. Thus, be sure to configure this setting before you need
to live-migrate:

lxc config set <instance-name> migration.stateful=true

Note

When migration.stateful (page 429) is enabled in LXD, virtiofs shares are disabled,
and files are only shared via the 9P protocol. Consequently, guest OSes lacking 9P
support, such as CentOS 8, cannot share files with the host unless stateful migra-
tion is disabled. Additionally, the lxd-agentwill not function for these guests under
these conditions.

136 of 954

• When using a local pool, the size.state (page 484) of the virtual machine’s root disk
devicemust be set to at least the size of the virtualmachine’s limits.memory (page 423)
setting.

Note

If you are using a remote storage pool like CephRBD to back your instance, you don’t
need to set size.state (page 484) to perform live migration.

• The virtual machinemust not depend on any resources specific to its current host, such
as local storage or a local (non-OVN) bridge network.

Live migration for containers

For containers, there is limited support for live migration using CRIU (Checkpoint/Restore
in Userspace)84. However, because of extensive kernel dependencies, only very basic con-
tainers (non-systemd containers without a network device) can be migrated reliably. In most
real-world scenarios, you should stop the container, migrate it, then start it again.

If you want to use live migration for containers, you must enable CRIU on both the source
and the target server. If you are using the snap, use the following commands to enable CRIU:

snap set lxd criu.enable=true
sudo systemctl reload snap.lxd.daemon

Otherwise, make sure you have CRIU installed on both systems.

To optimize the memory transfer for a container, set the migration.incremental.memory
(page 428) property to true to make use of the pre-copy features in CRIU. With this con-
figuration, LXD instructs CRIU to perform a series of memory dumps for the container. Af-
ter each dump, LXD sends the memory dump to the specified remote. In an ideal scenario,
each memory dump will decrease the delta to the previous memory dump, thereby increas-
ing the percentage of memory that is already synced. When the percentage of synced mem-
ory is equal to or greater than the threshold specified via migration.incremental.memory.
goal (page 429), or the maximum number of allowed iterations specified via migration.
incremental.memory.iterations (page 429) is reached, LXD instructs CRIU to perform a final
memory dump and transfers it.

Temporarily migrate all instances from a cluster member

For LXD servers that are members of a cluster, you can use the evacuate and restore op-
erations to temporarily migrate all instances from one cluster member to another. These
operations can also live-migrate eligible instances.

For more information, see: Evacuate and restore cluster members (page 286).

84 https://criu.org/Main_Page

137 of 954

https://criu.org/Main_Page
https://criu.org/Main_Page

Related topics

How-to guides:

• Migrate instances in a cluster (page 292)

• Move an instance to another project (page 167)

• Import machines to LXD instances (page 138)

• Secondary backup LXD server (page 318)

• Export an instance (page 133)

• Restore an instance from an export file (page 134)

• Move or copy storage volumes (page 205)

How to import instances:

How to import physical or virtual machines to LXD instances

If you have an existing machine, either physical or virtual (VM or container), you can use the
lxd-migrate tool to create a LXD instance based on your existing disk or image.

The tool copies the provided partition, disk or image to the LXD storage pool of the provided
LXD server, sets up an instance using that storage and allows you to configure additional
settings for the new instance.

Note

If you want to configure your new instance during the migration process, set up the enti-
ties that you want your instance to use before starting the migration process.

By default, the new instance will use the entities specified in the default profile. You can
specify a different profile (or a profile list) to customize the configuration. SeeHow to use
profiles (page 97) formore information. You can also override Instance options (page 415),
the storage pool (page 350) to be used and the size for the storage volume (page 352), and
the network (page 210) to be used.

Alternatively, you can update the instance configuration after the migration is complete.

The tool can create both containers and virtual machines:

• When creating a container, you must provide a disk or partition that contains the root
file system for the container. For example, this could be the / root disk of the machine
or container where you are running the tool.

• When creating a virtual machine, you must provide a bootable disk, partition, or an im-
age in raw, QCOW,QCOW2, VDI, VHDX, or VMDK format. Thismeans that just providing
a file system is not sufficient, and you cannot create a virtual machine from a container
that you are running. It is also not possible to create a virtual machine from the physi-
cal machine that you are using to do the migration, because the migration tool would
be using the disk that it is copying. Instead, you could provide a bootable image, or a
bootable partition or disk that is currently not in use.

The tool can also inject the required VIRTIO drivers into the image:

138 of 954

• To convert the image into raw format and inject the VIRTIO drivers during the conver-
sion, use the following command:

lxd-migrate --conversion=format,virtio

Note

The conversion option virtio requires virt-v2v-in-place to be installed on the host
where the LXD server runs.

• For converting Windows images from a foreign hypervisor (not from QEMU/KVM with
Q35/virtio-scsi), you must install additional drivers on the host:

– /usr/share/virtio-win/virtio-win.iso

Download virtio-win.iso85.

– /usr/share/virt-tools/rhsrvany.exe

– /usr/share/virt-tools/pnp_wait.exe

rhsrvany.exe and pnp_wait.exe are provided inUbuntu 24.04 and later in the rhsr-
vany86 package. For other OS versions, download rhsrvany.exe and pnp_wait.
exe87.

Tip

The lxd-migrate command with the --conversion=format,virtio option automati-
cally converts the image and injects the VIRTIO drivers during the conversion. How-
ever, if you want to manually convert a Windows VM from a foreign hypervisor, you
must install both the required Windows drivers (as described above) and virt-v2v
(>= 2.3.4).

Use virt-v2v to convert Windows image into raw format and include the required
drivers. The resulting image is suitable for use with lxd-migrate.

Example 1. Convert a VMDK image to a raw image
sudo virt-v2v --block-driver virtio-scsi -o local -of raw -os ./os -i disk
-if vmdk test-vm-disk.vmdk

Example 2. Convert a QEMU/KVM qcow2 image to a raw image
sudo virt-v2v --block-driver virtio-scsi -o local -of raw -os ./os -i disk
-if qcow2 test-vm-disk.qcow2

Example 3. Convert a VMX image to a raw image
sudo virt-v2v --block-driver virtio-scsi -o local -of raw -os ./os -i vmx
./test-vm.vmx

You can find the resulting image in the os directory and use it with lxd-migrate on
the next steps. In addition, when migrating already converted images, lxd-migrate

85 https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
86 https://launchpad.net/ubuntu/+source/rhsrvany
87 https://github.com/rwmjones/rhsrvany?tab=readme-ov-file#binary-releases

139 of 954

https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://launchpad.net/ubuntu/+source/rhsrvany
https://launchpad.net/ubuntu/+source/rhsrvany
https://github.com/rwmjones/rhsrvany?tab=readme-ov-file#binary-releases
https://github.com/rwmjones/rhsrvany?tab=readme-ov-file#binary-releases

conversion options are not necessary.

Interactive instance import

Complete the following steps to migrate an existing machine to a LXD instance:

1. Download the bin.linux.lxd-migrate tool (bin.linux.lxd-migrate.aarch6488 or bin.
linux.lxd-migrate.x86_6489) from the Assets section of the latest LXD release90.

2. Place the tool on the machine that you want to use to create the instance. Make it
executable (usually by running chmod u+x bin.linux.lxd-migrate).

3. Make sure that the machine has rsync and file installed. If they are missing, install
them (for example, with sudo apt install rsync file).

4. Run the tool:

sudo ./bin.linux.lxd-migrate

The tool then asks you to provide the information required for the migration.

1. Specify the LXD server URL, either as an IP address or as a DNS name.

Note

The LXD servermust be exposed to the network (page 44). If youwant to import
to a local LXD server, you must still expose it to the network. You can then
specify 127.0.0.1 as the IP address to access the local server.

2. Check and confirm the certificate fingerprint.

3. Choose a method for authentication (see Remote API authentication (page 358)).

For example, if you choose using a certificate token, log on to the LXD server and
create a token for the machine on which you are running the migration tool with
lxc config trust add (page 752). Then use the generated token to authenticate
the tool.

4. Choosewhether to create a container or a virtualmachine. SeeContainers andVMs
(page 346).

5. Specify a name for the instance that you are creating.

6. Provide the path to a root file system (for containers) or a bootable disk, partition
or image file (for virtual machines).

7. For containers, optionally add additional file systemmounts.

8. For virtual machines, specify whether secure boot is supported.

9. Optionally, configure the new instance. You can do so by specifying profiles
(page 97), directly setting configuration options (page 415) or changing storage
(page 175) or network (page 210) settings.

88 https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-migrate.aarch64
89 https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-migrate.x86_64
90 https://github.com/canonical/lxd/releases

140 of 954

https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-migrate.aarch64
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-migrate.x86_64
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-migrate.x86_64
https://github.com/canonical/lxd/releases

Alternatively, you can configure the new instance after the migration.

10. When you are done with the configuration, start the migration process.

~$ sudo ./bin.linux.lxd-migrate Please provide LXD server URL:
https://192.0.2.7:8443Certificate fingerprint: xxxxxxxxxxxxxxxxxok
(y/n)? y 1) Use a certificate token2) Use an existing TLS authentication
certificate3) Generate a temporary TLS authentication certificatePlease
pick an authentication mechanism above: 1Please provide the certificate
token: xxxxxxxxxxxxxxxx Remote LXD server: Hostname: bar Version: 5.4
Would you like to create a container (1) or virtual-machine (2)?: 1Name
of the new instance: fooPlease provide the path to a root filesystem:
/Do you want to add additional filesystem mounts? [default=no]: Instance
to be created: Name: foo Project: default Type: container Source: /
Additional overrides can be applied at this stage:1) Begin the migration
with the above configuration2) Override profile list3) Set additional
configuration options4) Change instance storage pool or volume size5)
Change instance network Please pick one of the options above
[default=1]: 3Please specify config keys and values (key=value ...):
limits.cpu=2 Instance to be created: Name: foo Project: default Type:
container Source: / Config: limits.cpu: "2" Additional overrides can be
applied at this stage:1) Begin the migration with the above
configuration2) Override profile list3) Set additional configuration
options4) Change instance storage pool or volume size5) Change instance
network Please pick one of the options above [default=1]: 4Please
provide the storage pool to use: defaultDo you want to change the
storage volume size? [default=no]: yesPlease specify the storage volume
size: 20GiB Instance to be created: Name: foo Project: default Type:
container Source: / Storage pool: default Storage volume size: 20GiB
Config: limits.cpu: "2" Additional overrides can be applied at this
stage:1) Begin the migration with the above configuration2) Override
profile list3) Set additional configuration options4) Change instance
storage pool or volume size5) Change instance network Please pick one of
the options above [default=1]: 5Please specify the network to use for
the instance: lxdbr0 Instance to be created: Name: foo Project: default
Type: container Source: / Storage pool: default Storage volume size:
20GiB Network name: lxdbr0 Config: limits.cpu: "2" Additional overrides
can be applied at this stage:1) Begin the migration with the above
configuration2) Override profile list3) Set additional configuration
options4) Change instance storage pool or volume size5) Change instance
network Please pick one of the options above [default=1]: 1Instance foo
successfully created

~$ sudo ./bin.linux.lxd-migrate Please provide LXD server URL:
https://192.0.2.7:8443Certificate fingerprint: xxxxxxxxxxxxxxxxxok
(y/n)? y 1) Use a certificate token2) Use an existing TLS authentication
certificate3) Generate a temporary TLS authentication certificatePlease
pick an authentication mechanism above: 1Please provide the certificate
token: xxxxxxxxxxxxxxxx Remote LXD server: Hostname: bar Version: 5.4
Would you like to create a container (1) or virtual-machine (2)?: 2Name

141 of 954

of the new instance: fooPlease provide the path to a root filesystem:
./virtual-machine.imgDoes the VM support UEFI Secure Boot? [default=no]:
no Instance to be created: Name: foo Project: default Type:
virtual-machine Source: ./virtual-machine.img Config:
security.secureboot: "false" Additional overrides can be applied at this
stage:1) Begin the migration with the above configuration2) Override
profile list3) Set additional configuration options4) Change instance
storage pool or volume size5) Change instance network Please pick one of
the options above [default=1]: 3Please specify config keys and values
(key=value ...): limits.cpu=2 Instance to be created: Name: foo
Project: default Type: virtual-machine Source: ./virtual-machine.img
Config: limits.cpu: "2" security.secureboot: "false" Additional
overrides can be applied at this stage:1) Begin the migration with the
above configuration2) Override profile list3) Set additional
configuration options4) Change instance storage pool or volume size5)
Change instance network Please pick one of the options above
[default=1]: 4Please provide the storage pool to use: defaultDo you
want to change the storage volume size? [default=no]: yesPlease specify
the storage volume size: 20GiB Instance to be created: Name: foo
Project: default Type: virtual-machine Source: ./virtual-machine.img
Storage pool: default Storage volume size: 20GiB Config: limits.cpu:
"2" security.secureboot: "false" Additional overrides can be applied at
this stage:1) Begin the migration with the above configuration2)
Override profile list3) Set additional configuration options4) Change
instance storage pool or volume size5) Change instance network Please
pick one of the options above [default=1]: 5Please specify the network
to use for the instance: lxdbr0 Instance to be created: Name: foo
Project: default Type: virtual-machine Source: ./virtual-machine.img
Storage pool: default Storage volume size: 20GiB Network name: lxdbr0
Config: limits.cpu: "2" security.secureboot: "false" Additional
overrides can be applied at this stage:1) Begin the migration with the
above configuration2) Override profile list3) Set additional
configuration options4) Change instance storage pool or volume size5)
Change instance network Please pick one of the options above
[default=1]: 1Instance foo successfully created

5. When the migration is complete, check the new instance and update its configuration
to the new environment. Typically, you must update at least the storage configuration
(/etc/fstab) and the network configuration.

Non-interactive instance import

Alternatively, the entire instance import configuration can be provided using lxd-migrate
flags. If any required flag is missing, lxd-migrate will interactively prompt for the missing
value. However, when the --non-interactive flag is used, an error is returned instead.

Note that if any flag contains an invalid value, an error is returned regardless of the mode
(interactive or non-interactive).

The lxd-migrate command supports the following flags that can be used in non-interactive
migration:

142 of 954

Instance configuration:
-c, --config Config key/value to apply to the new instance

--mount-path Additional container mount paths
--name Name of the new instance
--network Network name
--no-profiles Create the instance with no profiles applied
--profiles Profiles to apply on the new instance (default

[default])
--project Project name
--source Path to the root filesystem for containers, or to the

block device or disk image file for virtual machines
--storage Storage pool name
--storage-size Size of the instance's storage volume
--type Type of the instance to create (container or vm)

Target server:
--server Unix or HTTPS URL of the target server
--token Authentication token for HTTPS remote
--cert-path Trusted certificate path
--key-path Trusted certificate path

Other:
--conversion strings Comma-separated list of conversion options to apply.

Allowed values are: [format, virtio] (default [format])
--non-interactive Prevent further interaction if migration questions

are incomplete
--rsync-args Extra arguments to pass to rsync

Example VM import to local LXD server:

lxd-migrate \
--name v1 \
--type vm \
--source "${sourcePath}" \
--non-interactive

Example VM import to remote HTTPS server:

Token from remote server.
token=$(lxc config trust add --name lxd-migrate --quiet)

lxd-migrate \
--server https://example.com:8443 \
--token "$token" \
--name v1 \
--type vm \
--source "${sourcePath}" \
--non-interactive

Example VM import with secure boot disabled and custom resource limits:

143 of 954

lxd-migrate \
--name v1 \
--type vm \
--source "${sourcePath}" \
--config security.secureboot=false \
--config limits.cpu=4 \
--config limits.memory=4GiB \
--non-interactive

How to pass an NVIDIA GPU to a container with a Docker workload:

How to pass an NVIDIA GPU to a container

Steps

If you have an NVIDIA GPU (either discrete (dGPU) or integrated (iGPU)) and youwant to pass
the runtime libraries and configuration installed on your host to your container, you should
add a LXD GPU device (page 491). Consider the following scenario:

Your host is an NVIDIA single board computer that has a Tegra SoC with an iGPU, and you
have the Tegra SDK installed on the host. You want to create a LXD container and run an
application inside the container using the iGPU as a compute backend. You want to run this
application inside a Docker container (or another OCI-compliant runtime). To achieve this,
complete the following steps:

1. Running aDocker container inside a LXD container can potentially consume a lot of disk
space if the outer container is not well configured. Here are two options you can use
to optimize the consumed disk space:

• Either you create a BTRFS storage pool to back the LXD container so that the
Docker image later used does not use the VFS storage driver which is very space
inefficient, then you initialize the LXD containerwith security.nesting (page 436)
enabled (needed for running a Docker container inside a LXD container) and using
the BTRFS storage pool:

lxc storage create p1 btrfs size=15GiB
lxc init ubuntu:24.04 t1 --config security.nesting=true -s p1

• Or you use the overlayFS storage driver in Docker but you need to specify the
following syscall interceptions, still with the security.nesting (page436) enabled:

lxc init ubuntu:24.04 t1 --config security.nesting=true --config
security.syscalls.intercept.mknod=true --config security.syscalls.
intercept.setxattr=true

2. Add the GPU device to your container:

• If you want to do an iGPU pass-through:

lxc config device add t1 igpu0 gpu gputype=physical id=nvidia.com/igpu=0

• If you want to do a dGPU pass-through:

144 of 954

lxc config device add t1 gpu0 gpu gputype=physical id=nvidia.com/gpu=0

After adding the device, let’s try to run a basic MNIST91 inference job inside our LXD con-
tainer.

1. Create a cloud-init script that installs the Docker runtime, the NVIDIA Container
Toolkit92, and a script to run a test TensorRT93 workload:

#cloud-config
package_update: true
write_files:
`run_tensorrt.sh` compiles samples TensorRT applications and run the the

`sample_onnx_mnist` program which loads an ONNX model into the TensorRT
inference server and execute a digit recognition job.

- path: /root/run_tensorrt.sh
permissions: "0755"
owner: root:root
content: |

#!/bin/bash
echo "OS release,Kernel version"
(. /etc/os-release; echo "${PRETTY_NAME}"; uname -r) | paste -s -d,
echo
nvidia-smi -q
echo
exec bash -o pipefail -c "
cd /workspace/tensorrt/samples
make -j4
cd /workspace/tensorrt/bin
./sample_onnx_mnist
retstatus=\${PIPESTATUS[0]}
echo \"Test exited with status code: \${retstatus}\" >&2
exit \${retstatus}
"

runcmd:
Install Docker to run the AI workload
- curl -fsSL https://get.docker.com -o install-docker.sh
- sh install-docker.sh --version 24.0
The following installs the NVIDIA container toolkit
as explained in the official doc website: https://docs.nvidia.com/

datacenter/cloud-native/container-toolkit/latest/install-guide.html
#installing-with-apt

- curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | gpg --
dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg

- curl -fsSL https://nvidia.github.io/libnvidia-container/stable/deb/
nvidia-container-toolkit.list | sed -e 's#deb https://#deb [signed-by=/usr/
share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' -e '/
experimental/ s/^#//g' | tee /etc/apt/sources.list.d/nvidia-container-
toolkit.list

(continues on next page)

91 https://en.wikipedia.org/wiki/MNIST_database
92 https://github.com/NVIDIA/nvidia-container-toolkit
93 https://github.com/NVIDIA/TensorRT

145 of 954

https://en.wikipedia.org/wiki/MNIST_database
https://github.com/NVIDIA/nvidia-container-toolkit
https://github.com/NVIDIA/nvidia-container-toolkit
https://github.com/NVIDIA/TensorRT

(continued from previous page)

Now that an new apt source/key was added, update the package
definitions.

- apt-get update
Install NVIDIA container toolkit
- DEBIAN_FRONTEND=noninteractive apt-get install -y nvidia-container-

toolkit
Ultimately, we need to tell Docker, our container runtime, to use

`nvidia-ctk` as a runtime.
- nvidia-ctk runtime configure --runtime=docker --config=/etc/docker/

daemon.json
- systemctl restart docker

2. Apply this cloud-init setup to your instance:

lxc config set t1 cloud-init.user-data - < cloud-init.yml

3. Start the instance:

lxc start t1

4. Wait for the cloud-init process to finish:

lxc exec t1 -- cloud-init status --wait

5. Once cloud-init is finished, open a shell in the instance:

lxc exec t1 -- bash

6. Edit the NVIDIA container runtime to avoid using cgroups:

sudo nvidia-ctk config --in-place --set nvidia-container-cli.no-cgroups

7. If you use an iGPU and your NVIDIA container runtime is not automatically enabledwith
CSV mode (needed for NVIDIA Tegra board), enable it manually:

sudo nvidia-ctk config --in-place --set nvidia-container-runtime.mode=csv

8. Now, run the inference workload with Docker:

• If you set up a dGPU pass-through:

docker run --gpus all --runtime nvidia --rm -v $(pwd):/sh_input nvcr.io/
nvidia/tensorrt:24.02-py3 bash /sh_input/run_tensorrt.sh

• If you set up an iGPU pass-through:

docker run --gpus all --runtime nvidia --rm -v $(pwd):/sh_input nvcr.io/
nvidia/tensorrt:24.02-py3-igpu bash /sh_input/run_tensorrt.sh

In the end you should see something like:

146 of 954

@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@= ++++#++=*@@@@@
@@@@@@@@#. *@@@@@
@@@@@@@@= *@@@@@
@@@@@@@@.****%@@@@@
@@@@@@@@: .%@@#@@@@@@@@@@@@@
@@@@@@@% -@@@@@@@@@@@@@@@@@
@@@@@@@% -@@*@@@*@@@@@@@@@@
@@@@@@@# :#- ::. ::=@@@@@@@
@@@@@@@- -@@@@@@
@@@@@@%. *@@@@@
@@@@@@# :==*+== *@@@@@
@@@@@@%---%%@@@@@@@. *@@@@@
@@@@@@@@@@@@@@@@@@@+ *@@@@@
@@@@@@@@@@@@@@@@@@@= *@@@@@
@@@@@@@@@@@@@@@@@@* *@@@@@
@@@@@%+%@@@@@@@@%. .%@@@@@
@@@@@* .******= -@@@@@@@
@@@@@* .#@@@@@@@
@@@@@* =%@@@@@@@@
@@@@@@%#+++= =@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@

[07/31/2024-13:19:21] [I] Output:
[07/31/2024-13:19:21] [I] Prob 0 0.0000 Class 0:
[07/31/2024-13:19:21] [I] Prob 1 0.0000 Class 1:
[07/31/2024-13:19:21] [I] Prob 2 0.0000 Class 2:
[07/31/2024-13:19:21] [I] Prob 3 0.0000 Class 3:
[07/31/2024-13:19:21] [I] Prob 4 0.0000 Class 4:
[07/31/2024-13:19:21] [I] Prob 5 1.0000 Class 5: **********
[07/31/2024-13:19:21] [I] Prob 6 0.0000 Class 6:
[07/31/2024-13:19:21] [I] Prob 7 0.0000 Class 7:
[07/31/2024-13:19:21] [I] Prob 8 0.0000 Class 8:
[07/31/2024-13:19:21] [I] Prob 9 0.0000 Class 9:
[07/31/2024-13:19:21] [I]
&&&& PASSED TensorRT.sample_onnx_mnist [TensorRT v8603] # ./sample_onnx_mnist

Related topics

• GPU devices reference (page 491)

• Why does my VM stop responding when I try to pass through a GPU? (page 334)

147 of 954

Related topics

Explanation:

• Instance types in LXD (page 347)

Reference:

• Container runtime environment (page 398)

• Instance configuration (page 414)

2.2.2. Images
The following how-to guides cover common operations related to images.

How to work with existing images:

How to use remote images

The lxc (page 690) CLI command is pre-configured with several remote image servers. See
Remote image servers (page 391) for an overview.

Note

• If you are using theAPI, you can interactwith different LXD servers by using their ex-
posedAPI addresses. SeeAuthenticatewith the LXD server (page 45) for instructions
on how to authenticate with the servers.

How tomanage images (page 150) describes how to interact with images on any LXD
server through the API.

• The UI is pre-configured with several remote image servers, but does not currently
support adding other servers or managing remote images.

You can see the available remote images (andwhich server they are hosted on)when
you select the base image for a new instance.

List configured remotes

To see all configured remote servers, enter the following command:

lxc remote list

Remote servers that use the simple streams format94 are pure image servers. Servers that
use the lxd format are LXD servers, which either serve solely as image servers or might pro-
vide some images in addition to serving as regular LXD servers. See Remote server types
(page 391) for more information.

List available images on a remote

To list all remote images on a server, enter the following command:

lxc image list <remote>:

You can filter the results. See Filter available images (page 150) for instructions.

94 https://git.launchpad.net/simplestreams/tree/

148 of 954

https://git.launchpad.net/simplestreams/tree/

Add a remote server

How to add a remote depends on the protocol that the server uses.

Add a simple streams server

To add a simple streams server as a remote, enter the following command:

lxc remote add <remote_name> <URL> --protocol=simplestreams

The URL must use HTTPS.

Add a remote LXD server

To add a LXD server as a remote, enter the following command:

lxc remote add <remote_name> <IP|FQDN|URL|token> [flags]

Some authentication methods require specific flags (for example, use lxc remote add
<remote_name> <IP|FQDN|URL> --auth-type=oidc (page 872) for OIDC authentication). See
Authenticatewith the LXD server (page45) andRemoteAPI authentication (page358) formore
information.

For example, enter the following command to add a remote through an IP address:

lxc remote add my-remote 192.0.2.10

You are prompted to confirm the remote server fingerprint and then asked for the token.

Reference an image

To reference an image, specify its remote and its alias or fingerprint, separated with a colon.
For example:

ubuntu:24.04
ubuntu-minimal:24.04
images:alpine/edge
local:ed7509d7e83f

Select a default remote

If you specify an image name without the name of the remote, the default image server is
used.

To see which server is configured as the default image server, enter the following command:

lxc remote get-default

To select a different remote as the default image server, enter the following command:

lxc remote switch <remote_name>

149 of 954

How to manage images

When working with images, you can inspect various information about the available images,
view and edit their properties and configure aliases to refer to specific images. You can also
export an image to a file, which can be useful to copy or import it (page 156) on another
machine.

List available images

CLI

API

UI

To list all images on a server, enter the following command:

lxc image list [<remote>:]

If you do not specify a remote, the default remote (page 149) is used.

Query the /1.0/images endpoint to list all images on the server:

lxc query --request GET /1.0/images

To include information about each image, add recursion=1:

lxc query --request GET /1.0/images?recursion=1

See GET /1.0/images and GET /1.0/images?recursion=1 for more information.

Note

The /1.0/images endpoint is available on LXD servers, but not on simple streams servers
(see Remote server types (page 391)). Public image servers, like the official Ubuntu image
server95, use the simple streams format96.

To retrieve the list of images from a simple streams server, start at the streams/v1/
index.sjson index (for example, https://cloud-images.ubuntu.com/releases/streams/
v1/index.sjson).

Go to Images to view all images on the local server.

Filter available images

CLI

API

UI

To filter the results that are displayed, specify a part of the alias or fingerprint after the com-
mand. For example, to show all Ubuntu 24.04 LTS images, enter the following command:

95 https://cloud-images.ubuntu.com/releases/
96 https://git.launchpad.net/simplestreams/tree/

150 of 954

https://cloud-images.ubuntu.com/releases/
https://cloud-images.ubuntu.com/releases/
https://git.launchpad.net/simplestreams/tree/
https://cloud-images.ubuntu.com/releases/streams/v1/index.sjson
https://cloud-images.ubuntu.com/releases/streams/v1/index.sjson

lxc image list ubuntu: 24.04

You can specify several filters as well. For example, to show all Arm 64-bit Ubuntu 24.04 LTS
images, enter the following command:

lxc image list ubuntu: 24.04 arm64

To filter for properties other than alias or fingerprint, specify the filter in <key>=<value> for-
mat. For example:

lxc image list ubuntu: 24.04 architecture=x86_64

You can filter (page 621) the images that are displayed by any of their fields.

For example, to show all Ubuntu images, or all images for Ubuntu 24.04 LTS:

lxc query --request GET /1.0/images?filter=properties.os+eq+ubuntu
lxc query --request GET /1.0/images?filter=properties.version+eq+24.04

You can specify several filters as well. For example, to show all Arm 64-bit images for virtual
machines, enter the following command:

lxc query --request GET /1.0/images?
filter=architecture+eq+arm64+and+type+eq+virtual-machine

You can also use a regular expression:

lxc query --request GET "/1.0/images?filter=fingerprint+eq+be25.*"

See GET /1.0/images and Filtering (page 621) for more information.

To filter the images that are displayed, use the search box.

For example, to show all Ubuntu images, search for ubuntu. To display only images for version
24.04, search for 24.04.

View image information

CLI

API

UI

To view information about an image, enter the following command:

lxc image info <image_ID>

As the image ID, you can specify either the image’s alias or its fingerprint. For a remote image,
remember to include the remote server (for example, ubuntu:24.04).

To display only the image properties, enter the following command:

lxc image show <image_ID>

You can also display a specific image property (located under the properties key) with the
following command:

151 of 954

lxc image get-property <image_ID> <key>

For example, to show the release name of the official Ubuntu 24.04 LTS image, enter the
following command:

lxc image get-property ubuntu:24.04 release

To view all information about an image, query it using its fingerprint:

lxc query --request GET /1.0/images/<fingerprint>

See GET /1.0/images/{fingerprint} for more information.

If you don’t know the fingerprint but the alias, you can retrieve the fingerprint by querying
the /1.0/images/aliases/{alias} endpoint:

lxc query --request GET /1.0/images/aliases/<alias>

See GET /1.0/images/aliases/{name} for more information.

The UI does not currently support viewing detailed image information.

Edit image properties

CLI

API

UI

To set a specific image property that is located under the properties key, enter the following
command:

lxc image set-property <image_ID> <key> <value>

Note

These properties can be used to convey information about the image. They do not con-
figure LXD’s behavior in any way.

To edit the full image properties, including the top-level properties, enter the following com-
mand:

lxc image edit <image_ID>

To set a specific image property that is located under the properties key, send a PATCH re-
quest to the image:

lxc query --request PATCH /1.0/images/<fingerprint> --data '{
"properties": {

"<key>": "<value>"
}

}'

152 of 954

See PATCH /1.0/images/{fingerprint} for more information.

Note

These properties can be used to convey information about the image. They do not con-
figure LXD’s behavior in any way.

To update the full image properties, including the top-level properties, send a PUT request
with the full image data:

lxc query --request PUT /1.0/images/<fingerprint> --data '<image_configuration>'

See PUT /1.0/images/{fingerprint} for more information.

The UI does not currently support editing image properties.

Delete an image

CLI

API

UI

To delete a local copy of an image, enter the following command:

lxc image delete <image_ID>

To delete a local copy of an image, send a DELETE request:

lxc query --request DELETE /1.0/images/<fingerprint>

See DELETE /1.0/images/{fingerprint} for more information.

In the images list, click the Delete button () next to an image to delete it.

You can also select several images and click the Delete images button at the top to delete all
selected images.

Deleting an image won’t affect running instances that are already using it, but it will remove
the image locally.

After deletion, if the image was downloaded from a remote server, it will be removed from
local cache and downloaded again on next use. However, if the image was manually created
(not cached), the image will be deleted.

Configure image aliases

Configuring an alias for an image can be useful to make it easier to refer to an image, since
remembering an alias is usually easier than remembering a fingerprint. Most importantly,
however, you can change an alias to point to a different image, which allows creating an alias
that always provides a current image (for example, the latest version of a release).

CLI

API

153 of 954

UI

You can see some of the existing aliases in the image list. To see the full list, enter the fol-
lowing command:

lxc image alias list

You can directly assign an alias to an image when you copy or import (page 156) or publish
(page 159) it. Alternatively, enter the following command:

lxc image alias create <alias_name> <image_fingerprint>

You can also delete an alias:

lxc image alias delete <alias_name>

To rename an alias, enter the following command:

lxc image alias rename <alias_name> <new_alias_name>

If you want to keep the alias name, but point the alias to a different image (for example, a
newer version), you must delete the existing alias and then create a new one.

To retrieve a list of all defined aliases, query the /1.0/images/aliases endpoint:

lxc query --request GET /1.0/images/aliases

To include information about each alias, add recursion=1:

lxc query --request GET /1.0/images/aliases?recursion=1

See GET /1.0/images/aliases and GET /1.0/images/aliases?recursion=1 for more informa-
tion.

You can directly assign an alias to an image when you copy or import (page 156) or publish
(page 159) it. Alternatively, send a POST request to the /1.0/images/aliases endpoint to
create an alias:

lxc query --request POST /1.0/images/aliases --data '{
"name": "<alias_name>",
"target": "<image_fingerprint>"

}'

See POST /1.0/images/aliases for more information.

You can also delete an alias:

lxc query --request DELETE /1.0/images/aliases/<alias_name>

To rename an alias, send a POST request to the alias:

lxc query --request POST /1.0/images/aliases/<alias_name> --data '{
"name": "<new_alias_name>"

}'

154 of 954

If you want to keep the alias name, but point the alias to a different image (for example, a
newer version), send a PATCH request to the alias:

lxc query --request PATCH /1.0/images/aliases/<alias_name> --data '{
"target": "<new_fingerprint>"

}'

See DELETE /1.0/images/aliases/{name}, POST /1.0/images/aliases/{name}, and PATCH /1.
0/images/aliases/{name} for more information.

The UI displays configured aliases in the images list, but it does not currently support config-
uring image aliases.

Export an image to a set of files

Images are located in the image store of your local server or a remote LXD server. You can
export them to a file or a set of files though (see Image tarballs (page 394)). This method can
be useful to back up image files or to transfer them to an air-gapped environment.

CLI

API

UI

To export a container image to a set of files, enter the following command:

lxc image export [<remote>:]<image> [<output_directory_path>]

To export a virtual machine image to a set of files, add the --vm flag:

lxc image export [<remote>:]<image> [<output_directory_path>] --vm

Send a query to the export endpoint of the image to retrieve it:

curl -X GET --unix-socket /var/snap/lxd/common/lxd/unix.socket lxd/1.0/images/
<fingerprint>/export \
--output <output-file>

If the image is a split image (page 395), the output file contains two separate tarballs in mul-
tipart format.

See GET /1.0/images/{fingerprint}/export for more information.

The UI does not currently support exporting images.

See Image format (page 392) for a description of the file structure used for the image.

How to associate profiles with an image

You can associate one ormore profiles with a specific image. Instances that are created from
the imagewill then automatically use the associatedprofiles in theorder theywere specified.

To associate a list of profiles with an image, add the profiles to the image configuration in
the profiles section (see Edit image properties (page 152)).

CLI

155 of 954

API

UI

Use the lxc image edit (page 775) command to edit the profiles section:

profiles:
- default

To update the full image properties, including the profiles section, send a PUT request with
the full image data:

lxc query --request PUT /1.0/images/<fingerprint> --data '<image_configuration>'

See PUT /1.0/images/{fingerprint} for more information.

The UI does not currently support editing the image configuration. Therefore, you cannot
associate profiles with an image through the UI.

Most provided images come with a profile list that includes only the default profile. To pre-
vent any profile (including the default profile) from being associated with an image, pass an
empty list.

Note

Passing an empty list is different than passing nil. If you pass nil as the profile list, only
the default profile is associated with the image.

You can override the associated profiles for an image when creating an instance by adding
the --profile or the --no-profiles flag to the launch or init command (when using the CLI),
or by specifying a list of profiles in the request data (when using the API).

How to import and create images:

How to copy and import images

To add images to an image store, you can either copy them from another server or import
them from files (either local files or files on a web server).

Note

The UI does not currently support copying or importing images.

There is support for importing custom ISO files, but these ISO files are different from
images. When you create an instance from a custom ISO file, the ISO file is mounted as a
storage volume in a new empty VM, and you can then install the VM from the ISO file. See
Content type iso (page 352) and Create a VM that boots from an ISO (page 80) for more
information.

156 of 954

Copy an image from a remote

CLI

API

To copy an image from one server to another, enter the following command:

lxc image copy [<source_remote>:]<image> <target_remote>:

Note

To copy the image to your local image store, specify local: as the target remote.

See lxc image copy --help (page 774) for a list of all available flags. The most relevant ones
are:

--alias
Assign an alias to the copy of the image.

--copy-aliases
Copy the aliases that the source image has.

--auto-update
Keep the copy up-to-date with the original image.

--vm
When copying froman alias, copy the image that can be used to create virtualmachines.

To copy an image from one server to another, export it to your local machine (page 155) and
then import it to the other server (page 157).

Import an image from files

If you have image files that use the required Image format (page 392), you can import them
into your image store.

There are several ways of obtaining such image files:

• Exporting an existing image (see Export an image to a set of files (page 155))

• Building your own image using LXD image builder (see Build an image (page 161))

• Downloading image files from a remote image server (page 391) (note that it is usually
easier to use the remote image (page 148) directly instead of downloading it to a file
and importing it)

Import from the local file system

CLI

API

To import an image from the local file system, use the lxc image import (page 777) command.
This command supports both unified images (page 394) (compressed file or directory) and
split images (page 395) (two files).

To import a unified image from one file or directory, enter the following command:

157 of 954

lxc image import <image_file_or_directory_path> [<target_remote>:]

To import a split image, enter the following command:

lxc image import <metadata_tarball_path> <rootfs_tarball_path> [<target_remote>:]

In both cases, you can assign an alias with the --alias flag. See lxc image import --help
(page 777) for all available flags.

To import an image from the local file system, send a POST request to the /1.0/images end-
point.

For example, to import a unified image from one file:

curl -X POST -H 'Content-Type: application/octet-stream' --unix-socket /var/snap/
lxd/common/lxd/unix.socket lxd/1.0/images \
--data-binary @<image_file_path>

To import a split image from a metadata file and a container rootfs file:

curl -X POST -H 'Content-Type: multipart/form-data' --unix-socket /var/snap/lxd/
common/lxd/unix.socket lxd/1.0/images \
--form metadata=@<metadata_tarball_path> --form rootfs=@<rootfs_tarball_path>

To import a split image from a metadata file and a VM rootfs.img file:

curl -X POST -H 'Content-Type: multipart/form-data' --unix-socket /var/snap/lxd/
common/lxd/unix.socket lxd/1.0/images \
--form metadata=@<metadata_tarball_path> --form rootfs.img=@<rootfs_tarball_path>

Note

For a split image, you must send the metadata tarball first and the rootfs image after.

See POST /1.0/images for more information.

Import from a file on a remote web server

You can import image files from a remoteweb server by URL. Thismethod is an alternative to
running a LXD server for the sole purpose of distributing an image to users. It only requires
a basic web server with support for custom headers (see Custom HTTP headers (page 159)).

The image files must be provided as unified images (see Unified tarball (page 394)).

CLI

API

To import an image file from a remote web server, enter the following command:

lxc image import <URL>

You can assign an alias to the local image with the --alias flag.

158 of 954

To import an image file from a remote web server, send a POST request with the image URL
to the /1.0/images endpoint:

lxc query --request POST /1.0/images --data '{
"source": {

"type": "url",
"url": "<URL>"

}
}'

See POST /1.0/images for more information.

Custom HTTP headers

LXD requires the following custom HTTP headers to be set by the web server:

LXD-Image-Hash
The SHA256 of the image that is being downloaded.

LXD-Image-URL
The URL from which to download the image.

LXD sets the following headers when querying the server:

LXD-Server-Architectures
A comma-separated list of architectures that the client supports.

LXD-Server-Version
The version of LXD in use.

How to create images

If you want to create and share your own images, you can do this either based on an existing
instance or snapshot or by building your own image from scratch.

Publish an image from an instance or snapshot

If you want to be able to use an instance or an instance snapshot as the base for new in-
stances, you should create and publish an image from it.

When publishing an image from an instance, make sure that the instance is stopped.

CLI

API

UI

To publish an image from an instance, enter the following command:

lxc publish <instance_name> [<remote>:]

To publish an image from a snapshot, enter the following command:

lxc publish <instance_name>/<snapshot_name> [<remote>:]

159 of 954

In both cases, you can specify an alias for the new image with the --alias flag, set an expira-
tion datewith --expire andmake the image publicly availablewith --public. If an imagewith
the same name already exists, add the --reuse flag to overwrite it. See lxc publish --help
(page 869) for a full list of available flags.

To publish an image from an instance or a snapshot, send a POST request with the suitable
source type to the /1.0/images endpoint.

To publish an image from an instance:

lxc query --request POST /1.0/images --data '{
"source": {

"name": "<instance_name>",
"type": "instance"

}
}'

To publish an image from a snapshot:

lxc query --request POST /1.0/images --data '{
"source": {

"name": "<instance_name>/<snapshot_name>",
"type": "snapshot"

}
}'

In both cases, you can include additional configuration (for example, you can include aliases,
set a custom expiration date, or make the image publicly available). For example:

lxc query --request POST /1.0/images --data '{
"aliases": [{ "name": "<alias>" }],
"expires_at": "2025-03-23T20:00:00-04:00",
"public": true,
"source": {

"name": "<instance_name>",
"type": "instance"

}
}'

See POST /1.0/images for more information.

The UI does not currently support publishing an image from an instance, but you can publish
from a snapshot.

To do so, go to the instance detail page and switch to the Snapshots tab. Then click the Create
image button () and optionally enter an alias for the new image. You can also choosewhether
the image should be publicly available.

Publishing the image might take a few minutes. You can check the status under Operations.

The publishing process can take quite awhile because it generates a tarball from the instance
or snapshot and then compresses it. As this can be particularly I/O and CPU intensive, publish
operations are serialized by LXD.

160 of 954

Prepare the instance for publishing

Before you publish an image from an instance, clean up all data that should not be included
in the image. Usually, this includes the following data:

• Instance metadata (use lxc config metadata (page 745) or PATCH /1.0/instances/
{name}/metadata/PUT /1.0/instances/{name}/metadata to edit)

• File templates (use lxc config template (page 748) or POST /1.0/instances/{name}/
metadata/templates to edit)

• Instance-specific data inside the instance itself (for example, host SSH keys and dbus/
systemd machine-id)

Build an image

For building your own images, you can use LXD image builder97.

See the LXD image builder documentation98 for instructions for installing and using the tool.

Repack a Windows image

You can runWindowsVMs in LXD. Todo so, youmust repack theWindows ISOwith LXD image
builder.

See the LXD image builder tutorial99 for instructions, or How to install a Windows 11 VM
using LXD100 for a full walk-through.

Related topics

Explanation:

• Local and remote images (page 348)

Reference:

• Image format (page 392)

• Remote image servers (page 391)

2.2.3. Projects
The following how-to guides cover common operations related to projects:

How to create and configure projects

You can configure projects at creation time or later. However, note that it is not possible to
modify the features that are enabled for a project when the project contains instances.

Create a project

CLI

API
97 https://github.com/canonical/lxd-imagebuilder
98 https://canonical-lxd-imagebuilder.readthedocs-hosted.com/en/latest/
99 https://canonical-lxd-imagebuilder.readthedocs-hosted.com/en/latest/tutorials/use/

100 https://ubuntu.com/tutorials/how-to-install-a-windows-11-vm-using-lxd

161 of 954

https://github.com/canonical/lxd-imagebuilder
https://canonical-lxd-imagebuilder.readthedocs-hosted.com/en/latest/
https://canonical-lxd-imagebuilder.readthedocs-hosted.com/en/latest/tutorials/use/
https://ubuntu.com/tutorials/how-to-install-a-windows-11-vm-using-lxd
https://ubuntu.com/tutorials/how-to-install-a-windows-11-vm-using-lxd

UI

To create a project, use the lxc project create (page 862) command.

You can specify configuration options by using the --config flag. See Project configuration
(page 509) for the available configuration options.

For example, to create a project called my-project that isolates instances, but allows access
to the default project’s images and profiles, enter the following command:

lxc project create my-project --config features.images=false --config features.
profiles=false

To create a project called my-restricted-project that blocks access to security-sensitive fea-
tures (for example, container nesting) but allows snapshots, enter the following command:

lxc project create my-restricted-project --config restricted=true --config
restricted.snapshots=allow

To create a project, send a POST request to the /1.0/projects endpoint.

You can specify configuration options under the "config" field. See Project configuration
(page 509) for the available configuration options.

For example, to create a project called my-project that isolates instances, but allows access
to the default project’s images and profiles, send the following request:

lxc query --request POST /1.0/projects --data '{
"config": {

"features.images": "false",
"features.profiles": "false"

},
"name": "my-project"

}'

To create a project called my-restricted-project that blocks access to security-sensitive fea-
tures (for example, container nesting) but allows snapshots, send the following request:

lxc query --request POST /1.0/projects --data '{
"config": {

"restricted": "true",
"restricted.snapshots": "allow"

},
"name": "my-restricted-project"

}'

See POST /1.0/projects for more information.

To create a project, expand the Project drop-down and select + Create project at the bottom.

Enter a name and optionally a description for the new project. You can create the project
using the default set of features or select Customised to add or remove specific features.
See Project features (page 509) for more information about the available features.

For example, to create a project called my-project that isolates instances, but allows access
to the default project’s images and profiles:

162 of 954

To configure resource limits for the project, select Resource limits.

To restrict a project from accessing security-sensitive features, check Allow custom restric-
tions on a project level. You can then configure the restrictions under Restrictions. See Project
restrictions (page 513) for more information.

For example, to create a project called my-restricted-project that blocks access to security-
sensitive features (for example, container nesting) but allows snapshots:

1. Check Allow custom restrictions on a project level:

2. Configure the restrictions:

163 of 954

Tip

When you create a project with the default options, features.profiles (page 510) is set
to true, which means that profiles are isolated in the project.

Consequently, the new project does not have access to the default profile of the default
project and therefore misses required configuration for creating instances (like the root
disk). To fix this, add a root disk device to the project’s default profile (see Set specific
options for a profile (page 98) for instructions).

Configure a project

To configure a project, you can either set a specific configuration option or edit the full
project.

Some configuration options can only be set for projects that do not contain any instances.

Set specific configuration options

CLI

API

UI

To set a specific configuration option, use the lxc project set (page 866) command.

For example, to limit thenumberof containers that canbe created in my-project tofive, enter
the following command:

lxc project set my-project limits.containers=5

To unset a specific configuration option, use the lxc project unset (page 868) command.

164 of 954

Note

If you unset a configuration option, it is set to its default value. This default value might
differ from the initial value that is set when the project is created.

To set a specific configuration option, send a PATCH request to the project.

For example, to limit the number of containers that can be created in my-project to five, send
the following request:

lxc query --request PATCH /1.0/projects/my-project --data '{
"config": {

"limits.containers": "5"
}

}'

See PATCH /1.0/projects/{name} for more information.

To update the project configuration, select the respective project from the Project drop-
down. Then go to Configuration and click Edit configuration to set or unset any configuration
options.

Edit the project

CLI

API

UI

To edit the full project configuration, use the lxc project edit (page 863) command. For
example:

lxc project edit my-project

To update the entire project configuration, send a PUT request to the project. For example:

lxc query --request PUT /1.0/projects/my-project --data '{
"config": { ... },
"description": "<description>"

}'

See PUT /1.0/projects/{name} for more information.

TheUI does not currently support editing the full YAML configuration for a project. However,
you can update several or all configuration options at the same time through the UI.

How to work with different projects

If you havemore projects than just the default project, youmustmake sure to use or address
the correct project when working with LXD.

165 of 954

Note

If youhaveprojects that are confined to specific users (page369), only userswith full access
to LXD can see all projects.

Users without full access can only see information for the projects to which they have
access.

List projects

CLI

API

UI

To list all projects (that you have permission to see), enter the following command:

lxc project list

By default, the output is presented as a list:

~$ lxc project list
+----------------------+--------+----------+-----------------+-----------------+----------+---------------+---------------------+---------+|
NAME | IMAGES | PROFILES | STOR-
AGE VOLUMES | STORAGE BUCKETS | NETWORKS | NETWORK ZONES | DESCRIPTION | USED BY
|+----------------------+--------+----------+-----------------+-----------------+----------+---------------+---------------------+---------+|
default | YES | YES | YES | YES | YES | YES | Default LXD project | 19
|+----------------------+--------+----------+-----------------+-----------------+----------+---------------+---------------------+---------+|
my-project (current) | YES | NO | NO | NO | YES | YES | | 0
|+----------------------+--------+----------+-----------------+-----------------+----------+---------------+---------------------+---------+

You can request a different output format by adding the --formatflag. See lxc project list
--help (page 865) for more information.

To list all projects (that you have permission to see), send the following request:

lxc query --request GET /1.0/projects

To display information about each project, use Recursion (page 621):

lxc query --request GET /1.0/projects?recursion=1

See GET /1.0/projects and GET /1.0/projects?recursion=1 for more information.

To list all projects (that you have permission to see), expand the Project drop-down.

Switch projects

CLI

API

UI

166 of 954

By default, all commands that you issue in LXD affect the project that you are currently using.
To see which project you are in, use the lxc project list (page 865) command.

To switch to a different project, enter the following command:

lxc project switch <project_name>

The API does not have the concept of switching projects. All requests target the default
project unless a different project is specified (see Target a project (page 167)).

To switch to another project, select a different project from the Project drop-down.

Target a project

When using the CLI or the API, you can target a specific project when running a command.
Many LXD commands support the --project flag or the project parameter to run an action
in a different project.

Note

You can target only projects that you have permission for.

An example for targeting another project instead of switching to it is listing the instances in
a specific project:

CLI

API

UI

To list the instances in a specific project, add the --project flag to the lxc list (page 785)
command. For example:

lxc list --project my-project

To list the instances in a specific project, add the project parameter to the request. For ex-
ample:

lxc query --request GET /1.0/instances?project=my-project

Or with Recursion (page 621):

lxc query --request GET /1.0/instances?recursion=2\&project=my-project

The UI does not currently support targeting another project. Instead, switch to the other
project (page 166).

Move an instance to another project

CLI

API

UI

167 of 954

To move an instance from one project to another, enter the following command:

lxc move <instance_name> <new_instance_name> --project <source_project> --target-
project <target_project>

You can keep the same instance name if no instance with that name exists in the target
project.

For example, to move the instance my-instance from the default project to my-project and
keep the instance name, enter the following command:

lxc move my-instance my-instance --project default --target-project my-project

To move an instance from one project to another, send a POST request to the instance:

lxc query --request POST /1.0/instances/<instance_name>?project=<source_project> -
-data '{
"name": "<new_instance_name>",
"project": "<target_project>",
"migration": true

}'

If no instance with that name exists in the target project, you can leave out the name for the
new instance to keep the existing name.

For example, to move the instance my-instance from the default project to my-project and
keep the instance name, enter the following command:

lxc query --request POST /1.0/instances/my-instance?project=default --data '{
"project": "my-project",
"migration": true

}'

Depending on your projects, you might need to change other configuration options when
moving the instance. For example, you might need to change the root disk device if one of
the projects uses isolated storage volumes.

See POST /1.0/instances/{name} for more information.

The UI does not currently support moving instances between projects.

Copy a profile to another project

If you create a projectwith the default settings, profiles are isolated in the project (features.
profiles (page 510) is set to true). Therefore, the project does not have access to the default
profile (which is part of the default project), and youwill see an error similar to the following
when trying to create an instance:

Error: Failed instance creation: Failed creating instance record: Failed
initialising instance: Failed getting root disk: No root device could be found

To fix this, you can copy the contents of the default project’s default profile into the current
project’s default profile. To do so:

CLI

168 of 954

API

UI

Enter the following command:

lxc profile show default --project default | lxc profile edit default

Send the following request, replacing <project>with the new project that has an empty de-
fault profile:

lxc query --request PUT /1.0/profiles/default?projects=<project> --data \
"$(lxc query --request GET /1.0/profiles/default)"

1. Select the default project from the Project drop-down.

2. Go to Profiles and select the default profile.

3. In the profile view, switch to the Configuration tab.

4. Select YAML configuration and copy the YAML representation of the profile.

5. Select the project with the empty default profile from the Project drop-down.

6. Go to Profiles and select the empty default profile for the project.

7. In the profile view, switch to the Configuration tab.

8. Select YAML configuration and click Edit profile.

9. Paste the YAML representation that you copied and save the changes.

How to confine users to specific projects

You restrict users or clients to specific projects. Projects can be configured with features,
limits, and restrictions to prevent misuse. See Instances grouping with projects (page 368) for
more information.

How to confine users to specific projects depends onwhether LXD is accessible via theHTTPS
API (page 169), or via the Unix socket (page 175).

Confine users to specific projects on the HTTPS API

You can confine access to specific projects by restricting the TLS client certificate that is used
to connect to the LXD server. See Restricted TLS certificates (page 364) formore information.
Only certificates returned by lxc config trust list can be managed in this way.

Note

The UI does not currently support configuring project confinement for certificates of this
type. Use the CLI or API to set up confinement.

You can also confine access to specific projects via group membership and Fine-grained au-
thorization (page 364). The permissions of OIDC clients and fine-grained TLS identities must
be managed with lxc auth subcommands and the /1.0/auth API.

To create a TLS client and restrict the client to a single project, follow these instructions:

169 of 954

CLI

API

Create a restricted trust store entry with access to a project

If you’re using token authentication:

lxc config trust add --projects <project_name> --restricted

To add the client certificate directly:

lxc config trust add <certificate_file> --projects <project_name> --restricted

The client can thenadd the server as a remote in theusualway (lxc remote add <server_name>
<token> (page 872) or lxc remote add <server_name> <server_address> (page 872)) and can
only access the project or projects that have been specified.

Note

You can specify the --project flag when adding a remote. This configuration pre-selects
the specified project. However, it does not confine the client to this project.

Create a fine-grained TLS identity with access to a project

First create a group and grant the group the operator entitlement on the project.

lxc auth group create <group_name>
lxc auth group permission add <group_name> project <project_name> operator

The operator entitlement grants members of the group permission to create and edit re-
sources belonging to that project, but does not grant permission to delete the project or
edit its configuration. See Fine-grained authorization (page 364) for more details.

Next create a TLS identity and add the identity to the group:

lxc auth identity create tls/<client_name> [<certificate_file>] --group <group_
name>

If <certificate_file> is provided the identity will be created directly. Otherwise, a token
will be returned that the client can use to add the LXD server as a remote:

Client machine
lxc remote add <remote_name> <token>

The client will be prompted with a list of projects to use as their default project. Only the
configured project will be presented to the client.

Create a restricted trust store entry with access to a project

If you’re using token authentication, create the token first:

170 of 954

lxc query --request POST /1.0/certificates --data '{
"name": "<client_name>",
"projects": ["<project_name>"]
"restricted": true,
"token": true,
"type": "client"

}'

See POST /1.0/certificates for more information.

The return value of this query contains an operation that has the information that is required
to generate the trust token:

{
"class": "token",
...
"metadata": {

"addresses": [
"<server_address>"

],
"fingerprint": "<fingerprint>",
...
"secret": "<secret>"

},
...
}

Use this information to generate the trust token:

echo -n '{"client_name":"<client_name>","fingerprint":"<fingerprint>",'\
'"addresses":["<server_address>"],'\
'"secret":"<secret>","expires_at":"0001-01-01T00:00:00Z"}' | base64 -w0

To instead add the client certificate directly, send the following request:

lxc query --request POST /1.0/certificates --data '{
"certificate": "<certificate>",
"name": "<client_name>",
"projects": ["<project_name>"]
"restricted": true,
"token": false,
"type": "client"

}'

The client can then authenticate using this trust tokenor client certificate and canonly access
the project or projects that have been specified.

On the client, generate a certificate to use for the connection:

openssl req -x509 -newkey rsa:2048 -keyout "<keyfile_name>" -nodes \
-out "<crtfile_name>" -subj "/CN=<client_name>"

Then send a POST request to the /1.0/certificates?public endpoint to authenticate:

171 of 954

curl -k -s --key "<keyfile_name>" --cert "<crtfile_name>" \
-X POST https://<server_address>/1.0/certificates \
--data '{ "trust_token": "<trust_token>" }'

See POST /1.0/certificates?public for more information.

Create a fine-grained TLS identity with access to a project

First create a group and grant the group the operator entitlement on the project.

lxc query --request POST /1.0/auth/groups --data '{
"name": "<group_name>",

}'

lxc query --request PUT /1.0/auth/groups/<group_name> --data '{
"permissions": [

{
"entity_type": "project",
"url": "/1.0/projects/<project_name>",
"entitlement": "operator"

}
]

}'

The operator entitlement grants members of the group permission to create and edit re-
sources belonging to that project, but does not grant permission to delete the project or
edit its configuration. See Fine-grained authorization (page 364) for more details.

Next create a TLS identity and add the identity to the group:

lxc query --request POST /1.0/auth/identities/tls --data '{
"name": "<client_name>",
"groups": ["<group_name>"],
"token": true

}'

See POST /1.0/auth/identities/tls for more information.

The return value of this query contains the information that is required to generate the trust
token:

{
"client_name": "<client_name>",
"addresses": [

"<server_address>"
],
"expires_at": "<expiry_date>"
"fingerprint": "<fingerprint>",
"type": "<type>",
"secret": "<secret>"

}

Use this information to generate the trust token:

172 of 954

echo -n '{"client_name":"<client_name>","fingerprint":"<fingerprint>",'\
'"addresses":["<server_address>"],'\
'"secret":"<secret>","expires_at":"0001-01-01T00:00:00Z","type":"<type>"}' |

base64 -w0

To instead add the client certificate directly, send the following request:

lxc query --request POST /1.0/certificates --data '{
"certificate": "<base64 encoded x509 certificate>",
"name": "<client_name>",
"groups": ["<group_name>"]

}'

If the certificate was added directly, the client is now authenticated with LXD. If a token was
used, the client must use it to add their certificate.

On the client, generate a certificate to use for the connection:

openssl req -x509 -newkey rsa:2048 -keyout "<keyfile_name>" -nodes \
-out "<crtfile_name>" -subj "/CN=<client_name>"

Send a POST request to the /1.0/auth/identities/tls?public endpoint to authenticate:

curl --insecure --key "<keyfile_name>" --cert "<crtfile_name>" \
-X POST https://<server_address>/1.0/auth/identities/tls \
--data '{ "trust_token": "<trust_token>" }'

See POST /1.0/auth/identities/tls?public for more information.

To confine access for an existing certificate:

CLI

API

Trust store entry

Use the following command:

lxc config trust edit <fingerprint>

Make sure that restricted is set to true and specify the projects that the certificate should
give access to under projects.

Fine-grained TLS or OIDC identity

Create a group with the operator entitlement on the project:

lxc auth group create <group_name>
lxc auth group permission add <group_name> project <project_name> operator

Then add the group to the identity. For TLS identities run:

lxc auth identity group add tls/<client_name> <group_name>

The <client_name>must be unique. If it is not, the certificate fingerprint of the client can be
used.

173 of 954

For OIDC identities, run:

lxc auth identity group add oidc/<client_name> <group_name>

The <client_name>must be unique. If it is not, the email address of the client can be used.

Trust store entry

Send the following request:

lxc query --request PATCH /1.0/certificates/<fingerprint> --data '{
"projects": ["<project_name>"],
"restricted": true

}'

Make sure that restricted is set to true and specify the projects that the certificate should
give access to under projects.

Fine-grained TLS or OIDC identity

Create a group with the operator entitlement on the project:

lxc query --request POST /1.0/auth/groups --data '{
"name": "<group_name>",

}'

lxc query --request PUT /1.0/auth/groups/<group_name> --data '{
"permissions": [

{
"entity_type": "project",
"url": "/1.0/projects/<project_name>",
"entitlement": "operator"

}
]

}'

Then add the group to the identity. For TLS identities run:

lxc query --request PATCH /1.0/auth/identities/tls/<client_name> --data '{
"groups": ["<group_name>"]

}'

The <client_name>must be unique. If it is not, the certificate fingerprint of the client can be
used.

For OIDC identities, run:

lxc query --request PATCH /1.0/auth/identities/oidc/<client_name> --data '{
"groups": ["<group_name>"]

}'

The <client_name>must be unique. If it is not, the email address of the client can be used.

174 of 954

Confine users to specific LXD projects via Unix socket

If you use the LXD snap101, you can configure the multi-user LXD daemon contained in the
snap to dynamically create projects for all users in a specific user group.

To do so, set the daemon.user.group configuration option to the corresponding user group:

sudo snap set lxd daemon.user.group=<user_group>

Make sure that all user accounts that you want to be able to use LXD are a member of this
group.

Once a member of the group issues a LXD command, LXD creates a confined project for this
user and switches to this project. If LXD has not been initialized (page 35) at this point, it is
automatically initialized (with the default settings).

If you want to customize the project settings, for example, to impose limits or restrictions,
you can do so after the project has been created. To modify the project configuration, you
must have full access to LXD, which means you must be part of the lxd group and not only
the group that you configured as the LXD user group.

Related topics

Explanation:

• Instances grouping with projects (page 368)

Reference:

• Project configuration (page 509)

2.2.4. Storage
The following how-to guides cover common operations related to storage.

How to create, manage, and use storage:

How to manage storage pools

See the following sections for instructions on how to create, configure, view and resize Stor-
age pools (page 350).

Create a storage pool

LXD creates a storage pool during initialization. You can add more storage pools later, using
the same driver or different drivers.

CLI

UI

To create a storage pool, use the following command:

lxc storage create <pool_name> <driver> [configuration_options...]

See the Storage drivers (page 521) documentation for a list of available configuration options
for each driver.
101 https://snapcraft.io/lxd

175 of 954

https://snapcraft.io/lxd

To create a storage pool, select Pools from the Storage section of the main navigation.

On the resulting screen, click Create pool in the upper right corner.

From this screen, you can configure the name and description of your storage pool. You can
select a storage driver from theDriver dropdown. Additional settingsmight appear, depend-
ing on the storage driver selected.

Click Create to create the storage pool.

By default, LXD sets up loop-based storage with a sensible default size/quota: 20% of the
free disk space, with a minimum of 5 GiB and a maximum of 30 GiB.

Examples

CLI

UI

The following examples demonstrate how to create a storage pool using different types of
storage drivers.

Create a directory pool

Create a directory pool named pool1:

lxc storage create pool1 dir

Use the existing directory /data/lxd for pool2:

lxc storage create pool2 dir source=/data/lxd

176 of 954

Create a Btrfs pool

Create a loop-backed pool named pool1:

lxc storage create pool1 btrfs

Use the existing Btrfs file system at /some/path for pool2:

lxc storage create pool2 btrfs source=/some/path

Create a pool named pool3 on /dev/sdX:

lxc storage create pool3 btrfs source=/dev/sdX

Create an LVM pool

Create a loop-backed pool named pool1 (the LVM volume group will also be called pool1):

lxc storage create pool1 lvm

Use the existing LVM volume group called my-pool for pool2:

lxc storage create pool2 lvm source=my-pool

Use the existing LVM thin pool called my-pool in volume group my-vg for pool3:

lxc storage create pool3 lvm source=my-vg lvm.thinpool_name=my-pool

Create a pool named pool4 on /dev/sdX (the LVM volume group will also be called pool4):

lxc storage create pool4 lvm source=/dev/sdX

Create a pool named pool5 on /dev/sdXwith the LVM volume group name my-pool:

lxc storage create pool5 lvm source=/dev/sdX lvm.vg_name=my-pool

Create a ZFS pool

Create a loop-backed pool named pool1 (the ZFS zpool will also be called pool1):

lxc storage create pool1 zfs

Create a loop-backed pool named pool2with the ZFS zpool name my-tank:

lxc storage create pool2 zfs zfs.pool_name=my-tank

Use the existing ZFS zpool my-tank for pool3:

lxc storage create pool3 zfs source=my-tank

Use the existing ZFS dataset my-tank/slice for pool4:

lxc storage create pool4 zfs source=my-tank/slice

Use the existing ZFS dataset my-tank/zvol for pool5 and configure it to use ZFS block mode:

177 of 954

lxc storage create pool5 zfs source=my-tank/zvol volume.zfs.block_mode=yes

Create a pool named pool6 on /dev/sdX (the ZFS zpool will also be called pool6):

lxc storage create pool6 zfs source=/dev/sdX

Create a pool named pool7 on /dev/sdXwith the ZFS zpool name my-tank:

lxc storage create pool7 zfs source=/dev/sdX zfs.pool_name=my-tank

Create a Ceph RBD pool

Create an OSD storage pool named pool1 in the default Ceph cluster (named ceph):

lxc storage create pool1 ceph

Create an OSD storage pool named pool2 in the Ceph cluster my-cluster:

lxc storage create pool2 ceph ceph.cluster_name=my-cluster

Create an OSD storage pool named pool3 with the on-disk name my-osd in the default Ceph
cluster:

lxc storage create pool3 ceph ceph.osd.pool_name=my-osd

Use the existing OSD storage pool my-already-existing-osd for pool4:

lxc storage create pool4 ceph source=my-already-existing-osd

Use the existing OSD erasure-coded pool ecpool and the OSD replicated pool rpl-pool for
pool5:

lxc storage create pool5 ceph source=rpl-pool ceph.osd.data_pool_name=ecpool

Create a CephFS pool

Note

Each CephFS file system consists of two OSD storage pools, one for the actual data and
one for the file metadata.

Use the existing CephFS file system my-filesystem for pool1:

lxc storage create pool1 cephfs source=my-filesystem

Use the sub-directory my-directory from the my-filesystem file system for pool2:

lxc storage create pool2 cephfs source=my-filesystem/my-directory

Create a CephFS file system my-filesystem with a data pool called my-data and a metadata
pool called my-metadata for pool3:

178 of 954

lxc storage create pool3 cephfs source=my-filesystem cephfs.create_missing=true
cephfs.data_pool=my-data cephfs.meta_pool=my-metadata

Create a Ceph Object pool

Note

When using the Ceph Object driver, you must have a running Ceph Object Gateway ra-
dosgw102 URL available beforehand.

Use the existing Ceph Object Gateway https://www.example.com/radosgw to create pool1:

lxc storage create pool1 cephobject cephobject.radosgw.endpoint=https://www.
example.com/radosgw

Create a Dell PowerFlex pool

Create a storage pool named pool1 using the PowerFlex pool sp1 in the protection domain
pd1:

lxc storage create pool1 powerflex powerflex.pool=sp1 powerflex.domain=pd1
powerflex.gateway=https://powerflex powerflex.user.name=lxd powerflex.user.
password=foo

Create a storage pool named pool2 using the ID of PowerFlex pool sp1:

lxc storage create pool2 powerflex powerflex.pool=<ID of sp1> powerflex.
gateway=https://powerflex powerflex.user.name=lxd powerflex.user.password=foo

Create a storage pool named pool3 that uses PowerFlex volume snapshots (see Limitations
(page 542)) when creating volume copies:

lxc storage create pool3 powerflex powerflex.clone_copy=false powerflex.pool=<id
of sp1> powerflex.gateway=https://powerflex powerflex.user.name=lxd powerflex.
user.password=foo

Create a storage pool named pool4 that uses a PowerFlex gateway with a certificate that is
not trusted:

lxc storage create pool4 powerflex powerflex.gateway.verify=false powerflex.pool=
<id of sp1> powerflex.gateway=https://powerflex powerflex.user.name=lxd powerflex.
user.password=foo

Create a storage pool named pool5 that explicitly uses the PowerFlex SDC:

lxc storage create pool5 powerflex powerflex.mode=sdc powerflex.pool=<id of sp1>
powerflex.gateway=https://powerflex powerflex.user.name=lxd powerflex.user.
password=foo

102 https://docs.ceph.com/en/latest/radosgw/

179 of 954

https://docs.ceph.com/en/latest/radosgw/
https://docs.ceph.com/en/latest/radosgw/

Create a Pure Storage pool

Create a storage pool named pool1 that uses NVMe/TCP by default:

lxc storage create pool1 pure pure.gateway=https://<pure-storage-address> pure.
api.token=<pure-storage-api-token>

Create a storage pool named pool2 that uses a Pure Storage gateway with a certificate that
is not trusted:

lxc storage create pool2 pure pure.gateway=https://<pure-storage-address> pure.
gateway.verify=false pure.api.token=<pure-storage-api-token>

Create a storage pool named pool3 that uses iSCSI to connect to Pure Storage array:

lxc storage create pool3 pure pure.gateway=https://<pure-storage-address> pure.
api.token=<pure-storage-api-token> pure.mode=iscsi

Create a storage pool named pool4 that uses NVMe/TCP to connect to Pure Storage array via
specific target addresses:

lxc storage create pool4 pure pure.gateway=https://<pure-storage-address> pure.
api.token=<pure-storage-api-token> pure.mode=nvme pure.target=<target_address_1>,
<target_address_2>

You can select a storage driver from the Driver dropdown.

Some storage drivers offer additional settings. Click the driver name in the secondary menu
to further configure the storage pool.

See the Storage drivers (page 521) documentation for a list of available configuration options
for each driver.

180 of 954

Create a storage pool in a cluster

If you are running a LXD cluster and want to add a storage pool, you must create the storage
pool for each cluster member separately. The reason for this is that the configuration, for
example, the storage location or the size of the pool, might be different between cluster
members.

CLI

UI

To create a storage pool via the CLI, start by creating a pending storage pool on eachmember
with the --target=<cluster_member>flag and the appropriate configuration for themember.

Make sure to use the same storage pool name for all members. Then create the storage pool
without specifying the --target flag to actually set it up.

Also see How to configure storage for a cluster (page 290).

Note

For most storage drivers, the storage pools exist locally on each cluster member. That
means that if you create a storage volume in a storage pool on one member, it will not be
available on other cluster members.

This behavior is different for Ceph-based storage pools (ceph, cephfs and cephobject)
where each storage pool exists in one central location and therefore, all cluster members
access the same storage pool with the same storage volumes.

Examples

See the following examples for different storage drivers for instructions on how to create
local or remote storage pools in a cluster.

Create a local storage pool

Create a storage pool named my-pool using the ZFS driver at different locations and with
different sizes on three cluster members:

~$ lxc storage create my-pool zfs source=/dev/sdX size=10GiB --target=vm01
Storage pool my-pool pending on member vm01 ~$ lxc storage create my-pool zfs
source=/dev/sdX size=15GiB --target=vm02 Storage pool my-pool pending on
member vm02 ~$ lxc storage create my-pool zfs source=/dev/sdY size=10GiB
--target=vm03 Storage pool my-pool pending on member vm03 ~$ lxc storage
create my-pool zfs Storage pool my-pool created

Create a remote storage pool

Create a storagepool named my-remote-poolusing theCephRBDdriver and theon-disk name
my-osd on three cluster members. Because the ceph.osd.pool_name (page 536) configuration
setting isn’t member-specific, it must be set when creating the actual storage pool:

181 of 954

~$ lxc storage create my-remote-pool ceph --target=vm01 Storage pool
my-remote-pool pending on member vm01 ~$ lxc storage create my-remote-pool
ceph --target=vm02 Storage pool my-remote-pool pending on member vm02 ~$ lxc
storage create my-remote-pool ceph --target=vm03 Storage pool my-remote-pool
pending on member vm03 ~$ lxc storage create my-remote-pool ceph
ceph.osd.pool_name=my-osd Storage pool my-remote-pool created

Create a second storage pool named my-remote-pool2 using the Dell PowerFlex driver in SDC
mode and the pool sp1 in protection domain pd1:

~$ lxc storage create my-remote-pool2 powerflex --target=vm01 Storage pool
my-remote-pool2 pending on member vm01 ~$ lxc storage create my-remote-pool2
powerflex --target=vm02 Storage pool my-remote-pool2 pending on member vm02 ~$
lxc storage create my-remote-pool2 powerflex --target=vm03 Storage pool
my-remote-pool2 pending on member vm03 ~$ lxc storage create my-remote-pool2
powerflex powerflex.mode=sdc powerflex.pool=sp1 powerflex.domain=pd1
powerflex.gateway=https://powerflex powerflex.user.name=lxd
powerflex.user.password=foo Storage pool my-remote-pool2 created

Create a third storage pool named my-remote-pool3 using the Pure Storage driver:

~$ lxc storage create my-remote-pool3 pure --target=vm01 Storage pool
my-remote-pool3 pending on member vm01 ~$ lxc storage create my-remote-pool3
pure --target=vm02 Storage pool my-remote-pool3 pending on member vm02 ~$ lxc
storage create my-remote-pool3 pure --target=vm03 Storage pool
my-remote-pool3 pending on member vm03 ~$ lxc storage create my-remote-pool3
pure pure.gateway=https://<pure-storage-address>
pure.api.token=<pure-storage-api-token> Storage pool my-remote-pool3 created

To create a storage pool in a cluster, select Pools from the Storage section of the main navi-
gation, then click Create pool in the upper right corner.

On the resulting page, configure the storage pool’s name and description. Depending on the
selected driver, some settings can be configured per cluster member or applied globally to
the cluster.

Finally, click Create to create the storage pool.

Configure storage pool settings

See the Storage drivers (page 521) documentation for the available configuration options for
each storage driver.

General keys for a storage pool (like source) are top-level. Driver-specific keys are names-
paced by the driver name.

CLI

UI

Use the following command to set configuration options for a storage pool:

lxc storage set <pool_name> <key> <value>

182 of 954

For example, to turn off compression during storage pool migration for a dir storage pool,
use the following command:

lxc storage set my-dir-pool rsync.compression false

You can also edit the storage pool configuration by using the following command:

lxc storage edit <pool_name>

To configure a storage pool, select Pools from the Storage section of the Main navigation.

The resulting screen shows a list of existing storage pools. Click a pool’s name to access its
details.

Go to the Configuration tab. Here, you can configure settings such as the storage pool de-
scription.

After making changes, click the Save changes button. This button also displays the number
of changes you have made.

View storage pools

You can display a list of all available storage pools and check their configuration.

CLI

UI

183 of 954

Use the following command to list all available storage pools:

lxc storage list

The resulting table contains the storage pool that you created during initialization (usually
called default or local) and any storage pools that you added.

To show detailed information about a specific pool, use the following command:

lxc storage show <pool_name>

To see usage information for a specific pool, run the following command:

lxc storage info <pool_name>

To view available storage pools in the UI, select Pools from the Storage section of the main
navigation.

Resize a storage pool

If you need more storage, you can increase the size (quota) of your storage pool. You can
only grow the pool (increase its size), not shrink it.

CLI

UI

In the CLI, resize a storage pool by changing the size configuration key:

lxc storage set <pool_name> size=<new_size>

This will only work for loop-backed storage pools that are managed by LXD.

To resize a storage pool in the UI, select Pools from the Storage section of the main naviga-
tion.

Click the name of a storage pool to open its details page, then go to its Configuration tab.
Edit the Size field.

After making changes, click the Save changes button. This button also displays the number
of changes you have made.

In clustered environments, the Size field appears as a per-member selector, allowing you to
configure the size for each cluster member.

184 of 954

How to manage storage volumes

See the following sections for instructions on how to create, configure, view and resize Stor-
age volumes (page 352).

View storage volumes

You can display a list of all available storage volumes and check their configuration.

CLI

UI

To list all available storage volumes, use the following command:

lxc storage volume list

To display the storage volumes for all projects (not only the default project), add the
--all-projects flag.

You can also display the storage volumes in a specific storage pool:

lxc storage volume list my-pool

The resulting table contains, among other information, the storage volume type (page 352)
and the content type (page 352) for each storage volume.

Note

Custom storage volumes can use the same name as instance volumes. For example, you
might have a container named c1 with a container storage volume named c1 and a cus-
tom storage volume named c1. Therefore, to distinguish between instance storage vol-
umes and custom storage volumes, all instance storage volumes must be referred to as
<volume_type>/<volume_name> (for example, container/c1 or virtual-machine/vm) in com-
mands.

To show detailed configuration information about a specific volume, use the following com-
mand:

lxc storage volume show my-pool custom/my-volume

To show state information about a specific volume, use the following command:

lxc storage volume info my-pool virtual-machine/my-vm

In both commands, the default storage volume type (page 352) is custom, so you can leave out
the custom/when displaying information about a custom storage volume.

From the main navigation, select Storage > Volumes. The resulting page displays a table of
available volumes. You can sort volumes by their pool by clicking the Pool column header of
the table.

185 of 954

Create a custom storage volume

When you create an instance, LXD automatically creates a storage volume that is used as the
root disk for the instance.

You can add custom storage volumes to your instances. Such custom storage volumes are
independent of the instance, which means that they can be backed up separately and are
retained until you delete them. Custom storage volumes with content type filesystem can
also be shared between different instances.

See Storage volumes (page 352) for detailed information.

Create the volume

CLI

UI

Use the following command to create a custom storage volume vol1 of type filesystem in
storage pool my-pool:

lxc storage volume create my-pool vol1

By default, custom storage volumes use the filesystem content type (page 352). To create a
custom volume with content type block, add the --type flag:

lxc storage volume create my-pool vol2 --type=block

From the main navigation, select Storage > Volumes.

On the resulting page, click Create volume in the upper-right corner.

You can then configure the name and size of your storage volume.

You can select a content type from the Content type dropdown. Additional settings might
appear, depending on the content type selected.

Click Create to create the storage pool.

Attach the volume to an instance

After creating a custom storage volume, you can add it to one or more instances as a disk
device (page 478).

The following restrictions apply:

• Storage volumes of content type (page 352) block or iso cannot be attached to contain-
ers, only to virtual machines.

• Storage volumes of content type (page 352) block that don’t have security.shared en-
abled cannot be attached to more than one instance at the same time. Attaching a
block volume to more than one instance at a time risks data corruption.

• Storage volumes of content type (page 352) iso are always read-only, and can therefore
be attached to more than one virtual machine at a time without corrupting data.

• Storage volumes of content type (page 352) filesystem can’t be attached to virtual ma-
chines while they’re running.

186 of 954

• You cannot attach a storage volume from a local storage pool (a pool that uses the
Directory (page 553), Btrfs (page 521), ZFS (page 563), or LVM (page 557) driver) to an
instance that has migration.stateful (page 429) set to true. You must set migration.
stateful (page 429) to false on the instance. Note that doing so makes the instance
ineligible for live migration (page 136).

CLI

UI

Use the following command to attach a custom storage volume fs-vol with content type
filesystem to instance c1. /data is the mount point for the storage volume inside the in-
stance:

lxc storage volume attach my-pool fs-vol c1 /data

Custom storage volumes with the content type block do not take a mount point:

lxc storage volume attach my-pool bl-vol vm1

By default, custom storage volumes are added to the instance with the volume name as the
device (page 447) name. If you want to use a different device name, you can add it to the
command:

lxc storage volume attach my-pool fs-vol c1 filesystem-volume /data
lxc storage volume attach my-pool bl-vol vm1 block-volume

187 of 954

Attach the volume as a device

The lxc storage volume attach (page 898) command is a shortcut for adding a disk device to
an instance. The following commands have the same effect as the corresponding commands
above:

lxc config device add c1 filesystem-volume disk pool=my-pool source=fs-vol path=/
data
lxc config device add vm1 block-volume disk pool=my-pool source=bl-vol

This allows adding further configuration for the device. See disk device (page 478) for all
available device options.

Configure I/O options

When you attach a storage volume to an instance as a disk device (page 478), you can con-
figure I/O limits for it. To do so, set the limits.read (page 482), limits.write (page 482)
or limits.max (page 482) options to the corresponding limits. See the Type: disk (page 478)
reference for more information.

The limits are applied through the Linux blkio cgroup controller, which makes it possible to
restrict I/O at the disk level (but nothing finer grained than that).

Note

Because the limits apply to a whole physical disk rather than a partition or path, the fol-
lowing restrictions apply:

• Limits will not apply to file systems that are backed by virtual devices (for example,
device mapper).

• If a file system is backed by multiple block devices, each device will get the same
limit.

• If two disk devices that are backed by the same disk are attached to the same in-
stance, the limits of the two devices will be averaged.

All I/O limits only apply to actual block device access. Therefore, consider the file system’s
own overhead when setting limits. Access to cached data is not affected by the limit.

For VMs the way the disk is exposed to the guest and its behavior can be configured. To do
so, set the io.bus (page 481), io.cache (page 481) or io.threads (page 481) options. See the
Type: disk (page 478) reference for more information.

You can attach a storage volume to an existing instance, or when creating a new instance:

• For an existing instance, select Instances from the main navigation, then select the tar-
get instance to view its details page. Open its Configuration tab.

• For a new instance, youmust first select a base image during the instance creation pro-
cess.

In either scenario, then select Disk from the Devices section of the secondary menu.

Click Attach disk device.

The resulting modal allows you to choose your disk type. Select Attach custom volume:

188 of 954

Next, you can either select a pre-existing volume to attach to the instance by clicking its cor-
responding Select button, or create a new custom volume by clicking Create volume:

Once the modal closes, you might be required to add a mount point file path in the Mount
point field. Finally, you can save your instance changes. If you are in the instance creation
process, create your instance by clicking Create.

Use the volume for backups or images

Instead of attaching a custom volume to an instance as a disk device, you can also use it as a
special kind of volume to store backups (page 316) or images (page 348).

CLI

UI

To do so, you must set the corresponding server configuration (page 411):

189 of 954

• To use a custom volume my-backups-volume to store the backup tarballs:

lxc config set storage.backups_volume=my-pool/my-backups-volume

• To use a custom volume my-images-volume to store the image tarballs:

lxc config set storage.images_volume=my-pool/my-images-volume

To use a volume to store backups or images, select Settings from the main navigation. From
this page, set the value of the storage.backups_volume key or the storage.images_volume key
to the name of the target storage volume, then select Save.

Configure storage volume settings

See the Storage drivers (page 521) documentation for a list of available storage volume con-
figuration options for each driver.

CLI

UI

To set the maximum size of custom storage volume my-volume to 1 GiB, use the following
command:

lxc storage volume set my-pool my-volume size=1GiB

The default storage volume type (page 352) is custom, but other volume types can be config-
ured by using the <volume_type>/<volume_name> syntax.

To set the snapshot expiry time for virtual machine my-vm to one month, use the following
command:

lxc storage volume set my-pool virtual-machine/my-vm snapshots.expiry=1M

You can also edit the storage volume configuration as YAML in a text editor:

lxc storage volume edit my-pool virtual-machine/my-vm

Configure default values for storage volumes

You can define default volume configurations for a storage pool. To do so, set a storage pool
configuration with a volume prefix: volume.<KEY>=<VALUE>.

This value is used for all new storage volumes in the pool, unless it is explicitly overridden.
In general, the defaults set at the storage pool level can be overridden through a volume’s
configuration. For storage volumes of type (page 352) container or virtual-machine, the
pool’s volume configuration can be overridden via the instance configuration.

For example, to set the default volume size for my-pool, use the following command:

lxc storage set my-pool volume.size=15GiB

190 of 954

Attach instance root volumes to other instances

Virtual-machine root volumes can be attached as disk devices to other virtual machines. In
order to prevent concurrent access, security.protection.startmust be set on an instance
before its root volume can be attached to another virtual-machine.

Caution

Because instances created from the same image share the same partition and file system
UUIDs and labels, booting an instance with two root file systems mounted may result in
the wrong root file system being used. This may result in unexpected behavior or data
loss. It is strongly recommended to only attach virtual-machine root volumes to other
virtual machines when the target virtual-machine is running.

Assuming vm1 is stopped and vm2 is running, attach the virtual-machine/vm1 storage volume
to vm2:

lxc config set vm1 security.protection.start=true
lxc storage volume attach my-pool virtual-machine/vm1 vm2

virtual-machine/vm1must be detached from vm2 before security.protection.start can be
unset from vm1:

lxc storage volume detach my-pool virtual-machine/vm1 vm2
lxc config unset vm1 security.protection.start

security.shared can also be used on virtual-machine volumes to enable concurrent access.
Note that concurrent access to block volumes may result in data loss.

Attaching virtual machine snapshots to other instances

Virtual-machine snapshots can also be attached to instances with the source.snapshot
(page 484) disk device configuration key.

lxc config device add v1 v2-root-snap0 disk pool=my-pool source=vm2 source.
type=virtual-machine source.snapshot=snap0

Resize a storage volume

If you need more storage in a volume, you can increase the size of your storage volume. In
some cases, it is also possible to reduce the size of a storage volume.

To adjust a storage volume’s quota, set its size configuration. For example, to resize
my-volume in storage pool my-pool to 15GiB, use the following command:

lxc storage volume set my-pool my-volume size=15GiB

Important

• Growing a volume is possible if the storage pool has sufficient storage.

191 of 954

• Shrinking a storage volume is only possible for storage volumes with content type
filesystem. It is not guaranteed to work though, because you cannot shrink storage
below its current used size.

• Shrinking a storage volume with content type block is not possible.

To configure a custom storage volume, select Storage > Volumes from the main navigation.
Next, click the name of your target storage volume to view its details page.

Note

Volume details pages are only available for volumes of type Custom. Volumes of other
types—such as Instance root disks—can also be accessed from theVolumespage and redi-
rect to their respective entity overview or list page.

To sort the Volumes table by type, you can click the Content type column header.

On the volume’s overviewpage, go to the Configuration tab. Here, you can configure settings
such as the storage volume size. Further configuration options can be found in the secondary
menu. After making changes, click the Save changes button. This button also displays the
number of changes you have made.

Create a storage volume in a cluster

For most storage drivers, custom storage volumes are not replicated across the cluster and
exist only on themember for which they were created. This behavior differs for remote stor-
age pools (ceph, cephfs and powerflex), where volumes are available from any cluster mem-
ber.

CLI

UI

To add a custom storage volume on a cluster member, add the --target flag:

lxc storage volume create <pool-name> <volume-name> --target=<member-name>

Example:

lxc storage volume create my-pool my-volume --target=my-member

To create a custom storage volume of type iso, use import instead of create:

lxc storage volume import <pool-name> <path-to-iso> <volume-name> --type=iso

To create a storage volume in a clustered environment, select Storage > Volumes from the
main navigation. On the Volumes page, click Create volume in the upper-right corner.

On the volume creation page, select the cluster member on which to base the storage vol-
ume from the Cluster member dropdown. This dropdown is only available if the storage pool
selected for this volume is cluster-member specific, rather than shared across the cluster.

To find out more about clusters in LXD, see:

192 of 954

• Clustering how-to guides (page 280)

• An explanation about clusters (page 370)

How to manage storage buckets and keys

See the following sections for instructions on how to create, configure, view and resize Stor-
age buckets (page 353) and how to manage storage bucket keys.

Install requirements for local storage buckets

LXD uses MinIO103 to set up local storage buckets. To use this feature with LXD, you must
install both the server and client binaries.

• MinIO Server:

– Source:

* MinIO Server on GitHub104

– Direct download for various architectures:

* MinIO Server pre-built for amd64105

* MinIO Server pre-built for arm64106

* MinIO Server pre-built for arm107

103 https://min.io
104 https://github.com/minio/minio
105 https://dl.min.io/server/minio/release/linux-amd64/minio
106 https://dl.min.io/server/minio/release/linux-arm64/minio
107 https://dl.min.io/server/minio/release/linux-arm/minio

193 of 954

https://min.io
https://github.com/minio/minio
https://dl.min.io/server/minio/release/linux-amd64/minio
https://dl.min.io/server/minio/release/linux-arm64/minio
https://dl.min.io/server/minio/release/linux-arm/minio

* MinIO Server pre-built for ppc64le108

* MinIO Server pre-built for s390x109

• MinIO Client:

– Source:

* MinIO Client on GitHub110

– Direct download for various architectures:

* MinIO Client pre-built for amd64111

* MinIO Client pre-built for arm64112

* MinIO Client pre-built for arm113

* MinIO Client pre-built for ppc64le114

* MinIO Client pre-built for s390x115

If LXD is installed from a Snap, you must configure the snap environment to detect the bina-
ries, and restart LXD. Note that the path to the directory containing the binaries must not be
under the home directory of any user.

snap set lxd minio.path=/path/to/directory/containing/both/binaries
snap restart lxd

If LXD is installed from another source, both binaries must be included in the $PATH that LXD
was started with.

Configure the S3 address

If you want to use storage buckets on local storage (thus in a dir, btrfs, lvm, or zfs pool), you
must configure the S3 address for your LXD server. This is the address that you can then use
to access the buckets through the S3 protocol.

To configure the S3 address, set the core.storage_buckets_address (page 404) server con-
figuration option. For example:

lxc config set core.storage_buckets_address :8555

Manage storage buckets

Storage buckets provide access to object storage exposed using the S3 protocol.

Unlike custom storage volumes, storage buckets are not added to an instance, but applica-
tions can instead access them directly via their URL.

See Storage buckets (page 353) for detailed information.

108 https://dl.min.io/server/minio/release/linux-ppc64le/minio
109 https://dl.min.io/server/minio/release/linux-s390x/minio
110 https://github.com/minio/mc
111 https://dl.min.io/client/mc/release/linux-amd64/mc
112 https://dl.min.io/client/mc/release/linux-arm64/mc
113 https://dl.min.io/client/mc/release/linux-arm/mc
114 https://dl.min.io/client/mc/release/linux-ppc64le/mc
115 https://dl.min.io/client/mc/release/linux-s390x/mc

194 of 954

https://dl.min.io/server/minio/release/linux-ppc64le/minio
https://dl.min.io/server/minio/release/linux-s390x/minio
https://github.com/minio/mc
https://dl.min.io/client/mc/release/linux-amd64/mc
https://dl.min.io/client/mc/release/linux-arm64/mc
https://dl.min.io/client/mc/release/linux-arm/mc
https://dl.min.io/client/mc/release/linux-ppc64le/mc
https://dl.min.io/client/mc/release/linux-s390x/mc

Create a storage bucket

Use the following command to create a storage bucket in a storage pool:

lxc storage bucket create <pool_name> <bucket_name> [configuration_options...]

See the Storage drivers (page 521) documentation for a list of available storage bucket con-
figuration options for each driver that supports object storage.

To add a storage bucket on a cluster member, add the --target flag:

lxc storage bucket create <pool_name> <bucket_name> --target=<cluster_member>
[configuration_options...]

Note

For most storage drivers, storage buckets are not replicated across the cluster and exist
only on themember forwhich theywere created. This behavior is different for cephobject
storage pools, where buckets are available from any cluster member.

Configure storage bucket settings

See the Storage drivers (page 521) documentation for the available configuration options for
each storage driver that supports object storage.

Use the following command to set configuration options for a storage bucket:

lxc storage bucket set <pool_name> <bucket_name> <key> <value>

For example, to set the size (quota) of a bucket, use the following command:

lxc storage bucket set my-pool my-bucket size 1MiB

You can also edit the storage bucket configuration by using the following command:

lxc storage bucket edit <pool_name> <bucket_name>

Use the following command to delete a storage bucket and its keys:

lxc storage bucket delete <pool_name> <bucket_name>

View storage buckets

You can display a list of all available storage buckets in a storage pool and check their config-
uration.

To list all available storage buckets in a storage pool, use the following command:

lxc storage bucket list <pool_name>

To show detailed information about a specific bucket, use the following command:

195 of 954

lxc storage bucket show <pool_name> <bucket_name>

Resize a storage bucket

By default, storage buckets do not have a quota applied.

To set or change a quota for a storage bucket, set its size configuration:

lxc storage bucket set <pool_name> <bucket_name> size <new_size>

Important

• Growing a storage bucket usually works (if the storage pool has sufficient storage).

• You cannot shrink a storage bucket below its current used size.

Manage storage bucket keys

To access a storage bucket, applicationsmust use a set of S3 credentialsmade up of an access
key and a secret key. You can create multiple sets of credentials for a specific bucket.

Each set of credentials is given a key name. The key name is used only for reference and does
not need to be provided to the application that uses the credentials.

Each set of credentials has a role that specifies what operations they can perform on the
bucket.

The roles available are:

• admin - Full access to the bucket

• read-only - Read-only access to the bucket (list and get files only)

If the role is not specified when creating a bucket key, the role used is read-only.

Create storage bucket keys

Use the following command to create a set of credentials for a storage bucket:

lxc storage bucket key create <pool_name> <bucket_name> <key_name> [configuration_
options...]

Use the following command to create a set of credentials for a storage bucket with a specific
role:

lxc storage bucket key create <pool_name> <bucket_name> <key_name> --role=admin
[configuration_options...]

These commands will generate and display a random set of credential keys.

196 of 954

Edit or delete storage bucket keys

Use the following command to edit an existing bucket key:

lxc storage bucket key edit <pool_name> <bucket_name> <key_name>

Use the following command to delete an existing bucket key:

lxc storage bucket key delete <pool_name> <bucket_name> <key_name>

View storage bucket keys

Use the following command to see the keys defined for an existing bucket:

lxc storage bucket key list <pool_name> <bucket_name>

Use the following command to see a specific bucket key:

lxc storage bucket key show <pool_name> <bucket_name> <key_name>

How to create an instance in a specific storage pool

Instance storage volumes are created in the storage pool that is specified by the instance’s
root disk device. This configuration is normally provided by the profile or profiles applied to
the instance. See Default storage pool (page 351) for detailed information.

CLI

UI

To use a different storage pool when creating or launching an instance, add the --storage
flag. This flag overrides the root disk device from the profile. For example:

lxc launch <image> <instance_name> --storage <storage_pool>

To create an instance in a specific storage pool, override the root storage during instance
creation.

To do this, begin the instance creation wizard (page 73). Once the Base Image is selected,
the Devices section of the left-hand sub-menu becomes available. From this section, select
Devices > Disk.

197 of 954

In this page, in the Override column, click the Edit button to create an override.

From here, you can override the pool and size of the root storage by editing their respective
fields.

Move instance storage volumes to another pool

Tomove an instance storage volume to another storage pool, stop the instance (page 94) that
contains the storage volume you want to move.

CLI

UI

Use the following command to move the instance to a different pool:

lxc move <instance_name> --storage <target_pool_name>

Navigate to the overview page of the selected instance, and click on the Migrate button in
the top right corner.

Within the move modal, clickMove instance root storage to a different pool to view available
storage pools to move to.

Click Select in the row of the target storage pool for the move.

On the resulting confirmation modal, clickMove to finalize the process.

How to export and move custom storage volumes:

198 of 954

199 of 954

How to back up custom storage volumes

There are different ways of backing up your custom storage volumes:

• Use snapshots for volume backup (page 200)

• Use export files for volume backup (page 203)

• Copy custom storage volumes (page 206)

Which method to choose depends both on your use case and on the storage driver you use.

In general, snapshots are quick and space efficient (depending on the storage driver), but
they are stored in the same storage pool as the volumeand therefore not too reliable. Export
files canbe storedondifferentdisks andare thereforemore reliable. They canalsobeused to
restore the volume into a different storage pool. If you have a separate, network-connected
LXD server available, regularly copying volumes to this other server gives high reliability as
well, and this method can also be used to back up snapshots of the volume.

Note

Custom storage volumes might be attached to an instance, but they are not part of the
instance. Therefore, the content of a custom storage volume is not stored when you back
up your instance (page 127). Youmust back up the data of your storage volume separately.

Use snapshots for volume backup

A snapshot saves the state of the storage volume at a specific time, which makes it easy to
restore the volume to a previous state. It is stored in the same storage pool as the volume
itself.

Most storage drivers support optimized snapshot creation (see Feature comparison
(page 571)). For these drivers, creating snapshots is both quick and space-efficient. For the
dir driver, snapshot functionality is available but not very efficient. For the lvm driver, snap-
shot creation is quick, but restoring snapshots is efficient only when using thin-pool mode.

Create a snapshot of a custom storage volume

CLI

UI

Use the following command to create a snapshot for a custom storage volume:

lxc storage volume snapshot <pool_name> <volume_name> [<snapshot_name>]

The snapshot name is optional. If you don’t specify one, the name follows the naming pattern
defined in snapshots.pattern.

Add the --reuse flag in combination with a snapshot name to replace an existing snapshot.

By default, snapshots are kept forever, unless the snapshots.expiry configuration option is
set. To retain a specific snapshot even if a general expiry time is set, use the --no-expiry
flag.

To create a snapshot of a customstorage volume, navigate to the Snapshots tab for the target
volume and click Create snapshot.

200 of 954

In the modal that appears, you can provide the snapshot with a name and expiry date and
time. If the name is left blank, a name is automatically assigned to the snapshot based on the
global snapshot configuration. If the expiry date and time are left blank, the snapshot does
not expire.

View, edit or delete snapshots

CLI

UI

Use the following command to display the snapshots for a storage volume:

lxc storage volume info <pool_name> <volume_name>

You can view or modify snapshots in a similar way to custom storage volumes, by referring
to the snapshot with <volume_name>/<snapshot_name>.

To show information about a snapshot, use the following command:

lxc storage volume show <pool_name> <volume_name>/<snapshot_name>

To edit a snapshot (for example, to add a description or change the expiry date), use the
following command:

lxc storage volume edit <pool_name> <volume_name>/<snapshot_name>

To delete a snapshot, use the following command:

201 of 954

lxc storage volume delete <pool_name> <volume_name>/<snapshot_name>

To view, edit or delete a storage volume snapshot, navigate to the Snapshots tab for the
target volume.

Hover over a snapshot row to highlight possible actions, including edit, restore and delete.

Schedule snapshots of a custom storage volume

CLI

UI

You can configure a custom storage volume to automatically create snapshots at specific
times. To do so, set the snapshots.schedule configuration option for the storage volume
(see Configure storage volume settings (page 190)).

For example, to configure daily snapshots, use the following command:

lxc storage volume set <pool_name> <volume_name> snapshots.schedule @daily

To configure taking a snapshot every day at 6 am, use the following command:

lxc storage volume set <pool_name> <volume_name> snapshots.schedule "0 6 * * *"

When scheduling regular snapshots, consider setting an automatic expiry (snapshots.expiry)
and a naming pattern for snapshots (snapshots.pattern). See the Storage drivers (page 521)
documentation for more information about those configuration options.

To schedule a snapshot of a storage volume, navigate to the Overview tab of the target vol-
ume. Select the Snapshots tab and click See configuration.

In the resulting modal, you can override the default schedule for automatic volume snap-
shots. Select the time frame via the Cron expression syntax116 or a time interval.

Restore a snapshot of a custom storage volume

CLI

UI

You can restore a custom storage volume to the state of any of its snapshots.

116 https://en.wikipedia.org/wiki/Cron#Cron_expression

202 of 954

https://en.wikipedia.org/wiki/Cron#Cron_expression

Todo so, youmustfirst stop all instances that use the storage volume. Thenuse the following
command:

lxc storage volume restore <pool_name> <volume_name> <snapshot_name>

You can also restore a snapshot into a newcustomstorage volume, either in the same storage
pool or in a different one (even a remote storage pool). To do so, use the following command:

lxc storage volume copy <source_pool_name>/<source_volume_name>/<source_snapshot_
name> <target_pool_name>/<target_volume_name>

To restore a storage volume, navigate to the Snapshots tab for the target volume, then hover
over a snapshot row to view possible actions. Click the restore button.

Use export files for volume backup

Youcanexport the full contentof your customstoragevolume toa standalonefile that canbe
stored at any location. For highest reliability, store the backup file on a different file system
to ensure that it does not get lost or corrupted.

Export a custom storage volume

CLI

UI

Use the following command to export a custom storage volume to a compressed file (for
example, /path/to/my-backup.tgz):

lxc storage volume export <pool_name> <volume_name> [<file_path>]

If you do not specify a file path, the export file is saved as backup.tar.gz in the working di-
rectory.

Warning

If theoutputfile alreadyexists, the commandoverwrites theexistingfilewithoutwarning.

203 of 954

You can add any of the following flags to the command:

--compression
By default, the output file uses gzip compression. You can specify a different compres-
sion algorithm (for example, bzip2) or turn off compression with --compression=none.

--optimized-storage
If your storage pool uses the btrfs or the zfs driver, add the --optimized-storage flag
to store the data as a driver-specific binary blob instead of an archive of individual files.
In this case, the export file can only be usedwith pools that use the same storage driver.

Exporting a volume in optimized mode is usually quicker than exporting the individual
files. Snapshots are exported as differences from the main volume, which decreases
their size (quota) and makes them easily accessible.

--export-version
If you intend to import the backup to an older version of LXD, set the version to 1which
will use the original (old) backup metadata format. Backups using the old format can
always be imported on newer versions of LXD. If the flag is not specified and the server
has support for the backup_metadata_version API extension, version 2 is used by de-
fault.

--volume-only
By default, the export file contains all snapshots of the storage volume. Add this flag
to export the volume without its snapshots.

To export a storage volume, navigate to the Overview tab for the target volume and select
the Export button.

In the resulting modal, configure the export file for the storage volume, including its com-
pression mode and expiration.

204 of 954

Restore a custom storage volume from an export file

CLI

UI

You can import anexportfile (for example, /path/to/my-backup.tgz) as a newcustomstorage
volume. To do so, use the following command:

lxc storage volume import <pool_name> <file_path> [<volume_name>]

If you do not specify a volume name, the original name of the exported storage volume is
used for the new volume. If a volume with that name already (or still) exists in the specified
storage pool, the command returns an error. In that case, either delete the existing volume
before importing the backup or specify a different volume name for the import.

To restore a storage volume from an export file, select Volumes from the main navigation,
then click the Create volume button.

Choose the volume file to upload, and select the storage pool for the volume to be created
using the export file.

For clustered environments only

Within a clustered environment, if a cluster-member-specific storage pool is selected, you
can also configure a target cluster member for the volume.

How to move or copy storage volumes

You can copy (page 206) ormove (page 206) custom storage volumes from one storage pool
to another, or copy or rename them within the same storage pool.

Tomove instance storage volumes fromone storage pool to another,move the corresponding
instance (page 208) to another pool.

205 of 954

When copying or moving a volume between storage pools that use different drivers, the vol-
ume is automatically converted.

Copy custom storage volumes

CLI

UI

Use the following command to copy a custom storage volume:

lxc storage volume copy <source_pool_name>/<source_volume_name> <target_pool_name>
/<target_volume_name>

Add the --volume-only flag to copy only the volume and skip any snapshots that the volume
might have. If the volume already exists in the target location, use the --refresh flag to
update the copy (see Optimized volume transfer (page 572) for the benefits).

Specify the same pool as the source and target pool to copy the volume within the same
storage pool. You must specify different volume names for source and target in this case.

When copying from one storage pool to another, you can either use the same name for both
volumes or rename the new volume.

To copy a custom storage volume, navigate to the Overview page of the storage volume you
wish to copy, and click Copy.

In the Copy volume modal, you can define a new name for the copied volume as well as a
number of other attributes.

Move or rename custom storage volumes

CLI

UI

Before you can move or rename a custom storage volume, all instances that use it must be
stopped (page 94).

206 of 954

Use the following command to move or rename a storage volume:

lxc storage volume move <source_pool_name>/<source_volume_name> <target_pool_name>
/<target_volume_name>

Specify the same pool as the source and target pool to rename the volume while keeping it
in the same storage pool. You must specify different volume names for source and target in
this case.

When moving from one storage pool to another, you can either use the same name for both
volumes or rename the new volume.

To rename a custom storage volume, navigate to itsOverview page and select its name in the
header to edit it.

Copy or migrate between cluster members

CLI

UI

For most storage drivers (except for ceph and ceph-fs), storage volumes exist only on the
cluster member for which they were created.

To copy or migrate a custom storage volume from one cluster member to another, add the
--target and --destination-target flags to specify the source cluster member and the tar-
get cluster member, respectively.

207 of 954

Youcanuse theLXDUI to copy storagevolumesbetweenclustermembers, but not tomigrate
them.

To copy a storage volume, navigate to the Overview page of the storage volume within a
clustered environment, then click Copy.

In the Copy volume modal, select the target cluster member from the Cluster member drop-
down.

Copy or move between projects

CLI

UI

Add the --target-project to copy or move a custom storage volume to a different project.

To copy a storage volume between projects, navigate to the Overview page of the storage
volume, then click Copy.

In the Copy volume modal, select the target from the Target project dropdown.

Copy or migrate between LXD servers

Youcan copya customvolume fromoneLXDserver to another, ormigrate it (move it between
servers), by specifying the remote for each pool:

lxc storage volume copy <source_remote>:<source_pool_name>/<source_volume_name>
<target_remote>:<target_pool_name>/<target_volume_name>
lxc storage volume move <source_remote>:<source_pool_name>/<source_volume_name>
<target_remote>:<target_pool_name>/<target_volume_name>

You can add the --mode flag to choose a transfer mode, depending on your network setup:

pull (default)
Instruct the target server to pull the respective storage volume.

push
Push the storage volume from the source server to the target server.

relay
Pull the storage volume from the source server to the local client, and then push it to
the target server.

If the volume already exists in the target location, use the --refresh flag to update the copy
(see Optimized volume transfer (page 572) for the benefits).

Move instance storage volumes to another pool

Tomove an instance storage volume to another storage pool, stop the instance (page 94) that
contains the storage volume you want to move.

CLI

UI

Use the following command to move the instance to a different pool:

208 of 954

lxc move <instance_name> --storage <target_pool_name>

Navigate to the overview page of the selected instance, and click on the Migrate button in
the top right corner.

Within the move modal, clickMove instance root storage to a different pool to view available
storage pools to move to.

Click Select in the row of the target storage pool for the move.

On the resulting confirmation modal, clickMove to finalize the process.

209 of 954

Related topics

Explanation:

• Storage pools, volumes, and buckets (page 349)

Reference:

• Storage drivers (page 521)

2.2.5. Networking
The following how-to guides cover common operations related to networking.

How to create and configure a network:

How to create a network

To create a managed network, use the lxc network (page 790) command and its subcom-
mands. Append --help to any command to see more information about its usage and avail-
able flags.

Network types

The following network types are available:

Network type Documentation Configuration options

bridge Bridge network (page 573) Configuration options (page 574)
ovn OVN network (page 587) Configuration options (page 588)
macvlan Macvlan network (page 593) Configuration options (page 594)
sriov SR-IOV network (page 600) Configuration options (page 600)
physical Physical network (page 595) Configuration options (page 595)

Create a network

CLI

UI

Use the following command to create a network:

lxc network create <name> --type=<network_type> [configuration_options...]

See Network types (page 210) for a list of available network types and links to their configu-
ration options.

If you do not specify a --type argument, the default type of bridge is used.

210 of 954

Create a network in a cluster

If you are running a LXD cluster and want to create a network, you must create the network
for each cluster member separately. The reason for this is that the network configuration,
for example, the name of the parent network interface, might be different between cluster
members.

Therefore, you must first create a pending network on each member with the
--target=<cluster_member> flag and the appropriate configuration for the member.
Make sure to use the same network name for all members. Then create the network without
specifying the --target flag to actually set it up.

For example, the following series of commands sets up a physical network with the name
UPLINK on three cluster members:

~$ lxc network create UPLINK --type=physical parent=br0 --target=vm01 Network
UPLINK pending on member vm01 ~$ lxc network create UPLINK --type=physical
parent=br0 --target=vm02 Network UPLINK pending on member vm02 ~$ lxc network
create UPLINK --type=physical parent=br0 --target=vm03 Network UPLINK pending
on member vm03 ~$ lxc network create UPLINK --type=physical Network UPLINK
created

Also see How to configure networks for a cluster (page 288).

From the main navigation, select Networks.

On the resulting page, click Create network in the upper-right corner.

You can then configure the network name and type, as well as other attributes. Optional
additional attributes are split into the categories Bridge, IPv4, IPv6 and DNS, which can be
seen in the submenu on the right.

Click Create to create the network.

211 of 954

Attach a network to an instance

CLI

UI

After creating amanaged network, you can attach it to an instance as aNIC device (page 449).

To do so, use the following command:

lxc network attach <network_name> <instance_name> [<device_name>] [<interface_
name>]

The device name and the interface name are optional, but we recommend specifying at
least the device name. If not specified, LXD uses the network name as the device name,
which might be confusing and cause problems. For example, LXD images perform IP auto-
configuration on the eth0 interface, which does not work if the interface is called differently.

For example, to attach the network my-network to the instance my-instance as eth0 device,
enter the following command:

lxc network attach my-network my-instance eth0

When creating (page 73) or configuring an instance (page 84), go to the Devices section in the
left-hand submenu, then selectNetwork to view and edit the networks linked to the instance.

Click the Attach network button to add a new network. From here, you can select an existing
network from the Network dropdown and assign it a device name.

If configuring an instance, select Save changes to save your changes. If creating an instance,
select Create to create your instance.

212 of 954

Attach the network as a device

The lxc network attach (page 799) command is a shortcut for adding a NIC device to an
instance. Alternatively, you can add a NIC device based on the network configuration in the
usual way:

lxc config device add <instance_name> <device_name> nic network=<network_name>

When using this way, you can add further configuration to the command to override the de-
fault settings for the network if needed. See NIC device (page 449) for all available device
options.

How to configure a network

CLI

UI

To configure an existing network, use either the lxc network set (page 830) and lxc network
unset (page 831) commands (to configure single settings) or the lxc network edit command
(to edit the full configuration). To configure settings for specific cluster members, add the
--target flag.

For example, the following command configures a DNS server for a physical network:

lxc network set UPLINK dns.nameservers=8.8.8.8

Theavailable configurationoptionsdifferdependingon thenetwork type. SeeNetwork types
(page 210) for links to the configuration options for each network type.

To edit the configuration of a network, navigate to the overview page for the network, and
observe its attributes and settings.

Within the Configuration tab, you can edit key settings of the network by clicking on the Edit
pencil icon inline with the desired configuration setting.

There are separate commands to configure advancednetworking features. See the following
documentation:

• How to configure network ACLs (page 216)

• How to configure network forwards (page 235)

• How to configure network load balancers (page 271)

• How to configure network zones (page 252)

• How to create OVN peer routing relationships (page 276) (OVN only)

213 of 954

How to configure specific networking features:

How to configure LXD as a BGP server

Note

The BGP server feature is available for the Bridge network (page 573) and the Physical
network (page 595). These network types are often used as the uplink network for an
OVN network (page 587), and you must configure the BGP peers on the uplink network.
See Configure BGP peers for OVN networks (page 215) for instructions.

BGP (Border Gateway Protocol) is a protocol that allows exchanging routing information be-
tween autonomous systems.

If you want to directly route external addresses to specific LXD servers or instances, you
can configure LXD as a BGP server. LXD will then act as a BGP peer and advertise relevant
routes and next hops to external routers, for example, your network router. It automatically
establishes sessions with upstream BGP routers and announces the addresses and subnets
that it’s using.

TheBGPserver feature canbeused toallowaLXDserveror cluster todirectly use internal/ex-
ternal address space by getting the specific subnets or addresses routed to the correct host.
This way, traffic can be forwarded to the target instance.

For bridge networks, the following addresses and networks are being advertised:

• Network ipv4.address or ipv6.address subnets (if the matching nat property isn’t set
to true)

• Network ipv4.nat.address or ipv6.nat.address subnets (if the matching nat property
is set to true)

• Network forward addresses

214 of 954

• Addresses or subnets specified in ipv4.routes.external or ipv6.routes.external on
an instance NIC that is connected to the bridge network

Make sure to add your subnets to the respective configuration options. Otherwise, they
won’t be advertised.

For physical networks, no addresses are advertised directly at the level of the physical net-
work. Instead, the networks, forwards and routes of all downstream networks (the networks
that specify the physical network as their uplink network through the network option) are
advertised in the same way as for bridge networks.

Note

At this time, it is not possible to announce only some specific routes/addresses to partic-
ular peers. If you need this, filter prefixes on the upstream routers.

Configure the BGP server

To configure LXDas aBGP server, set the following server configuration options on all cluster
members:

• core.bgp_address (page 401) - the IP address for the BGP server

• core.bgp_asn (page 401) - the ASN (Autonomous System Number) for the local server

• core.bgp_routerid (page 401) - the unique identifier for the BGP server

For example, set the following values:

lxc config set core.bgp_address=192.0.2.50:179
lxc config set core.bgp_asn=65536
lxc config set core.bgp_routerid=192.0.2.50

Once these configuration options are set, LXD starts listening for BGP sessions.

Configure next-hop (bridge only)

For bridge networks, you can override the next-hop configuration. By default, the next-hop
is set to the address used for the BGP session.

To configure a different address, set bgp.ipv4.nexthop or bgp.ipv6.nexthop.

Configure BGP peers for OVN networks

If you run an OVN network with an uplink network (physical or bridge), the uplink network
is the one that holds the list of allowed subnets and the BGP configuration. Therefore, you
must configureBGPpeers on theuplink network that contain the information that is required
to connect to the BGP server.

Set the following configuration options on the uplink network:

• bgp.peers.<name>.address - the peer address to be used by the downstream networks

• bgp.peers.<name>.asn - the ASN for the local server

• bgp.peers.<name>.password - an optional password for the peer session

215 of 954

• bgp.peers.<name>.holdtime - an optional hold time for the peer session (in seconds)

Once the uplink network is configured, downstream OVN networks will get their external
subnets and addresses announced over BGP. The next-hop is set to the address of the OVN
router on the uplink network.

How to configure network ACLs

Note

Network ACLs are available for theOVNNIC type (page 462), theOVN network (page 587)
and the Bridge network (page 573) (with some exceptions; see Bridge limitations
(page 234)).

Network ACLs (Access Control Lists) define rules for controlling traffic:

• Between instances connected to the same network

• To and from other networks

Network ACLs can be assigned directly to the NIC (Network Interface Controller) of an in-
stance, or to a network. When assigned to a network, the ACL applies indirectly to all NICs
connected to that network.

When an ACL is assigned to multiple instance NICs, either directly or indirectly, those NICs
form a logical port group. You can use the name of that ACL to refer to that group in the
traffic rules of other ACLs. For more information, see: Subject name selectors (ACL groups)
(page 224).

List ACLs

CLI

API

To list all ACLs, run:

lxc network acl list

To list all ACLs, query the GET /1.0/network-acls endpoint:

lxc query --request GET /1.0/network-acls

You can also use recursion (page 621) to list the ACLs with a higher level of detail:

lxc query --request GET /1.0/network-acls?recursion=1

Show an ACL

CLI

API

To show details about a specific ACL, run:

216 of 954

lxc network acl show <ACL-name>

Example:

lxc network acl show my-acl

For details about a specific ACL, query the GET /1.0/network-acls/{ACL-name} endpoint`:

lxc query --request GET /1.0/network-acls/{ACL-name}

Example:

lxc query --request GET /1.0/network-acls/my-acl

Create an ACL

Name requirements

Network ACL names must meet the following requirements:

• Must be between 1 and 63 characters long.

• Can contain only ASCII letters (a–z, A–Z), numbers (0–9), and dashes (-).

• Cannot begin with a digit or a dash.

• Cannot end with a dash.

Instructions

CLI

API

To create an ACL, run:

lxc network acl create <ACL-name> [user.KEY=value ...]

• You must provide an ACL name that meets the Name requirements (page 217).

• You can optionally provide one or more custom user keys to store metadata or other
information.

ACLs have no rules upon creation via command line, so as a next step, add rules (page 220) to
the ACL. You can also edit the ACL configuration (page 226), or assign the ACL to a network or
NIC (page 230).

Another way to create ACLs from the command line is to provide a YAML configuration file:

lxc network acl create <ACL-name> < <filename.yaml>

This file can include any other ACL properties (page 219), including the egress and ingress
properties for defining ACL rules (page 220). See the second example in the set below.

217 of 954

Examples

Create an ACL with the name my-acl and an optional custom user key:

lxc network acl create my-acl user.my-key=my-value

Create an ACL using a YAML configuration file:

First, create a file named config.yamlwith the following content:

description: Allow web traffic from internal network
config:
user.owner: devops

ingress:
- action: allow

description: Allow HTTP/HTTPS from internal
protocol: tcp
source: "@internal"
destination_port: "80,443"
state: enabled

Note that the custom user keys are stored under the config property.

The following command creates an ACL from that file’s configuration:

lxc network acl create my-acl < config.yaml

To create an ACL, query the POST /1.0/network-acls endpoint:

lxc query --request POST /1.0/network-acls --data '{
"name": "<ACL-name>",
"config": {

"user.<custom-key-name>": "<custom-key-value>"
},
"description": "<description of the ACL>",
"egress": [{<egress rule object>}, {<another egress rule object>, ...}],
"ingress": [{<ingress rule object>}, {<another ingress rule object>, ...}]

}'

• You must provide an ACL name that meets the Name requirements (page 217).

• You can optionally provide one or more custom config.user.* keys to store metadata
or other information.

• The ingress and egress lists contain rules for inbound and outbound traffic. See ACL
rules (page 220) for details.

Examples

Create an ACL with the name my-acl, a custom user key of my-key, and a description:

lxc query --request POST /1.0/network-acls --data '{
"name": "my-acl",
"config": {

"user.my-key": "my-value"

(continues on next page)

218 of 954

(continued from previous page)

},
"description": "Web servers"

}'

Create an ACL with the name my-acl and an ingress rule:

lxc query --request POST /1.0/network-acls --data '{
"name": "my-acl",
"ingress": [

{
"action": "drop",
"state": "enabled"

}
]

}'

ACL properties

ACLs have the following properties: config User-provided free-form key/value pairs
(page 219)

Key: config
Type: string set
Required: no

The only supported keys are user.* custom keys.

description Description of the network ACL (page 219)

Key: description
Type: string
Required: no

egress Egress traffic rules (page 219)

Key: egress
Type: rule list
Required: no

ingress Ingress traffic rules (page 219)

Key: ingress
Type: rule list
Required: no

name Unique name of the network ACL in the project (page 219)

219 of 954

Key: name
Type: string
Required: yes

ACL rules

Each ACL contains two lists of rules:

• Rules in the egress list apply to outbound traffic from the NIC.

• Rules in the ingress list apply to inbound traffic to the NIC.

For both egress and ingress, the rule configuration looks like this:

YAML

JSON

action: <allow|reject|drop>
description: <description>
destination: <destination-IP-range>
destination_port: <destination-port-number>
icmp_code: <ICMP-code>
icmp_type: <ICMP-type>
protocol: <icmp4|icmp6|tcp|udp>
source: <source-of-traffic>
source_port: <source-port-number>
state: <enabled|disabled|logged>

{
"action": "<allow|reject|drop>",
"description": "<description>",
"destination": "<destination-IP-range>",
"destination_port": "<destination-port-number>",
"icmp_code": "<ICMP-code>",
"icmp_type": "<ICMP-type>",
"protocol": "<icmp4|icmp6|tcp|udp>",
"source": "<source-of-traffic>",
"source_port": "<source-port-number>",
"state": "<enabled|disabled|logged>"

}

• The action property is required.

• The state property defaults to "enabled" if unset.

• The source and destination properties can be specified as one or more CIDR blocks,
IP ranges, or selectors (page 224). If left empty, they match any source or destination.
Comma-separate multiple values.

• If the protocol is unset, it matches any protocol.

• The "destination_port" and "source_port" properties and "icmp_code" and
"icmp_type" properties are mutually exclusive sets. Although both sets are shown

220 of 954

in the same rule above to demonstrate the syntax, they never appear together in
practice.

– The "destination_port" and "source_port" properties are only availablewhen the
"protocol" for the rule is "tcp" or "udp".

– The "icmp_code"117 and "icmp_type"118 properties are only available when the
"protocol" is "icmp4" or "icmp6".

• The "state" is "enabled" by default. The "logged" value is used to log traffic (page 225)
to a rule.

For more information, see: Rule properties (page 222).

Add a rule

CLI

API

To add a rule to an ACL, run:

lxc network acl rule add <ACL-name> <egress|ingress> [properties...]

Example

Add an egress rule with an action of drop to my-acl:

lxc network acl rule add my-acl egress action=drop

There is no specific endpoint for adding a rule. Instead, youmust edit the full ACL (page 226),
which contains the egress and ingress lists.

Remove a rule

CLI

API

To remove a rule from an ACL, run:

lxc network acl rule remove <ACL-name> <egress|ingress> [properties...]

You must either specify all properties needed to uniquely identify a rule or add --force to
the command to delete all matching rules.

There is no specific endpoint for removing a rule. Instead, you must edit the full ACL
(page 226), which contains the egress and ingress lists.

Edit a rule

You cannot edit a rule directly. Instead, you must edit the full ACL (page 226), which contains
the egress and ingress lists.

117 https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes
118 https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-types

221 of 954

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-types

Rule ordering and application of actions

ACL rules are defined as lists, but their order within the list does not affect how they are
applied.

LXD automatically prioritizes rules based on the action property, in the following order:

• drop

• reject

• allow

• The default action for unmatched traffic (defaults to reject, see Configure default ac-
tions (page 232))

When you assign multiple ACLs to a NIC, you do not need to coordinate rule order across
them. As soon as a rule matches, its action is applied and no further rules are evaluated.

Rule properties

ACL rules have the following properties: action Action to take for matching traffic
(page 222)

Key: action
Type: string
Required: yes

Possible values are allow, reject, and drop.

description Description of the rule (page 222)

Key: description
Type: string
Required: no

destination Comma-separated list of destinations (page 222)

Key: destination
Type: string
Required: no

Destinations can be specified as CIDR or IP ranges, destination subject name selectors (for
egress rules), or be left empty for any.

destination_port Destination ports or port ranges (page 222)

Key: destination_port
Type: string
Required: no

222 of 954

This option is valid only if the protocol is udp or tcp. Specify a comma-separated list of ports
or port ranges (start-end inclusive), or leave the value empty for any.

icmp_code ICMP message code (page 223)

Key: icmp_code
Type: string
Required: no

This option is valid only if the protocol is icmp4 or icmp6. Specify the ICMP code number, or
leave the value empty for any.

icmp_type Type of ICMP message (page 223)

Key: icmp_type
Type: string
Required: no

This option is valid only if the protocol is icmp4 or icmp6. Specify the ICMP type number, or
leave the value empty for any.

protocol Protocol to match (page 223)

Key: protocol
Type: string
Required: no

Possible values are icmp4, icmp6, tcp, and udp. Leave the value empty to match any protocol.

source Comma-separated list of sources (page 223)

Key: source
Type: string
Required: no

Sources can be specified as CIDR or IP ranges, source subject name selectors (for ingress
rules), or be left empty for any.

source_port Source ports or port ranges (page 223)

Key: source_port
Type: string
Required: no

This option is valid only if the protocol is udp or tcp. Specify a comma-separated list of ports
or port ranges (start-end inclusive), or leave the value empty for any.

state State of the rule (page 223)

223 of 954

Key: state
Type: string
Default: enabled
Required: yes

Possible values are enabled, disabled, and logged.

Use selectors in rules

Note

This feature is supported only for the OVN NIC type (page 462) and the OVN network
(page 587).

In ACL rules, the source and destination properties support using selectors instead of CIDR
blocks or IP ranges. You can only use selectors in the source of ingress rules, and in the
destination of egress rules.

Using selectors allows you to define rules for groups of instances instead of managing lists
of IP addresses or subnets manually.

There are two types of selectors:

• subject name selectors (ACL groups)

• network subject selectors

Subject name selectors (ACL groups)

When an ACL is assigned tomultiple instance NICs, either directly or through their networks,
those NICs form a logical port group. You can use the name of that ACL as a subject name
selector to refer to that group in the egress and ingress lists of other ACLs.

For example, if you have an ACL with the name my-acl, you can specify the group of instance
NICs that are assigned this ACL as an egress or ingress rule’s source by setting source to
my-acl.

Network subject selectors

Use network subject selectors to define rules based on the network that the traffic is coming
from or going to.

All network subject selectors begin with the @ symbol. There are two special network subject
selectors called @internal and @external. They represent the network’s local and external
traffic, respectively.

Here’s an example ACL rule (in YAML) that allows all internal traffic with the specified desti-
nation port:

ingress:
- action: allow

description: Allow HTTP/HTTPS from internal

(continues on next page)

224 of 954

(continued from previous page)

protocol: tcp
source: "@internal"
destination_port: "80,443"
state: enabled

If your network supports network peers (page 276), you can reference traffic to or from
the peer connection by using a network subject selector in the format @<network-name>/
<peer-name>. Example:

source: "@my-network/my-peer"

Whenusing a network subject selector, the network that has theACL assigned to itmust have
the specified peer connection.

Log traffic

ACL rules are primarily used to control network traffic between instances and networks.
However, they can also be used to log specific types of traffic, which is useful for monitoring
or testing rules before enabling them.

To configure a rule so that it only logs traffic, configure its state to loggedwhen you add the
rule (page 220) or edit the ACL (page 226).

View logs

CLI

API

To display the logs for all logged rules in an ACL, run:

lxc network acl show-log <ACL-name>

To display the logs for all logged rules in an ACL, query the GET /1.0/network-acls/
{ACL-name}/log endpoint:

lxc query --request GET /1.0/network-acls/{ACL-name}/log

Example

lxc query --request GET /1.0/network-acls/my-acl/log

Note

If your attempt to view logs returns no data, that means either:

• No logged rules have matched any traffic yet.

• The ACL does not contain any rules with a state of logged.

When displaying logs for an ACL, LXD intentionally displays all existing logs for that ACL,
including logs from formerly logged rules that are no longer set to log traffic. Thus, if you

225 of 954

see logs from an ACL rule, that does not necessarily mean that its state is currently set to
logged.

Edit an ACL

Rename an ACL

Requirements:

• You canonly renameanACL that is not currentlyassigned toaNICor network (page230).

• The new name must meet the Name requirements (page 217).

CLI

API

To rename an ACL, run:

lxc network acl rename <old-ACL-name> <new-ACL-name>

To rename an ACL, query the POST /1.0/network-acls/{ACL-name} endpoint:

lxc query --request POST /1.0/network-acls/{ACL-name} --data '{
"name": "<new-ACL-name>"

}'

Example

Rename an ACL named web-traffic to internal-web-traffic:

lxc query --request POST /1.0/network-acls/web-traffic --data '{
"name": "internal-web-traffic"

}'

Edit other properties

CLI

API

Run:

lxc network acl edit <ACL-name>

This command opens the ACL configuration in YAML format for editing. You can edit any part
of the configuration except for the ACL name, including the custom user keys.

You can update anyACLproperty except for name, including the customuser keys, by querying
the PUT /1.0/network-acls/{ACL-name} endpoint:

lxc query --request PUT /1.0/network-acls/{ACL-name} --data '{
"config": {

"user.<custom key name>": "<custom key value>"

(continues on next page)

226 of 954

(continued from previous page)

},
"description": "<description of the ACL>",
"egress": [<egress rule>, <another egress rule...>,...],
"ingress": [<ingress rule>, <another ingress rule...>,...]

}'

Caution

Any properties you omit from this request (aside from the ACL name) will be reset to de-
faults. See: The PUT method (page 622).

If you only want to update the config custom user keys, see: Edit a custom user key via PATCH
API (page 228).

Example

Consider an ACL named my-aclwith the following properties (shown in JSON):

{
"name": "my-acl",
"config": {

"user.my-key": "my-value"
},
"description": "My test ACL",
"egress": [

{
"action": "allow",
"state": "logged"

}
]
"ingress": [

{
"action": "drop",
"state": "enabled"

}
]

}

This query updates that ACL’s egress rule state from logged to enabled:

lxc query --request PUT /1.0/network-acls/my-acl --data '{
"egress": [

{
"action": "allow",
"state": "enabled"

}
]

}'

After the above query is run, my-acl contains the following properties:

227 of 954

{
"name": "test",
"config": {},
"description": "",
"egress": [

{
"action": "allow",
"state": "enabled"

}
],
"ingress": []

}

Note that the description and ingress properties have been reset to defaults because they
were not provided in the API request.

To avoid this behavior and preserve the values of any existing properties, you must include
them in the PUT request along with the updated property:

lxc query --request PUT /1.0/network-acls/my-acl --data '{
"description": "My test ACL",
"egress": [

{
"action": "allow",
"state": "enabled"

}
],
"ingress": [

{
"action": "drop",
"state": "enabled"

}
]

}'

Edit a custom user key via PATCH API

There’s one more way to add or update a custom config.user.* key when using the API.
Instead of the PUT method shown in the Edit other properties (page 226) section above, you
can query the PATCH /1.0/network-acls/{ACL-name} endpoint:

lxc query --request PATCH /1.0/network-acls/{ACL-name} --data '{
"config": {

"user.<custom-key-name>": "<custom-key-value>"
}

}'

Caution

Any ACL properties you omit from this request (aside from config and name) will be reset

228 of 954

to defaults.

This PATCH endpoint allows you to add or update custom config.user.* keys without affect-
ing other existing config.user.* entries. However, this partial update behavior (page 622)
applies only to the config property. For the description, egress, and ingress properties,
this request behaves like a PUT request (page 622): it replaces any provided values and re-
sets any omitted properties to their defaults. Thus, ensure you include any properties you
want to keep.

Example

Consider an ACL named my-aclwith the following properties (shown in JSON):

{
"name": "my-acl",
"description": "My test ACL",
"config": {

"user.my-key1": "1"
},

}

The following query adds a config.user.my-key2 key with the value of 2:

lxc query --request PATCH /1.0/network-acls/my-acl --data '{
"config": {

"user.my-key2": "2"
}

}'

After sending the above request, my-acl’s properties are updated to:

{
"name": "my-acl",
"description": "",
"config": {

"user.my-key1": "1",
"user.my-key2": "2"

}
}

Note that the request inserted the new user.my-key2 key without affecting the pre-existing
user.my-key1 key. Also notice that the description propertywas not sent in the request, and
thus was reset to an empty value.

Delete an ACL

You can only delete an ACL that is not assigned to a NIC or network (page 230).

CLI

API

To delete an ACL, run:

229 of 954

lxc network acl delete <ACL-name>

To delete an ACL, query the DELETE /1.0/network-acls/{ACL-name} endpoint:

lxc query --request DELETE /1.0/network-acls/{ACL-name}

Assign an ACL

An ACL is inactive until it is assigned to one of the following targets:

• a OVN network (page 587)

• a Bridge network (page 573)

• an OVN NIC type of an instance (page 462)

To assign anACL, youmust update the security.aclsoptionwithin its target’s configuration.

Assigning oneormoreACLs to aNIC or network adds a default rule that rejects all unmatched
traffic. See Configure default actions (page 232) for details.

Assign an ACL to a bridge or OVN network

CLI

API

To set the network’s security.acls, run the following command. Set the value to a string
that contains the ACL name or names youwant to add, and comma-separatemultiple names:

Set the network’s security.acls to a string that contains the ACL name or names you want
to add. Comma-separate multiple names:

lxc network set <network-name> security.acls="<ACL-name>[,<ACL-name>,...]"

For more information about using lxc network set, see: How to configure a network
(page 213).

Example

Set the my-network network’s security.acls to contain three ACLs:

lxc network set my-network security.acls="my-acl1,my-acl2,my-acl3"

To set the network’s security.acls, query the PATCH /1.0/networks/{network-name} end-
point. Set the value to a string that contains the ACL name or names you want to add, and
comma-separate multiple names:

lxc query --request PATCH /1.0/networks/{network-name} --data '{
"config": {

"security.acls": "<ACL-name>[,<ACL-name>,...]"
}

}'

230 of 954

Example

Set the my-network network’s security.acls to contain three ACLs:

lxc query --request PATCH /1.0/networks/my-network --data '{
"config": {

"security.acls": "my-acl1,my-acl2,my-acl3"
}

}'

Assign an ACL to the OVN NIC of an instance

For NICs (Network Interface Cards), ACLs can only be used with theOVNNIC type (page 462).

An NIC is considered a type of instance device (page 447). For general information about
configuring instance devices, see: Configure devices (page 87).

CLI

API

To assign an ACL to an instance’s OVN NIC, run:

lxc config device set <instance-name> <NIC-name> security.acls="<ACL-name>[,ACL-
name,...]"

Example

Assign three ACLs to an instance’s OVN NIC:

lxc config device set my-instance my-ovn-nic security.acls="my-acl1,my-acl2,my-
acl3"

To assign anACL to an instance’sOVNNIC, query the PATCH /1.0/instances/{instance-name}
endpoint. Set security.acls to a string that contains the ACL name or names you want to
add, and comma-separate multiple names:

lxc query --request PATCH /1.0/instances/{instance-name} --data '{
"devices": {

"<NIC-name>": {
"network": <network-name>,
"type": "nic",
"security.acls": "<ACL-name>[,<ACL-name>,...]",
<other options>

}
}

}'

The type and network options are required in the body (see: Required device options
(page 89)).

Caution

231 of 954

Patching an instance device’s configuration unsets any options for that device omitted
fromthePATCH request body. Formore information, seeEffects of patchingdevice options
(page 89).

Example

For my-instance, set its my-ovn-nic device’s security.acls to contain three ACLs:

lxc query --request PATCH /1.0/instances/my-instance --data '{
"devices": {

"my-ovn-nic": {
"network": "my-ovn-network",
"type": "nic",
"security.acls": "my-acl1,my-acl2,my-acl3"

}
}

}'

Additional options

To view additional options for the security.acls lists, refer to the configuration options for
the target network or NIC:

• Bridget network’s security.acls (page 584)

• OVN network’s security.acls (page 592)

• Instance’s OVN NIC security.acls (page 466)

Configure default actions

When one or more ACLs are assigned to a NIC—either directly or through its network—a
default reject rule is added to the NIC. This rule rejects all traffic that doesn’t match any of
the rules in the assigned ACLs.

You can change this behavior with the network- and NIC-level security.acls.default.
ingress.action and security.acls.default.egress.action settings. The NIC-level settings
override the network-level settings.

CLI

API

Configure a default action for a network

To set the default action for a network’s egress or ingress traffic, run:

lxc network set <network-name> security.acls.default.<egress|ingress>.action=
<allow|reject|drop>

232 of 954

Example

To set the default action for inbound traffic to allow for all instances on the my-network net-
work, run:

lxc network set my-network security.acls.default.ingress.action=allow

Configure a default action for an instance OVN NIC device

To set the default action for an instance OVN NIC’s egress or ingress traffic, run:

lxc config device set <instance-name> <NIC-name> security.acls.default.
<egress|ingress>.action=<allow|reject|drop>

Example

To set the default action for inbound traffic to allow for the my-ovn-nic device of
my-instance, run:

lxc config device set my-instance my-ovn-nic security.acls.default.ingress.
action=allow

Configure a default action for a network

To set the default action for a network’s egress or ingress traffic, query the PATCH /1.0/
networks/{network-name} endpoint:

lxc query --request PATCH /1.0/networks/{network-name} --data '{
"config": {

"security.acls.default.egress.action": "<allow|reject|drop>",
"security.acls.default.ingress.action": "<allow|reject|drop>",

}
}'

Example

Set the my-network network’s default egress action to allow:

lxc query --request PATCH /1.0/networks/my-network --data '{
"config": {

"security.acls.default.egress.action": "allow"
}

}'

Configure a default action for an instance’s OVN NIC device

To set the default action for an instance’sOVNNIC’s traffic, query the PATCH /1.0/instances/
{instance-name} endpoint:

lxc query --request PATCH /1.0/instances/{instance-name} --data '{
"devices": {

"<NIC-name>": {

(continues on next page)

233 of 954

(continued from previous page)

"network": <network-name>,
"type": "nic",
"security.acls.default.<egress|ingress>.action": "<allow|reject|drop>"
<other-options>

}
}

}'

The type and network options are required in the body (see: Required device options
(page 89)).

Caution

Patching an instance device’s configuration unsets any options for that device omitted
fromthePATCH request body. Formore information, seeEffects of patchingdevice options
(page 89).

Example

This request sets the default action for inbound traffic to allow for the my-ovn-nic device of
my-instance:

lxc query --request PATCH /1.0/instances/my-instance --data '{
"devices": {

"my-ovn-nic": {
"network": "my-network",
"type": "nic",
"security.acls.default.ingress.action": "allow"

}
}

}'

Bridge limitations

When using network ACLs with a bridge network, be aware of the following limitations:

• Unlike OVN ACLs, bridge ACLs apply only at the boundary between the bridge and the
LXDhost. Thismeans they can enforce network policies only for trafficentering or leav-
ing the host. firewalls (rules controlling traffic between instances on the same bridge)
are not supported.

• ACL groups and network selectors (page 224) are not supported.

• If you’re using the iptables firewall driver, you cannot use IP range subjects (such as
192.0.2.1-192.0.2.10).

• Baseline network service rules are added before ACL rules in their respective IN-
PUT/OUTPUT chains. Because we cannot differentiate between INPUT/OUTPUT and
FORWARD traffic after jumping into the ACL chain, ACL rules cannot block these base-
line rules.

234 of 954

How to configure network forwards

Note

Network forwards are available for the OVN network (page 587) and the Bridge network
(page 573).

Network forwards allow an external IP address (or specific ports on it) to be forwarded to an
internal IP address (or specific ports on it) in the network that the forward belongs to.

This feature can be useful if you have limited external IP addresses andwant to share a single
external address between multiple instances. In this case, you have two options:

• Forward all traffic from the external address to the internal address of one instance.
This method makes it easy to move the traffic destined for the external address to an-
other instance by simply reconfiguring the network forward.

• Forward traffic from different port numbers of the external address to different in-
stances (and optionally different ports on those instances). This method allows to
“share” your external IP address and expose more than one instance at a time.

Tip

Network forwards are very similar to using a proxy device (page 499) in NAT mode.

The difference is that network forwards are applied on a network level, while a proxy
device is added for an instance. In addition, proxy devices can be used to proxy traffic
between different connection types (for example, TCP and Unix sockets).

List network forwards

View a list of all forwards configured on a network:

CLI

API

UI

lxc network forward list <network_name>

Example:

lxc network forward list lxdbr0

Note

This list displays the listen address of the network forward and its default target address,
if set. To view the target addresses for a network forward’s ports set in its port specifica-
tions (page 243), you can show details about the network forward (page 236) or edit the
network forward (page 248).

235 of 954

Query the /1.0/networks/{networkName} endpoint to list all forwards for a network.

lxc query --request GET /1.0/networks/{networkName}/forwards

Example:

lxc query --request GET /1.0/networks/lxdbr0/forwards

See the API reference for more information.

You can also use recursion (page 621) to list the forwards with a higher level of detail:

lxc query --request GET /1.0/networks/{networkName}/forwards?recursion=1

In the web UI (page 40), select Networks in the left sidebar, then select the desired network.
On the resulting screen, view the Forwards tab:

Show a network forward

Show details about a specific network forward:

CLI

API

UI

lxc network forward show <network_name> <listen_address>

Example:

lxc network forward show lxdbr0 192.0.2.1

Query the following endpoint for details about a specific forward:

lxc query --request GET /1.0/networks/{networkName}/forwards/{listenAddress}

See the API reference for more information.

Example:

lxc query --request GET /1.0/networks/ovn1/forwards/10.152.119.200

In the web UI (page 40), select Networks in the left sidebar, then select the desired network.
On the resulting screen, view the Forwards tab. This tab shows you information about all
forwards on the network. You can click the Edit icon to view details for a specific forward:

236 of 954

Create a network forward

Requirements for listen addresses

Before you can create a network forward, you must understand the requirements for listen
addresses.

For both OVN and bridge networks, the listen addresses must not overlap with any subnet
in use by other networks on the host. Otherwise, the listen address requirements differ by
network type.

OVN network

Bridge network

For an OVN network, the allowed listen addresses must be defined in at least one of the
following configuration options, using CIDR notation119:

• ipv4.routes (page 580) or ipv6.routes (page 583) in theOVNnetwork’s uplink network
configuration

• restricted.networks.subnets (page 519) in the OVN network’s project configuration

A bridge network does not require you to define allowed listen addresses. Use any non-
conflicting IP address available on the host.

Create a forward in an OVN network

Note

You must configure the allowed listen addresses (page 237) before you can create a for-
ward in an OVN network.

The IP addresses and ports shown in the examples below are only examples. It is up to
you to choose the allowed and available addresses and ports for your setup.

CLI

API

UI

Use the following command to create a forward in an OVN network:
119 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

237 of 954

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

lxc network forward create <ovn_network_name> <listen_address>|--allocate=ipv{4,6}
[target_address=<target_address>] [user.<key>=<value>]

• For <ovn_network_name>, specify the name of the OVN network on which to create the
forward.

• Immediately following the network name, provide only one of the following for the
listen address:

– A listen IP address allowed by the Requirements for listen addresses (page 237) (no
port number)

– The --allocate= flag with a value of either ipv4 or ipv6 for automatic allocation
of an allowed IP address

• Optionally provide a default target_address (no port number). Any traffic that does
not match a port specification is forwarded to this address. This must be an IP address
within the OVN network’s subnet; typically, the static IP address of an instance is used.

• Optionally provide custom user.* keys to be stored in the network forward’s configura-
tion.

Examples

This example shows how to create a network forward on a network named ovn1with an allo-
cated listen address and no default target address:

lxc network forward create ovn1 --allocate=ipv4

This example showshowto create anetwork forwardonanetworknamed ovn1with a specific
listen address and a default target address:

lxc network forward create ovn1 192.0.2.1 target_address=10.41.211.2

To create a network forward in an OVN network, send a POST request to the /1.0/networks/
{networkName}/forwards endpoint:

lxc query --request POST /1.0/networks/{networkName}/forwards --data '{
"listen_address": "<listen_address>", # required
"description": "<description of the forward>", # optional
"config": {

"target_address": "<default_target_address>", # optional
"user.<key>": "<value>" # optional

},
"ports": [# optional

{
"description": "<description of the forward to this port>",
"listen_port": "<listen_port>",
"protocol": "<tcp|udp>",
"target_address": "<target address>",
"target_port": "<target port or ports>"

}
]

}'

238 of 954

• For {networkName}, specify the name of the OVN network on which to create the for-
ward.

• For <listen_address>, provide only one of the following:

– A listen IP address allowed by the Requirements for listen addresses (page 237) (no
port number)

– For automatic allocation of an allowed IP address, use "0.0.0.0" for IPv4 and "::"
for IPv6.

• Optionally provide a description of the forward.

• Optionally provide a default target_address as part of the config object (no port num-
ber). Any traffic that does not match a port specification is forwarded to this address.
This must be an IP address within the OVN network’s subnet; typically, the static IP
address of an instance is used.

• Optionally provide custom user.* keys, also as part of the config object.

• Optionally set up port specifications during forward creation. These specifications al-
low forwarding traffic from specific ports on the listen address to ports on a target
address. For details on how to configure ports, see: Configure ports (page 243).

See the API reference for more information.

Examples

This example shows how to create a network forward on a network named ovn1with an allo-
cated listen address and no default target address:

lxc query --request POST /1.0/networks/ovn1/forwards --data '{
"listen_address": "0.0.0.0"

}'

This example showshowto create anetwork forwardonanetworknamed ovn1with a specific
listen address and a default target address:

lxc query --request POST /1.0/networks/ovn1/forwards --data '{
"listen_address": "192.0.2.1",
"config": {

"target_address": "10.41.211.2"
}

}'

In the web UI (page 40), select Networks in the left sidebar, then select the desired OVN
network. On the resulting screen, view the Forwards tab. Click the Create forward button.

In the Create a new forward panel, only the Listen address field is required.

• For the Listen address, provide an IP address allowed by the Requirements for listen ad-
dresses (page 237) (no port number).

• Optionally provide a Default target address (no port number). Any traffic that does not
match a port specification is forwarded to this address. This must be an IP address
within the OVN network’s subnet; typically, the static IP address of an instance is used.

239 of 954

You can optionally set up port specifications for the network forward by clicking the Add port
button. These specifications allow forwarding traffic fromspecificports on the listenaddress
to ports on a target address. For details on how to configure this section, see: Configure ports
(page 243).

Once you have finished setting up the network forward, click the Create button.

Create a forward in a bridge network

Note

The IP addresses and ports shown in the examples below are only examples. It is up to
you to choose the allowed and available addresses and ports for your setup.

CLI

API

UI

Use the following command to create a forward in a bridge network:

lxc network forward create <bridge_network_name> <listen_address> [target_address=
<target_address>] [user.<key>=<value>]

• For <bridge_network_name>, specify the name of the bridge network on which to create
the forward.

240 of 954

• Immediately following the network name, provide an IP address allowedby theRequire-
ments for listen addresses (page 237) (no port number).

• Optionally provide a default target_address (no port number). Any traffic that does
not match a port specification is forwarded to this address. This must be an IP address
within thebridgenetwork’s subnet; typically, the static IP addressof an instance is used.

• Optionally provide custom user.* keys to be stored in the network forward’s configura-
tion.

• You cannot use the --allocate flag with bridge networks.

Example

This example shows how to create a forward on a network named bridge1. The listen address
is required, and the default target address is optional:

lxc network forward create bridge1 192.0.2.1 target_address=10.41.211.2

To create a network forward in a bridge network, send a POST request to the /1.0/networks/
{networkName}/forwards endpoint:

lxc query --request POST /1.0/networks/{networkName}/forwards --data '{
"listen_address": "<listen_address>", # required
"description": "<description of the forward>", # optional
"config": {

"target_address": "<default_target_address>", # optional
"user.<key>": "<value>" # optional

},
"ports": [# optional

{
"description": "<description of the forward to this port>",
"listen_port": "<listen_port>",
"protocol": "<tcp|udp>",
"target_address": "<target address>",
"target_port": "<target port or ports>"

}
]

}'

• For {networkName}, specify the name of the bridge network on which to create the for-
ward.

• For <listen_address>, provide an IP address allowed by the Requirements for listen ad-
dresses (page 237) (no port number).

– With bridge networks, you cannot dynamically allocate the listen address. You
must input a specific address.

• Optionally provide a description of the forward.

• Optionally provide a default target_address as part of the config object (no port num-
ber). Any traffic that does not match a port specification is forwarded to this address.
This must be an IP address within the OVN network’s subnet; typically, the static IP
address of an instance is used.

241 of 954

• Optionally provide custom user.* keys, also as part of the config object.

• Optionally set up port specifications during forward creation. These specifications al-
low forwarding traffic from specific ports on the listen address to ports on a target
address. For details on how to configure ports, see: Configure ports (page 243).

See the API reference for more information.

Example

This example shows how to create a forward on a network named bridge1. The listen address
is required, and the default target address is optional:

lxc query --request POST /1.0/networks/bridge1/forwards --data '{
"listen_address": "192.0.2.1",
"config": {

"target_address": "10.41.211.2"
}

}'

In the web UI (page 40), select Networks in the left sidebar, then select the desired bridge
network. On the resulting screen, view the Forwards tab. Click the Create forward button.

In the Create a new forward panel, only the Listen address field is required.

• For the Listen address, provide a listen IP address allowed by the Requirements for listen
addresses (page 237) (no port number).

• Optionally provide a Default target address (no port number). Any traffic that does not
match a port specification is forwarded to this address. This must be an IP address
within thebridgenetwork’s subnet; typically, the static IP addressof an instance is used.

242 of 954

You can optionally set up port specifications for the network forward by clicking the Add port
button. These specifications allow forwarding traffic fromspecificports on the listenaddress
to ports on a target address. For details on how to configure this section, see: Configure ports
(page 243).

Once you have finished setting up the network forward, click the Create button.

Forward properties

Network forwards have the following properties: configUser-provided free-formkey/value
pairs (page 243)

Key: config
Type: string set
Required: no

The only supported keys are target_address and user.* custom keys.

The target_address key is for the default target address of the network forward. It must be
an IP address within the subnet of the network the forward belongs to.

description Description of the network forward (page 243)

Key: description
Type: string
Required: yes

listen_address IP address to listen on (page 243)

Key: listen_address
Type: string
Required: no

See Requirements for listen addresses (page 237).

ports List of port specifications (page 243)

Key: ports
Type: port list
Required: no

See Configure ports (page 243).

Configure ports

Once a forward is created on a network (whether bridge or OVN), it can be configured with
port specifications. These specifications allow forwarding traffic from ports on the listen
address to ports on a target address.

CLI

243 of 954

API

UI

When using the CLI, you must first create a network forward (page 237) before you can add
port specifications to it.

Use the following command to add port specifications on a forward:

lxc network forward port add <network_name> <listen_address> <protocol> <listen_
ports> <target_address> [<target_ports>]

• Use the network name and listen address of the forward forwhich youwant to add port
specifications.

• Use either tcp or udp as the protocol.

• For the listen ports, you can specify a single listen port, a port range, or a comma-
separated set of ports/port ranges.

• Specify a target address. This addressmust bewithin the network’s subnet, and itmust
be different from the forward’s default target address. Typically, the static IP address
of an instance is used.

• Optionally specify a target port or ports. You can:

– Specify a single target port to forward traffic from all listen ports to this target
port.

– Specify a set of target ports with the same number of set items as the listen ports.
This forwards traffic from the first listen port to the first target port, the second
listen port to the second target port, and so on.

• If no target port is specified, the listen port value is used for the target port.

• You can add multiple port configurations to the same network forward.

Examples

The example below shows how to configure a forward with a single listen port. Since no
target port is specified, the target port defaults to the value of the listen port:

lxc network forward port add network1 192.0.2.1 tcp 22 10.41.211.2

The example below shows how to configure a forward with a set of listen ports mapped to a
single target port. Traffic to the listen address at ports 80 and 90 through 100 is forwarded
to port 443 of the target address:

lxc network forward port add network1 192.0.2.1 tcp 80,90-100 10.41.211.2 443

The example below shows how to configure a forward with a set of listen ports mapped to
a set of target ports. Traffic to the listen address at port 22 is forwarded to port 22 of the
target address, whereas traffic to port 80 is forwarded to port 443:

lxc network forward port add network1 192.0.2.1 tcp 22,80 10.41.211.2 22,443

Using the API, you can configure port specifications on a network forward at the time you
create the forward (page 237), or by editing the forward (page 248) after creation.

244 of 954

In either case, you must configure the ports object shown below:

1 {
2 "listen_address": "<listen_address>",
3 "description": "<description of the forward>",
4 "config": {
5 "target_address": "<default_target_address>",
6 "user.<key>": "<value>"
7 },
8 "ports": [
9 {
10 "description": "<description of the forward to this port>",
11 "listen_port": "<listen_port>",
12 "protocol": "<tcp|udp>",
13 "target_address": "<target address>",
14 "target_port": "<target port or ports>"
15 }
16]
17 }

• For "listen_port", you can specify a single listen port, a port range, or a comma-
separated set of ports/port ranges.

• Use either "tcp" or "udp" as the "protocol".

• Specify a "target_address". This address must be within the network’s subnet, and it
must be different from the forward’s default target address that is configured in the
config object. Typically, the static IP address of an instance is used.

• Optionally specify a target port or ports. You can:

– Specify a single target port to forward traffic from all listen ports to this target
port.

– Specify a set of target ports with the same number of set items as the listen ports.
This forwards traffic from the first listen port to the first target port, the second
listen port to the second target port, and so on.

• If no target port is specified, the listen port value is used for the target port.

• The "ports" JSON property is configured as an array (list) of objects. You can set multi-
ple port configurations on the same network forward, each as a separate JSON object
in the array.

Examples

"ports": [
{

"description": "My web server forward",
"listen_port": "80,81,8080-8090",
"protocol": "tcp",
"target_address": "198.51.100.2",
"target_port": "80,81,8080-8090"

},

(continues on next page)

245 of 954

(continued from previous page)

{
"description": "My API server forward",
"listen_port": "3000",
"protocol": "tcp",
"target_address": "198.51.100.3",
"target_port": "8080"

}
]

In the example above, traffic to the network forward’s listen ports of 80, 81, or 8080-8090 is
explicitly forwarded to the same ports on the target address. Traffic to the forward’s listen
port of 3000 is explicitly forwarded to port 8080 on the target address.

More examples;

• If the "listen_port" is set to "22" and no "target_port” is specified, the target port
value defaults to "22".

• If the "listen_port" is set to "80,90-100" and the "target_port” is set to "442", all traf-
fic to the listen address at ports 80 and 90 through 100 is forwarded to port 443 of the
target address.

• If the "listen_port" is set to "22,80" and the "target_port” is set to "22,443", all traffic
to the listen address at port 22 is forwarded to port 22 of the target address, whereas
traffic to port 80 is forwarded to port 443.

In the web UI, you can configure port specifications on a network forward at the time you
create the forward (page 237), or by editing the forward (page 248) after creation.

• For the Listen port, you can specify a single port, a port range, or a comma-separated
set of ports/port ranges.

• Select either TCP or UDP as the protocol.

246 of 954

• Specify a Target address. This address must be within the network’s subnet, and it must
be different from the forward’s Default target address. Typically, the static IP address
of an instance is used.

• Optionally specify a target port or ports. You can:

– Specify a single target port to forward traffic from all listen ports to this target
port.

– Specify a set of target ports with the same number of set items as the listen ports.
This forwards traffic from the first listen port to the first target port, the second
listen port to the second target port, and so on.

• If no target port is specified, the listen port value is used for the target port.

Examples

• If the Listenport is set to 22andnoTarget port is specified, the targetport valuedefaults
to 22.

• If the Listen port is set to 80,90-100 and the Target port is set to 442, all traffic to the
listen address at ports 80 and 90 through 100 is forwarded to port 443 of the target
address.

• If the Listen port is set to 22,80 and the Target port is set to 22,443, all traffic to the
listen address at port 22 is forwarded to port 22 of the target address, whereas traffic
to port 80 is forwarded to port 443.

Port properties

Network forward ports have the following properties: description Description of the port
or ports (page 247)

Key: description
Type: string
Required: no

listen_port Listen port or ports (page 247)

Key: listen_port
Type: string
Required: yes

For example: 80,90-100

protocol Protocol for the port or ports (page 247)

Key: protocol
Type: string
Required: yes

Possible values are tcp and udp.

247 of 954

target_address IP address to forward to (page 247)

Key: target_address
Type: string
Required: yes

This target_addressmust be within the subnet of the network the forward belongs to. Also,
it must be different from the forward’s default target address.

target_port Target port or ports (page 248)

Key: target_port
Type: string
Default: same as listen_port
Required: no

For example: 70,80-90 or 90

Edit a network forward

CLI

API

UI

Use the following command to edit a network forward:

lxc network forward edit <network_name> <listen_address>

This command opens the network forward in YAML format for editing. You can edit both the
general configuration and the port specifications.

Partial update

To update a subset of the network forward configuration, send a PATCH request to the /1.
0/networks/{networkName}/forwards/{listenAddress} endpoint:

lxc query --request PATCH /1.0/networks/{networkName}/forwards/{listenAddress} --
data '{
"config": {

"target_address": "<default_target_address>",
"user.<key>": "<value>"

},
"description": "<description of the forward>",
"ports": [

{
"description": "<description of the forward to this port>",
"listen_port": "<listen_port>",
"protocol": "<tcp|udp>",
"target_address": "<target address>",

(continues on next page)

248 of 954

(continued from previous page)

"target_port": "<target port or ports>"
}

]
}'

See the API reference for more information.

Example

Update only the default target address of a forward:

lxc query --request PATCH /1.0/networks/ovn1/forwards/10.152.119.200 --data '{
"config": {

"target_address": "10.41.211.3"
}

}'

Full update

To replace the entire configuration of an existing network forward, send a PUT request to
the /1.0/networks/{networkName}/forwards/{listenAddress} endpoint:

lxc query --request PUT /1.0/networks/{networkName}/forwards/{listenAddress} --
data '{
"config": {

"target_address": "<default_target_address>",
"user.<key>": "<value>"

},
"description": "<description of the forward>",
"ports": [

{
"description": "<description of the forward to this port>",
"listen_port": "<listen_port>",
"protocol": "<tcp|udp>",
"target_address": "<target address>",
"target_port": "<target port or ports>"

}
]

}'

Unlike a PATCH request, the PUT request replaces the entire configuration.

See the API reference for more information.

Example

When using PUT, take care to send any data should be kept in the configuration. Consider
the following configuration for a network forward:

{
"listen_address": "10.152.119.200",

(continues on next page)

249 of 954

(continued from previous page)

"config": {
"target_address": "10.41.211.3",

},
"ports": [

{
"listen_port": "80",
"protocol": "tcp",
"target_address": "10.41.211.4",
"target_port": "443"

}
]

}'

The following PUT request updates the entire configuration:

lxc query --request PUT /1.0/networks/ovntest/forwards/10.152.119.200 --data '{
"ports": [

{
"listen_port": "80",
"protocol": "tcp",
"target_address": "10.41.211.5",
"target_port": "443"

}
]

}'

The forward’s configuration after the PUT update:

{
"listen_address": "10.152.119.200",
"config": {},
"ports": [

{
"listen_port": "80",
"protocol": "tcp",
"target_address": "10.41.211.5",
"target_port": "443"

}
]

}

Notice that the config object no longer contains any values. This is because none were sent
as part of the PUT update.

In the web UI (page 40), select Networks in the left sidebar, then select the desired network.
On the resulting screen, view the Forwards tab. This tab shows you information about all
forwards on the network. Click the Edit icon next to a forward to edit it:

In the resulting screen, you can edit the forward’s general configuration as well as its port
specifications:

250 of 954

251 of 954

Delete a network forward

CLI

API

UI

Use the following command to delete a network forward:

lxc network forward delete <network_name> <listen_address>

To delete a network forward, send a DELETE request to the /1.0/networks/{networkName}/
forwards/{listenAddress} endpoint:

lxc query --request DELETE /1.0/networks/{networkName}/forwards/{listenAddress}

Example:

lxc query --request DELETE /1.0/networks/ovn1/forwards/192.0.2.21

See the API reference for more information.

In the web UI (page 40), select Networks in the left sidebar, then select the desired network.
On the resulting screen, view the Forwards tab. This tab shows you information about all
forwards on the network. Click the Delete icon next to a forward to delete it:

How to configure network zones

Note

Network zones are available for the OVN network (page 587) and the Bridge network
(page 573).

Network zones can be used to serve DNS records for LXD networks.

You canuse network zones to automaticallymaintain valid forward and reverse records for all
your instances. This can be useful if you are operating a LXD cluster with multiple instances
across many networks.

Having DNS records for each instance makes it easier to access network services running
on an instance. It is also important when hosting, for example, an outbound SMTP service.

252 of 954

Without correct forward and reverseDNSentries for the instance, sentmailmight beflagged
as potential spam.

Each network can be associated to different zones:

• ForwardDNS records -multiple comma-separated zones (nomore than oneper project)

• IPv4 reverse DNS records - single zone

• IPv6 reverse DNS records - single zone

LXD will then automatically manage forward and reverse records for all instances, network
gateways and downstream network ports and serve those zones for zone transfer to the
operator’s production DNS servers.

Project views

Projects have a features.networks.zones (page 510) feature, which is disabled by default.
This controls which project new networks zones are created in. When this feature is enabled
new zones are created in the project, otherwise they are created in the default project.

This allows projects that share a network in the default project (i.e those with features.
networks=false) to have their ownproject level DNS zones that give a project oriented “view”
of the addresses on that shared network (which only includes addresses from instances in
their project).

Generated records

Forward records

If you configure a zone with forward DNS records for lxd.example.net for your network, it
generates records that resolve the following DNS names:

• For all instances in the network: <instance_name>.lxd.example.net

• For the network gateway: <network_name>.gw.lxd.example.net

• For downstream network ports (for network zones set on an uplink network with a
downstreamOVNnetwork): <project_name>-<downstream_network_name>.uplink.lxd.
example.net

• Manual records added to the zone.

You can check the records that are generated with your zone setup with the dig command.

This assumes that core.dns_address (page 402) was set to
<DNS_server_IP>:<DNS_server_PORT>. (Setting that configuration option causes the backend
to immediately start serving on that address.)

In order for the dig request to be allowed for a given zone, you must set the peers.NAME.
address configuration option for that zone. NAME can be anything random. The value must
match the IP address where your dig is calling from. You must leave peers.NAME.key for that
same random NAME unset.

For example: lxc network zone set lxd.example.net peers.whatever.address=192.0.2.1.

253 of 954

Note

It is not enough for the address to be of the samemachine that dig is calling from; it needs
to match as a string with what the DNS server in lxd thinks is the exact remote address.
dig binds to 0.0.0.0, therefore the address you need is most likely the same that you
provided to core.dns_address (page 402).

For example, running dig @<DNS_server_IP> -p <DNS_server_PORT> axfr lxd.example.net
might give the following output:

~$ dig @192.0.2.200 -p 1053 axfr lxd.example.net lxd.example.net. 3600 IN SOA
lxd.example.net. ns1.lxd.example.net. 1669736788 120 60 86400
30lxd.example.net. 300 IN NS ns1.lxd.example.net.lxdtest.gw.lxd.example.net.
300 IN A 192.0.2.1lxdtest.gw.lxd.example.net. 300 IN AAAA
fd42:4131:a53c:7211::1default-ovntest.uplink.lxd.example.net. 300 IN A
192.0.2.20default-ovntest.uplink.lxd.example.net. 300 IN AAAA
fd42:4131:a53c:7211:216:3eff:fe4e:b794c1.lxd.example.net. 300 IN AAAA
fd42:4131:a53c:7211:216:3eff:fe19:6edec1.lxd.example.net. 300 IN A
192.0.2.125manualtest.lxd.example.net. 300 IN A 8.8.8.8lxd.example.net. 3600
IN SOA lxd.example.net. ns1.lxd.example.net. 1669736788 120 60 86400 30

Reverse records

If you configure a zone for IPv4 reverse DNS records for 2.0.192.in-addr.arpa for a network
using 192.0.2.0/24, it generates reverse PTRDNS records for addresses from all projects that
are referencing that network via one of their forward zones.

For example, running dig @<DNS_server_IP> -p <DNS_server_PORT> axfr 2.0.192.in-addr.
arpamight give the following output:

~$ dig @192.0.2.200 -p 1053 axfr 2.0.192.in-addr.arpa 2.0.192.in-addr.arpa.
3600 IN SOA 2.0.192.in-addr.arpa. ns1.2.0.192.in-addr.arpa. 1669736828 120 60
86400 302.0.192.in-addr.arpa. 300 IN NS
ns1.2.0.192.in-addr.arpa.1.2.0.192.in-addr.arpa. 300 IN PTR
lxdtest.gw.lxd.example.net.20.2.0.192.in-addr.arpa. 300 IN PTR
default-ovntest.uplink.lxd.example.net.125.2.0.192.in-addr.arpa. 300 IN PTR
c1.lxd.example.net.2.0.192.in-addr.arpa. 3600 IN SOA 2.0.192.in-addr.arpa.
ns1.2.0.192.in-addr.arpa. 1669736828 120 60 86400 30

Enable the built-in DNS server

To make use of network zones, you must enable the built-in DNS server.

To do so, set the core.dns_address (page 402) configuration option to a local address on the
LXD server. To avoid conflicts with an existing DNS we suggest not using the port 53. This is
the address on which the DNS server will listen. Note that in a LXD cluster, the address may
be different on each cluster member.

254 of 954

Note

The built-in DNS server supports only zone transfers through AXFR. It cannot be directly
queried for DNS records. Therefore, the built-in DNS server must be used in combination
with an external DNS server (bind9, nsd, …), which will transfer the entire zone from LXD,
refresh it upon expiry and provide authoritative answers to DNS requests.

Authentication for zone transfers is configured on a per-zone basis, with peers defined
in the zone configuration and a combination of IP address matching and TSIG-key based
authentication.

Create and configure a network zone

Use the following command to create a network zone:

lxc network zone create <network_zone> [configuration_options...]

The following examples show how to configure a zone for forward DNS records, one for IPv4
reverse DNS records and one for IPv6 reverse DNS records, respectively:

lxc network zone create lxd.example.net
lxc network zone create 2.0.192.in-addr.arpa
lxc network zone create 1.0.0.0.1.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa

Note

Zones must be globally unique, even across projects. If you get a creation error, it might
be due to the zone already existing in another project.

You can either specify the configuration options when you create the network or configure
them afterwards with the following command:

lxc network zone set <network_zone> <key>=<value>

Use the following command to edit a network zone in YAML format:

lxc network zone edit <network_zone>

Configuration options

The following configuration options are available for network zones: dns.nameservers
Comma-separated list of DNS server FQDNs (for NS records) (page 255)

Key: dns.
nameservers

Type: string set
Required: no

network.natWhether to generate records for NAT-ed subnets (page 255)

255 of 954

Key: network.
nat

Type: bool
Default: true
Required: no

peers.NAME.address IP address of a DNS server (page 256)

Key: peers.NAME.
address

Type: string
Required: no

peers.NAME.key TSIG key for the server (page 256)

Key: peers.NAME.
key

Type: string
Required: no

user.* User-provided free-form key/value pairs (page 256)

Key: user.
*

Type: string
Required: no

Note

When generating the TSIG key using tsig-keygen, the key name must follow the format
<zone_name>_<peer_name>.. For example, if your zone name is lxd.example.net and the
peer name is bind9, then the key name must be lxd.example.net_bind9.. If this format is
not followed, zone transfer might fail.

Add a network zone to a network

To add a zone to a network, set the corresponding configuration option in the network con-
figuration:

• For forward DNS records: dns.zone.forward

• For IPv4 reverse DNS records: dns.zone.reverse.ipv4

• For IPv6 reverse DNS records: dns.zone.reverse.ipv6

For example:

256 of 954

lxc network set <network_name> dns.zone.forward="lxd.example.net"

Zones belong to projects and are tied to the networks features of projects. You can re-
strict projects to specific domains and sub-domains through the restricted.networks.zones
(page 519) project configuration key.

Add custom records

A network zone automatically generates forward and reverse records for all instances, net-
work gateways and downstream network ports. If required, you can manually add custom
records to a zone.

To do so, use the lxc network zone record (page 835) command.

Create a record

Use the following command to create a record:

lxc network zone record create <network_zone> <record_name>

This command creates an empty record without entries and adds it to a network zone.

Record properties

Records have the following properties: config User-provided free-form key/value pairs
(page 257)

Key: config
Type: string set
Required: no

The only supported keys are user.* custom keys.

description Description of the record (page 257)

Key: description
Type: string
Required: no

entries List of DNS entries (page 257)

Key: entries
Type: entry list
Required: no

name Unique name of the record (page 257)

257 of 954

Key: name
Type: string
Required: yes

Add or remove entries

To add an entry to the record, use the following command:

lxc network zone record entry add <network_zone> <record_name> <type> <value> [--
ttl <TTL>]

This command adds a DNS entry with the specified type and value to the record.

For example, to create a dual-stack web server, add a record with two entries similar to the
following:

lxc network zone record entry add <network_zone> <record_name> A 1.2.3.4
lxc network zone record entry add <network_zone> <record_name> AAAA 1234::1234

You can use the --ttl flag to set a custom time-to-live (in seconds) for the entry. Otherwise,
the default of 300 seconds is used.

You cannot edit an entry (except if you edit the full record with lxc network zone record
edit (page 837)), but you can delete entries with the following command:

lxc network zone record entry remove <network_zone> <record_name> <type> <value>

How to configure specific networking features (managed bridge networks only):

How to configure your firewall

Important

This guide applies to managed bridge networks only.

Linux firewalls are based on netfilter. LXD uses the same subsystem, which can lead to
connectivity issues.

If you run a firewall on your system, you might need to configure it to allow network traf-
fic between the managed LXD bridge and the host. Otherwise, some network functionality
(DHCP, DNS and external network access) might not work as expected.

You might also see conflicts between the rules defined by your firewall (or another applica-
tion) and the firewall rules that LXD adds. For example, your firewall might erase LXD rules
if it is started after the LXD daemon, which might interrupt network connectivity to the in-
stance.

258 of 954

xtables vs. nftables

There are different userspace commands to add rules to netfilter: xtables (iptables for
IPv4 and ip6tables for IPv6) and nftables.

xtables provides an ordered list of rules, which might cause issues if multiple systems add
and removeentries from the list. nftables adds the ability to separate rules into namespaces,
which helps to separate rules from different applications. However, if a packet is blocked
in one namespace, it is not possible for another namespace to allow it. Therefore, rules in
one namespace can still affect rules in another namespace, and firewall applications can still
impact LXD network functionality.

If your system supports and uses nftables, LXD detects this and switches to nftablesmode.
In this mode, LXD adds its rules into the nftables, using its own nftables namespace.

Use LXD’s firewall

By default, managed LXD bridges add firewall rules to ensure full functionality. If you do not
run another firewall on your system, you can let LXD manage its firewall rules.

To enable or disable this behavior, use the ipv4.firewall or ipv6.firewall configuration op-
tions (page 574).

Use another firewall

Firewall rules added by other applications might interfere with the firewall rules that LXD
adds. Therefore, if you use another firewall, you should disable LXD’s firewall rules. You
must also configure your firewall to allow network traffic between the instances and the
LXD bridge, so that the LXD instances can access the DHCP and DNS server that LXD runs on
the host.

See the following sections for instructions on how to disable LXD’s firewall rules and how to
properly configure firewalld and UFW, respectively.

Disable LXD’s firewall rules

Run the following commands toprevent LXD fromsettingfirewall rules for a specific network
bridge (for example, lxdbr0):

lxc network set <network_bridge> ipv6.firewall false
lxc network set <network_bridge> ipv4.firewall false

firewalld: Add the bridge to the trusted zone

To allow traffic to and from the LXD bridge in firewalld, add the bridge interface to the
trusted zone. To do this permanently (so that it persists after a reboot), run the following
commands:

sudo firewall-cmd --zone=trusted --change-interface=<network_bridge> --permanent
sudo firewall-cmd --reload

For example:

259 of 954

sudo firewall-cmd --zone=trusted --change-interface=lxdbr0 --permanent
sudo firewall-cmd --reload

Warning

The commands given above show a simple example configuration. Depending on your use
case, you might need more advanced rules and the example configuration might inadver-
tently introduce a security risk.

UFW: Add rules for the bridge

If UFW has a rule to drop all unrecognized traffic, it blocks the traffic to and from the LXD
bridge. In this case, you must add rules to allow traffic to and from the bridge, as well as
allowing traffic forwarded to it.

To do so, run the following commands:

sudo ufw allow in on <network_bridge>
sudo ufw route allow in on <network_bridge>
sudo ufw route allow out on <network_bridge>

For example:

sudo ufw allow in on lxdbr0
sudo ufw route allow in on lxdbr0
sudo ufw route allow out on lxdbr0

Warning

The commands given above show a simple example configuration. Depending on your use
case, you might need more advanced rules and the example configuration might inadver-
tently introduce a security risk.

Here’s an example for more restrictive firewall rules that limit access from the guests to
the host to only DHCP and DNS and allow all outbound connections:

allow the guest to get an IP from the LXD host
sudo ufw allow in on lxdbr0 to any port 67 proto udp
sudo ufw allow in on lxdbr0 to any port 547 proto udp

allow the guest to resolve host names from the LXD host
sudo ufw allow in on lxdbr0 to any port 53

allow the guest to have access to outbound connections
CIDR4="$(lxc network get lxdbr0 ipv4.address | sed 's|\.[0-9]\+/|.0/|')"
CIDR6="$(lxc network get lxdbr0 ipv6.address | sed 's|:[0-9]\+/|:/|')"
sudo ufw route allow in on lxdbr0 from "${CIDR4}"
sudo ufw route allow in on lxdbr0 from "${CIDR6}"

260 of 954

Prevent connectivity issues with LXD and Docker

Running LXD and Docker on the same host can cause connectivity issues. A common rea-
son for these issues is that Docker sets the global FORWARD policy to drop, which prevents
LXD from forwarding traffic and thus causes the instances to lose network connectivity. See
Docker on a router120 for detailed information.

There are different ways of working around this problem:

Uninstall Docker
The easiest way to prevent such issues is to uninstall Docker from the system that runs
LXD and restart the system. You can run Docker inside a LXD container or virtual ma-
chine instead.

See Running Docker inside of a LXD container121 for detailed information.

Enable IPv4 forwarding
If uninstalling Docker is not an option, enabling IPv4 forwarding before the Docker
service starts will prevent Docker from modifying the global FORWARD policy. LXD
bridge networks enable this setting normally. However, if LXD starts after Docker, then
Docker will already have modified the global FORWARD policy.

Warning

Enabling IPv4 forwarding can cause your Docker container ports to be reachable
from any machine on your local network. Depending on your environment, this
might be undesirable. See local network container access issue122 for more infor-
mation.

To enable IPv4 forwarding before Docker starts, ensure that the following sysctl set-
ting is enabled:

net.ipv4.conf.all.forwarding=1

Important

You must make this setting persistent across host reboots.

One way of doing this is to add a file to the /etc/sysctl.d/ directory using the fol-
lowing commands:

echo "net.ipv4.conf.all.forwarding=1" > /etc/sysctl.d/99-forwarding.conf
systemctl restart systemd-sysctl

Allow egress network traffic flows
If you do not want the Docker container ports to be potentially reachable from any
machine on your local network, you can apply a more complex solution provided by
Docker.

120 https://docs.docker.com/network/packet-filtering-firewalls/#docker-on-a-router
121 https://www.youtube.com/watch?v=_fCSSEyiGro
122 https://github.com/moby/moby/issues/14041

261 of 954

https://docs.docker.com/network/packet-filtering-firewalls/#docker-on-a-router
https://www.youtube.com/watch?v=_fCSSEyiGro
https://github.com/moby/moby/issues/14041

Use the following commands to explicitly allow egress network traffic flows from your
LXD managed bridge interface:

iptables -I DOCKER-USER -i <network_bridge> -j ACCEPT
ip6tables -I DOCKER-USER -i <network_bridge> -j ACCEPT
iptables -I DOCKER-USER -o <network_bridge> -m conntrack --ctstate RELATED,
ESTABLISHED -j ACCEPT
ip6tables -I DOCKER-USER -o <network_bridge> -m conntrack --ctstate RELATED,
ESTABLISHED -j ACCEPT

For example, if your LXD managed bridge is called lxdbr0, you can allow egress traffic
to flow using the following commands:

iptables -I DOCKER-USER -i lxdbr0 -j ACCEPT
ip6tables -I DOCKER-USER -i lxdbr0 -j ACCEPT
iptables -I DOCKER-USER -o lxdbr0 -m conntrack --ctstate RELATED,ESTABLISHED
-j ACCEPT
ip6tables -I DOCKER-USER -o lxdbr0 -m conntrack --ctstate RELATED,ESTABLISHED
-j ACCEPT

Important

You must make these firewall rules persistent across host reboots. How to do this
depends on your Linux distribution.

How to integrate with systemd-resolved

Important

This guide applies to managed bridge networks only.

If the systemthat runs LXDuses systemd-resolved toperformDNS lookups, you shouldnotify
resolved of the domains that LXD can resolve. To do so, add the DNS servers and domains
provided by a LXD network bridge to the resolved configuration.

Note

The dns.mode (page 577) option must be set to managed or dynamic if you want to use this
feature.

Depending on the configured dns.domain (page 577), you might need to disable DNSSEC
in resolved to allow for DNS resolution. This can be done through the DNSSEC option in
resolved.conf.

Configure resolved

To add a network bridge to the resolved configuration, specify the DNS addresses and do-
mains for the respective bridge.

262 of 954

DNS address
You can use the IPv4 address, the IPv6 address or both. The address must be specified
without the subnet netmask.

To retrieve the IPv4 address for the bridge, use the following command:

lxc network get <network_bridge> ipv4.address

To retrieve the IPv6 address for the bridge, use the following command:

lxc network get <network_bridge> ipv6.address

DNS domain
To retrieve the DNS domain name for the bridge, use the following command:

lxc network get <network_bridge> dns.domain

If this option is not set, the default domain name is lxd.

Use the following commands to configure resolved:

resolvectl dns <network_bridge> <dns_address>
resolvectl domain <network_bridge> ~<dns_domain>

Note

When configuring resolved with the DNS domain name, you should prefix the name with
~. The ~ tells resolved to use the respective name server to look up only this domain.

Depending on which shell you use, you might need to include the DNS domain in quotes
to prevent the ~ from being expanded.

For example:

resolvectl dns lxdbr0 192.0.2.10
resolvectl domain lxdbr0 '~lxd'

Note

Alternatively, you can use the systemd-resolve command. This command has been depre-
cated in newer releases of systemd, but it is still provided for backwards compatibility.

systemd-resolve --interface <network_bridge> --set-domain ~<dns_domain> --set-
dns <dns_address>

The resolved configuration persists as long as the bridge exists. You must repeat the com-
mands after each reboot and after LXD is restarted, ormake it persistent as described below.

263 of 954

Make the resolved configuration persistent

There are two approaches to automating systemd-resolved configuration to ensure that it
persists when the LXD bridge network is re-created. Use only one of these approaches, de-
scribed below.

The first approach is recommended because it is more resilient. It applies your desired con-
figuration whenever your system is rebooted, and whenever the LXD bridge network is re-
created outside of a system reboot. For example, updating and restarting LXD can occasion-
ally cause its bridge network to be re-created.

If you are unable to use the recommended approach, the alternative approach can be used.
The alternative approach applies your desired configuration only when your system is re-
booted. If LXD re-creates its bridge network outside of a system reboot, you must reapply
the configuration manually.

Recommended approach

Create a systemd network file

Get the network bridge address with the following command:

lxc network get lxdbr0 ipv4.address

Create a systemd network file named /etc/systemd/network/<network_bridge>.networkwith
the following content:

[Match]
Name=<network_bridge>
[Network]
Address=<network_bridge_address>
DNS=<dns_address>
Domains=~<dns_domain>

Example file content for /etc/systemd/network/lxdbr0.network (insert your ownDNS value):

[Match]
Name=lxdbr0
[Network]
Address=10.167.146.1/24
DNS=10.167.146.1
Domains=~lxd

Apply the updated configuration

If you have rebooted since you first installed LXD, you only need to reload systemd-resolved:

systemctl restart systemd-resolved.service

If you have not rebooted your system since you first installed LXD, you must either:

1. reboot the system, or

2. reload systemd-networkd (to reload the .network files) and restart lxd (to add the rout-
ing):

264 of 954

networkctl reload
snap restart lxd

You can test that the updated configuration was applied by running:

resolvectl status

The output should contain a section similar to the example shown below. You should see the
configured DNS server and the ~lxd domain:

[...]
Link 4 (lxdbr0)

Current Scopes: DNS
Protocols: -DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported

Current DNS Server: 10.167.146.1
DNS Servers: 10.167.146.1
DNS Domain: ~lxd

[...]

Alternative approach

Warning

This approach only automates applying your desired configurationwhen your system is re-
booted. If LXD re-creates its bridge network outside of a system reboot, youmust reapply
the configuration manually with the following command:

systemctl restart lxd-dns-<bridge_network>.service

Example:

systemctl restart lxd-dns-lxdbr0.service

Create a systemd unit file named /etc/systemd/system/lxd-dns-<network_bridge>.service
with the following content:

[Unit]
Description=LXD per-link DNS configuration for <network_bridge>
BindsTo=sys-subsystem-net-devices-<network_bridge>.device
After=sys-subsystem-net-devices-<network_bridge>.device

[Service]
Type=oneshot
ExecStart=/usr/bin/resolvectl dns <network_bridge> <dns_address>
ExecStart=/usr/bin/resolvectl domain <network_bridge> <dns_domain>
ExecStopPost=/usr/bin/resolvectl revert <network_bridge>
RemainAfterExit=yes

[Install]
WantedBy=sys-subsystem-net-devices-<network_bridge>.device

265 of 954

Replace <network_bridge> in the file name and content with the name of your bridge (for
example, lxdbr0). Also replace <dns_address> and <dns_domain> as described in Configure
resolved (page 262).

Then enable and start the service with the following commands:

sudo systemctl daemon-reload
sudo systemctl enable --now lxd-dns-<network_bridge>

If the respective bridge already exists (because LXD is already running), you can use the fol-
lowing command to check that the new service has started:

sudo systemctl status lxd-dns-<network_bridge>.service

You should see output similar to the following:

~$ sudo systemctl status lxd-dns-lxdbr0.service � lxd-dns-lxdbr0.service -
LXD per-link DNS configuration for lxdbr0 Loaded: loaded
(/etc/systemd/system/lxd-dns-lxdbr0.service; enabled; vendor preset:
enabled) Active: inactive (dead) since Mon 2021-06-14 17:03:12 BST; 1min 2s
ago Process: 9433 ExecStart=/usr/bin/resolvectl dns lxdbr0 n.n.n.n
(code=exited, status=0/SUCCESS) Process: 9434 ExecStart=/usr/bin/resolvectl
domain lxdbr0 ~lxd (code=exited, status=0/SUCCESS) Main PID: 9434
(code=exited, status=0/SUCCESS)

To check that resolved has applied the settings, use resolvectl status <network_bridge>:

~$ resolvectl status lxdbr0 Link 6 (lxdbr0) Current Scopes: DNSDefaultRoute
setting: no LLMNR setting: yesMulticastDNS setting: no DNSOverTLS setting:
no DNSSEC setting: no DNSSEC supported: no Current DNS Server: n.n.n.n DNS
Servers: n.n.n.n DNS Domain: ~lxd

How to configure specific networking features (OVN networks only):

How to set up OVN with LXD

See the following sections for how to set up a basic OVN network, either as a standalone
network or to host a small LXD cluster.

Set up a standalone OVN network

Complete the following steps to create a standalone OVN network that is connected to a
managed LXD parent bridge network (for example, lxdbr0) for outbound connectivity.

1. Install the OVN tools on the local server:

sudo apt install ovn-host ovn-central

2. Configure the OVN integration bridge:

sudo ovs-vsctl set open_vswitch . \
external_ids:ovn-remote=unix:/var/run/ovn/ovnsb_db.sock \

(continues on next page)

266 of 954

(continued from previous page)

external_ids:ovn-encap-type=geneve \
external_ids:ovn-encap-ip=127.0.0.1

3. Create an OVN network:

lxc network set <parent_network> ipv4.dhcp.ranges=<IP_range> ipv4.ovn.ranges=
<IP_range>
lxc network create ovntest --type=ovn network=<parent_network>

4. Create an instance that uses the ovntest network:

lxc init ubuntu:24.04 c1
lxc config device override c1 eth0 network=ovntest
lxc start c1

5. Run lxc list (page 785) to show the instance information:

~$ lxc list
+------+---------+---------------------+--+-----------+-----------+|
NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS
|+------+---------+---------------------+--+-----------+-----------+|
c1 | RUNNING | 192.0.2.2 (eth0) | 2001:db8:cff3:5089:216:3eff:fef0:549f
(eth0) | CONTAINER | 0
|+------+---------+---------------------+--+-----------+-----------+

Set up a LXD cluster on OVN

Complete the following steps to set up a LXD cluster that uses an OVN network.

Just like LXD, the distributed database for OVN must be run on a cluster that consists of
an odd number of members. The following instructions use the minimum of three servers,
which run both the distributed database for OVN and the OVN controller. In addition, you
can add any number of servers to the LXD cluster that run only the OVN controller. See the
linked YouTube video for the complete tutorial using four machines.

1. Complete the following steps on the three machines that you want to run the dis-
tributed database for OVN:

1. Install the OVN tools:

sudo apt install ovn-central ovn-host

2. Mark the OVN services as enabled to ensure that they are started when the ma-
chine boots:

systemctl enable ovn-central
systemctl enable ovn-host

3. Stop OVN for now:

systemctl stop ovn-central

4. Note down the IP address of the machine:

267 of 954

ip -4 a

5. Open /etc/default/ovn-central for editing.

6. Paste in one of the following configurations (replace <server_1>, <server_2> and
<server_3>with the IP addresses of the respectivemachines, and <local>with the
IP address of the machine that you are on).

• For the first machine:

OVN_CTL_OPTS=" \
--db-nb-addr=<local> \
--db-nb-create-insecure-remote=yes \
--db-sb-addr=<local> \
--db-sb-create-insecure-remote=yes \
--db-nb-cluster-local-addr=<local> \
--db-sb-cluster-local-addr=<local> \
--ovn-northd-nb-db=tcp:<server_1>:6641,tcp:<server_2>:6641,tcp:

<server_3>:6641 \
--ovn-northd-sb-db=tcp:<server_1>:6642,tcp:<server_2>:6642,tcp:

<server_3>:6642"

• For the second and third machine:

OVN_CTL_OPTS=" \
--db-nb-addr=<local> \

--db-nb-cluster-remote-addr=<server_1> \
--db-nb-create-insecure-remote=yes \
--db-sb-addr=<local> \
--db-sb-cluster-remote-addr=<server_1> \
--db-sb-create-insecure-remote=yes \
--db-nb-cluster-local-addr=<local> \
--db-sb-cluster-local-addr=<local> \
--ovn-northd-nb-db=tcp:<server_1>:6641,tcp:<server_2>:6641,tcp:

<server_3>:6641 \
--ovn-northd-sb-db=tcp:<server_1>:6642,tcp:<server_2>:6642,tcp:

<server_3>:6642"

7. Start OVN:

systemctl start ovn-central

2. On the remaining machines, install only ovn-host and make sure it is enabled:

sudo apt install ovn-host
systemctl enable ovn-host

3. On all machines, configure Open vSwitch (replace the variables as described above):

sudo ovs-vsctl set open_vswitch . \
external_ids:ovn-remote=tcp:<server_1>:6642,tcp:<server_2>:6642,tcp:

<server_3>:6642 \

(continues on next page)

268 of 954

(continued from previous page)

external_ids:ovn-encap-type=geneve \
external_ids:ovn-encap-ip=<local>

4. Create a LXD cluster by running lxd init on all machines. On the first machine, cre-
ate the cluster. Then join the other machines with tokens by running lxc cluster add
<machine_name> (page 716) on the first machine and specifying the token when initial-
izing LXD on the other machine.

5. On the first machine, create and configure the uplink network:

lxc network create UPLINK --type=physical parent=<uplink_interface> --target=
<machine_name_1>
lxc network create UPLINK --type=physical parent=<uplink_interface> --target=
<machine_name_2>
lxc network create UPLINK --type=physical parent=<uplink_interface> --target=
<machine_name_3>
lxc network create UPLINK --type=physical parent=<uplink_interface> --target=
<machine_name_4>
lxc network create UPLINK --type=physical \

ipv4.ovn.ranges=<IP_range> \
ipv6.ovn.ranges=<IP_range> \
ipv4.gateway=<gateway> \
ipv6.gateway=<gateway> \
dns.nameservers=<name_server>

To determine the required values:

Uplink interface
A high availability OVN cluster requires a shared layer 2 network, so that the ac-
tiveOVN chassis canmove between clustermembers (which effectively allows the
OVN router’s external IP to be reachable from a different host).

Therefore, you must specify either an unmanaged bridge interface or an unused
physical interface as the parent for the physical network that is used for OVN up-
link. The instructions assume that you are using a manually created unmanaged
bridge. See How to configure network bridges123 for instructions on how to set
up this bridge.

Gateway
Run ip -4 route show default and ip -6 route show default.

Name server
Run resolvectl.

IP ranges
Use suitable IP ranges based on the assigned IPs.

6. Still on the first machine, configure LXD to be able to communicate with the OVN DB
cluster. To do so, find the value for ovn-northd-nb-db in /etc/default/ovn-central and
provide it to LXD with the following command:

123 https://netplan.readthedocs.io/en/stable/examples/#how-to-configure-network-bridges

269 of 954

https://netplan.readthedocs.io/en/stable/examples/#how-to-configure-network-bridges

lxc config set network.ovn.northbound_connection <ovn-northd-nb-db>

Note

If you are using a MicroOVN deployment, pass the value of the MicroOVN node IP
address you want to target. Prefix the IP address with ssl:, and suffix it with the
:6641 port number that corresponds to the OVN central service within MicroOVN.

7. Finally, create the actual OVN network (on the first machine):

lxc network create my-ovn --type=ovn

8. To test the OVN network, create some instances and check the network connectivity:

lxc launch ubuntu:24.04 c1 --network my-ovn
lxc launch ubuntu:24.04 c2 --network my-ovn
lxc launch ubuntu:24.04 c3 --network my-ovn
lxc launch ubuntu:24.04 c4 --network my-ovn
lxc list
lxc exec c4 -- bash
ping <IP of c1>
ping <nameserver>
ping6 -n www.example.com

Send OVN logs to LXD

Complete the following steps to have the OVN controller send its logs to LXD.

1. Enable the syslog socket:

lxc config set core.syslog_socket=true

2. Open /etc/default/ovn-host for editing.

3. Paste the following configuration:

OVN_CTL_OPTS=" \
--ovn-controller-log='-vsyslog:info --syslog-method=unix:/var/snap/

lxd/common/lxd/syslog.socket'"

4. Restart the OVN controller:

systemctl restart ovn-controller.service

You can now use lxc monitor (page 787) to see logs from the OVN controller:

lxc monitor --type=ovn

You can also send the logs to Loki. To do so, add the ovn value to the loki.types (page 411)
configuration key, for example:

270 of 954

lxc config set loki.types=ovn

Tip

You can include logs for OVN northd, OVN north-bound ovsdb-server, and OVN south-
bound ovsdb-server as well. To do so, edit /etc/default/ovn-central:

OVN_CTL_OPTS=" \
--ovn-northd-log='-vsyslog:info --syslog-method=unix:/var/snap/lxd/common/

lxd/syslog.socket' \
--ovn-nb-log='-vsyslog:info --syslog-method=unix:/var/snap/lxd/common/lxd/

syslog.socket' \
--ovn-sb-log='-vsyslog:info --syslog-method=unix:/var/snap/lxd/common/lxd/

syslog.socket'"

sudo systemctl restart ovn-central.service

How to configure network load balancers

Note

Network load balancers are currently available for the OVN network (page 587).

Network loadbalancers are similar to forwards in that they allow specific ports on an external
IP address to be forwarded to specific ports on internal IP addresses in the network that the
load balancer belongs to.

The difference between load balancers and forwards is that load balancers can be used to
share ingress trafficbetweenmultiple internal backend addresses. This feature can be useful
if you have limited external IP addresses or want to share a single external address and ports
over multiple instances.

A load balancer is made up of:

• A single external listen IP address.

• One or more named backends consisting of an internal IP and optional port ranges.

• One or more listen port ranges that are configured to forward to one or more named
backends.

Create a network load balancer

Use the following command to create a network load balancer:

lxc network load-balancer create <network_name> [<listen_address>] [--allocate=ipv
{4,6}] [configuration_options...]

Example with a specified listen address:

lxc network load-balancer create my-ovn-network 192.0.2.178

271 of 954

Example with an allocated listen address:

lxc network load-balancer create my-ovn-network --allocate=ipv4

Each load balancer is assigned to a network.

Listen addresses are subject to restrictions. If a listen address is not specified, the --allocate
flagmust be provided. SeeRequirements for listen addresses (page 273) formore information
about which addresses can be load-balanced, as well as how to use the --allocate flag.

Load balancer properties

Network load balancers have the following properties: backends List of backend specifica-
tions (page 272)

Key: backends
Type: backend list
Required: no

See Configure backends (page 273).

config User-provided free-form key/value pairs (page 272)

Key: config
Type: string set
Required: no

The only supported keys are user.* custom keys.

description Description of the network load balancer (page 272)

Key: description
Type: string
Required: no

listen_address IP address to listen on (page 272)

Key: listen_address
Type: string
Required: no

ports List of port specifications (page 272)

Key: ports
Type: port list
Required: no

See Configure ports (page 274).

272 of 954

Requirements for listen addresses

The following requirements must be met for valid listen addresses:

• Allowed listen addresses must be defined in the uplink network’s ipv{n}.routes set-
tings or the project’s restricted.networks.subnets (page 519) setting.

– If you specify a listen address when creating a load balancer, it must be within the
range of allowed addresses.

– If you do not specify a listen address, you must use either --allocate ipv4 or
--allocate ipv6. This will allocate a listen address from the range of allowed ad-
dresses.

• The listen address must not overlap with a subnet that is in use with another network
or entity in that network.

Configure backends

You can add backend specifications to the network load balancer to define target addresses
(and optionally ports). The backend target address must be within the same subnet as the
network associated with the load balancer.

Use the following command to add a backend specification:

lxc network load-balancer backend add <network_name> <listen_address> <backend_
name> <target_address> [<target_ports>]

Example:

lxc network load-balancer backend add my-ovn-network 192.0.2.178 test-backend 10.
41.211.5

If no target ports are specified when adding the backend:

• The load balancer uses the listen ports defined in the port specification (page 274) as-
sociated with that backend, if any.

• If no such listen ports are defined, the backend has no target ports and is inactive. You
must either add a port specification (page 274) or edit the load balancer configuration
(page 275) to include a target_port value in the backend specification or a listen_port
value in the ports specification.

If you want to forward the traffic to different ports, you have two options:

• Specify a single target port to forward traffic from all listen ports to this target port.

• Specify a set of target ports with the same number of ports as the listen ports to for-
ward traffic from the first listen port to the first target port, the second listen port to
the second target port, and so on.

Backend properties

Network load balancer backends have the following properties: descriptionDescription of
the backend (page 273)

273 of 954

Key: description
Type: string
Required: no

name Name of the backend (page 274)

Key: name
Type: string
Required: yes

target_address IP address to forward to (page 274)

Key: target_address
Type: string
Required: yes

target_port Target port or ports (page 274)

Key: target_port
Type: string
Default: same as listen_port (page 275)
Required: no

For example: 70,80-90 or 90

Configure ports

You can add port specifications to the network load balancer to forward traffic from specific
ports on the listen address to specific ports on one or more target backends.

Use the following command to add a port specification:

lxc network load-balancer port add <network_name> <listen_address> <protocol>
<listen_ports> <backend_name>[,<backend_name>...]

Example:

lxc network load-balancer port add my-ovn-network 192.0.2.178 tcp 80 test-backend

You can specify a single listen port or a set of ports. The backend(s) specified must have
target port(s) settings compatible with the port’s listen port(s) setting.

Port properties

Network load balancer ports have the following properties: descriptionDescription of the
port or ports (page 274)

274 of 954

Key: description
Type: string
Required: no

listen_port Listen port or ports (page 275)

Key: listen_port
Type: string
Required: yes

For example: 80,90-100

protocol Protocol for the port or ports (page 275)

Key: protocol
Type: string
Required: yes

Possible values are tcp and udp.

target_backend Backend name or names to forward to (page 275)

Key: target_backend
Type: backend list
Required: yes

Edit a network load balancer

Use the following command to edit a network load balancer:

lxc network load-balancer edit <network_name> <listen_address>

This command opens the network load balancer in YAML format for editing. You can edit the
general configuration, as well as the backend and port specifications.

Example load balancer configuration YAML file:

listen_address: 192.0.2.178
location: ""
description: ""
config: {}
backends:
- name: test-backend
description: ""
target_port: ""
target_address: 10.41.211.5

ports:
- description: ""

(continues on next page)

275 of 954

(continued from previous page)

protocol: tcp
listen_port: 70,80-90
target_backend:
- test-backend

Delete a network load balancer

Use the following command to delete a network load balancer:

lxc network load-balancer delete <network_name> <listen_address>

How to create OVN peer routing relationships

Important

This guide applies to OVN networks only.

By default, traffic between two OVN networks goes through the uplink network. This path
is inefficient, however, because packets must leave the OVN subsystem and transit through
the host’s networking stack (and, potentially, an external network) and back into the OVN
subsystem of the target network. Depending on how the host’s networking is configured,
thismight limit the available bandwidth (if theOVNoverlay network is on a higher bandwidth
network than the host’s external network).

Therefore, LXD allows creating peer routing relationships between two OVN networks. Us-
ing this method, traffic between the two networks can go directly from one OVN network to
the other and thus stayswithin theOVN subsystem, rather than transiting through the uplink
network.

Create a routing relationship between networks

Toaddapeer routing relationshipbetween twonetworks, youmust create anetworkpeering
for both networks. The relationship must be mutual. If you set it up on only one network,
the routing relationship will be in pending state, but not active.

When creating the peer routing relationship, specify a peering name that identifies the rela-
tionship for the respective network. The name can be chosen freely, and you can use it later
to edit or delete the relationship.

Use the following commands to create a peer routing relationship between networks in the
same project:

lxc network peer create <network1> <peering_name> <network2> [configuration_
options]
lxc network peer create <network2> <peering_name> <network1> [configuration_
options]

You can also create peer routing relationships between OVN networks in different projects:

276 of 954

lxc network peer create <network1> <peering_name> <project2/network2>
[configuration_options] --project=<project1>
lxc network peer create <network2> <peering_name> <project1/network1>
[configuration_options] --project=<project2>

Important

If the project or the network name is incorrect, the command will not return any error
indicating that the respective project/network does not exist, and the routing relation-
ship will remain in pending state. This behavior prevents users in a different project from
discovering whether a project and network exists.

Peering properties

Peer routing relationships have the following properties: config User-provided free-form
key/value pairs (page 277)

Key: config
Type: string set
Required: no

The only supported keys are user.* custom keys.

description Description of the network peering (page 277)

Key: description
Type: string
Required: no

name Name of the network peering on the local network (page 277)

Key: name
Type: string
Required: yes

status Status indicating if pending or created (page 277)

Key: status
Type: string
Required: –

Indicates if mutual peering exists with the target network. This property is read-only and
cannot be updated.

target_networkWhich network to create a peering with (page 277)

277 of 954

Key: target_network
Type: string
Required: yes

This option must be set at create time.

target_projectWhich project the target network exists in (page 278)

Key: target_project
Type: string
Required: yes

This option must be set at create time.

List routing relationships

To list all network peerings for a network, use the following command:

lxc network peer list <network>

Edit a routing relationship

Use the following command to edit a network peering:

lxc network peer edit <network> <peering_name>

This command opens the network peering in YAML format for editing.

How to troubleshoot your networking setup:

How to display IPAM information of a LXD deployment

IPAM (IP Address Management) is a method used to plan, track, andmanage the information
associated with a computer network’s IP address space. In essence, it’s a way of organizing,
monitoring, and manipulating the IP space in a network.

Checking the IPAM information for your LXD setup can help you debug networking issues.
You can see which IP addresses are used for instances, network interfaces, forwards, and
load balancers and use this information to track down where traffic is lost.

To display IPAM information, enter the following command:

lxc network list-allocations

By default, this command shows the IPAM information for the defaultproject. You can select
a different project with the --project flag, or specify --all-projects to display the informa-
tion for all projects.

The resulting output will look something like this:

278 of 954

+----------------------+-----------------+----------+------+-------------------+
| USED BY | ADDRESS | TYPE | NAT | HARDWARE ADDRESS |
+----------------------+-----------------+----------+------+-------------------+
| /1.0/networks/lxdbr0 | 192.0.2.0/24 | network | true | |
+----------------------+-----------------+----------+------+-------------------+
| /1.0/networks/lxdbr0 | 2001:db8::/32 | network | true | |
+----------------------+-----------------+----------+------+-------------------+
| /1.0/instances/u1 | 2001:db8::2/128 | instance | true | 00:16:3e:04:f0:95 |
+----------------------+-----------------+----------+------+-------------------+
| /1.0/instances/u1 | 192.0.2.2/32 | instance | true | 00:16:3e:04:f0:95 |
+----------------------+-----------------+----------+------+-------------------+

Each listed entry lists the IP address (in CIDR notation) of one of the following LXD entities:
network, network-forward, network-load-balancer, and instance. An entry contains an IP ad-
dress using the CIDR notation. It also contains a LXD resource URI, the type of the entity,
whether it is in NAT mode, and the hardware address (only for the instance entity).

View DHCP leases for fully controlled networks

LXD can provide the currently held DHCP leases for fully controlled networks (page 354):

lxc network list-leases <network_name>

For example, using lxdbr0 from above:

+-----------+-------------------+-------------+---------+
| HOSTNAME | MAC ADDRESS | IP ADDRESS | TYPE |
+-----------+-------------------+-------------+---------+
| lxdbr0.gw | | 192.0.2.1 | GATEWAY |
+-----------+-------------------+-------------+---------+
| lxdbr0.gw | | 2001:db8::1 | GATEWAY |
+-----------+----------+--------+-------------+---------+
| u1 | 00:16:3e:04:f0:95 | 192.0.2.2 | DYNAMIC |
+-----------+-------------------+-------------+---------+
| u1 | 00:16:3e:04:f0:95 | 2001:db8::2 | DYNAMIC |
+-----------+-------------------+-------------+---------+

Related topics

Explanation:

• Networking setups (page 353)

Reference:

• Networks (page 573)

2.3. Get ready for production
Once you are ready for production, consider setting up a LXD cluster to support the required
load. You should also monitor your server or servers and configure them for the expected
load.

279 of 954

2.3.1. Clustering
The following how-to guides cover common operations related to clustering.

How to create and configure a cluster:

How to form a cluster

When forming a LXD cluster, you start with a bootstrap server. This bootstrap server can be
an existing LXD server or a newly installed one.

After initializing the bootstrap server, you can join additional servers to the cluster. See Clus-
ter members (page 370) for more information.

You can form the LXD cluster interactively by providing configuration information during the
initialization process or by using preseed files that contain the full configuration.

To quickly and automatically set up a basic LXD cluster, you can useMicroCloud (page 284).

Configure the cluster interactively

To form your cluster, you must first run lxd init on the bootstrap server. After that, run it
on the other servers that you want to join to the cluster.

When forming a cluster interactively, you answer the questions that lxd init prompts you
with to configure the cluster.

Initialize the bootstrap server

To initialize the bootstrap server, run lxd init and answer the questions according to your
desired configuration.

You can accept the default values for most questions, but make sure to answer the following
questions accordingly:

• Would you like to use LXD clustering?

Select yes.

• What IP address or DNS name should be used to reach this server?

Make sure to use an IP or DNS address that other servers can reach.

• Are you joining an existing cluster?

Select no.

~$ lxd init Would you like to use LXD clustering? (yes/no) [default=no]:
yesWhat IP address or DNS name should be used to reach this server?
[default=192.0.2.101]:Are you joining an existing cluster? (yes/no)
[default=no]: noWhat member name should be used to identify this server in
the cluster? [default=server1]:Do you want to configure a new local storage
pool? (yes/no) [default=yes]:Name of the storage backend to use (btrfs, dir,
lvm, zfs) [default=zfs]:Create a new ZFS pool? (yes/no) [default=yes]:Would
you like to use an existing empty block device (e.g. a disk or partition)?
(yes/no) [default=no]:Size in GiB of the new loop device (1GiB minimum)
[default=9GiB]:Do you want to configure a new remote storage pool? (yes/no)
[default=no]:Would you like to connect to a MAAS server? (yes/no)

280 of 954

[default=no]:Would you like to configure LXD to use an existing bridge or
host interface? (yes/no) [default=no]:Would you like to create a new Fan
overlay network? (yes/no) [default=yes]:What subnet should be used as the Fan
underlay? [default=auto]:Would you like stale cached images to be updated
automatically? (yes/no) [default=yes]:Would you like a YAML "lxd init"
preseed to be printed? (yes/no) [default=no]:

After the initialization process finishes, your first cluster member should be up and available
on your network. You can check this with lxc cluster list (page 726).

Join additional servers

You can now join further servers to the cluster.

Note

The servers that you add should be newly installed LXD servers. If you are using existing
servers, make sure to clear their contents before joining them, because any existing data
on them will be lost.

To join a server to the cluster, run lxd init on the cluster. Joining an existing cluster requires
root privileges, so make sure to run the command as root or with sudo.

Basically, the initialization process consists of the following steps:

1. Request to join an existing cluster.

Answer the first questions that lxd init asks accordingly:

• Would you like to use LXD clustering?

Select yes.

• What IP address or DNS name should be used to reach this server?

Make sure to use an IP or DNS address that other servers can reach.

• Are you joining an existing cluster?

Select yes.

2. Authenticate with the cluster.

Generate a cluster join token for each new member. To do so, run the following com-
mand on an existing cluster member (for example, the bootstrap server):

lxc cluster add <new_member_name>

This command returns a single-use join token that is valid for a configurable time (see
cluster.join_token_expiry (page 408)). Enter this token when lxd init prompts you
for the join token.

The join token contains the addresses of the existing online members, as well as a
single-use secret and the fingerprint of the cluster certificate. This reduces the amount
of questions that youmust answer during lxd init, because the join token can be used
to answer these questions automatically.

281 of 954

3. Confirm that all local data for the server is lost when joining a cluster.

4. Configure server-specific settings (seeMember configuration (page 372) formore infor-
mation).

You can accept the default values or specify custom values for each server.

~$ sudo lxd init Would you like to use LXD clustering? (yes/no) [default=no]:
yesWhat IP address or DNS name should be used to reach this server?
[default=192.0.2.102]:Are you joining an existing cluster? (yes/no)
[default=no]: yesDo you have a
join token? (yes/no/[token]) [default=no]: yesPlease provide join token: eyJz-
ZXJ2ZXJfbmFtZSI6InJwaTAxIiwiZmluZ2VycHJpbnQiOiIyNjZjZmExZDk0ZDZiMjk2Nzk0YjU0YzJlYzdjOTMwNDA5ZjIzNjdmNmM1YjRhZWVjOGM0YjAxYTc2NjU0MjgxIiwiYWRkcmVzc2VzIjpbIjE3Mi4xNy4zMC4xODM6ODQ0MyJdLCJzZWNyZXQiOiJmZGI1OTgyNjgxNTQ2ZGQyNGE2ZGE0Mzg5MTUyOGM1ZGUxNWNmYmQ5M2M3OTU3ODNkNGI5OGU4MTQ4MWMzNmUwIn0=All
existing data is lost when joining a cluster, continue? (yes/no) [default=no]
yesChoose "size" property for storage pool "local":Choose "source" property
for storage pool "local":Choose "zfs.pool_name" property for storage pool
"local":Would you like a YAML "lxd init" preseed to be printed? (yes/no)
[default=no]:

After the initialization process finishes, your server is added as a new cluster member. You
can check this with lxc cluster list (page 726).

Configure the cluster through preseed files

To form your cluster, you must first run lxd init on the bootstrap server. After that, run it
on the other servers that you want to join to the cluster.

Instead of answering the lxd init questions interactively, you can provide the required in-
formation through preseedfiles. You can feed afile to lxd initwith the following command:

cat <preseed-file> | lxd init --preseed

You need a different preseed file for every server.

Initialize the bootstrap server

To enable clustering, the preseed file for the bootstrap server must contain the following
fields:

config:
core.https_address: <IP_address_and_port>

cluster:
server_name: <server_name>
enabled: true

Here is an example preseed file for the bootstrap server:

config:
core.https_address: 192.0.2.101:8443
images.auto_update_interval: 15

storage_pools:
- name: default
driver: dir

(continues on next page)

282 of 954

(continued from previous page)

- name: my-pool
driver: zfs

networks:
- name: lxdbr0
type: bridge

profiles:
- name: default
devices:

root:
path: /
pool: my-pool
type: disk

eth0:
name: eth0
nictype: bridged
parent: lxdbr0
type: nic

cluster:
server_name: server1
enabled: true

See Preseed YAML file fields (page 508) for the complete fields of the preseed YAML file.

Join additional servers

The preseed files for new cluster members require only a cluster section with data and con-
figuration values that are specific to the joining server.

The preseed file for additional servers must include the following fields:

cluster:
enabled: true
server_address: <IP_address_of_server>
cluster_token: <join_token>

Here is an example preseed file for a new cluster member:

cluster:
enabled: true
server_address: 192.0.2.102:8443
cluster_token:

eyJzZXJ2ZXJfbmFtZSI6Im5vZGUyIiwiZmluZ2VycHJpbnQiOiJjZjlmNmVhMWIzYjhiNjgxNzQ1YTY1NTY2YjM3ZGUwOTUzNjRmM2MxMDAwMGNjZWQyOTk5NDU5YzY2MGIxNWQ4IiwiYWRkcmVzc2VzIjpbIjE3Mi4xNy4zMC4xODM6ODQ0MyJdLCJzZWNyZXQiOiIxNGJmY2EzMDhkOTNhY2E3MGJmYThkMzE0NWM4NWY3YmE0ZmU1YmYyNmJiNDhmMmUwNzhhOGZhMDczZDc0YTFiIn0=
member_config:
- entity: storage-pool

name: default
key: source
value: ""

- entity: storage-pool
name: my-pool
key: source

(continues on next page)

283 of 954

(continued from previous page)

value: ""
- entity: storage-pool

name: my-pool
key: driver
value: "zfs"

See Preseed YAML file fields (page 508) for the complete fields of the preseed YAML file.

Use MicroCloud

Instead of setting up your LXD cluster manually, you can use MicroCloud124 to get a fully
highly available LXD cluster with OVN and with Ceph storage up and running.

To install the required snaps, run the following command:

snap install lxd microceph microovn microcloud

Then start the bootstrapping process with the following command:

microcloud init

If youwant to set up amulti-machineMicroCloud, run the following commandon all the other
machines:

microcloud join

Following the CLI prompts, a working MicroCloud will be ready within minutes.

When the initialization is complete, you’ll have anOVN cluster, a Ceph cluster and a LXD clus-
ter, and LXD itself will have been configured with both networking and storage suitable for
use in a cluster.

See the MicroCloud documentation125 for more information.

How to manage a cluster

After your cluster is formed, use lxc cluster list (page 726) to see a list of its members
and their status:

~$ lxc cluster list
+---------+----------------------------+------------------+--------------+----------------+-------------+--------+-------------------+|
NAME | URL | ROLES | ARCHITECTURE | FAILURE DOMAIN | DESCRIPTION | STATE |
MESSAGE
|+---------+----------------------------+------------------+--------------+----------------+-------------+--------+-------------------+|
server1 | https://192.0.2.101:8443 | database-leader | x86_64 | default | |
ONLINE | Fully operational || | | database | | | | |
|+---------+----------------------------+------------------+--------------+----------------+-------------+--------+-------------------+|
server2 | https://192.0.
2.102:8443 | database-standby | aarch64 | default | | ONLINE | Fully operational
|+---------+----------------------------+------------------+--------------+----------------+-------------+--------+-------------------+|

124 https://canonical.com/microcloud
125 https://documentation.ubuntu.com/microcloud/latest/microcloud/

284 of 954

https://canonical.com/microcloud
https://documentation.ubuntu.com/microcloud/latest/microcloud/

server3 | https://192.0.
2.103:8443 | database-standby | aarch64 | default | | ONLINE | Fully operational
|+---------+----------------------------+------------------+--------------+----------------+-------------+--------+-------------------+

To seemore detailed information about an individual clustermember, run the following com-
mand:

lxc cluster show <member_name>

To see state and usage information for a cluster member, run the following command:

lxc cluster info <member_name>

Configure your cluster

To configure your cluster, use lxc config (page 738):

lxc config set <server-config-option> <value>

Example:

lxc config set cluster.max_voters 5

All LXD server configuration options (page 401) can be applied to cluster members.

Keep inmind that someoptions are global in scope, and others are local. When you configure
an optionwith global scope on any clustermember, the changes are propagated to the other
cluster members through the distributed database. The locally scoped options are set only
on the clustermemberwhere you configure them, unless you use the --targetflag to specify
a different cluster member.

In addition to the server configuration, there are cluster member configuration options
(page 602) that are specific to each cluster member. To set these configuration values, use
lxc cluster set (page 731):

lxc cluster set <member-name> <member-config-option> <value>

Example:

lxc cluster set server1 scheduler.instance manual

Alternatively, you can use the use the edit command (page 286).

Assign member roles

To add or remove amember role (page 370) for a cluster member, use the lxc cluster role
(page 729) command:

lxc cluster role add <member-name> <role>

Example:

285 of 954

lxc cluster role add server1 event-hub

Note

You can add or remove only those roles that are not assigned automatically by LXD. To
find out which roles are automatically assigned, see: Member roles (page 370).

Edit the cluster member configuration

To edit all properties of a cluster member, including the member-specific configuration, the
member roles, the failure domain and the cluster groups, use the following command:

lxc cluster edit

For more information, see: lxc cluster edit (page 717).

Evacuate and restore cluster members

There are scenarios where you might need to empty a given cluster member of all its in-
stances (for example, for routine maintenance like applying system updates that require a
reboot, or to perform hardware changes). The evacuate (page 286) and restore (page 286)
commands simplify this process.

Evacuate a cluster member

Theevacuationprocessmigrates all instances on agiven clustermember toothermembers in
its cluster. The givenmember is then set to an “evacuated” state, which prevents the creation
of any instances on it.

To begin this process, use the lxc cluster evacuate (page 718) command:

lxc cluster evacuate <member_name>

Restore an evacuated cluster member

When the evacuated cluster member is available again, use the lxc cluster restore
(page 728) command to return it to a normal running state:

lxc cluster restore <member_name>

This command removes the cluster member’s “evacuated” state, migrates the evacuated in-
stances back from the cluster members that were temporarily holding them (using live mi-
gration if applicable), then restarts any instances that were shut down.

Evacuation mode and live migration

You can control how each instance is migrated, via the cluster.evacuate (page 416) instance
configuration key. This key applies to the migrations performed during both evacuation and
restoration. By default, any instances that are suitable for live migration (page 136) will be
live-migrated, and any that are not suitable will be shut down. See the cluster.evacuate
(page 416) reference documentation for further information.

286 of 954

If an instance is not suitable for livemigration, it will be shut down cleanly before evacuation,
respecting the boot.host_shutdown_timeout (page 419) configuration key.

Note

Any instance that you plan to live-migrate must have its migration.stateful (page 429)
configuration option set to true. Be aware that this option can only be set while the in-
stance is stopped. Thus, for any instance to have the ability to be live-migrated in the
future, this option must be set to true ahead of time.

Automatic evacuation

If you set the cluster.healing_threshold (page 407) configuration to a non-zero value, in-
stances are automatically evacuated if a cluster member goes offline.

When the evacuated server is available again, you must manually restore it.

Delete cluster members

To cleanly delete a member from the cluster, use the following command:

lxc cluster remove <member_name>

Youcanonly cleanly deletemembers that areonline and thatdon’t haveany instances located
on them.

Deal with offline cluster members

If a clustermember goes permanently offline, you can force-remove it from the cluster. Make
sure to do so as soon as you discover that you cannot recover the member. If you keep an
offline member in your cluster, you might encounter issues when upgrading your cluster to
a newer version.

To force-remove a clustermember, enter the following command on one of the clustermem-
bers that is still online:

lxc cluster remove --force <member_name>

Caution

Force-removing a cluster member will leave the member’s database in an inconsistent
state (for example, the storage pool on the member will not be removed). As a result,
it will not be possible to re-initialize LXD later, and the server must be fully reinstalled.

Upgrade cluster members

To upgrade a cluster, you must upgrade all of its members. All members must be upgraded
to the same version of LXD.

287 of 954

Caution

Donot attempt to upgrade your cluster if any of itsmembers are offline. Offlinemembers
cannot be upgraded, and your cluster will end up in a blocked state.

Also note that if you are using the snap, upgrades might happen automatically, so to pre-
vent any issues you should always recover or remove offline members immediately.

To upgrade a single member, simply upgrade the LXD package on the host and restart the
LXD daemon. For example, if you are using the snap then refresh to the latest version and
cohort in the current channel (also reloads LXD):

sudo snap refresh lxd --cohort="+"

If thenewversionof thedaemonhasdatabase schemaorAPI changes, theupgradedmember
might transition into a “blocked” state. In this case, the member does not serve any LXD API
requests (which means that lxc commands don’t work on that member anymore), but any
running instances will continue to run.

This happens if there are other cluster members that have not been upgraded and are there-
fore running an older version. Run lxc cluster list (page 726) on a cluster member that is
not blocked to see if any members are blocked.

As you proceed upgrading the rest of the cluster members, they will all transition to the
“blocked” state. When you upgrade the last member, the blocked members will notice that
all servers are now up-to-date, and the blocked members become operational again.

Update the cluster certificate

In a LXD cluster, the API on all servers responds with the same shared certificate, which is
usually a standard self-signed certificate with an expiry set to ten years.

The certificate is stored at /var/snap/lxd/common/lxd/cluster.crt (if you use the snap) or
/var/lib/lxd/cluster.crt (otherwise) and is the same on all cluster members.

You can replace the standard certificatewith another one, such as a valid certificate obtained
through ACME services (see TLS server certificate (page 361) formore information). To do so,
run the following command on any cluster member:

lxc cluster update-certificate

This command replaces the certificate on all cluster members. For more information, see:
lxc cluster update-certificate (page 733).

How to configure networks for a cluster

All members of a cluster must have identical networks defined. The only configuration keys
that may differ between networks on different members are bridge.external_interfaces
(page 576), parent (page 599), bgp.ipv4.nexthop (page 574), and bgp.ipv6.nexthop
(page 575). SeeMember configuration (page 372) for more information.

Creating additional networks is a two-step process:

1. Define and configure the new network across all cluster members. For example, for a
cluster that has three members:

288 of 954

lxc network create --target server1 my-network
lxc network create --target server2 my-network
lxc network create --target server3 my-network

Note

You can pass only the member-specific configuration keys bridge.
external_interfaces, parent, bgp.ipv4.nexthop and bgp.ipv6.nexthop. Passing
other configuration keys results in an error.

These commands define the network, but they don’t create it. If you run lxc network
list (page 812), you can see that the network is marked as “pending”.

2. Run the following command to instantiate the network on all cluster members:

lxc network create my-network

Note

You can add configuration keys that are not member-specific to this command.

If you missed a cluster member when defining the network, or if a cluster member is
down, you get an error.

Also see Create a network in a cluster (page 210).

Separate REST API and clustering networks

You can configure different networks for the REST API endpoint of your clients and for inter-
nal traffic between the members of your cluster. This separation can be useful, for example,
to use a virtual address for your REST API, with DNS round robin.

To do so, you must specify different addresses for cluster.https_address (page 407) (the
address for internal cluster traffic) and core.https_address (page 402) (the address for the
REST API):

1. Create your cluster as usual, and make sure to use the address that you want to use
for internal cluster traffic as the cluster address. This address is set as the cluster.
https_address configuration.

2. After joining your members, set the core.https_address configuration to the address
for the REST API. For example:

lxc config set core.https_address 0.0.0.0:8443

Note

core.https_address is specific to the cluster member, so you can use different ad-
dresses on different members. You can also use a wildcard address to make the
member listen on multiple interfaces.

289 of 954

How to configure storage for a cluster

All members of a cluster must have identical storage pools. The only configuration keys that
may differ between pools on differentmembers are source (page 521), size (page 521), zfs.
pool_name (page 566), lvm.thinpool_name (page 558) and lvm.vg_name (page 559). SeeMem-
ber configuration (page 372) for more information.

LXD creates a default local storage pool for each cluster member during initialization.

Creating additional storage pools is a two-step process:

1. Define and configure the new storage pool across all cluster members. For example,
for a cluster that has three members:

lxc storage create --target server1 data zfs source=/dev/vdb1
lxc storage create --target server2 data zfs source=/dev/vdc1
lxc storage create --target server3 data zfs source=/dev/vdb1 size=10GiB

Note

You can pass only the member-specific configuration keys source, size, zfs.
pool_name, lvm.thinpool_name and lvm.vg_name. Passing other configuration keys
results in an error.

These commands define the storage pool, but they don’t create it. If you run lxc stor-
age list (page 895), you can see that the pool is marked as “pending”.

2. Run the following command to instantiate the storage pool on all cluster members:

lxc storage create data zfs

Note

You can add configuration keys that are not member-specific to this command.

If you missed a cluster member when defining the storage pool, or if a cluster member
is down, you get an error.

Also see Create a storage pool in a cluster (page 181).

View member-specific pool configuration

Running lxc storage show <pool_name> (page 896) shows the cluster-wide configuration of
the storage pool.

To view the member-specific configuration, use the --target flag. For example:

lxc storage show data --target server2

290 of 954

Create storage volumes

Formost storage drivers (all except for Ceph-based storage drivers), storage volumes are not
replicated across the cluster and exist only on themember for which they were created. Run
lxc storage volume list <pool_name> (page 907) to see on which member a certain volume
is located.

When creating a storage volume, use the --target flag to create a storage volume on a spe-
cific cluster member. Without the flag, the volume is created on the cluster member on
which you run the command. For example, to create a volume on the current clustermember
server1:

lxc storage volume create local vol1

To create a volume with the same name on another cluster member:

lxc storage volume create local vol1 --target server2

Different volumes can have the same name as long as they live on different clustermembers.
Typical examples for this are image volumes.

You can manage storage volumes in a cluster in the same way as you do in non-clustered
deployments, except that you must pass the --target flag to your commands if more than
one cluster member has a volume with the given name. For example, to show information
about the storage volumes:

lxc storage volume show local vol1 --target server1
lxc storage volume show local vol1 --target server2

How to work with a cluster:

How to manage instances in a cluster

In a cluster setup, each instance lives on one of the cluster members. You can operate each
instance from any cluster member, so you do not need to log on to the cluster member on
which the instance is located.

Launch an instance on a specific cluster member

When you launch an instance, you can target it to run on a specific cluster member. You can
do this from any cluster member.

For example, to launch an instance named c1 on the cluster member server2, use the follow-
ing command:

lxc launch ubuntu:24.04 c1 --target server2

You can launch instances on specific clustermembers or on specific cluster groups (page 292).

If you do not specify a target, the instance is assigned to a clustermember automatically. See
Automatic placement of instances (page 372) for more information.

291 of 954

Check where an instance is located

To check on which member an instance is located, list all instances in the cluster:

lxc list

The location column indicates the member on which each instance is running.

Migrate an instance

You canmigrate an existing instance to another clustermember. For example, tomigrate the
instance c1 to the cluster member server1, use the following commands:

lxc stop c1
lxc move c1 --target server1
lxc start c1

See How to migrate LXD instances between servers (page 135) for more information.

To migrate an instance to a member of a cluster group, use the group name prefixed with @
for the --target flag. For example:

lxc move c1 --target @group1

How to set up cluster groups

Cluster members can be assigned to Cluster groups (page 372). By default, all cluster mem-
bers belong to the default group.

To create a cluster group, use the lxc cluster group create (page 721) command. For ex-
ample:

lxc cluster group create gpu

To assign a cluster member to one or more groups, use the lxc cluster group assign
(page 721) command. This command removes the specified clustermember from all the clus-
ter groups it currently is a member of and then adds it to the specified group or groups.

For example, to assign server1 to only the gpu group, use the following command:

lxc cluster group assign server1 gpu

To assign server1 to the gpu group and also keep it in the default group, use the following
command:

lxc cluster group assign server1 default,gpu

To add a cluster member to a specific group without removing it from other groups, use the
lxc cluster group add (page 720) command.

For example, to add server1 to the gpu group and also keep it in the default group, use the
following command:

lxc cluster group add server1 gpu

292 of 954

Launch an instance on a cluster group member

With cluster groups, you can target an instance to run on one of the members of the cluster
group, instead of targeting it to run on a specific member.

Note

scheduler.instance (page 602) must be set to either all (the default) or group to allow
instances to be targeted to a cluster group.

See Automatic placement of instances (page 372) for more information.

To launch an instance on a member of a cluster group, follow the instructions in Launch an
instance on a specific cluster member (page 291), but use the group name prefixed with @ for
the --target flag. For example:

lxc launch ubuntu:24.04 c1 --target=@gpu

How to recover a cluster:

How to recover a cluster

It might happen that one or several members of your cluster go offline or become unreach-
able. If too many cluster members go offline, no operations will be possible on the cluster.
See Offline members and fault tolerance (page 371) and Automatic evacuation (page 287) for
more information.

If you can bring the offline cluster members back up, operation resumes as normal. If the
cluster members are lost permanently (e.g. disk failure), it is possible to recover any remain-
ing cluster members.

Note

When your cluster is in a state that needs recovery, most lxc commands do not work be-
cause the LXD database does not respond when a majority of database voters are inac-
cessible.

The commands to recover a cluster are provided directly by the LXDdaemon (lxd) because
they modify database files directly instead of making requests to the LXD daemon.

Run lxd cluster --help for an overview of all available commands.

Database members

Every LXD cluster has a specific number of members (configured through cluster.
max_voters (page 408)) that serve as voting members of the distributed database. If you
lose amajority of these cluster members (for example, you have a three-member cluster and
you lose two members), the cluster loses quorum and becomes unavailable.

To determine which members have (or had) database roles, log on to any surviving member
of your cluster and run the following command:

293 of 954

sudo lxd cluster list-database

Recover from quorum loss

Note

LXD automatically takes a backup of the database beforemaking changes (seeAutomated
Backups (page 296)).

If only one cluster member with the database role survives, complete the following steps.
See Reconfigure the cluster (page 294) below for recovering more than one member.

1. Make sure that the LXD daemon is not running on the machine. For example, if you’re
using the snap:

sudo snap stop lxd

2. Use the following command to reconfigure the database:

sudo lxd cluster recover-from-quorum-loss

3. Start the LXD daemon again. For example, if you’re using the snap:

sudo snap start lxd

The database should now be back online. No information has been deleted from the
database. All information about the cluster members that you have lost is still there, includ-
ing the metadata about their instances. This can help you with further recovery steps if you
need to re-create the lost instances.

To permanently delete the cluster members that you have lost, force-remove them. See
Delete cluster members (page 287).

Reconfigure the cluster

Note

LXD automatically takes a backup of the database beforemaking changes (seeAutomated
Backups (page 296)).

If somemembers of your cluster are no longer reachable, or if the cluster itself is unreachable
due to a change in IP address or listening port number, you can reconfigure the cluster.

To do so, choose themost up-to-date database member (page 296) to edit the cluster config-
uration. Once the cluster edit is complete you will need to manually copy the reconfigured
global database to every other surviving member.

You can change the IP addresses or listening port numbers for each member as required.
You cannot add or remove any members during this process. The cluster configuration must
contain the description of the full cluster.

294 of 954

You can edit theMember roles (page 370) of themembers, but with the following limitations:

• A cluster member that does not have a database* role cannot become a voter, because
it might lack a global database.

• At least twomembers must remain voters (except in the case of a two-member cluster,
where one voter suffices), or there will be no quorum.

Before performing the recovery, stop the LXD daemon on all surviving cluster members. For
example, if you’re using the snap:

sudo snap stop lxd

Complete the following steps on one database member:

1. Run the following command:

sudo lxd cluster edit

2. Edit the YAML representation of the information that this cluster member has about
the rest of the cluster:

Latest dqlite segment ID: 1234

members:
- id: 1 # Internal ID of the member (Read-only)

name: server1 # Name of the cluster member (Read-only)
address: 192.0.2.10:8443 # Last known address of the member (Writeable)
role: voter # Last known role of the member (Writeable)

- id: 2 # Internal ID of the member (Read-only)
name: server2 # Name of the cluster member (Read-only)
address: 192.0.2.11:8443 # Last known address of the member (Writeable)
role: stand-by # Last known role of the member (Writeable)

- id: 3 # Internal ID of the member (Read-only)
name: server3 # Name of the cluster member (Read-only)
address: 192.0.2.12:8443 # Last known address of the member (Writeable)
role: spare # Last known role of the member (Writeable)

You can edit the addresses and the roles.

3. When the cluster configuration has been changed on one member, LXD will create a
tarball of the global database (/var/snap/lxd/common/lxd/database/lxd_recovery_db.
tar.gz for snap installations or /var/lib/lxd/database/lxd_recovery_db.tar.gz).
Copy this recovery tarball to the same path on all remaining cluster members.

Note

The tarball can be removed from the first member after it is generated, but it does
not have to be.

4. Once the tarball has been copied to all remaining cluster members, start the LXD dae-
mon on all members again. LXD will load the recovery tarball on startup.

If you’re using the snap:

295 of 954

sudo snap start lxd

The cluster should now be fully available again with all surviving members reporting in. No
information has been deleted from the database. All information about the clustermembers
and their instances is still there.

Automated Backups

LXD automatically creates a backup of the database beforemaking changes during recovery.
The backup is just a tarball of /var/snap/lxd/common/lxd/database (for snap users) or /var/
lib/lxd/lxd/database (otherwise). To reset the state of the database in case of a failure,
simply delete the database directory and unpack the tarball in its place:

cd /var/snap/lxd/common/lxd
sudo rm -r database
sudo tar -xf db_backup.TIMESTAMP.tar.gz

Find the most up-to-date cluster member

On every shutdown, LXD’s database members (page 370) log the Raft term and index:

Dqlite last entry index=1039 term=672

To determine which database member is most up to date:

• If two members have different terms, the member with the higher term is more up to
date.

• If two members have the same term, the member with the higher index is more up to
date.

Manually alter Raft membership

In some situations, you might need to manually alter the Raft membership configuration of
the cluster because of some unexpected behavior.

For example, if you have a cluster member that was removed uncleanly, it might not show up
in lxc cluster list (page 726) but still be part of the Raft configuration. To see the Raft
configuration, run the following command:

lxd sql local "SELECT * FROM raft_nodes"

In that case, run the following command to remove the leftover node:

lxd cluster remove-raft-node <address>

Related topics

Explanation:

• Clusters (page 370)

Reference:

• Cluster member configuration (page 602)

296 of 954

2.3.2. Production setup
The following how-to guides cover common operations to prepare your LXD server setup for
production.

How to check and improve the performance:

How to benchmark performance

The performance of your LXD server or cluster depends on a lot of different factors, ranging
from the hardware, the server configuration, the selected storage driver and the network
bandwidth to the overall usage patterns.

To find the optimal configuration, you should run benchmark tests to evaluate different se-
tups.

LXDprovides a benchmarking tool for this purpose. This tool allows you to initialize or launch
a number of containers and measure the time it takes for the system to create the contain-
ers. If you run this tool repeatedly with different configurations, you can compare the per-
formance and evaluate which is the ideal configuration.

Get the tool

To get the lxd-benchmark tool, you can download a pre-built binary:

1. Download the bin.linux.lxd-benchmark tool (bin.linux.lxd-benchmark.aarch64126 or
bin.linux.lxd-benchmark.x86_64127) from the Assets section of the latest LXD re-
lease128.

2. Save the binary as lxd-benchmark and make it executable (usually by running chmod u+x
lxd-benchmark).

If you have go (Go (page 385)) installed, you can build the tool with the following command:

go install github.com/canonical/lxd/lxd-benchmark@latest

Run the tool

Run lxd-benchmark [action] to measure the performance of your LXD setup.

Thebenchmarking tool uses the current LXDconfiguration, but users of the snapmust export
the LXD_DIR variable for the configuration to be found:

export LXD_DIR=/var/snap/lxd/common/lxd

If you want to use a different project, specify it with --project.

For all actions, you can specify the number of parallel threads to use (default is to use a dy-
namic batch size). You can also choose to append the results to a CSV report file and label
them in a certain way.

See lxd-benchmark help for all available actions and flags.

126 https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-benchmark.aarch64
127 https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-benchmark.x86_64
128 https://github.com/canonical/lxd/releases

297 of 954

https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-benchmark.aarch64
https://github.com/canonical/lxd/releases/latest/download/bin.linux.lxd-benchmark.x86_64
https://github.com/canonical/lxd/releases
https://github.com/canonical/lxd/releases

Select an image

Before you run the benchmark, select what kind of image you want to use.

Local image
If you want to measure the time it takes to create a container and ignore the time it
takes to download the image, you should copy the image to your local image store be-
fore you run the benchmarking tool.

To do so, run a command similar to the following and specify the fingerprint (for exam-
ple, 2d21da400963) of the image when you run lxd-benchmark:

lxc image copy ubuntu:24.04 local:

You can also assign an alias to the image and specify that alias (for example, ubuntu)
when you run lxd-benchmark:

lxc image copy ubuntu:24.04 local: --alias ubuntu

Remote image
If you want to include the download time in the overall result, specify a remote image
(for example, ubuntu:24.04). The default image that lxd-benchmark uses is the latest
Ubuntu image (ubuntu:), so if you want to use this image, you can leave out the image
name when running the tool.

Create and launch containers

Run the following command to create a number of containers:

lxd-benchmark init --count <number> <image>

Add --privileged to the command to create privileged containers.

For example:

Command Description

lxd-benchmark init --count 10
--privileged

Create ten privileged containers that use the lat-
est Ubuntu image.

lxd-benchmark init --count 20
--parallel 4 ubuntu-minimal:24.04

Create 20 containers that use the Ubuntu Minimal
24.04 LTS image, using four parallel threads.

lxd-benchmark init 2d21da400963 Create one container that uses the local image
with the fingerprint 2d21da400963.

lxd-benchmark init --count 10
ubuntu

Create ten containers that use the image with the
alias ubuntu.

If you use the init action, the benchmarking containers are created but not started. To start
the containers that you created, run the following command:

lxd-benchmark start

Alternatively, use the launch action to both create and start the containers:

298 of 954

lxd-benchmark launch --count 10 <image>

For this action, you can add the --freeze flag to freeze each container right after it starts.
Freezing a container pauses its processes, so this flag allows you to measure the pure launch
times without interference of the processes that run in each container after startup.

Delete containers

To delete the benchmarking containers that you created, run the following command:

lxd-benchmark delete

Note

You must delete all existing benchmarking containers before you can run a new bench-
mark.

How to increase the network bandwidth

You can increase the network bandwidth of your LXD setup by configuring the transmit
queue length (txqueuelen). This change makes sense in the following scenarios:

• You have a NIC with 1 GbE or higher on a LXD host with a lot of local activity (instance-
instance connections or host-instance connections).

• You have an internet connection with 1 GbE or higher on your LXD host.

The more instances you use, the more you can benefit from this tweak.

Note

The following instructions use a txqueuelen value of 10000, which is commonly used with
10GbE NICs, and a net.core.netdev_max_backlog value of 182757. Depending on your
network, you might need to use different values.

In general, you should use small txqueuelen values with slow devices with a high la-
tency, and high txqueuelen values with devices with a low latency. For the net.core.
netdev_max_backlog value, a good guideline is to use the minimum value of the net.ipv4.
tcp_mem configuration.

Increase the network bandwidth on the LXD host

Ubuntu >= 18.04

Ubuntu <= 17.04

Complete the following steps to increase the network bandwidth on the LXD host:

1. Increase the transmit queue length (txqueuelen) of both the real NIC (for example,
enp5s0f1) and the LXD NIC (for example, lxdbr0). To make the change permanent,
create a file named /etc/udev/rules.d/60-custom-txqueuelen.rules with the follow-
ing content:

299 of 954

KERNEL=="enp5s0f1", RUN+="/sbin/ip link set %k txqueuelen 10000"
KERNEL=="lxdbr0", RUN+="/sbin/ip link set %k txqueuelen 10000"

Apply the above udev rules via:

udevadm trigger

2. Increase the receive queue length (net.core.netdev_max_backlog). Tomake the change
permanent, add the following configuration to /etc/sysctl.conf:

net.core.netdev_max_backlog = 182757

Apply the above sysctl.conf change via:

sysctl -p

Complete the following steps to increase the network bandwidth on the LXD host:

1. Increase the transmit queue length (txqueuelen) of both the real NIC and the LXD NIC
(for example, lxdbr0). You can do this temporarily for testing with the following com-
mand:

ifconfig <interface> txqueuelen 10000

To make the change permanent, add the following command to your interface config-
uration in /etc/network/interfaces:

up ip link set eth0 txqueuelen 10000

2. Increase the receive queue length (net.core.netdev_max_backlog). You can do this tem-
porarily for testing with the following command:

echo 182757 > /proc/sys/net/core/netdev_max_backlog

To make the change permanent, add the following configuration to /etc/sysctl.conf:

net.core.netdev_max_backlog = 182757

Increase the transmit queue length on the instances

You must also change the txqueuelen value for all Ethernet interfaces in your instances. To
do this, use one of the following methods:

• Apply the same changes as described above for the LXD host.

• Set the queue.tx.length device option on the instance profile or configuration. For
example, to do this for the LXD default profile:

lxc profile device set default eth0 queue.tx.length "10000"

How to monitor your server:

300 of 954

How to monitor metrics

LXD collects metrics for all running instances as well as some internal metrics. Thesemetrics
cover the CPU, memory, network, disk and process usage. They are meant to be consumed
by Prometheus, and you can use Grafana to display the metrics as graphs. See Provided met-
rics (page 606) for lists of available metrics and Set up a Grafana dashboard (page 309) for
instructions on how to display the metrics in Grafana.

In a cluster environment, LXD returns only the values for instances running on the server that
is being accessed. Therefore, you must scrape each cluster member separately.

The instance metrics are updated when calling the /1.0/metrics endpoint. To handle mul-
tiple scrapers, they are cached for 8 seconds. Fetching metrics is a relatively expensive op-
eration for LXD to perform, so if the impact is too high, consider scraping at a higher than
default interval.

Query the raw data

To view the raw data that LXD collects, use the lxc query (page 869) command to query the
/1.0/metrics endpoint:

~$ lxc query /1.0/metrics # HELP lxd_api_requests_completed_total The total
number of completed API requests.# TYPE lxd_api_requests_completed_total
counterlxd_api_requests_completed_total{entity_type="server",
result="error_client"}
0lxd_api_requests_completed_total{entity_type="server",result="succeeded"}
9lxd_api_requests_completed_total{entity_type="server",result="error_server"}
0lxd_api_requests_completed_total{entity_type="network",
result="error_server"}
0lxd_api_requests_completed_total{entity_type="network",
result="error_client"}
0lxd_api_requests_completed_total{entity_type="network",result="succeeded"}
0lxd_api_requests_completed_total{entity_type="cluster_member",
result="error_server"}
0lxd_api_requests_completed_total{entity_type="cluster_member",
result="error_client"}
0lxd_api_requests_completed_total{entity_type="cluster_member",
result="succeeded"}
0lxd_api_requests_completed_total{entity_type="project",result="succeeded"}
0lxd_api_requests_completed_total{entity_type="project",
result="error_server"}
0lxd_api_requests_completed_total{entity_type="project",
result="error_client"}
0lxd_api_requests_completed_total{entity_type="image",result="error_server"}
0lxd_api_requests_completed_total{entity_type="image",result="error_client"}
0lxd_api_requests_completed_total{entity_type="image",result="succeeded"}
0lxd_api_requests_completed_total{entity_type="operation",
result="error_server"}
0lxd_api_requests_completed_total{entity_type="operation",
result="error_client"}
0lxd_api_requests_completed_total{entity_type="operation",result="succeeded"}
0lxd_api_requests_completed_total{entity_type="storage_pool",

301 of 954

result="error_server"}
0lxd_api_requests_completed_total{entity_type="storage_pool",
result="error_client"}
0lxd_api_requests_completed_total{entity_type="storage_pool",
result="succeeded"}
0lxd_api_requests_completed_total{entity_type="warning",
result="error_server"}
0lxd_api_requests_completed_total{entity_type="warning",
result="error_client"}
0lxd_api_requests_completed_total{entity_type="warning",result="succeeded"}
0lxd_api_requests_completed_total{entity_type="identity",
result="error_client"}
0lxd_api_requests_completed_total{entity_type="identity",result="succeeded"}
0lxd_api_requests_completed_total{entity_type="identity",
result="error_server"}
0lxd_api_requests_completed_total{entity_type="profile",
result="error_server"}
0lxd_api_requests_completed_total{entity_type="profile",
result="error_client"}
0lxd_api_requests_completed_total{entity_type="profile",result="succeeded"}
0lxd_api_requests_completed_total{entity_type="instance",result="succeeded"}
2lxd_api_requests_completed_total{entity_type="instance",
result="error_server"}
0lxd_api_requests_completed_total{entity_type="instance",
result="error_client"} 0# HELP lxd_api_requests_ongoing The number of API
requests currently being handled.# TYPE lxd_api_requests_ongoing
gaugelxd_api_requests_ongoing{entity_type="server"}
1lxd_api_requests_ongoing{entity_type="network"}
0lxd_api_requests_ongoing{entity_type="cluster_member"}
0lxd_api_requests_ongoing{entity_type="project"}
0lxd_api_requests_ongoing{entity_type="image"}
0lxd_api_requests_ongoing{entity_type="operation"}
0lxd_api_requests_ongoing{entity_type="storage_pool"}
0lxd_api_requests_ongoing{entity_type="warning"}
0lxd_api_requests_ongoing{entity_type="identity"}
0lxd_api_requests_ongoing{entity_type="profile"}
0lxd_api_requests_ongoing{entity_type="instance"} 0# HELP
lxd_cpu_effective_total The total number of effective CPUs.# TYPE
lxd_cpu_effective_total
gaugelxd_cpu_effective_total{name="c",project="default",type="container"} 8#
HELP lxd_cpu_seconds_total The total number of CPU time used in seconds.#
TYPE lxd_cpu_seconds_total counterlxd_cpu_seconds_total{cpu="0",
mode="system",name="c",project="default",type="container"}
1.53794lxd_cpu_seconds_total{cpu="0",mode="user",name="c",project="default",
type="container"} 2.613658# HELP lxd_disk_read_bytes_total The total number
of bytes read.# TYPE lxd_disk_read_bytes_total
counterlxd_disk_read_bytes_total{device="nvme0n1",name="c",project="default",
type="container"} 3.6151296e+07# HELP lxd_disk_reads_completed_total The
total number of completed reads.# TYPE lxd_disk_reads_completed_total
counter...

302 of 954

Set up Prometheus

To gather and store the raw metrics, you should set up Prometheus129. You can then config-
ure it to scrape the metrics through the metrics API endpoint.

Expose the metrics endpoint

To expose the /1.0/metrics API endpoint, you must set the address on which it should be
available.

To do so, you can set either the core.metrics_address (page 403) server configuration
option or the core.https_address (page 402) server configuration option. The core.
metrics_address option is intended for metrics only, while the core.https_address option
exposes the full API. So if youwant to use a different address for themetrics API than for the
full API, or if you want to expose only the metrics endpoint but not the full API, you should
set the core.metrics_address option.

For example, to expose the full API on the 8443 port, enter the following command:

lxc config set core.https_address ":8443"

To expose only the metrics API endpoint on the 8444 port, enter the following command:

lxc config set core.metrics_address ":8444"

To expose only the metrics API endpoint on a specific IP address and port, enter a command
similar to the following:

lxc config set core.metrics_address "192.0.2.101:8444"

Add a metrics certificate to LXD

Authentication for the /1.0/metrics API endpoint is done through a metrics certificate. A
metrics certificate (type metrics) is different from a client certificate (type client) in that it
is meant for metrics only and doesn’t work for interaction with instances or any other LXD
entities.

To create a certificate, enter the following command:

openssl req -x509 -newkey ec -pkeyopt ec_paramgen_curve:secp384r1 -sha384 -keyout
metrics.key -nodes -out metrics.crt -days 3650 -subj "/CN=metrics.local"

Note

The command requires OpenSSL version 1.1.0 or later.

Then add this certificate to the list of trusted clients, specifying the type as metrics:

lxc config trust add metrics.crt --type=metrics

129 https://prometheus.io/

303 of 954

https://prometheus.io/

If requiring TLS client authentication isn’t possible in your environment, the /1.0/metrics
API endpoint can be made available to unauthenticated clients. While not recommended,
this might be acceptable if you have other controls in place to restrict who can reach that API
endpoint. To disable the authentication on the metrics API:

Disable authentication (NOT RECOMMENDED)
lxc config set core.metrics_authentication false

Make the metrics certificate available for Prometheus

If you run Prometheus on a different machine than your LXD server, you must copy the re-
quired certificates to the Prometheus machine:

• The metrics certificate (metrics.crt) and key (metrics.key) that you created

• The LXD server certificate (server.crt) located in /var/snap/lxd/common/lxd/ (if you
are using the snap) or /var/lib/lxd/ (otherwise)

Copy these files into a tls directory that is accessible to Prometheus, for example, /var/
snap/prometheus/common/tls (if you are using the snap) or /etc/prometheus/tls (otherwise).
See the following example commands:

Create tls directory
mkdir /var/snap/prometheus/common/tls

Copy newly created certificate and key to tls directory
cp metrics.crt metrics.key /var/snap/prometheus/common/tls/

Copy LXD server certificate to tls directory
cp /var/snap/lxd/common/lxd/server.crt /var/snap/prometheus/common/tls/

Create a symbolic link pointing to tls directory that you created
https://bugs.launchpad.net/prometheus-snap/+bug/2066910
ln -s /var/snap/prometheus/common/tls/ /var/snap/prometheus/current/tls

If you are not using the snap, you must also make sure that Prometheus can read these files
(usually, Prometheus is run as user prometheus):

chown -R prometheus:prometheus /etc/prometheus/tls

Configure Prometheus to scrape from LXD

Finally, you must add LXD as a target to the Prometheus configuration.

To do so, edit /var/snap/prometheus/current/prometheus.yml (if you are using the snap) or
/etc/prometheus/prometheus.yaml (otherwise) and add a job for LXD.

Here’s what the configuration needs to look like:

global:
How frequently to scrape targets by default. The Prometheus default value is

1m.
scrape_interval: 15s

(continues on next page)

304 of 954

(continued from previous page)

scrape_configs:
- job_name: lxd

metrics_path: '/1.0/metrics'
scheme: 'https'
static_configs:

- targets: ['foo.example.com:8443']
tls_config:

ca_file: 'tls/server.crt'
cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
XXX: server_name is required if the target name
is not covered by the certificate (not in the SAN list)
server_name: 'foo'

Note

• By default, the Grafana Prometheus data source assumes the scrape_interval to
be 15 seconds. If you decide to use a different scrape_interval value, you must
change it in both the Prometheus configuration and the Grafana Prometheus data
source configuration. Otherwise, the Grafana $__rate_interval value will be calcu-
lated incorrectly, which might cause a no data response in queries that use it.

• The server_namemust be specified if the LXD server certificate does not contain the
samehost name as used in the targets list. To verify this, open server.crt and check
the Subject Alternative Name (SAN) section.

For example, assume that server.crt has the following content:

~$ openssl x509 -noout -text -in
/var/snap/prometheus/common/tls/server.crt ... X509v3 Subject
Alternative Name: DNS:foo, IP Address:127.0.0.1, IP
Address:0:0:0:0:0:0:0:1...

Since the Subject Alternative Name (SAN) list doesn’t include the host name pro-
vided in the targets list (foo.example.com), you must override the name used for
comparison using the server_name directive.

Here is an example of a prometheus.yml configuration wheremultiple jobs are used to scrape
the metrics of multiple LXD servers:

global:
How frequently to scrape targets by default. The Prometheus default value is

1m.
scrape_interval: 15s

scrape_configs:
abydos, langara and orilla are part of a single cluster (called `hdc` here)
initially bootstrapped by abydos which is why all 3 targets

(continues on next page)

305 of 954

(continued from previous page)

share the same `ca_file` and `server_name`. That `ca_file` corresponds
to the `/var/snap/lxd/common/lxd/cluster.crt` file found on every member of
the LXD cluster.
#
Note: When using a certificate restricted to multiple projects,
use the `project` param to only scrape a specific project or projects.
Otherwise, omit it to return the metrics for all the accessible
projects in one scrape.
#
Note: Each member of the cluster only provides metrics for instances it runs
locally. This is why the `lxd-hdc` cluster lists 3 targets.
- job_name: "lxd-hdc"

metrics_path: '/1.0/metrics'
params:

If no project parameter is defined, by default, metrics for all
accessible projects are returned.
project: ['jdoe']

scheme: 'https'
static_configs:

- targets:
- 'abydos.hosts.example.net:8444'
- 'langara.hosts.example.net:8444'
- 'orilla.hosts.example.net:8444'

tls_config:
ca_file: 'tls/abydos.crt'
cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
server_name: 'abydos'

jupiter, mars and saturn are 3 standalone LXD servers.
Note: only the `default` project is used on them, so it is not specified.
- job_name: "lxd-jupiter"

metrics_path: '/1.0/metrics'
scheme: 'https'
static_configs:

- targets: ['jupiter.example.com:9101']
tls_config:

ca_file: 'tls/jupiter.crt'
cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
server_name: 'jupiter'

- job_name: "lxd-mars"
metrics_path: '/1.0/metrics'
scheme: 'https'
static_configs:

- targets: ['mars.example.com:9101']
tls_config:

ca_file: 'tls/mars.crt'

(continues on next page)

306 of 954

(continued from previous page)

cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
server_name: 'mars'

- job_name: "lxd-saturn"
metrics_path: '/1.0/metrics'
scheme: 'https'
static_configs:

- targets: ['saturn.example.com:9101']
tls_config:

ca_file: 'tls/saturn.crt'
cert_file: 'tls/metrics.crt'
key_file: 'tls/metrics.key'
server_name: 'saturn'

After editing the configuration, restart Prometheus (snap restart prometheus if using the
snap, otherwise systemctl restart prometheus) to start scraping.

How to send logs to Loki

LXDpublishes information about its activity in the formof events. The lxc monitor command
allows you to view this information in your shell. There are two categories of LXDevents: logs
and life cycle. The lxc monitor --type=logging --pretty commandwill filter and display log
type events like activity of the raft cluster, for instance, while lxc monitor --type=lifecycle
--prettywill only display life cycle events like instances starting or stopping.

In a production environment, you might want to keep a log of these events in a dedicated
system. Loki130 is one such system, and LXD provides a configuration option to forward its
event stream to Loki.

Configure LXD to send logs

See the Loki documentation for instructions on installing it:

• Install Loki131

Once you have a Loki server up and running, you can instruct LXD to send logs to your Loki
server by setting the following option:

lxc config set loki.api.url=http://<loki_server_IP>:3100

Note

If Loki logs are to be viewed in the Grafana dashboard, ensure the loki.instance config-
uration key matches the name of the Prometheus job. See Set up a Grafana dashboard
(page 309).

130 https://grafana.com/oss/loki/
131 https://grafana.com/docs/loki/latest/setup/install/

307 of 954

https://grafana.com/oss/loki/
https://grafana.com/docs/loki/latest/setup/install/

Query Loki logs

Loki logs are typically viewed/queried using Grafana but Loki provides a command line utility
called LogCLI allowing to query logs from your Loki server without the need for Grafana.

See the LogCLI documentation for instructions on installing it:

• Install LogCLI132

With your LogCLI utility up and running, first configure it to query the server you have in-
stalled before by setting the appropriate environment variable:

export LOKI_ADDR=http://<loki_server_IP>:3100

You can then query the Loki server to validate that your LXD events are getting through. LXD
events all have the app key set to lxd so you can use the following logcli command to see
LXD logs in Loki.

~$ logcli query -t '{app="lxd"}' 2024-02-14T21:31:20Z {app="lxd",
instance="node3", type="logging"} level="info" Updating instance
types2024-02-14T21:31:20Z {app="lxd", instance="node3", type="logging"}
level="info" Expiring log files2024-02-14T21:31:20Z {app="lxd",
instance="node3", type="logging"} level="info" Pruning resolved
warnings2024-02-14T21:31:20Z {app="lxd", instance="node3", type="logging"}
level="info" Updating images2024-02-14T21:31:20Z {app="lxd",
instance="node3", type="logging"} level="info" Done pruning resolved
warnings2024-02-14T21:31:20Z {app="lxd", instance="node3", type="logging"}
level="info" Done expiring log files2024-02-14T21:31:20Z {app="lxd",
instance="node3", type="logging"} level="info" Done updating images...

Add labels

LXDpushes log entrieswith a set of predefined labels like app, project, instance and name. To
see all existing labels, you canuse logcli labels. Some logentriesmight contain information
in their message that youwould like to access as if theywere keys. In the example below, you
might want to have requester-username as a key to query.

2024-02-15T22:52:25Z {app="lxd", instance="node3", location="node3", name="c1",
project="default", type="lifecycle"} requester-username="ubuntu" action="instance-
started" source="/1.0/instances/c1" requester-address="@" requester-protocol="unix
" instance-started
...

Use the following command to instruct LXD to move all occurrences of
requester-username="<user>" into the label section:

lxc config set loki.labels="requester-username"

This will transform the above log entry into:

132 https://grafana.com/docs/loki/latest/query/logcli/

308 of 954

https://grafana.com/docs/loki/latest/query/logcli/

2024-02-09T21:26:32Z {app="lxd", instance="node3", location="node3", name="c2",
project="default", requester_username="ubuntu", type="lifecycle"} action=
"instance-started" source="/1.0/instances/c2" requester-address="@" requester-
protocol="unix" instance-started
...

Note the replacement of - by _, as - cannot be used in keys. As requested_username is now a
key, you can query Loki using it like this:

logcli query -t '{requester_username="ubuntu"}'

Set up a Grafana dashboard

To visualize the metrics and logs data, set up Grafana133. LXD provides a Grafana dash-
board134 that is configured to display the LXD metrics scraped by Prometheus and events
sent to Loki.

Note

The dashboard requires Grafana 8.4 or later.

See the Grafana documentation for instructions on installing and signing in:

• Install Grafana135

• Sign in to Grafana136

Complete the following steps to import the LXD dashboard137:

1. Configure Prometheus as a data source:

1. From the Basic (quick setup) panel, choose Data Sources.

2. Select Prometheus.
133 https://grafana.com/
134 https://grafana.com/grafana/dashboards/19131-lxd/
135 https://grafana.com/docs/grafana/latest/setup-grafana/installation/
136 https://grafana.com/docs/grafana/latest/setup-grafana/sign-in-to-grafana/
137 https://grafana.com/grafana/dashboards/19131-lxd/

309 of 954

https://grafana.com/
https://grafana.com/grafana/dashboards/19131-lxd/
https://grafana.com/grafana/dashboards/19131-lxd/
https://grafana.com/docs/grafana/latest/setup-grafana/installation/
https://grafana.com/docs/grafana/latest/setup-grafana/sign-in-to-grafana/
https://grafana.com/grafana/dashboards/19131-lxd/

3. In the URL field, enter the address of your Prometheus installation (http://
localhost:9090/ if running Prometheus locally).

310 of 954

4. Keep the default configuration for the other fields and click Save & test.

2. Configure Loki as another data source:

1. Select Loki.

2. In the URL field, enter the address of your Loki installation (http://
localhost:3100/ if running Loki locally).

311 of 954

3. Keep the default configuration for the other fields and click Save & test.

3. Import the LXD dashboard:

1. Go back to the Basic (quick setup) panel and now choose Dashboards > Import a
dashboard.

2. In the Find and import dashboards field, enter the dashboard ID 19131.

3. Click Load.

4. In the LXD drop-downmenu, select the Prometheus and Loki data sources that you
configured.

312 of 954

5. Click Import.

You should now see the LXD dashboard. You can select the project and filter by instances.

313 of 954

At the bottom of the page, you can see data for each instance.

Note

For proper operation of the Loki part of the dashboard, you need to ensure that the
instance field matches the Prometheus job name. You can change the instance field
through the loki.instance (page 410) configuration key.

The Prometheus job_name value can be found in /var/snap/prometheus/current/
prometheus.yml (if you are using the snap) or /etc/prometheus/prometheus.yaml (other-
wise).

To set the loki.instance configuration key, run the following command: lxc config set
loki.instance=<job_name_value>

314 of 954

You can check that setting via: lxc config get loki.instance

Scripted setup and LXD UI integration

As an alternative to the manual steps above, we provide a script to set up the Grafana dash-
board. This only supports a single-node LXD installation.

1. Launch a new instance on your LXD server:

lxc launch ubuntu:24.04 grafana --project default

2. Run the following commands to download and execute the script to set up Grafana on
the grafana instance:

curl -s https://raw.githubusercontent.com/canonical/lxd/refs/heads/main/
scripts/setup-grafana.sh -o /tmp/setup-grafana.sh
chmod +x /tmp/setup-grafana.sh
/tmp/setup-grafana.sh grafana default

3. After the script finishes, sign in to Grafanawith the default credentials admin/admin and
change the password.

4. Import the LXD dashboard as described in step 3 of the manual steps in the preceding
section.

The script installs Grafana, Prometheus, and Loki on a LXD instance. It also configures LXD
to send metrics to Prometheus and logs to Loki. Additionally, it configures the LXD UI to be
aware of the Grafana dashboard. This enables the UI to render a deep link Metrics to the
Grafana dashboard from instance details pages (available since LXD 6.3):

315 of 954

How to back up your server and recover from failure:

How to back up a LXD server

In a production setup, you should always back up the contents of your LXD server.

The LXD server contains a variety of different entities, andwhen choosing your backup strat-
egy, you must decide which of these entities you want to back up and how frequently you
want to save them.

What to back up

The various contents of your LXD server are located on your file system and, in addition,
recorded in the LXD database (page 356). Therefore, only backing up the database or only
backing up the files on disk does not give you a full functional backup.

Your LXD server contains the following entities:

• Instances (database records and file systems)

• Images (database records, image files, and file systems)

• Networks (database records and state files)

• Profiles (database records)

• Storage volumes (database records and file systems)

Consider which of these you need to back up. For example, if you don’t use custom images,
you don’t need to back up your images since they are available on the image server. If you
use only the default profile, or only the standard lxdbr0 network bridge, youmight not need
to worry about backing them up, because they can easily be re-created.

316 of 954

Full backup

To create a full backup of all contents of your LXD server, back up the /var/snap/lxd/common/
lxd (for snap users) or /var/lib/lxd (otherwise) directory.

This directory contains your local storage, the LXD database, and your configuration. It does
not contain separate storage devices, however. That means that whether the directory also
contains the data of your instances depends on the storage drivers that you use.

Important

If your LXD server uses any external storage (for example, LVMvolumegroups, ZFS zpools,
or any other resource that isn’t directly self-contained to LXD), you must back this up sep-
arately.

See How to back up custom storage volumes (page 200) for instructions.

To back up your data, create a tarball of /var/snap/lxd/common/lxd (for snap users) or /var/
lib/lxd (otherwise). If you are not using the snap package and your source system has a
/etc/subuid and /etc/subgid file, you should also back up these files. Restoring them avoids
needless shifting of instance file systems.

To restore your data, complete the following steps:

1. Stop LXD on your server (for example, with sudo snap stop lxd).

2. Delete the directory (/var/snap/lxd/common/lxd for snap users or /var/lib/lxd other-
wise).

3. Restore the directory from the backup.

4. Delete and restore any external storage devices.

5. If you are not using the snap, restore the /etc/subuid and /etc/subgid files.

6. Restart LXD (for example, with sudo snap start lxd or by restarting your machine).

Export a snapshot

If you are using the LXD snap, you can also create a full backup by exporting a snapshot of
the snap:

1. Create a snapshot:

sudo snap save lxd

Note down the ID of the snapshot (shown in the Set column).

2. Export the snapshot to a file:

sudo snap export-snapshot <ID> <output_file>

See Snapshots138 in the Snapcraft documentation for details.

138 https://snapcraft.io/docs/snapshots

317 of 954

https://snapcraft.io/docs/snapshots

Partial backup

If you decide to only back up specific entities, you have different options for how to do this.
You should consider doing some of these partial backups even if you are doing full backups
in addition. It can be easier and safer to, for example, restore a single instance or reconfigure
a profile than to restore the full LXD server.

Back up instances and volumes

Instances and storage volumes are backed up in a very similar way (because when backing up
an instance, you basically back up its instance volume, see Storage volume types (page 352)).

See How to back up instances (page 127) and How to back up custom storage volumes
(page 200) for detailed information. The following sections give a brief summary of the op-
tions you have for backing up instances and volumes.

Secondary backup LXD server

LXD supports copying and moving instances and storage volumes between two hosts. See
How to migrate LXD instances between servers (page 135) and How to move or copy storage
volumes (page 205) for instructions.

So if you have a spare server, you can regularly copy your instances and storage volumes to
that secondary server to back them up. Use the --refresh flag to update the copies (see
Optimized volume transfer (page 572) for the benefits).

If needed, you can either switch over to the secondary server or copy your instances or stor-
age volumes back from it.

If you use the secondary server as a pure storage server, it doesn’t need to be as powerful as
your main LXD server.

Export tarballs

You can use the export command to export instances and volumes to a backup tarball. By
default, those tarballs include all snapshots.

You canuseanoptimizedexport option,which is usually quicker and results in a smaller sizeof
the tarball. However, you must then use the same storage driver when restoring the backup
tarball.

See Use export files for instance backup (page 132) and Use export files for volume backup
(page 203) for instructions.

Snapshots

Snapshots save the state of an instance or volume at a specific point in time. However, they
are stored in the same storage pool and are therefore likely to be lost if the original data
is deleted or lost. This means that while snapshots are very quick and easy to create and
restore, they don’t constitute a secure backup.

See Use snapshots for instance backup (page 128) and Use snapshots for volume backup
(page 200) for more information.

318 of 954

Back up the database

While there is no trivial method to restore the contents of the LXD database (page 356), it
can still be very convenient to keep a backup of its content. Such a backup can make it much
easier to re-create, for example, networks or profiles if the need arises.

Use the following command to dump the content of the local database to a file:

lxd sql local .dump > <output_file>

Use the following command to dump the content of the global database to a file:

lxd sql global .dump > <output_file>

You should include these two commands in your regular LXD backup.

How to recover instances in case of disaster

LXD provides a tool for disaster recovery in case the LXD database (page 356) is corrupted or
otherwise lost.

The tool scans the storagepools for instances and imports the instances that it findsback into
the database. You need to re-create the required entities that are missing (usually profiles,
projects, and networks).

Important

This tool should be used for disaster recovery only. Do not rely on this tool as an alter-
native to proper backups; you will lose data like profiles, network definitions, or server
configuration.

The tool must be run interactively and cannot be used in automated scripts.

The tool is available through the lxd recover command (note the lxd command rather than
the normal lxc command).

Recovery process

When you run the tool, it scans all storage pools that still exist in the database, looking for
missing volumes that can be recovered. You can also specify the details of any unknown
storagepools (those that exist ondiskbutdonotexist in thedatabase), and the tool attempts
to scan those too.

After mounting the specified storage pools (if not alreadymounted), the tool scans them for
unknown volumes that look like they are associated with LXD. LXD maintains a backup.yaml
file in each instance’s storage volume, which contains all necessary information to recover a
given instance (including instance configuration, attached devices, storage volume, and pool
configuration). This data can be used to rebuild the instance, storage volume, and storage
pool database records. Before recovering an instance, the tool performs some consistency
checks to comparewhat is in the backup.yamlfilewithwhat is actually on disk (such asmatch-
ing snapshots). If all checks out, the database records are re-created.

If the storage pool database record also needs to be created, the tool uses the information
froman instance’s backup.yamlfile as the basis of its configuration, rather thanwhat the user

319 of 954

provided during the discovery phase. However, if this information is not available, the tool
falls back to restoring the pool’s database record with what was provided by the user.

The tool asks you to re-create missing entities like networks. However, the tool does not
know how the instance was configured. That means that if some configuration was specified
through the default profile, you must also re-add the required configuration to the profile.
For example, if the lxdbr0 bridge is used in an instance and you are prompted to re-create it,
you must add it back to the default profile so that the recovered instance uses it.

Example

This is how a recovery process could look:

~$ lxd recover This LXD server currently has the following storage pools:Would
you like to recover another storage pool? (yes/no) [default=no]: yesName of
the storage pool: defaultName of the storage backend (btrfs, ceph, cephfs,
cephobject, dir, lvm, zfs): zfsSource of the storage pool (block device,
volume group, dataset, path, ... as applicable):
/var/snap/lxd/common/lxd/storage-pools/default/containersAdditional storage
pool configuration property (KEY=VALUE, empty when done):
zfs.pool_name=defaultAdditional storage pool configuration property
(KEY=VALUE, empty when done):Would you like to recover another storage pool?
(yes/no) [default=no]:The recovery process will be scanning the following
storage pools: - NEW: "default" (backend="zfs",
source="/var/snap/lxd/common/lxd/storage-pools/default/containers")Would you
like to continue with scanning for lost volumes? (yes/no) [default=yes]:
yesScanning for unknown volumes...The following unknown volumes have been
found: - Container "u1" on pool "default" in project "default" (includes 0
snapshots) - Container "u2" on pool "default" in project "default" (includes
0 snapshots)You are currently missing the following: - Network "lxdbr0" in
project "default"Please create those missing entries and then hit ENTER:
^Z[1]+ Stopped lxd recover ~$ lxc network create lxdbr0 Network lxdbr0 created
~$ fg lxd recover The following unknown volumes have been found: - Container
"u1" on pool "default" in project "default" (includes 0 snapshots) - Container
"u2" on pool "default" in project "default" (includes 0 snapshots)Would you
like those to be recovered? (yes/no) [default=no]: yesStarting recovery... ~$
lxc list +------+---------+------+------+-----------+-----------+| NAME |
STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS
|+------+---------+------+------+-----------+-----------+| u1 | STOPPED | | |
CONTAINER | 0 |+------+---------+------+------+-----------+-----------+| u2 |
STOPPED | | | CONTAINER | 0
|+------+---------+------+------+-----------+-----------+ ~$ lxc profile
device add default eth0 nic
network=lxdbr0 name=eth0 Device eth0 added to default ~$ lxc start u1 ~$ lxc list
+------+---------+-------------------+---+-----------+-----------+|
NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS
|+------+---------+-------------------+---+-----------+-----------+|
u1 | RUNNING |
192.0.2.49 (eth0) | 2001:db8:8b6:abfe:216:3eff:fe82:918e (eth0) | CONTAINER | 0
|+------+---------+-------------------+---+-----------+-----------+|
u2 | STOPPED | | | CONTAINER | 0

320 of 954

|+------+---------+-------------------+---+-----------+-----------+

Related topics

Explanation:

• Performance tuning (page 375)

Reference:

• Provided metrics (page 606)

• Server settings for a LXD production setup (page 602)

2.4. Miscellaneous
2.4.1. How to manage the LXD snap
The recommended way to manage LXD is its snap package139.

For the installation guide, see: Install the LXD snap package (page 28). For details about
the LXD snap, including its channels (page 389), tracks (page 389), and release processes
(page 388), see: Releases and snap (page 388).

View snap information

To view information about the LXD snap, including the available channels and installed ver-
sion, run:

snap info lxd

To view information about the installed version only, run:

snap list lxd

Sample output:

root@instance:~# snap list lxd Name Version Rev Tracking Publisher Noteslxd
5.21.3-c5ae129 33110 5.21/stable canonical✓ -

The first part of the version string corresponds to the LXD release (in this sample, 5.21.3).

Manage updates

When LXD is installed as a snap (page 28), it begins tracking the specified snap channel, or
the most recent stable LTS track if not specified. Whenever a new version is published to
that channel, the LXD version on your system automatically updates.

For control over the update schedule, use either of the following approaches:

• Schedule updates with the refresh timer (page 322).

• Hold updates (page 322) and performManual updates (page 322) as needed.

139 https://snapcraft.io/lxd

321 of 954

https://snapcraft.io/lxd

For clustered LXD installations, also follow the instructions below to synchronize updates for
cluster members (page 323).

Formore information about snapupdates in general, see the Snapdocumentation: Managing
updates140.

Schedule updates with the refresh timer

Set the snaps refresh timer141 to regularly update snaps at specific times. This enables you to
schedule automatic updates during times that don’t disturb normal operation. The refresh
timer is set system-wide; you cannot set it for the LXD snap only. It does not apply to snaps
that are held indefinitely.

For example, to configure your system to update snaps only between 8:00 am and 9:00 am
on Mondays, set the following option:

sudo snap set system refresh.timer=mon,8:00-9:00

You can also use the refresh.hold142 setting to hold all snap updates for up to 90 days, after
which they automatically update. See Control updates with system options143 in the snap
documentation for details.

Hold updates

You can hold snap updates for the LXD snap, either indefinitely or for a specific duration. If
you want to fully control updates to your LXD snap, you should set up an indefinite hold.

To indefinitely hold updates, run:

sudo snap refresh --hold lxd

Then you can performmanual updates (page 322) on a schedule that you control.

For detailed information about holds, including how to hold snaps for a specific duration
rather than indefinitely, see: Pause or stop automatic updates144 in the Snap documentation.

Manual updates

For an LXD snap installed as part of a cluster, see the section on synchronizing cluster updates
(page 323) below.

Otherwise, run:

sudo snap refresh lxd

This updates your LXD snap to the latest release within its channel.

140 https://snapcraft.io/docs/managing-updates
141 https://snapcraft.io/docs/managing-updates#p-32248-refreshtimer
142 https://snapcraft.io/docs/managing-updates#p-32248-refreshhold
143 https://snapcraft.io/docs/managing-updates#heading--refresh-hold
144 https://snapcraft.io/docs/managing-updates#p-32248-pause-or-stop-automatic-updates

322 of 954

https://snapcraft.io/docs/managing-updates
https://snapcraft.io/docs/managing-updates
https://snapcraft.io/docs/managing-updates#p-32248-refreshtimer
https://snapcraft.io/docs/managing-updates#p-32248-refreshhold
https://snapcraft.io/docs/managing-updates#heading--refresh-hold
https://snapcraft.io/docs/managing-updates#p-32248-pause-or-stop-automatic-updates

Synchronize updates for a LXD cluster cohort

All LXD clustermembers (page 370)must run the same LXD version. Even if you apply updates
manually, versions can fall out of sync; see Updates on clusters (page 390) for details.

To ensure synchronized updates, set the --cohort="+" flag on all cluster members. You only
need to set this flag once per LXD snap. This can occur during installation (page 28), or the
first time you perform a manual update (page 322).

To set this flag during installation:

sudo snap install lxd --cohort="+"

To set this flag later, during a manual update:

sudo snap refresh lxd --cohort="+"

After you set this flag, snap list lxd shows in-cohort in the Notes column. Example:

root@instance:~# snap list lxd Name Version Rev Tracking Publisher Noteslxd
5.21.3-c5ae129 33110 5.21/stable canonical✓ in-cohort

Subsequent updates to this snap automatically use the --cohort="+" flag, even if you change
its channel (page 324) or use automated or scheduled (page 322) updates. Thus, once the
snap is in-cohort, you can omit that flag for future updates.

Workaround if the cohort flag malfunctions

If for some reason, the --cohort="+"flagdoes notwork as expected, you can update using
a matching revision on all cluster members manually:

sudo snap refresh lxd --revision=<revision_number>

Example:

sudo snap refresh lxd --revision=33110

Manage updates with an Enterprise Store proxy

For Snap Store Proxy users

If you previously used the Snap Store Proxy, see the migration guide145 in the Enterprise
Store documentation for instructions on transitioning to the Enterprise Store.

If you manage a large LXD cluster and require absolute control over when updates are ap-
plied, consider using the Enterprise Store146. This proxy application sits between your ma-
chines’ snap clients and the Snap Store, giving you control overwhich snap revisions are avail-
able for installation.
145 https://documentation.ubuntu.com/enterprise-store/main/how-to/migrate
146 https://documentation.ubuntu.com/enterprise-store/main/

323 of 954

https://documentation.ubuntu.com/enterprise-store/main/how-to/migrate
https://documentation.ubuntu.com/enterprise-store/main/

To get started, follow the Enterprise Store documentation to install147 and register148 the
service. Once it’s running, configure all cluster members to use the proxy; see Configure
devices149 for instructions. You can then override the revision150 for the LXD snap to control
which version is installed:

sudo enterprise-store override lxd <channel>=<revision>

Example:

sudo enterprise-store override lxd stable=25846

Configure the snap

The LXD snap has several configuration options that control the behavior of the installed
LXD server. For example, you can define a LXD user group to achieve a multi-user environ-
ment for LXD. Formore information, see: Confine users to specific LXD projects via Unix socket
(page 175).

See the LXD snap page151 for a list of available configuration options.

To set any of these options, run:

sudo snap set lxd <key>=<value>

Example:

sudo snap set lxd daemon.user.group=lxd-users

To see all configuration options that are explicitly set on the snap, run:

sudo snap get lxd

For more information about snap configuration options, visit Configure snaps152 in the Snap
documentation.

Change the snap channel

While it is possible to change the channel used at installation, proceed with caution.

You can upgrade (move to a newer track (page 389), such as from 5.21 to 6), as well as move
to different risk level (page 390) with the same track. However, downgrading (moving to a
channel with an older track, such as from 6 to 5.21) is neither recommended nor supported,
as breaking changes can exist between major versions.

To change the channel, run:

sudo snap refresh lxd --channel=<target channel>

This command immediately updates the installed snap version.

147 https://documentation.ubuntu.com/enterprise-store/main/how-to/install/
148 https://documentation.ubuntu.com/enterprise-store/main/how-to/register/
149 https://documentation.ubuntu.com/enterprise-store/main/how-to/devices/
150 https://documentation.ubuntu.com/enterprise-store/main/how-to/overrides/
151 https://snapcraft.io/lxd
152 https://snapcraft.io/docs/configuration-in-snaps

324 of 954

https://documentation.ubuntu.com/enterprise-store/main/how-to/install/
https://documentation.ubuntu.com/enterprise-store/main/how-to/register/
https://documentation.ubuntu.com/enterprise-store/main/how-to/devices/
https://documentation.ubuntu.com/enterprise-store/main/how-to/devices/
https://documentation.ubuntu.com/enterprise-store/main/how-to/overrides/
https://snapcraft.io/lxd
https://snapcraft.io/docs/configuration-in-snaps

Manage the LXD daemon

Installing LXD as a snap creates the LXD daemon as a snap service153. Use the following snap
commands to manage this daemon.

To view the status of the daemon, run:

snap services lxd

To stop the daemon, run:

sudo snap stop lxd

Stopping the daemon also stops all running LXD instances.

To start the LXD daemon, run:

sudo snap start lxd

Starting the daemon also starts all previously running LXD instances.

To restart the daemon, run:

sudo snap restart lxd

This also stops and starts all running LXD instances. To keep the instances running as you
restart the daemon, use the --reload flag:

sudo snap restart --reload lxd

Formore information aboutmanaging snap services, visit Servicemanagement154 in the Snap
documentation.

Related topics

How-to guide:

• Install the LXD snap package (page 28)

Reference:

• Releases and snap (page 388)

2.4.2. Troubleshooting
If you run into problems when using LXD, check the following how-to guides to see if they
help resolve your issue:

How to troubleshoot (some) Dqlite errors

Dqlite is the distributed database that LXD uses to store information that must be synchro-
nized across a cluster. See The LXD Dqlite database (page 356) for more information.

This how-to guide describes strategies for how to respond to Dqlite-related errors.

153 https://snapcraft.io/docs/service-management
154 https://snapcraft.io/docs/service-management

325 of 954

https://snapcraft.io/docs/service-management
https://snapcraft.io/docs/service-management

Recognizing Dqlite-related errors

If LXD fails to start up or crashes, you should suspect a Dqlite-related error if the error mes-
sage mentions keywords like Dqlite, raft, or segment.

A known risk factor for some of the errors covered below is a previous LXD crash caused by
running out of disk space.

The Dqlite data directory

When investigating Dqlite-related errors, it’s essential to look at the contents of the Dqlite
data directory (page 357) for the affected node. This is the directory where the local in-
stance of Dqlite stores all its data. You can find this directory at /var/snap/lxd/common/lxd/
database/global (if you use the snap) or /var/lib/lxd/database/global (otherwise).

The data directory contains several types of file. The most important types are:

• Closed segments: These have filenames like 0000000000056436-0000000000056501. The
two numbers are the start index and end index. Both indices are inclusive.

• Open segments: These have filenames like open-1.

• Snapshot files: These have names like snapshot-1-59392-27900. The first number is the
snapshot index.

• Snapshot metadata files: These have names like snapshot-1-59392-27900.meta and are
paired with snapshot files.

Spotting anomalies

When looking at the contents of the data directory, watch for the following symptoms:

1. Closed segments whose index ranges overlap (remember that these ranges are inclu-
sive).

2. A closed segment with end index X where the next closed segment has start index
greater than X + 1.

3. A snapshot file with snapshot index X where the next closed segment has start index
greater than X + 1.

4. A snapshotfilewhose size is less than the sizeof aprevious (lower-numbered) snapshot.

When scanning for these symptoms, start with the most recent snapshots and closed seg-
ments (those with the highest indices) since the problem is more likely to be there.

Specific error messages

• closed segment [...] is past last snapshot [...]: This indicates that you have
symptom 3 above (missing entries after a snapshot), possibly combined with symptom
1 (overlapping segments).

• load closed segment [...]: entries count in preamble is zero: This indicates that
the mentioned segment is corrupt.

326 of 954

Interventions

Important

Before taking any of the actions below, back up the entire Dqlite data directory, so you
don’t lose data in case something goes wrong.

Here are some actions you can take in response to specific Dqlite errors. They are not guar-
anteed to work in any specific case.

• If you have overlapping closed segments (symptom 1), try deleting some of them to
remove the overlap, without creating gaps in the sequence of indices or removing any
index that was previously represented.

• If the snapshot filewith the highest index is unexpectedly small (symptom4), and there
are still closed segments covering all the indices up to and including this snapshot’s
index, delete the snapshot and its corresponding metadata file.

• If the last (highest-numbered) closed segment is corrupt, try deleting it. (Deleting
closed segments before the last onewill create a gap andgenerally preventDqlite from
starting.)

Get help

If the tips above don’t help with your situation, you can always post on the LXD support fo-
rum. Make sure to mention Dqlite in your post and include the error message or messages
you’re seeing, LXD logs, and the output of the following command (if you’re using the LXD
snap):

sudo ls -lah /var/snap/lxd/common/lxd/database/global

Also mention any troubleshooting steps you’ve already taken and what you learned.

Additional instructions are available in the following guides:

How to debug LXD

For information on debugging instance issues, see How to troubleshoot failing instances
(page 102).

Debugging lxc and lxd

Here are different ways to help troubleshooting lxc and lxd code.

lxc --debug

Adding --debug flag to any client command will give extra information about internals. If
there is no useful info, it can be added with the logging call:

logger.Debugf("Hello: %s", "Debug")

327 of 954

lxc monitor

This command will monitor messages as they appear on remote server.

REST API through local socket

On server side the most easy way is to communicate with LXD through local socket. This
command accesses GET /1.0 and formats JSON into human readable form using jq155 utility:

curl --unix-socket /var/lib/lxd/unix.socket lxd/1.0 | jq .

or for snap users:

curl --unix-socket /var/snap/lxd/common/lxd/unix.socket lxd/1.0 | jq .

See the RESTful API (page 618) for available API.

REST API through HTTPS

HTTPS connection to LXD (page 376) requires valid client certificate that is generated on first
lxc remote add (page 872). This certificate should be passed to connection tools for authen-
tication and encryption.

If desired, openssl can be used to examine the certificate (~/.config/lxc/client.crt or ~/
snap/lxd/common/config/client.crt for snap users):

openssl x509 -text -noout -in client.crt

Among the lines you should see:

Certificate purposes:
SSL client : Yes

With command line tools

wget --no-check-certificate --certificate=$HOME/.config/lxc/client.crt --private-
key=$HOME/.config/lxc/client.key -qO - https://127.0.0.1:8443/1.0

or for snap users
wget --no-check-certificate --certificate=$HOME/snap/lxd/common/config/client.crt
--private-key=$HOME/snap/lxd/common/config/client.key -qO - https://127.0.0.
1:8443/1.0

With browser

Some browser plugins provide convenient interface to create, modify and replay web re-
quests. To authenticate against LXD server, convert lxc client certificate into importable
format and import it into browser.

For example this produces client.pfx in Windows-compatible format:
155 https://stedolan.github.io/jq/tutorial/

328 of 954

https://stedolan.github.io/jq/tutorial/

openssl pkcs12 -clcerts -inkey client.key -in client.crt -export -out client.pfx

After that, opening https://127.0.0.1:8443/1.0 should work as expected.

Debug LXD using pprof

LXD provides a Go pprof156 server when the core.debug_address (page 402) is set.

The debug server should not be exposed to an externally accessible address for production
use cases. Use the following command to enable the server on the loopback interface:

lxc config set core.debug_address=localhost:8080

If the LXD server is running on your workstation, you can view a summary of available infor-
mation by navigating to http://localhost:8080/debug/pprof/.

Debug the LXD database

The files of the global database (page 356) are stored under the ./database/global sub-
directory of your LXD data directory (e.g. /var/lib/lxd/database/global or /var/snap/lxd/
common/lxd/database/global for snap users).

Since each member of the cluster also needs to keep some data which is specific to that
member, LXD also uses a plain SQLite database (the “local” database), which you can find
in ./database/local.db.

Backups of the global database directory and of the local database file are made before up-
grades, and are taggedwith the .bak suffix. You can use those if you need to revert the state
as it was before the upgrade.

Dumping the database content or schema

If you want to get a SQL text dump of the content or the schema of the databases, use the
lxd sql <local|global> [.dump|.schema] command, which produces the equivalent output
of the .dump or .schema directives of the sqlite3 command line tool.

Running custom queries from the console

If you need to perform SQL queries (e.g. SELECT, INSERT, UPDATE) against the local or global
database, you can use the lxd sql command (run lxd sql --help for details).

You should only need to do that in order to recover from broken updates or bugs. Please
consult the LXD team first (creating a GitHub issue157 or forum158 post).

Running custom queries at LXD daemon startup

In case the LXD daemon fails to start after an upgrade because of SQL data migration bugs
or similar problems, it’s possible to recover the situation by creating .sql files containing
queries that repair the broken update.

156 https://pkg.go.dev/net/http/pprof
157 https://github.com/canonical/lxd/issues/new
158 https://discourse.ubuntu.com/c/lxd/126

329 of 954

https://127.0.0.1:8443/1.0
https://pkg.go.dev/net/http/pprof
http://localhost:8080/debug/pprof/
https://github.com/canonical/lxd/issues/new
https://discourse.ubuntu.com/c/lxd/126

To perform repairs against the local database, write a ./database/patch.local.sql file
containing the relevant queries, and similarly a ./database/patch.global.sql for global
database repairs.

Those files will be loaded very early in the daemon startup sequence and deleted if the
queries were successful (if they fail, no state will change as they are run in a SQL transac-
tion).

As above, please consult the LXD team first.

Syncing the cluster database to disk

If youwant to flush the content of the cluster database to disk, use the lxd sql global .sync
command, that will write a plain SQLite database file into ./database/global/db.bin, which
you can then inspect with the sqlite3 command line tool.

Inspect a core dump file

In our continuous integration tests, we have configured the core_pattern as follows:

echo '|/bin/sh -c $@ -- eval exec gzip --fast > /var/crash/core-%e.%p.gz' | sudo
tee /proc/sys/kernel/core_pattern

Additionally, we have set the GOTRACEBACK environment variable to crash. Together, these
ensure thatwhen LXD crashes a core dump is compressedwith gzip andplaced in /var/crash.

To inspect a core dump file, you will need the LXD binary that was running at the time of the
crash. The binary must include symbols; you can check this with the file utility. You will also
need any C libraries that are used by LXD which must also include symbols.

You can inspect a core dump using Delve159 (see the Go Wiki160 for more information), but
this does not support any dynamically linked C libraries. Instead, you can use GDB161 which
can inspect linked libraries and allows sourcing a file to load Golang support.

To do this, run:

gdb <LXD binary> <coredump file>

Then in the GDB REPL, run:

(gdb) source <GOROOT>/src/runtime/runtime-gdb.py

Substituting in the actual path to your $GOROOT. This will add Golang runtime support.

Finally, set the search path for C libraries using:

(gdb) set solib-search-path <path to C libraries>

You can now use the GDB REPL to inspect the core dump. Some useful commands are:

• backtrace (print stack trace).

• info goroutines (show goroutines).

159 https://github.com/go-delve/delve
160 https://go.dev/wiki/CoreDumpDebugging
161 https://sourceware.org/gdb/

330 of 954

https://github.com/go-delve/delve
https://go.dev/wiki/CoreDumpDebugging
https://sourceware.org/gdb/

• info threads (show threads).

• thread <thread_number> (change thread).

Frequently asked questions

The following sections give answers to frequently asked questions. They explain how to re-
solve common issues and point you to more detailed information.

Why do my instances not have network access?

Most likely, your firewall blocks network access for your instances. SeeHow to configure your
firewall (page 258) for more information about the problem and how to fix it.

Another frequent reason for connectivity issues is running LXD andDocker on the same host.
See Prevent connectivity issues with LXD and Docker (page 261) for instructions on how to fix
such issues.

How to enable the LXD server for remote access?

By default, the LXD server is not accessible from the network, because it only listens on a
local Unix socket.

You can enable it for remote access by following the instructions in How to expose LXD to the
network (page 44).

When I do a lxc remote add, it asks for a token?

To be able to access the remote API, clients must authenticate with the LXD server.

See Authenticate with the LXD server (page 45) for instructions on how to authenticate using
a trust token.

Why should I not run privileged containers?

Aprivileged container can do things that affect the entire host - for example, it can use things
in /sys to reset the network card, whichwill reset it for the entire host, causing network blips.
See Container security (page 378) for more information.

Almost everything can be run in an unprivileged container, or - in cases of things that require
unusual privileges, like wanting to mount NFS file systems inside the container - you might
need to use bind mounts.

Can I bind-mount my home directory in a container?

Yes, you can do this by using a disk device (page 478):

lxc config device add container-name home disk source=/home/${USER} path=/home/
ubuntu

For unprivileged containers, you need to make sure that the user in the container has
working read/write permissions. Otherwise, all files will show up as the overflow UID/GID
(65536:65536) and access to anything that’s not world-readable will fail. Use either of the
following methods to grant the required permissions:

331 of 954

• Pass shift=true to the lxc config device add (page 739) call. This depends on the
kernel and file system supporting either idmapped mounts (see lxc info (page 782)).

• Add a raw.idmap entry (see Idmaps for user namespace (page 922)).

• Place recursive POSIX ACLs on your home directory.

Privileged containers do not have this issue because all UID/GID in the container are the same
as outside. But that’s also the cause of most of the security issues with such privileged con-
tainers.

How can I run Docker inside a LXD container?

To run Docker inside a LXD container, set the security.nesting (page 436) option of the
container to true:

lxc config set <container> security.nesting true

If you plan to use the OverlayFS storage driver in Docker, you should also set
the security.syscalls.intercept.mknod (page 439) and security.syscalls.intercept.
setxattr (page 441) options to true. See mknod / mknodat (page 920) and setxattr (page 922)
for more information.

Note that LXD containers cannot load kernel modules, so depending on your Docker config-
uration, you might need to have extra kernel modules loaded by the host. You can do so by
setting a comma-separated list of kernel modules that your container needs:

lxc config set <container_name> linux.kernel_modules <modules>

In addition, creating a /.dockerenv file in your container can help Docker ignore some errors
it’s getting due to running in a nested environment.

Where does the LXD client (lxc) store its configuration?

The lxc (page 690) command stores its configuration under ~/.config/lxc, or in ~/snap/lxd/
common/config for snap users.

Various configuration files are stored in that directory, for example:

• client.crt: client certificate (generated on demand)

• client.key: client key (generated on demand)

• config.yml: configuration file (info about remotes, aliases, etc.)

• servercerts/: directory with server certificates belonging to remotes

Why can I not ping my LXD instance from another host?

Many switches do not allow MAC address changes, and will either drop traffic with an incor-
rect MAC or disable the port totally. If you can ping a LXD instance from the host, but are not
able to ping it from a different host, this could be the cause.

The way to diagnose this problem is to run a tcpdump on the uplink and you will see either
ARP Who has `xx.xx.xx.xx` tell `yy.yy.yy.yy` , with you sending responses but them
not getting acknowledged, or ICMP packets going in and out successfully, but never being
received by the other host.

332 of 954

How can I monitor what LXD is doing?

To see detailed information about what LXD is doing and what processes it is running, use
the lxc monitor (page 787) command.

For example, to show a human-readable output of all types of messages, enter the following
command:

lxc monitor --pretty

See lxc monitor --help (page 787) for all options, andHow to debug LXD (page 327) formore
information.

Why does LXD stall when creating an instance?

Check if your storage pool is out of space (by running lxc storage info <pool_name>
(page 894)). In that case, LXD cannot finish unpacking the image, and the instance that you’re
trying to create shows up as stopped.

Togetmore insight intowhat is happening, run lxc monitor (page 787) (seeHowcan Imonitor
what LXD is doing? (page 333)), and check sudo dmesg for any I/O errors.

Why does starting containers suddenly fail?

If starting containers suddenly fails with a cgroup-related error message (Failed to mount
"/sys/fs/cgroup"), this might be due to running a VPN client on the host.

This is a known issue for both Mullvad VPN162 and Private Internet Access VPN163, but might
occur for other VPN clients as well. The problem is that the VPN client mounts the net_cls
cgroup1 over cgroup2 (which LXD uses).

The easiest fix for this problem is to stop the VPN client and unmount the net_cls cgroup1
with the following command:

umount /sys/fs/cgroup/net_cls

If you need to keep the VPN client running, mount the net_cls cgroup1 in another location
and reconfigure your VPN client accordingly. See this Discourse post164 for instructions for
Mullvad VPN.

Why does LXD not start on Ubuntu 20.04 LTS or earlier?

If you are running LXD on Ubuntu 20.04 LTS or earlier, you might be missing support for ZFS
2.1 in the kernel (see the requirements (page 386)).

If LXD fails to start, check the /var/snap/lxd/common/lxd/logs/lxd.log log file for the fol-
lowing error to see if the reason is missing ZFS support:

Error: Required tool ‘zpool’ is missing

162 https://github.com/mullvad/mullvadvpn-app/issues/3651
163 https://github.com/pia-foss/desktop/issues/50
164 https://discuss.linuxcontainers.org/t/help-help-help-cgroup2-related-issue-on-ubuntu-jammy-with-mullvad-and-privateinternetaccess-vpn/

14705/18

333 of 954

https://github.com/mullvad/mullvadvpn-app/issues/3651
https://github.com/pia-foss/desktop/issues/50
https://discuss.linuxcontainers.org/t/help-help-help-cgroup2-related-issue-on-ubuntu-jammy-with-mullvad-and-privateinternetaccess-vpn/14705/18

If you are on Ubuntu 20.04 LTS, you can resolve the issue by installing the HWE kernel and
rebooting the nodes to provide the required kernel drivers for ZFS 2.1:

sudo apt-get update
sudo apt-get install linux-generic-hwe-20.04

If you are on earlier versions of Ubuntu, you should use a compatible LTS release of LXD.

Why does my VM stop responding when I try to pass through a GPU?

If you try to pass through a GPU with a large amount of VRAM, the VM might stop respond-
ing during boot or fail to start. This is often caused by the default MMIO (Memory-Mapped
Input/Output) window size in QEMU being too small to map the GPU’s memory.

To resolve this, stop the instance, then increase the available 64-bit PCI MMIO address space
by setting the following values in raw.qemu (page 431):

lxc config set <vm-name> raw.qemu='
-global q35-pcihost.pci-hole64-size=2048G
-fw_cfg name=opt/ovmf/X-PciMmio64Mb,string=65536
'

These settings reserve sufficient 64-bit MMIO space in both the QEMU host and the guest
firmware (OVMF (Open Virtual Machine Firmware)), which is required for GPUs with large
BARs (Base Address Registers).

If you cannot resolve the issueonyourown, seeHowtoget support (page334) for information
about where to get help.

2.4.3. How to get support
Community support

You can seek support from the LXD developers as well as the wider community through the
following channels.

Forum

Ask questions or engage in discussions: https://discourse.ubuntu.com/c/lxd/165

IRC

For live discussions, visit #lxd166 on irc.libera.chat. See Getting started with IRC167 if
needed.

Documentation

Access the official documentation: https://documentation.ubuntu.com/lxd/latest/

165 https://discourse.ubuntu.com/c/lxd/126
166 https://web.libera.chat/#lxd
167 https://discourse.ubuntu.com/t/getting-started-with-irc/37907

334 of 954

https://discourse.ubuntu.com/c/lxd/126
https://web.libera.chat/#lxd
https://discourse.ubuntu.com/t/getting-started-with-irc/37907
https://documentation.ubuntu.com/lxd/latest/

Bug reports and feature requests

To file a new bug or feature request, submit an issue on GitHub168.

Other community resources

You can find additional resources on the LXDwebsite169, on YouTube170, and the community-
created tutorials171.

Commercial support

LTS releases of LXD receive standard support for five years, which means they receive con-
tinuous updates. Commercial support for LXD is provided as part of Ubuntu Pro172 (both
Infra-only and full Ubuntu Pro), including for attached LXD instances running Ubuntu173. See
the full service description174 for details.

Managed solutions and firefighting support are also available for LXD deployments. See:
Managed services175.

Related topics

For information about supported releases, see: Releases (page 388).

2.4.4. How to contribute to LXD
The LXD teamwelcomes contributions through pull requests, issue reports, and discussions.

• Contribute to the code or documentation, report bugs, or request features in the
GitHub repository176

• Ask questions or join discussions in the LXD forum177.

Review the following guidelines before contributing to the project.

Code of Conduct

All contributors must adhere to the Ubuntu Code of Conduct178.

License and copyright

All contributors must sign the Canonical contributor license agreement (CCLA)179, which
grants Canonical permission to use the contributions.

• You retain copyright ownership of your contributions (no copyright assignment).

• By default, contributions are licensed under the project’s AGPL-3.0-only license.

168 https://github.com/canonical/lxd/issues/new
169 https://canonical.com/lxd
170 https://www.youtube.com/channel/UCuP6xPt0WTeZu32CkQPpbvA
171 https://discourse.ubuntu.com/c/lxd/tutorials/146
172 https://ubuntu.com/pro
173 https://documentation.ubuntu.com/lxd/latest/howto/ubuntu_pro_guest_attach/
174 https://ubuntu.com/legal/ubuntu-pro-description
175 https://ubuntu.com/managed
176 https://github.com/canonical/lxd
177 https://discourse.ubuntu.com/c/lxd/126
178 https://ubuntu.com/community/ethos/code-of-conduct
179 https://ubuntu.com/legal/contributors

335 of 954

https://github.com/canonical/lxd/issues/new
https://canonical.com/lxd
https://www.youtube.com/channel/UCuP6xPt0WTeZu32CkQPpbvA
https://discourse.ubuntu.com/c/lxd/tutorials/146
https://discourse.ubuntu.com/c/lxd/tutorials/146
https://ubuntu.com/pro
https://documentation.ubuntu.com/lxd/latest/howto/ubuntu_pro_guest_attach/
https://ubuntu.com/legal/ubuntu-pro-description
https://ubuntu.com/managed
https://github.com/canonical/lxd
https://discourse.ubuntu.com/c/lxd/126
https://ubuntu.com/community/ethos/code-of-conduct
https://ubuntu.com/legal/contributors

• Exceptions:

– Canonical may import code under AGPL-3.0-only compatible licenses, such as
Apache-2.0.

– Such code retains its original license and is marked as such in commit messages or
file headers.

– Some files and commits are licensed under Apache-2.0 rather than AGPL-3.0-only.
These are indicated in their package-level COPYING file, file header, or commit
message.

Pull requests

Submit pull requests on GitHub at: https://github.com/canonical/lxd.

All pull requests undergo review and must be approved before being merged into the main
branch.

Commit structure

Use separate commits for different types of changes:

Type Affects files Commit message format

API exten-
sions

doc/api-extensions.md, shared/
version/api.go

api: Add XYZ extension

Documenta-
tion

Files in doc/ doc: Update XYZ

API structure Files in shared/api/ shared/api: Add XYZ
Go client
package

Files in client/ client: Add XYZ

CLI changes Files in lxc/ lxc/<command>: Change XYZ
LXD daemon Files in lxd/ lxd/<package>: Add support

for XYZ
Tests Files in tests/ tests: Add test for XYZ

Depending on complexity, large changes might be further split into smaller, logical commits.
This commit structure facilitates the reviewprocess and simplifies backportingfixes to stable
branches.

Developer Certificate of Origin sign-off

To ensure transparency and accountability in contributions to this project, all contributors
must include a Signed-off-by line in their commits in accordance with DCO 1.1:

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA

(continues on next page)

336 of 954

https://github.com/canonical/lxd

(continued from previous page)

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

Including a Signed-off-by line in your commits

Every commit must include a Signed-off-by line, even when part of a larger set of contribu-
tions. To do this, use the -s flag when committing:

git commit -s -m "Your commit message"

This automatically adds the following to your commit message:

Signed-off-by: Your Name <your.email@example.com>

By including this line, you acknowledge your agreement to the DCO 1.1 for that specific con-
tribution.

• Use a valid name and email address—anonymous contributions are not accepted.

• Ensure your email matches the one associated with your GitHub account.

337 of 954

Commit signature verification

In addition to the sign-off requirement, contributors must also cryptographically sign their
commits to verify authenticity. See: GitHub’s documentation on commit signature verifica-
tion180.

Make-generated files

Some changes require regenerating certain files using Makefile commands.

After you run any of the commands below, you’ll be prompted whether to commit the
changes. If you respond Y, only the re-generated files are committed—any other staged files
are ignored.

Formatting

If you modify any Go source files, format them:

make update-fmt

CLI tool string updates

If you modify CLI strings in lxc/, regenerate and commit translation files:

make i18n

API updates

If you modify the LXD API (shared/api), regenerate and commit the Swagger YAML file (doc/
rest-api.yaml) used for API reference documentation:

make update-api

Configuration options updates

If you addor update configurationoptions, regenerate and commit thedocumentationmeta-
data files (lxd/metadata/configuration.json and doc/metadata.txt):

make update-metadata

Development environment setup

Several pieces of software are needed in order to build and test LXD. Here is an easy way to
create a virtual-machine to use as a development environment. LXD itself is needed to power
that virtual-machine so install it first: How to install LXD (page 28).

Once LXD is installed and initialized (page 35), a special profile (lxd-test) needs to be loaded.
The profile requires includes a lxd-gitdevice (see Types of disk devices (page 479) for details)
thatwill share LXD’s git repositorywith the virtual-machine. Since this path is specific to your
environment you need to adjust it when loading the profile:
180 https://docs.github.com/en/authentication/managing-commit-signature-verification

338 of 954

https://docs.github.com/en/authentication/managing-commit-signature-verification
https://docs.github.com/en/authentication/managing-commit-signature-verification

this needs to be run from inside the git repostory
GIT_ROOT="$(git rev-parse --show-toplevel)"
create or edit the profile based on the provided template
lxc profile list | grep -qwF lxd-test || lxc profile create lxd-test
sed "s|@@PATH_TO_LXD_GIT@@|${GIT_ROOT}|" "${GIT_ROOT}/doc/lxd-test.yaml" | lxc
profile edit lxd-test

The lxd-test profile assigns CPU and memory limits similar to those available in free GitHub
Action runners. Those can be adapted to the specifications of a more modest physical ma-
chine:

lxc profile set lxd-test limits.cpu=2
lxc profile set lxd-test limits.memory=4GiB
lxc profile device set lxd-test root size=8GiB

This profile can then be used to launch an Ubuntu Noble VM and start using it:

lxc launch ubuntu-minimal-daily:24.04 v1 --vm -p lxd-test
sleep 30
this may take a while as many packages need to be installed
lxc exec v1 -- cloud-init status --wait --long

Then it is possible to build all the dependencies, LXD binaries and even run tests either auto-
matically or manually:

start a root shell in the VM
lxc exec v1 -- bash

go into the git repo
cd lxd

build deps and LXD binaries
make deps && make

get an interactive test shell session with all the needed environment variables
to use and test LXD
make test-shell

run the `exec` and `query` tests
./main.sh exec
./main.sh query

or manually interact with LXD, for example:
lxc launch ubuntu:24.04 u1
lxc exec u1 -- hostname
lxc delete --force u1

for a barebones test instance with just busybox (note: no IP automatically
configured)
./deps/import-busybox --alias testimage
lxc launch testimage c1

339 of 954

At this point you might want to learn more on How to debug LXD (page 327).

Contribute to the code

Follow the steps below to set up your development environment and start working on new
LXD features.

Install LXD from source

To build the dependencies, follow the instructions in Install LXD from source (page 31).

Add your fork as a remote

After setting up your build environment, add your GitHub fork as a remote and fetch the
latest updates:

git remote add myfork git@github.com:<your_username>/lxd.git
git remote update

Then switch to the main branch of your fork:

git switch myfork/main

Build LXD

Now you can build your fork of the project by running:

make

Before making changes, create a new branch on your fork:

git switch -c <name_of_your_new_branch>

Set up tracking for the new branch to make future pushes easier:

git push -u myfork <name_of_your_new_branch>

Important notes for new LXD contributors

• Persistent data is stored in the LXD_DIR directory, which is created by running lxd init.

– By default, LXD_DIR is located at /var/lib/lxd (for non-snap installations) or /var/
snap/lxd/common/lxd (for snap users).

– To prevent version conflicts, consider setting a separate LXD_DIR for your develop-
ment fork.

• Binaries compiled from your source are placed in $(go env GOPATH)/bin by default.

– When testing, explicitly invoke these binaries instead of the global lxd you might
have installed.

– For convenience, you can create an alias in your ~/.bashrc to call these binaries
with the appropriate flags.

340 of 954

• If you have a systemd service running LXD from a previous installation, consider dis-
abling it to prevent version conflicts with your development build.

Contribute to the documentation

We strive to make LXD as easy and straightforward to use as possible. To achieve this, our
documentation aims to provide the information users need, cover all common use cases, and
answer typical questions.

You can contribute to the documentation in several ways. We appreciate your help!

Ways to contribute

Document new features or improvements you contribute to the code.

• Submit documentation updates in pull requests alongside your code changes. We
will review and merge them together with the code.

Clarify concepts or common questions based on your own experience.

• Submit a pull request with your documentation improvements.

Report documentation issues by opening an issue on GitHub181.

• We will evaluate and update the documentation as needed.

Ask questions or suggest improvements in the LXD forum182.

• We monitor discussions and update the documentation when necessary.

Join discussions in the #lxd channel on IRC via Libera Chat183.

• While we cannot guarantee responses to IRC posts, we monitor the channel and
use feedback to improve the documentation.

If you contribute images to doc/images:

• Use SVG or PNG formats.

• Optimize PNG images for smaller file size using a tool like TinyPNG184 (web-based), Op-
tiPNG185 (CLI-based), or similar.

Documentation framework

LXD’s documentation is built with Sphinx186 and hosted on Read the Docs187.

It is written inMarkdown188withMyST189 extensions. For syntax help and guidelines, see the

181 https://github.com/canonical/lxd/issues
182 https://discourse.ubuntu.com/c/lxd
183 https://web.libera.chat/#lxd
184 https://tinypng.com/
185 https://optipng.sourceforge.net/
186 https://www.sphinx-doc.org
187 https://about.readthedocs.com/
188 https://commonmark.org/
189 https://myst-parser.readthedocs.io/

341 of 954

https://github.com/canonical/lxd/issues
https://discourse.ubuntu.com/c/lxd
https://web.libera.chat/#lxd
https://tinypng.com/
https://optipng.sourceforge.net/
https://optipng.sourceforge.net/
https://www.sphinx-doc.org
https://about.readthedocs.com/
https://commonmark.org/
https://myst-parser.readthedocs.io/

MyST style guide190 and the documentation cheat sheet191 (source192).

For structuring, the documentation uses the Diátaxis193 approach.

Build the documentation

To build the documentation, run make doc from the root directory of the repository. This
command installs the required tools and renders the output to the doc/_build/ directory. To
update the documentation for changed files only (without re-installing the tools), run make
doc-incremental.

Before opening a pull request, make sure that the documentation builds without any warn-
ings (warnings are treated as errors). To preview the documentation locally, run make
doc-serve and go to http://localhost:8000 to view the rendered documentation.

When you open a pull request, a preview of the documentation hosted by Read the Docs is
built automatically. To see this, view thedetails for the docs/readthedocs.com:canonical-lxd
check on the pull request. Others can also use this preview to validate your changes.

Automatic documentation checks

GitHub runs automatic checks on the documentation to verify the spelling, the validity of
links, correct formatting of the Markdown files, and the use of inclusive language.

You can (and should!) run these tests locally before pushing your changes:

• Check the spelling: make doc-spellcheck (or make doc-spelling to first build the docu-
mentation and then check it)

• Check the validity of links: make doc-linkcheck

• Check the Markdown formatting: make doc-lint

• Check for inclusive language: make doc-woke

Document instructions (how-to guides)

LXDcanbeusedwithdifferent clients, primarily the command-line interface (CLI), API, andUI.
The documentation contains instructions for all of these, sowhen adding or updating how-to
guides, remember to update the documentation for all clients.

Using tabs for client-specific information

When instructions differ between clients, use tabs to organize them:

````{tabs}
```{group-tab} CLI
[...]
```
```{group-tab} API

(continues on next page)

190 https://canonical-documentation-with-sphinx-and-readthedocscom.readthedocs-hosted.com/
style-guide-myst/
191 https://documentation.ubuntu.com/lxd/latest/doc-cheat-sheet-myst/
192 https://raw.githubusercontent.com/canonical/lxd/main/doc/doc-cheat-sheet-myst.md
193 https://diataxis.fr/

342 of 954

https://canonical-documentation-with-sphinx-and-readthedocscom.readthedocs-hosted.com/style-guide-myst/
https://documentation.ubuntu.com/lxd/latest/doc-cheat-sheet-myst/
https://raw.githubusercontent.com/canonical/lxd/main/doc/doc-cheat-sheet-myst.md
https://diataxis.fr/
http://localhost:8000

(continued from previous page)

[...]
```
```{group-tab} UI
[...]
```
````

Tip

You might need to increase the number of backticks (`) if there are code blocks or other
directives in the tab content.

Guidelines for writing instructions

CLI instructions

• Link to the relevant lxc command reference. Example: [`lxc init`](lxc_init.
md)

• You don’t need to document all available commandflags, butmention any that are
especially relevant.

• Examples are very helpful, so add a few if it makes sense.

API instructions

• When possible, use lxc query (page 869) to demonstrate API calls. For complex
calls, use curl or other widely available tools.

• In the request data, include all requiredfields but keep itminimal—there’s noneed
to list every possible field.

• Link to the API call reference. Example: [`POST /1.0/instances`](swagger:/
instances/instances_post)

UI instructions

• Use screenshots sparingly—they are difficult to keep up to date.

• When referring to labels in the UI, use the {guilabel} role. Example: To create
an instance, go to the {guilabel}`Instances` section and click {guil-
abel}`Create instance`.

Document configuration options

Configuration options are documented by comments in the Go code. These comments are
extracted automatically.

Adding or modifying configuration options

• Look for comments that start with lxdmeta:generate in the code.

• When adding ormodifying a configuration option, include the corresponding documen-
tation comment.

343 of 954

• Refer to the lxd-metadata README file194 for formatting guidelines.

• When you add or modify configuration options, you must re-generate doc/metadata.
txt and lxd/metadata/configuration.json. See the Configuration options updates
(page 338) section for instructions.

Including configuration options in documentation

The documentation pulls sections from doc/metadata.txt to display a group of configuration
options. For example, to include the core server options, use:

% Include content from metadata.txt
```{include} metadata.txt

:start-after: <!-- config group server-core start -->
:end-before: <!-- config group server-core end -->

```

When to update documentation files

• If you add a new option to an existing group, no changes to the documentation files are
needed, aside from re-generating metadata.txt (page 338). The option will be included
automatically.

• If you define a new group, to add it to the documentation, you must add an {include}
directive to the appropriate Markdown file in doc/.

194 https://github.com/canonical/lxd/blob/main/lxd/lxd-metadata/README.md

344 of 954

https://github.com/canonical/lxd/blob/main/lxd/lxd-metadata/README.md

3. Explanation
The explanatory guides in this section introduce you to the concepts used in LXD and help
you understand how things fit together.

3.1. Important concepts
Before you start working with LXD, you need to be familiar with some important concepts
about LXD and the instance types it provides.

3.1.1. lxd and lxc
LXD is frequently confused with LXC, and the fact that LXD provides both a lxd command
and a lxc command doesn’t make things easier.

LXD vs. LXC

LXD and LXC are two distinct implementations of Linux containers.

LXC195 is a low-level user space interface for the Linux kernel containment features. It con-
sists of tools (lxc-* commands), templates, and library and language bindings.

LXD196 is a more intuitive and user-friendly tool aimed at making it easy to work with Linux
containers. It is an alternative to LXC’s tools and distribution template system, with the
added features that come from being controllable over the network. Under the hood, LXD
uses LXC to create and manage the containers.

LXD provides a superset of the features that LXC supports, and it is easier to use. Therefore,
if you are unsure which of the tools to use, you should go for LXD. LXC should be seen as
an alternative for experienced users that want to run Linux containers on distributions that
don’t support LXD.

LXD daemon

The central part of LXD is its daemon. It runs persistently in the background, manages the
instances, and handles all requests. The daemon provides a REST API that you can access
directly or through a client (for example, the default command-line client that comes with
LXD).

See Daemon behavior (page 920) for more information about the LXD daemon.

lxd vs. lxc

To control LXD, you typically use two different commands: lxd and lxc.

LXD daemon
The lxd command controls the LXD daemon. Since the daemon is typically started au-
tomatically, you hardly ever need to use the lxd command. An exception is the lxd init
subcommand that you run to initialize LXD (page 35).

There are also some subcommands for debugging and administrating the daemon, but
they are intended for advanced users only. See lxd --help for an overview of all avail-
able subcommands.

195 https://linuxcontainers.org/lxc/introduction/
196 https://canonical.com/lxd

345 of 954

https://linuxcontainers.org/lxc/introduction/
https://canonical.com/lxd

LXD client
The lxc command is a command-line client for LXD, which you can use to interact with
the LXD daemon. You use the lxc command to manage your instances, the server set-
tings, and overall the entities you create in LXD. See lxc --help (page 690) for an
overview of all available subcommands.

The lxc tool is not the only client you can use to interact with the LXD daemon. You can
also use the API, the UI, or a custom LXD client.

3.1.2. Containers and VMs
LXD provides support for two different types of instances (page 347): system containers and
virtual machines.

When running a system container, LXD simulates a virtual version of a full operating system.
To do this, it uses the functionality provided by the kernel running on the host system.

When running a virtual machine, LXD uses the hardware of the host system, but the kernel is
provided by the virtualmachine. Therefore, virtualmachines can be used to run, for example,
a different operating system.

Application containers vs. system containers

Application containers (as provided by, for example, Docker) package a single process or ap-
plication. System containers, on the other hand, simulate a full operating system and let you
run multiple processes at the same time.

Therefore, application containers are suitable to provide separate components, while system
containers provide a full solution of libraries, applications, databases, and so on. In addition,
you can use system containers to create different user spaces and isolate all processes be-
longing to each user space, which is not what application containers are intended for.

Container runtime

App 1 App 2 App 3

Host OS kernel

Full
OS

Host OS kernel

Application containers System containers

Full
OS

Full
OS

Virtual machines vs. system containers

Virtual machines emulate a physical machine, using the hardware of the host system from
a full and completely isolated operating system. System containers, on the other hand, use
the OS kernel of the host system instead of creating their own environment. If you run sev-
eral system containers, they all share the same kernel, which makes them faster and more
lightweight than virtual machines.

346 of 954

With LXD, you can create both system containers and virtual machines. You should use a sys-
tem container to leverage the smaller size and increased performance if all functionality you
require is compatiblewith the kernel of your host operating system. If you need functionality
that is not supported by the OS kernel of your host system or you want to run a completely
different OS, use a virtual machine.

Hypervisor

Host OS kernel

KernelKernelKernel

Host OS kernel

System containersVirtual machines

Full
OS

Full
OS

Full
OS

Full
OS

Full
OS

Full
OS

Instance types in LXD

LXD supports the following types of instances:

Containers
Containers are the default type for instances. They are implemented through the use
of liblxc (LXC).

Virtual machines
Virtual machines (VMs) are natively supported since version 4.0 of LXD. Thanks to a
built-in agent, they can be used almost like containers, with a similar set of features.

LXD uses qemu to provide the VM functionality.

Note

In the Instance options (page 415) documentation, some instance options display a
conditionfield in their details, with the valueof either containeror virtual machine.
This indicates the type of instance for which that option is available. If no condition
field exists in an option’s details, that option applies to both types.

Related topics

How-to guides:

• Instances (page 73)

Reference:

• Container runtime environment (page 398)

• Instance configuration (page 414)

347 of 954

3.2. Entities in LXD
Whenworking with LXD, you should have a basic understanding of the different entities that
are used in LXD. See the How-to guides (page 28) for instructions on how to work with these
entities, and the following guides to understand the concepts behind them.

3.2.1. Local and remote images
LXD uses an image-based workflow. Each instance is based on an image, which contains a
basic operating system (for example, a Linuxdistribution) and someLXD-related information.

Images are available from remote image stores (see Remote image servers (page 391) for an
overview), but you can also create your own images, either based on an existing instances or
a rootfs image.

You can copy images from remote servers to your local image store, or copy local images to
remote servers. You can also use a local image to create a remote instance.

Each image is identified by a fingerprint (SHA256). To make it easier to manage images, LXD
allows defining one or more aliases for each image.

Caching

When you create an instance using a remote image, LXD downloads the image and caches it
locally. It is stored in the local image store with the cached flag set. The image is kept locally
as a private image until either:

• The image has not been used to create a new instance for the number of days set in
images.remote_cache_expiry (page 409).

• The image’s expiry date (one of the image properties; see Edit image properties
(page 152) for information on how to change it) is reached.

LXD keeps track of the image usage by updating the last_used_at image property every time
a new instance is spawned from the image.

Auto-update

LXD can automatically keep images that come from a remote server up to date.

Note

Only images that are requested through an alias can be updated. If you request an image
through a fingerprint, you request an exact image version.

Whether auto-update is enabled for an image depends on how the image was downloaded:

• If the image was downloaded and cached when creating an instance, it is automatically
updated if images.auto_update_cached (page409)was set to true (thedefault) at down-
load time.

• If the image was copied from a remote server using the lxc image copy (page 774)
command, it is automatically updated only if the --auto-update flag was specified.

You can change this behavior for an image by editing the auto_update property (page 152).

348 of 954

On startup and after every images.auto_update_interval (page 409) (by default, every six
hours), the LXD daemon checks for more recent versions of all the images in the store that
are marked to be auto-updated and have a recorded source server.

When a new version of an image is found, it is downloaded into the image store. Then any
aliases pointing to the old image are moved to the new one, and the old image is removed
from the store.

To not delay instance creation, LXD does not check if a new version is availablewhen creating
an instance from a cached image. This means that the instance might use an older version of
an image for the new instance until the image is updated at the next update interval.

Special image properties

Image properties that begin with the prefix requirements (for example, requirements.XYZ)
are used by LXD to determine the compatibility of the host system and the instance that is
created based on the image. If these are incompatible, LXD does not start the instance.

The following requirements are supported:

Key Type De-
fault

Description

requirements.
secureboot

string - If set to false, indicates that the image cannot boot un-
der secure boot.

requirements.
cgroup

string - If set to v1, indicates that the image requires the host
to run cgroup v1.

requirements.
nesting

bool - If set to true, indicates that the image cannot work
without nesting enabled.

Related topics

How-to guides:

• Images (page 148)

Reference:

• Image format (page 392)

• Remote image servers (page 391)

3.2.2. Storage pools, volumes, and buckets
LXD stores its data in storage pools, divided into storage volumes of different content types
(like images or instances). You could think of a storage pool as the disk that is used to store
data, while storage volumes are different partitions on this disk that are used for specific
purposes.

In addition to storage volumes, there are storage buckets, which use the Amazon S3 (Simple
Storage Service)197 protocol. Like storage volumes, storage buckets are part of a storage
pool.

197 https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html

349 of 954

https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html

Storage pools

During initialization, LXD prompts you to create a first storage pool. If required, you can
create additional storage pools later (see Create a storage pool (page 175)).

Each storage pool uses a storage driver. The following storage drivers are supported:

• Directory - dir (page 553)

• Btrfs - btrfs (page 521)

• LVM - lvm (page 557)

• ZFS - zfs (page 563)

• Ceph RBD - ceph (page 534)

• CephFS - cephfs (page 526)

• Ceph Object - cephobject (page 532)

• Dell PowerFlex - powerflex (page 541)

• Pure Storage - pure (page 548)

See the following how-to guides for additional information:

• How to manage storage pools (page 175)

• How to create an instance in a specific storage pool (page 197)

Data storage location

Where the LXD data is stored depends on the configuration and the selected storage driver.
Depending on the storage driver that is used, LXD can either share the file system with its
host or keep its data separate.

Storage location Direc-
tory

Btrfs LVM ZFS Ceph
(all)

Dell Power-
Flex

Pure Stor-
age

Shared with the host ✓ ✓ - ✓ - - -
Dedicated disk/parti-
tion

- ✓ ✓ ✓ - - -

Loop disk - ✓ ✓ ✓ - - -
Remote storage - - - - ✓ ✓ ✓

Shared with the host

Sharing the file system with the host is usually the most space-efficient way to run LXD. In
most cases, it is also the easiest to manage.

This option is supported for the dir driver, the btrfs driver (if the host is Btrfs and you point
LXD to a dedicated sub-volume) and the zfs driver (if the host is ZFS and you point LXD to a
dedicated dataset on your zpool).

350 of 954

Dedicated disk or partition

Having LXDuse an empty partition on yourmain disk or a full dedicated disk keeps its storage
completely independent from the host.

This option is supported for the btrfs driver, the lvm driver and the zfs driver.

Loop disk

LXD can create a loop file on your main drive and have the selected storage driver use that.
This method is functionally similar to using a disk or partition, but it uses a large file on your
main drive instead. This means that every write must go through the storage driver and your
main drive’s file system, which leads to decreased performance.

The loop files reside in /var/snap/lxd/common/lxd/disks/ if you are using the snap, or in /
var/lib/lxd/disks/ otherwise.

Loopfiles usually cannot be shrunk. Theywill growup to the configured limit, but deleting in-
stances or images will not cause the file to shrink. You can increase their size (quota) though;
see Resize a storage pool (page 184).

Remote storage

The ceph, cephfs and cephobject drivers store the data in a completely independent Ceph
storage cluster that must be set up separately. The same applies to the powerflex and pure
drivers.

Default storage pool

There is no concept of a default storage pool in LXD.

When you create a storage volume, you must specify the storage pool to use.

When LXD automatically creates a storage volume during instance creation, it uses the stor-
age pool that is configured for the instance. This configuration can be set in either of the
following ways:

• Directly on an instance: lxc launch <image> <instance_name> --storage
<storage_pool> (page 784)

• Through a profile: lxc profile device add <profile_name> root disk path=/
pool=<storage_pool> (page 852) and lxc launch <image> <instance_name> --profile
<profile_name> (page 784)

• Through the default profile

In a profile, the storage pool to use is defined by the pool for the root disk device:

root:
type: disk
path: /
pool: default

In thedefault profile, this pool is set to the storagepool thatwas createdduring initialization.

351 of 954

Storage volumes

When you create an instance, LXD automatically creates the required storage volumes for it.
You can create additional storage volumes.

See the following how-to guides for additional information:

• How to manage storage volumes (page 185)

• How to move or copy storage volumes (page 205)

• How to back up custom storage volumes (page 200)

Storage volume types

Storage volumes can be of the following types:

container/virtual-machine
LXD automatically creates one of these storage volumes when you launch an instance.
It is used as the root disk for the instance and is destroyedwhen the instance is deleted.

The storagepool canbeexplicitly specifiedbyproviding the --storageflag to the launch
command (page 784). If no pool or profile is specified, LXD uses the storage pool of the
default profile’s root disk device.

image
LXD automatically creates one of these storage volumes when it unpacks an image to
launch one or more instances from it. You can delete it after the instance has been
created. If you do not delete it manually, it is deleted automatically ten days after it
was last used to launch an instance.

The image storage volume is created in the same storage pool as the instance storage
volume, and only for storage pools that use a storage driver (page 521) that supports
optimized image storage.

custom
You can add one or more custom storage volumes to hold data that you want to store
separately from your instances. Custom storage volumes of content type filesystem
or iso can be shared between instances, and they are retained until you delete them.

You can also use custom storage volumes to hold your backups or images.

You must specify the storage pool for the custom volume when you create it.

Content types

Each storage volume uses one of the following content types:

filesystem
This content type is used for containers and container images. It is the default content
type for custom storage volumes.

Customstorage volumesof content type filesystem canbe attached toboth containers
and virtual machines, and they can be shared between instances.

block
This content type is used for virtual machines and virtual machine images. You can cre-
ate a custom storage volume of type block by using the --type=block flag.

352 of 954

Customstoragevolumesof content type block canonlybeattached tovirtualmachines.
By default, they can only be attached to one instance at a time, because simultaneous
access can lead to data corruption. Sharing custom storage volumes of content type
block is made possible through the usage of the security.shared configuration key.

iso
This content type is used for custom ISO volumes. A custom storage volume of type iso
canonly be createdby importing an ISOfile using lxc storage volume import (page905)
or by copying another volume.

Custom storage volumes of content type iso can only be attached to virtual machines.
They can be attached tomultiplemachines simultaneously as they are always read-only.

Storage buckets

Storage buckets provide object storage functionality via the S3 protocol.

They can be used in a way that is similar to custom storage volumes. However, unlike storage
volumes, storage buckets are not attached to an instance. Instead, applications can access a
storage bucket directly using its URL.

Each storage bucket is assigned one or more access keys, which the applications must use to
access it.

Storage buckets can be located on local storage (with dir, btrfs, lvm or zfs pools) or on re-
mote storage (with cephobject pools).

To enable storage buckets for local storage pool drivers and allow applications to access
the buckets via the S3 protocol, you must configure the core.storage_buckets_address
(page 404) server setting.

See the following how-to guide for additional information:

• How to manage storage buckets and keys (page 193)

Related topics

How-to guides:

• Storage (page 175)

Reference:

• Storage drivers (page 521)

3.2.3. Networking setups
There are different ways to connect your instances to the Internet. The easiest method is to
have LXD create a network bridge during initialization and use this bridge for all instances,
but LXD supports many different and advanced setups for networking.

Network devices

To grant direct network access to an instance, youmust assign it at least one network device,
also called NIC. You can configure the network device in one of the following ways:

• Use the default network bridge that you set up during the LXD initialization. Check the
default profile to see the default configuration:

353 of 954

lxc profile show default

This method is used if you do not specify a network device for your instance.

• Use an existing network interface by adding it as a network device to your instance. This
network interface is outsideof LXDcontrol. Therefore, youmust specify all information
that LXD needs to use the network interface.

Use a command similar to the following:

lxc config device add <instance_name> <device_name> nic nictype=<nic_type>
...

See Type: nic (page 449) for a list of available NIC types and their configuration prop-
erties.

For example, you could add a pre-existing Linux bridge (br0) with the following com-
mand:

lxc config device add <instance_name> eth0 nic nictype=bridged parent=br0

• Create a managed network (page 210) and add it as a network device to your instance.
With this method, LXD has all required information about the configured network, and
you can directly attach it to your instance as a device:

lxc network attach <network_name> <instance_name> <device_name>

See Attach a network to an instance (page 212) for more information.

Managed networks

Managed networks in LXD are created and configured with the lxc network [cre-
ate|edit|set] command.

Depending on the network type, LXD either fully controls the network or just manages an
external network interface.

Note that not all NIC types (page 449) are supported as network types. LXD can only set up
some of the types as managed networks.

Fully controlled networks

Fully controlled networks create network interfaces and provide most functionality, includ-
ing, for example, the ability to do IP management.

LXD supports the following network types:

Bridge network (page 573)
Anetwork bridge creates a virtual L2 Ethernet switch that instanceNICs can connect to,
making it possible for them to communicate with each other and the host. LXD bridges
can leverage underlying native Linux bridges and Open vSwitch.

In LXD context, the bridge network type creates an L2 bridge that connects the in-
stances that use it together into a single network L2 segment. This makes it possible to
pass traffic between the instances. The bridge can also provide local DHCP and DNS.

This is the default network type.

354 of 954

OVN network (page 587)
OVN (Open Virtual Network) is a software-defined networking system that supports
virtual network abstraction. You can use it to build your own private cloud. See www.
ovn.org198 for more information.

In LXD context, the ovn network type creates a logical network. To set it up, you must
install and configure theOVN tools. In addition, youmust create an uplink network that
provides the network connection for OVN. As the uplink network, you should use one
of the external network types or a managed LXD bridge.

Tip

Unlike the other network types, you can create and manage an OVN network inside
a project (page 161). This means that you can create your own OVN network as a
non-admin user, even in a restricted project.

External networks

External networks use network interfaces that already exist. Therefore, LXD has limited pos-
sibility to control them, and LXD features like network ACLs, network forwards and network
zones are not supported.

Themain purpose for using external networks is to provide an uplink network through a par-
ent interface. This external network specifies the presets to use when connecting instances
or other networks to a parent interface.

LXD supports the following external network types:

Macvlan network (page 593)
Macvlan is a virtual LAN (Local Area Network) that you can use if you want to assign
several IP addresses to the same network interface, basically splitting up the network
interface into several sub-interfaces with their own IP addresses. You can then assign
IP addresses based on the randomly generated MAC addresses.

In LXD context, the macvlan network type provides a preset configuration to use when
connecting instances to a parent macvlan interface.

SR-IOV network (page 600)
SR-IOV (Single root I/O virtualization) is a hardware standard that allows a single net-
work card port to appear as several virtual network interfaces in a virtualized environ-
ment.

In LXD context, the sriov network type provides a preset configuration to use when
connecting instances to a parent SR-IOV interface.

Physical network (page 595)
The physical network type connects to an existing physical network, which can be a
network interface or a bridge, and serves as an uplink network for OVN.

It provides a preset configuration to use when connecting OVN networks to a parent
interface.

198 https://www.ovn.org/

355 of 954

https://www.ovn.org/
https://www.ovn.org/

Recommendations

In general, if you can use amanaged network, you should do so because networks are easy to
configure and you can reuse the same network for several instances without repeating the
configuration.

Which network type to choose depends on your specific use case. If you choose a fully con-
trolled network, it provides more functionality than using a network device.

As a general recommendation:

• If you are running LXD on a single system or in a public cloud, use a Bridge network
(page 573), possibly in connection with the Ubuntu Fan199.

• If you are running LXD in your own private cloud, use an OVN network (page 587).

Note

OVN requires a shared L2 uplink network for proper operation. Therefore, using
OVN is usually not possible if you run LXD in a public cloud.

• To connect an instance NIC to a managed network, use the network property rather
than the parent property, if possible. This way, the NIC can inherit the settings from
the network and you don’t need to specify the nictype.

Related topics

How-to guides:

• Networking (page 210)

Reference:

• Networks (page 573)

3.2.4. The LXD Dqlite database
LXD uses a distributed database to store the server configuration and state, which allows for
quicker queries than if the configuration was stored inside each instance’s directory (as it is
done by LXC, for example).

To understand the advantages, consider a query against the configuration of all instances,
like “what instances are using br0?”. To answer that question without a database, you would
have to iterate throughevery single instance, load andparse its configuration, and then check
which network devices are defined in there. With a database, you can run a simple query on
the database to retrieve this information.

Dqlite

In a LXD cluster, all members of the cluster must share the same database state. There-
fore, LXD uses Dqlite200, a distributed version of SQLite. Dqlite provides replication, fault-
tolerance, and automatic failover without the need of external database processes.

When using LXD as a single machine and not as a cluster, the Dqlite database effectively
behaves like a regular SQLite database.

199 https://www.youtube.com/watch?v=5cwd0vZJ5bw
200 https://dqlite.io/

356 of 954

https://www.youtube.com/watch?v=5cwd0vZJ5bw
https://dqlite.io/

File location

The database files are stored in the database sub-directory of your LXD data directory (thus
/var/snap/lxd/common/lxd/database/ if you use the snap, or /var/lib/lxd/database/ other-
wise).

Upgrading LXD to a newer versionmight require updating the database schema. In this case,
LXD automatically stores a backup of the database and then runs the update. See Upgrade
LXD (page 35) for more information.

Backup

See Back up the database (page 319) for instructions on how to back up the contents of the
LXD database.

3.2.5. lxc show and info
For the entitiesmanaged by LXD, the lxc command provides a list sub-command, andmight
provide show and info sub-commands. The purpose of the info sub-command is to show cur-
rent state information, and the purpose of the show sub-command is to show configuration
information and how the entity is used by other entities.

For example, the lxc network info command shows IP address and traffic statistics:

Name: lxdbr0
MAC address: 00:16:3e:d3:ec:41
MTU: 1500
State: up

Ips:
inet 192.0.2.1
inet6 2001:db8:f4a1:53d2::1
inet6 fe80::216:3eff:fed3:ec41

Network usage:
Bytes received: 127.66kB
Bytes sent: 15.54kB
Packets received: 1433
Packets sent: 175

The lxc network show command, on the other hand, shows how the network is configured,
and which entities are using the network:

config:
ipv4.address: 192.0.2.1/24
ipv4.nat: "true"
ipv6.address: 2001:db8:f4a1:53d2::1/64
ipv6.nat: "true"

description: ""
name: lxdbr0
type: bridge
used_by:
- /1.0/instances/ubuntu
- /1.0/profiles/default

(continues on next page)

357 of 954

(continued from previous page)

managed: true
status: Created
locations:
- none

Refer to the manual pages for details of the commands for managing entities:

• Instances: lxc list (page 785), lxc info (page 782)

• Images: lxc image list (page 778), lxc image info (page 777), lxc image show
(page 780)

• Networks: lxc network list (page 812), lxc network info (page 812), lxc network
show (page 830)

• Profiles: lxc profile list (page 857), lxc profile show (page 860)

• Projects: lxc project list (page 865), lxc project info (page 865), lxc project show
(page 867)

• Storage: lxc storage list (page 895), lxc storage info (page 894), lxc storage show
(page 896)

3.3. Access management
In LXD, access to the API is controlled through TLS or OpenID Connect authentication. When
using OpenID Connect, you can grant permissions to access specific entities to different
clients. You can also restrict access to LXD entities by confining them to specific projects.

3.3.1. Remote API authentication
Remote communicationswith the LXDdaemonhappenusing JSONoverHTTPS. This requires
the LXDAPI to be exposed over the network; seeHow to expose LXD to the network (page 44)
for instructions.

To be able to access the remote API, clients must authenticate with the LXD server. The
following authentication methods are supported:

• TLS client certificates (page 358)

• OpenID Connect authentication (page 361)

TLS client certificates

When using TLS (Transport Layer Security) client certificates for authentication, both the
client and the server will generate a key pair the first time they’re launched. The server will
use that key pair for all HTTPS connections to the LXD socket. The clientwill use its certificate
as a client certificate for any client-server communication.

To cause certificates to be regenerated, simply remove the old ones. On the next connection,
a new certificate is generated.

Communication protocol

The supported protocol must be TLS 1.3 or better.

All communications must use perfect forward secrecy, and ciphers must be limited to strong
elliptic curve ones (such as ECDHE-RSA or ECDHE-ECDSA).

358 of 954

Any generated key should be at least 4096 bit RSA, preferably 384 bit ECDSA. When using
signatures, only SHA-2 signatures should be trusted.

Since we control both client and server, there is no reason to support any backward compat-
ibility to broken protocol or ciphers.

Trusted TLS clients

The workflow to authenticate with the server is similar to that of SSH, where an initial con-
nection to an unknown server triggers a prompt:

1. When the user adds a server with lxc remote add (page 872), the server is contacted
over HTTPS, its certificate is downloaded and the fingerprint is shown to the user.

2. The user is asked to confirm that this is indeed the server’s fingerprint, which they can
manually check by connecting to the server or by asking someone with access to the
server to run the info command and compare the fingerprints.

3. The server attempts to authenticate the client:

• If the client certificate is in the server’s trust store, the connection is granted.

• If the client certificate is not in the server’s trust store, the server prompts the
user for a token. If the provided token matches, the client certificate is added to
the server’s trust store and the connection is granted. Otherwise, the connection
is rejected.

See How to expose LXD to the network (page 44) and Authenticate with the LXD server
(page 45) for instructions on how to configure TLS authentication and add trusted clients.

Using a PKI system

In a PKI (Public key infrastructure) setup, a system administrator manages a central PKI that
issues client certificates for all the LXDclients and server certificates for all the LXDdaemons.

In PKI mode, TLS authentication requires that client certificates are signed be the CA (Cer-
tificate authority). This requirement does not apply to clients that authenticate via OIDC
(page 361).

The steps for enabling PKI mode differ slightly depending on whether you use an ACME
provider in addition (see TLS server certificate (page 361)).

Only PKI

PKI and ACME

If you use a PKI system, both the server and client certificates are issued by intermediate
CA(s). The client.ca file contains the certificate used by the client to verify the server cer-
tificate it receives when making a connection to a remote. The server.ca file contains the
certificate used by the server to verify the client certificate associated with an incoming con-
nection.

Bothfiles contain trust anchors used toevaluate if the received leaf certificate fromtheother
end of the connection is to be trusted or not. If the leaf certificate’s chain of trust leads to
one of the trusted anchors it will be trusted (unless revoked).

1. Add the CA certificate to all machines:

359 of 954

• Place the client.ca file in the clients’ configuration directories (~/.config/lxc or
~/snap/lxd/common/config for snap users).

• Place the server.ca file in the server’s configuration directory (/var/lib/lxd or
/var/snap/lxd/common/lxd for snap users).

Note

In a cluster setup, the CA certificate must be named cluster.ca, and the same
file must be added to all cluster members.

2. Place the certificates issuedby theCA in the clients’ configurationdirectories, replacing
the automatically generated client.crt and client.key files.

3. If you want clients to automatically trust the server, place the certificates issued by
the CA in the server’s configuration directory, replacing the automatically generated
server.crt and server.key files.

Note

In a cluster setup, the certificate files must be named cluster.crt and cluster.key.
They must be identical on all cluster members.

When a client adds a PKI-enabled server or cluster as a remote, it checks the server
certificate and prompts the user to trust the server certificate only if the certificate
has not been signed by the CA.

4. Restart the LXD daemon.

If you use a PKI system alongside an ACME provider, the server certificates are issued by the
ACME provider, and the client certificates are issued by a secondary CA.

1. Place the CA certificate for the server (server.ca) in the server’s configuration direc-
tory (/var/lib/lxd or /var/snap/lxd/common/lxd for snap users), so that the server can
authenticate the clients.

Note

In a cluster setup, the CA certificate must be named cluster.ca, and the same file
must be added to all cluster members.

2. Place the certificates issuedby theCA in the clients’ configurationdirectories, replacing
the automatically generated client.crt and client.key files.

3. Restart the LXD daemon.

Trusting certificates

CA-signed client certificates are not automatically trusted. You must still add them to the
server in one of the ways described in Trusted TLS clients (page 359).

To automatically trust CA-signed client certificates, set the core.trust_ca_certificates
(page 405) server configuration to true. When core.trust_ca_certificates is enabled, any

360 of 954

new clients with a CA-signed certificate will have full access to LXD.

Revoking certificates

To revoke certificates via the PKI, place a certificate revocation list in the server’s configura-
tion directory as ca.crl and restart the LXD daemon. A client with a CA-signed certificate
that has been revoked, and is present in ca.crl, will not be able to authenticate with LXD,
nor add LXD as a remote viamutual TLS (page 359).

OpenID Connect authentication

LXD supports usingOpenID Connect201 to authenticate users through anOIDC (OpenID Con-
nect) Identity Provider.

To configure LXD to use OIDC authentication, set the oidc.* (page 406) server configuration
options. YourOIDC providermust be configured to enable theDevice Authorization Grant202

type.

To add a remote pointing to a LXD server configured with OIDC authentication, run lxc re-
mote add <remote_name> <remote_address> (page 872). You are then prompted to authen-
ticate through your web browser, where you must confirm that the device code displayed
in the browser matches the device code that is displayed in the terminal window. The LXD
client then retrieves and stores an access token, which it provides to LXD for all interactions.
The identity provider might also provide a refresh token. In this case, the LXD client uses this
refresh token to attempt to retrieve another access tokenwhen the current access token has
expired.

Warning

Only set oidc.client.secret if required by the Identity Provider. Once set, this key allows
the LXDUI client to authenticate. However, the secret is not sharedwith other LXD clients
(such as the LXD CLI).

When an OIDC client initially authenticates with LXD, it does not have access to the majority
of the LXD API. OIDC clients must be granted access by an administrator, see Fine-grained
authorization (page 364).

TLS server certificate

LXD supports issuing server certificates using ACME (Automatic CertificateManagement En-
vironment) services, for example, Let’s Encrypt203.

To enable this feature, set the following server configuration:

• acme.domain (page 405): The domain for which the certificate should be issued.

• acme.email (page 405): The email address used for the account of the ACME service.

• acme.agree_tos (page 405): Must be set to true to agree to the ACME service’s terms
of service.

201 https://openid.net/developers/how-connect-works/
202 https://oauth.net/2/device-flow/
203 https://letsencrypt.org/

361 of 954

https://openid.net/developers/how-connect-works/
https://oauth.net/2/device-flow/
https://letsencrypt.org/

• acme.ca_url (page 405): The directory URL of the ACME service. By default, LXD uses
“Let’s Encrypt”.

For this feature to work, LXD must be reachable from port 80. This can be achieved by using
a reverse proxy such as HAProxy204.

Here’s a minimal HAProxy configuration that uses lxd.example.net as the domain. After the
certificate has been issued, LXD will be reachable from https://lxd.example.net/.

Global configuration
global
log /dev/log local0
chroot /var/lib/haproxy
stats socket /run/haproxy/admin.sock mode 660 level admin
stats timeout 30s
user haproxy
group haproxy
daemon
ssl-default-bind-options ssl-min-ver TLSv1.2
tune.ssl.default-dh-param 2048
maxconn 100000

Default settings
defaults
mode tcp
timeout connect 5s
timeout client 30s
timeout client-fin 30s
timeout server 120s
timeout tunnel 6h
timeout http-request 5s
maxconn 80000

Default backend - Return HTTP 301 (TLS upgrade)
backend http-301
mode http
redirect scheme https code 301

Default backend - Return HTTP 403
backend http-403
mode http
http-request deny deny_status 403

HTTP dispatcher
frontend http-dispatcher
bind :80
mode http

Backend selection
tcp-request inspect-delay 5s

(continues on next page)

204 http://www.haproxy.org/

362 of 954

http://www.haproxy.org/

(continued from previous page)

Dispatch
default_backend http-403
use_backend http-301 if { hdr(host) -i lxd.example.net }

SNI dispatcher
frontend sni-dispatcher
bind :443
mode tcp

Backend selection
tcp-request inspect-delay 5s

require TLS
tcp-request content reject unless { req.ssl_hello_type 1 }

Dispatch
default_backend http-403
use_backend lxd-nodes if { req.ssl_sni -i lxd.example.net }

LXD nodes
backend lxd-nodes
mode tcp

option tcp-check

Multiple servers should be listed when running a cluster
server lxd-node01 1.2.3.4:8443 check
server lxd-node02 1.2.3.5:8443 check
server lxd-node03 1.2.3.6:8443 check

Failure scenarios

In the following scenarios, authentication is expected to fail.

Server certificate changed

The server certificate might change in the following cases:

• The server was fully reinstalled and therefore got a new certificate.

• The connection is being intercepted (MITM (Machine in the middle)).

In such cases, the clientwill refuse to connect to the server because the certificatefingerprint
does not match the fingerprint in the configuration for this remote.

It is then up to the user to contact the server administrator to check if the certificate did in
fact change. If it did, the certificate can be replaced by the new one, or the remote can be
removed altogether and re-added.

363 of 954

Server trust relationship revoked

The server trust relationship is revoked for a client if another trusted client or the local server
administrator removes the trust entry for the client on the server.

In this case, the server still uses the same certificate, but all API calls return a 403 code with
an error indicating that the client isn’t trusted.

Related topics

Explanation:

• Security (page 376)

How-to guides:

• How to expose LXD to the network (page 44)

3.3.2. Remote API authorization
When LXD is exposed over the network (page 44) it is possible to restrict API access via two
mechanisms:

• Restricted TLS certificates (page 364)

• Fine-grained authorization (page 364)

Restricted TLS certificates

It is possible to restrict a TLS client (page 359) to one or multiple projects. In this case, the
client will also be prevented from performing global configuration changes or altering the
configuration (limits, restrictions) of the projects it’s allowed access to.

To restrict access, use lxc config trust edit <fingerprint> (page 753). Set the restricted
key to true and specify a list of projects to restrict the client to. If the list of projects is empty,
the client will not be allowed access to any of them.

Fine-grained authorization

It is possible to restrict OIDC clients (page 361) and fine-grained TLS identities to granular
actions on specific LXD resources. For example, one could restrict a user to be able to view,
but not edit, a single instance.

There are four key concepts that LXD uses to manage these fine-grained permissions:

• Entitlements: An entitlement encapsulates an action that can be taken against a LXD
API resource type. Some entitlements might apply to many resource types, whereas
other entitlements can only apply to a single resource type. For example, the entitle-
ment can_view is available for all resource types, but the entitlement can_exec is only
available for LXD resources of type instance.

• Permissions: A permission is the application of an entitlement to a particular LXD re-
source. For example, given the entitlement can_exec that is only defined for instances,
a permission is the combination of can_exec and a single instance, as uniquely defined
by its API URL (for example, /1.0/instances/c1?project=foo).

• Identities (users): An identity is any authenticated party that makes requests to LXD,
including TLS clients. When an OIDC client adds a LXD server as a remote, the OIDC
client is saved in LXD as an identity. Permissions cannot be assigned to identities di-
rectly.

364 of 954

• Groups: A group is a collection of one or more identities. Identities can belong to one
or more groups. Permissions can be assigned to groups. TLS clients cannot currently
be assigned to groups.

Explore permissions

To discover available permissions that can be assigned to a group, or view permissions that
are currently assigned, run the following command:

lxc auth permission list --max-entitlements 0

Theentity type columndisplays the LXDAPI resource type, this value is requiredwhen adding
a permission to a group.

The URL column displays the URL of the LXD API resource.

The entitlements columndisplays all available entitlements for that entity type. If any groups
are already assigned permissions on the API resource at the displayed URL, they are listed
alongside the entitlements that they have been granted.

Some useful permissions at a glance:

• The admin entitlement on entity type server gives full access to LXD. This is equivalent
to an unrestricted TLS client or Unix socket access.

• The project_manager entitlement on entity type server grants access to create, edit,
and delete projects, and all resources belonging to those projects. However, this per-
mission does not allow access to server configuration, storage pool configuration, or
certificate/identity management.

• The operator entitlement on entity type project grants access to create, edit, and
delete all resources belonging to the project against which the permission is granted.
Members of a group with this permission will not be able to edit the project configura-
tion itself. This is equivalent to a restricted TLS client with access to the same project.

• The user entitlement on entity type instance grants access to view an instance, pull/-
push files, get a console, and begin a terminal session. Members of a group with this
entitlement cannot edit the instance configuration.

For a full list, see Permissions (page 609).

Note

Due to a limitation in the LXD client, if can_exec is granted to a group for a particu-
lar instance, members of the group will not be able to start a terminal session unless
can_view_events is additionally granted for the parent project of the instance. We are
working to resolve this.

Explore identities

To discover available identities that can be assigned to a group, or view identities that are
currently assigned, run the following command:

lxc auth identity list

365 of 954

The authentication method column displays the method by which the client authenticates
with LXD.

The type column displays the type of identity. Identity types are a superset of TLS certificate
types and additionally include OIDC clients.

The name column displays the name of the identity. For TLS clients, this will be the name of
the certificate. ForOIDC clients thiswill be the nameof the client as given by the IdP (identity
provider) (requested via the profile scope205).

The identifier column displays a unique identifier for the identity within that authentication
method. For TLS clients, this will be the certificate fingerprint. For OIDC clients, this will be
the email address of the client.

The groups column displays any groups that are currently assigned to the identity. Groups
cannot currently be assigned to TLS clients.

Note

OIDC clients will only be displayed in the list of identities once they have authenticated
with LXD.

Manage permissions

In LXD, identities cannot be granted permissions directly. Instead, identities are added to
groups, and groups are granted permissions. To create a group, run:

lxc auth group create <group_name>

To add an identity to a group, run:

lxc auth identity group add <authentication_method>/<identifier> <group_name>

For example, for OIDC clients:

lxc auth identity group add oidc/<email_address> <group_name>

The identity is now a member of the group. To add permissions to the group, run:

lxc auth group permission add <group_name> <entity_type> [<entity_name>]
<entitlement> [<key>=<value>...]

Here are some examples:

• lxc auth group permission add administrator server admin grants members of
administrator the admin entitlement on server.

• lxc auth group permission add junior-dev project sandbox operatorgrantsmembers
of junior-dev the operator entitlement on project sandbox.

• lxc auth group permission add my-group instance c1 user project=default grants
members of my-group the user entitlement on instance c1 in project default.

205 https://openid.net/specs/openid-connect-basic-1_0.html#Scopes

366 of 954

https://openid.net/specs/openid-connect-basic-1_0.html#Scopes

Some entity types require more than one supplementary argument to uniquely specify the
entity. For example, entities of type storage_volume and storage_bucket require an addi-
tional pool=<storage_pool_name> argument.

Use groups defined by the identity provider

It is common practice to manage users, roles, and groups centrally via an identity provider
(IdP). In LXD, identity provider groups allow groups that are defined by the IdP to bemapped
to LXD groups. When an OIDC client makes a request to LXD, any groups that can be ex-
tracted from the client’s identity token aremapped to LXD groups, giving the client the same
effective permissions.

To configure IdPgroupmappings in LXD,first configure your IdP to addgroups to identity and
access tokens as a custom claim. This configuration depends on your IdP. In 206, for example,
you can add the “roles” that a user has as a custom claim via an action207. Alternatively, if
RBAC (role-based access control) is enabled for the audience, a “permissions” claim can be
added automatically. In Keycloak, you can define a mapper208 to set Keycloak groups in the
token.

Then configure LXD to extract this claim. To do so, set the value of the oidc.groups.claim
(page 406) configuration key to the value of the field name of the custom claim:

lxc config set oidc.groups.claim=<claim_name>

LXD will then expect the identity and access tokens to contain a claim with this name. The
value of the claim must be a JSON array containing a string value for each IdP group name.
If the group names are extracted successfully, LXD will be aware of the IdP groups for the
duration of the request.

Next, configure a mapping between an IdP group and a LXD group as follows:

lxc auth identity-provider-group create <idp_group_name>
lxc auth identity-provider-group group add <idp_group_name> <lxd_group_name>

IdP groups can be mapped to multiple LXD groups, and multiple IdP groups can be mapped
to the same LXD group.

Important

LXD does not store the identity provider groups that are extracted from identity or ac-
cess tokens. This can obfuscate the true permissions of an identity. For example, if an
identity belongs to LXD group “foo”, an administrator can view the permissions of group
“foo” to determine the level of access of the identity. However, if identity provider group
mappings are configured, direct group membership alone does not determine their level
of access. The command lxc auth identity info can be run by any identity to view a full
list of their own effective groups and permissions as granted directly or indirectly via IdP
groups.

206 https://auth0.com/
207 https://community.auth0.com/t/how-to-add-roles-and-permissions-to-the-id-token-using-actions/84506
208 https://keycloak.discourse.group/t/anyway-to-include-user-groups-into-my-jwt-token/8715

367 of 954

https://community.auth0.com/t/how-to-add-roles-and-permissions-to-the-id-token-using-actions/84506
https://keycloak.discourse.group/t/anyway-to-include-user-groups-into-my-jwt-token/8715

3.3.3. Instances grouping with projects
You can use projects to keep your LXD server clean by grouping related instances together. In
addition to isolated instances, each project can also have specific images, profiles, networks,
and storage.

For example, projects can be useful in the following scenarios:

• You run a huge number of instances for different purposes, for example, for different
customer projects. You want to keep these instances separate to make it easier to lo-
cate and maintain them, and you might want to reuse the same instance names in each
customer project for consistency reasons. Each instance in a customer project should
use the same base configuration (for example, networks and storage), but the config-
uration might differ between customer projects.

In this case, you can create a LXD project for each customer project (thus each group of
instances) and use different profiles, networks, and storage for each LXD project.

• Your LXD server is shared between multiple users. Each user runs their own instances,
and might want to configure their own profiles. You want to keep the user instances
confined, so that each user can interact only with their own instances and cannot see
the instances created by other users. In addition, you want to be able to limit resources
for each user and make sure that the instances of different users cannot interfere with
one another.

In this case, you can set up a multi-user environment with confined projects.

LXD comes with a default project. See How to create and configure projects (page 161) for
instructions on how to add projects.

Isolation of projects

Projects always encapsulate the instances they contain, which means that instances cannot
be shared between projects and instance names can be duplicated in several projects. When
you are in a specific project, you can see only the instances that belong to this project.

Other entities (images, profiles, networks, and storage) can be either isolated in the project
or inherited from the default project. To configure which entities are isolated, you enable or
disable the respective feature in the project. If a feature is enabled, the corresponding entity
is isolated in the project; if the feature is disabled, it is inherited from the default project.

For example, if you enable features.networks (page 510) for a project, the project uses a
separate set of networks and not the networks defined in the default project. If you dis-
able features.images (page 510), the project has access to the images defined in the default
project, and any images you add while you’re using the project are also added to the default
project.

See the list of available Project features (page 509) for information about which features are
enabled or disabled when you create a project.

Note

Youmust select the features that youwant to enable before starting to use a newproject.
Whenaproject contains instances, the features are locked. Toedit them, youmust remove
all instances first.

368 of 954

New features that are added in an upgrade are disabled for existing projects.

Important

In a multi-tenant environment, unless using Fine-grained authorization (page 364), all
projects should have all features enabled. Otherwise, clients with Restricted TLS certifi-
cates (page 364) are able to create, edit, and delete resources in the default project. This
might affect other tenants.

For example, if project “foo” is created and features.networks is not set to true, then a
restricted client certificate with access to “foo” can view, edit, and delete networks in the
default project.

Conversely, if a client’s permissions aremanaged via Fine-grained authorization (page364),
resources may be inherited from the default project but access to those resources is not
automatically granted.

Confined projects in a multi-user environment

If your LXD server is used by multiple users (for example, in a lab environment), you can
use projects to confine the activities of each user. This method isolates the instances and
other entities (depending on the feature configuration), as described in Isolation of projects
(page 368). It also confines users to their own user space and prevents them from gaining
access to other users’ instances or data. Any changes that affect the LXD server and its con-
figuration, for example, adding or removing storage, are not permitted.

In addition, this method allows users to work with LXD without being a member of the lxd
group (see Access to the LXD daemon (page 377)). Members of the lxd group have full access
to LXD, including permission to attach file system paths and tweak the security features of
an instance, which makes it possible to gain root access to the host system. Using confined
projects limits what users can do in LXD, but it also prevents users from gaining root access.

When LXD is accessible over the HTTPS API, both TLS client certificates (page 358) and OIDC
clients (page 361) can be restricted to allow access to specific projects only. This is managed
via Fine-grained authorization (page 364). See Confine users to specific projects on the HTTPS
API (page 169) for instructions.

Multi-user LXD daemon

The LXD snap contains a multi-user LXD daemon that allows dynamic project creation on
a per-user basis. You can configure a specific user group other than the lxd group to give
restricted LXD access to every user in the group.

When a user that is a member of this group starts using LXD, the multi-user daemon auto-
matically creates a confined project for this user.

If you’re not using the snap, you can still use this feature if your distribution supports it.

See Confine users to specific LXD projects via Unix socket (page 175) for instructions on con-
figuring the multi-user daemon.

369 of 954

Related topics

How-to guides:

• Projects (page 161)

Reference:

• Project configuration (page 509)

3.4. Production setup
When you’re ready to move your LXD setup to production, you should read up on the con-
cepts that are important for providing a scalable, reliable, and secure environment.

3.4.1. Clusters
To spread the total workload over several servers, LXD can be run in clustering mode. In
this scenario, any number of LXD servers share the same distributed database that holds the
configuration for the cluster members and their instances. The LXD cluster can be managed
uniformly using the lxc (page 690) client or the REST API.

This feature was introduced as part of the clustering (page 633) API extension and is avail-
able since LXD 3.0.

Tip

If you want to quickly set up a basic LXD cluster, check out MicroCloud209.

Cluster members

A LXD cluster consists of one bootstrap server and at least two further cluster members. It
stores its state in a distributed database (page 356), which is a Dqlite210 database replicated
using the Raft algorithm.

While you could create a cluster with only twomembers, it is strongly recommended that the
number of clustermembers be at least three. With this setup, the cluster can survive the loss
of at least one member and still be able to establish quorum for its distributed state.

When you create the cluster, the Dqlite database runs on only the bootstrap server until a
third member joins the cluster. Then both the second and the third server receive a replica
of the database.

See How to form a cluster (page 280) for more information.

Member roles

In a cluster with three members, all members replicate the distributed database that stores
the state of the cluster. If the cluster has more members, only some of them replicate the
database. The remaining members have access to the database, but don’t replicate it.

At each time, there is an elected cluster leader that monitors the health of the other mem-
bers.

Each member that replicates the database has either the role of a voter or of a stand-by.
If the cluster leader goes offline, one of the voters is elected as the new leader. If a voter

209 https://canonical.com/microcloud
210 https://dqlite.io/

370 of 954

https://canonical.com/microcloud
https://dqlite.io/

member goes offline, a stand-by member is automatically promoted to voter. The database
(and hence the cluster) remains available as long as a majority of voters is online.

The following roles can be assigned to LXD cluster members. Automatic roles are assigned
by LXD itself and cannot be modified by the user.

Role Auto-
matic

Description

database yes Voting member of the distributed database
database-leader yes Current leader of the distributed database
database-standbyyes Stand-by (non-voting) member of the distributed database
event-hub no Exchange point (hub) for the internal LXD events (requires at

least two)
ovn-chassis no Uplink gateway candidate for OVN networks

The default number of voter members (cluster.max_voters (page 408)) is three. The default
number of stand-by members (cluster.max_standby (page 408)) is two. With this configura-
tion, your clusterwill remain operational as long as you switchoffatmost one votingmember
at a time.

See How to manage a cluster (page 284) for more information.

Offline members and fault tolerance

If a cluster member is down for more than the configured offline threshold, its status is
marked as offline. In this case, no operations are possible on this member, and neither are
operations that require a state change across all members.

As soon as the offline member comes back online, operations are available again.

If themember that goes offline is the leader itself, the othermemberswill elect a new leader.

If you can’t or don’t want to bring the server back online, you can delete it from the cluster
(page 287).

You can tweak the amount of seconds afterwhich a non-respondingmember is consideredof-
fline by setting the cluster.offline_threshold (page 408) configuration. The default value
is 20 seconds. The minimum value is 10 seconds.

To automatically evacuate (page 286) instances from an offline member, set the cluster.
healing_threshold (page 407) configuration to a non-zero value.

See How to recover a cluster (page 293) for more information.

Failure domains

You can use failure domains to indicate which cluster members should be given preference
when assigning roles to a cluster member that has gone offline. For example, if a cluster
member that currently has the database role gets shut down, LXD tries to assign its database
role to another cluster member in the same failure domain, if one is available.

To update the failure domain of a cluster member, use the lxc cluster edit <member>
(page 717) command and change the failure_domain property from default to another
string.

371 of 954

Member configuration

LXD cluster members are generally assumed to be identical systems. This means that all LXD
servers joining a clustermust have an identical configuration to thebootstrap server, in terms
of storage pools and networks.

To accommodate things like slightly different disk ordering or network interface naming,
there is an exception for some configuration options related to storage and networks, which
are member-specific.

When such settings are present in a cluster, any server that is being added must provide a
value for them. Most often, this is done through the interactive lxd init command, which
asks the user for the value for a number of configuration keys related to storage or networks.

Those settings typically include:

• The source device and size (quota) for a storage pool

• The name for a ZFS zpool, LVM thin pool or LVM volume group

• External interfaces and BGP next-hop for a bridged network

• The name of the parent network device for managed physical or macvlan networks

See How to configure storage for a cluster (page 290) and How to configure networks for a
cluster (page 288) for more information.

If you want to look up the questions ahead of time (which can be useful for scripting), query
the /1.0/clusterAPI endpoint. This can bedone through lxc query /1.0/clusteror through
other API clients.

Images

By default, LXD replicates images on as many cluster members as there are database mem-
bers. This typically means up to three copies within the cluster.

You can increase that number to improve fault tolerance and the likelihood of the image
being locally available. To do so, set the cluster.images_minimal_replica (page 407) config-
uration. The special value of -1 can be used to have the image copied to all cluster members.

Cluster groups

In a LXD cluster, you can addmembers to cluster groups. You can use these cluster groups to
launch instances on a cluster member that belongs to a subset of all available members. For
example, you could create a cluster group for all members that have a GPU and then launch
all instances that require a GPU on this cluster group.

By default, all cluster members belong to the default group.

SeeHowto set up cluster groups (page292) and Launchan instanceona specific clustermember
(page 291) for more information.

Automatic placement of instances

In a cluster setup, each instance lives on one of the cluster members. When you launch an
instance, you can target it to a specific cluster member, to a cluster group or have LXD auto-
matically assign it to a cluster member.

372 of 954

By default, the automatic assignment picks the cluster member that has the lowest number
of instances. If several members have the same amount of instances, one of the members is
chosen at random.

However, you can control this behaviorwith the scheduler.instance (page602) configuration
option:

• If scheduler.instance is set to all for a clustermember, this clustermember is selected
for an instance if:

– The instance is created without --target and the cluster member has the lowest
number of instances.

– The instance is targeted to live on this cluster member.

– The instance is targeted to live on a member of a cluster group that the cluster
member is a part of, and the cluster member has the lowest number of instances
compared to the other members of the cluster group.

• If scheduler.instance is set to manual for a cluster member, this cluster member is se-
lected for an instance if:

– The instance is targeted to live on this cluster member.

• If scheduler.instance is set to group for a cluster member, this cluster member is se-
lected for an instance if:

– The instance is targeted to live on this cluster member.

– The instance is targeted to live on a member of a cluster group that the cluster
member is a part of, and the cluster member has the lowest number of instances
compared to the other members of the cluster group.

Instance placement scriptlet

LXD supports using custom logic to control automatic instance placement by using an em-
bedded script (scriptlet). This method provides more flexibility than the built-in instance
placement functionality.

The instance placement scriptlet must be written in the Starlark language211 (which is a sub-
set of Python). The scriptlet is invoked each time LXD needs to know where to place an in-
stance. The scriptlet receives information about the instance that is being placed and the
candidate cluster members that could host the instance. It is also possible for the scriptlet
to request information about each candidate cluster member’s state and the hardware re-
sources available.

An instance placement scriptlet must implement the instance_placement function with the
following signature:

instance_placement(request, candidate_members):

• request is an object that contains an expanded representation of scriptlet.
InstancePlacement212. This request includes project and reason fields. The reason can
be new, evacuation or relocation.

211 https://github.com/bazelbuild/starlark
212 https://pkg.go.dev/github.com/canonical/lxd/shared/api/scriptlet/#InstancePlacement

373 of 954

https://github.com/bazelbuild/starlark
https://pkg.go.dev/github.com/canonical/lxd/shared/api/scriptlet/#InstancePlacement
https://pkg.go.dev/github.com/canonical/lxd/shared/api/scriptlet/#InstancePlacement

• candidate_members is a list of cluster member objects representing api.
ClusterMember213 entries.

For example:

def instance_placement(request, candidate_members):
Example of logging info, this will appear in LXD's log.
log_info("instance placement started: ", request)

Example of applying logic based on the instance request.
if request.name == "foo":

Example of logging an error, this will appear in LXD's log.
log_error("Invalid name supplied: ", request.name)

fail("Invalid name") # Exit with an error to reject instance placement.

Place the instance on the first candidate server provided.
set_target(candidate_members[0].server_name)

return # Return empty to allow instance placement to proceed.

The scriptlet must be applied to LXD by storing it in the instances.placement.scriptlet
(page 412) global configuration setting.

For example, if the scriptlet is saved inside a file called instance_placement.star, then it can
be applied to LXD with the following command:

cat instance_placement.star | lxc config set instances.placement.scriptlet=-

To see the current scriptlet applied to LXD, use the lxc config get instances.placement.
scriptlet command.

The following functions are available to the scriptlet (in addition to those provided by Star-
lark):

• log_info(*messages): Add a log entry to LXD’s log at info level. messages is one ormore
message arguments.

• log_warn(*messages): Add a log entry to LXD’s log at warn level. messages is one ormore
message arguments.

• log_error(*messages): Add a log entry to LXD’s log at error level. messages is one or
more message arguments.

• set_cluster_member_target(member_name): Set the cluster member where the instance
should be created. member_name is the name of the cluster member the instance should
be created on. If this function is not called, then LXD will use its built-in instance place-
ment logic.

• get_cluster_member_state(member_name): Get the cluster member’s state. Returns an
object with the cluster member’s state in the form of api.ClusterMemberState214. mem-
ber_name is the name of the cluster member to get the state for.

213 https://pkg.go.dev/github.com/canonical/lxd/shared/api#ClusterMember
214 https://pkg.go.dev/github.com/canonical/lxd/shared/api#ClusterMemberState

374 of 954

https://pkg.go.dev/github.com/canonical/lxd/shared/api#ClusterMember
https://pkg.go.dev/github.com/canonical/lxd/shared/api#ClusterMember
https://pkg.go.dev/github.com/canonical/lxd/shared/api#ClusterMemberState

• get_cluster_member_resources(member_name): Get information about resources on the
cluster member. Returns an object with the resource information in the form of api.
Resources215. member_name is the name of the cluster member to get the resource infor-
mation for.

• get_instance_resources(): Get information about the resources the instance will re-
quire. Returns an object with the resource information in the form of scriptlet.
InstanceResources216.

Note

Field names in the object types are equivalent to the JSON field names in the associated
Go types.

Related topics

How-to guides:

• Clustering (page 280)

Reference:

• Cluster member configuration (page 602)

3.4.2. Performance tuning
When you are ready to move your LXD setup to production, you should take some time to
optimize the performance of your system. There are different aspects that impact perfor-
mance. The following steps help you to determine the choices and settings that you should
tune to improve your LXD setup.

Run benchmarks

LXD provides a benchmarking tool to evaluate the performance of your system. You can use
the tool to initialize or launch a number of containers and measure the time it takes for the
system to create the containers. By running the tool repeatedly with different LXD config-
urations, system settings or even hardware setups, you can compare the performance and
evaluate which is the ideal configuration.

See How to benchmark performance (page 297) for instructions on running the tool.

Monitor instance metrics

LXD collects metrics for all running instances as well as some internal metrics. Thesemetrics
cover the CPU, memory, network, disk and process usage. They are meant to be consumed
by Prometheus, and you can use Grafana to display the metrics as graphs. See Provided met-
rics (page 606) for lists of available metrics and Set up a Grafana dashboard (page 309) for
instructions on how to display the metrics in Grafana.

You should regularly monitor the metrics to evaluate the resources that your instances use.
Thenumbers help you todetermine if there are any spikes or bottlenecks, or if usagepatterns
change and require updates to your configuration.

See How to monitor metrics (page 301) for more information about metrics collection.

215 https://pkg.go.dev/github.com/canonical/lxd/shared/api#Resources
216 https://pkg.go.dev/github.com/canonical/lxd/shared/api/scriptlet/#InstanceResources

375 of 954

https://pkg.go.dev/github.com/canonical/lxd/shared/api#Resources
https://pkg.go.dev/github.com/canonical/lxd/shared/api#Resources
https://pkg.go.dev/github.com/canonical/lxd/shared/api/scriptlet/#InstanceResources
https://pkg.go.dev/github.com/canonical/lxd/shared/api/scriptlet/#InstanceResources

Tune server settings

The default kernel settings formost Linux distributions are not optimized for running a large
number of containers or virtual machines. Therefore, you should check and modify the rele-
vant server settings to avoid hitting limits caused by the default settings.

Typical errors that you might see when you encounter those limits are:

• Failed to allocate directory watch: Too many open files

• <Error> <Error>: Too many open files

• failed to open stream: Too many open files in...

• neighbour: ndisc_cache: neighbor table overflow!

See Server settings for a LXD production setup (page 602) for a list of relevant server settings
and suggested values.

Tune the network bandwidth

If you have a lot of local activity between instances or between the LXD host and the in-
stances, or if you have a fast internet connection, you should consider increasing the network
bandwidth of your LXD setup. You can do this by increasing the transmit and receive queue
lengths.

See How to increase the network bandwidth (page 299) for instructions.

Related topics

How-to guides:

• How to benchmark performance (page 297)

• How to increase the network bandwidth (page 299)

• How to monitor metrics (page 301)

Reference:

• Provided metrics (page 606)

• Server settings for a LXD production setup (page 602)

3.4.3. Security
Consider the following aspects to ensure that your LXD installation is secure:

• Keep your operating system up-to-date and install all available security patches.

• Use only supported LXD versions (LTS releases or the latest feature release).

• Restrict access to the LXD daemon and the remote API.

• Configure your network interfaces to be secure.

• Do not use privileged containers unless required. If you use privileged containers, put
appropriate security measures in place.

See the following sections for detailed information.

If you discover a security issue, see the LXD security policy217 for information on how to re-
port the issue.
217 https://github.com/canonical/lxd/blob/main/SECURITY.md

376 of 954

https://github.com/canonical/lxd/blob/main/SECURITY.md

Supported versions

Never use unsupported LXD versions in a production environment.

LXD has two types of releases:

• Feature releases

• LTS releases

For feature releases, only the latest one is supported, andwe usually don’t do point releases.
Instead, users are expected to wait until the next feature release.

For LTS releases, we do periodic bugfix releases that include an accumulation of bugfixes
from the feature releases. Such bugfix releases do not include new features.

Access to the LXD daemon

LXD is a daemon that can be accessed locally over a Unix socket or, if configured, remotely
over a TLS socket. Anyone with access to the socket can fully control LXD, which includes
the ability to attach host devices and file systems or to tweak the security features for all
instances.

Therefore, make sure to restrict the access to the daemon to trusted users.

Local access to the LXD daemon

The LXD daemon runs as root and provides a Unix socket for local communication. Access
control for LXD is based on group membership. The root user and all members of the lxd
group can interact with the local daemon.

Important

Local access to LXD through theUnix socket always grants full access to LXD. This includes
the ability to attach file system paths or devices to any instance as well as tweak the se-
curity features on any instance.

Therefore, you should only give such access to users who you’d trust with root access to
your system.

Access to the remote API

By default, access to the daemon is only possible locally. By setting the core.https_address
(page 402) configuration option, you can expose the same API over the network on a TLS
socket. See How to expose LXD to the network (page 44) for instructions. Remote clients can
then connect to LXD and access any image that is marked for public use.

There are several ways to authenticate remote clients as trusted clients to allow them to
access the API. See Remote API authentication (page 358) for details.

In a production setup, you should set core.https_address (page 402) to the single address
where the server should be available (rather than any address on the host). In addition, you
should set firewall rules to allow access to the LXD port only from authorized hosts/subnets.

377 of 954

Container security

LXD containers can use a wide range of features for security.

Also see the LXC security page218 on linuxcontainers.org for details on LXC container secu-
rity and the applied kernel features.

Unprivileged containers

By default, containers are unprivileged, meaning that they operate inside a user namespace,
restricting the abilities of users in the container to that of regular users on the host with
limited privileges on the devices that the container owns.

Unprivileged containers are safe by design: The container UID 0 ismapped to an unprivileged
user outside of the container. It has extra rights only on resources that it owns itself.

Thismechanismensures thatmost security issues (for example, container escape or resource
abuse) thatmight occur in a container apply just as well to a random unprivileged user, which
means they are a generic kernel security bug rather than a LXD issue.

Tip

If data sharing between containers isn’t needed, you can enable security.idmap.isolated
(page 436), which will use non-overlapping UID/GID maps for each container, preventing
potential DoS (Denial of Service) attacks on other containers.

Privileged containers

LXD can also run privileged containers. In privileged containers, the container UID 0 is
mapped to the host’s UID 0.

Such privileged containers are not root-safe, and a user with root access in such a container
will be able to DoS the host as well as find ways to escape confinement.

LXC applies some protection measures to privileged containers to prevent accidental dam-
age of the host (where damage is defined as things like reconfiguring host hardware, recon-
figuring the host kernel, or accessing the host file system). This protection of the host and
prevention of escape is achieved throughmandatory access control (apparmor, selinux), Sec-
comp filters, dropping of capabilities, and namespaces. These measures are valuable when
running trusted workloads, but they do not make privileged containers root-safe.

Therefore, you should not use privileged containers unless required. If you use them, make
sure to put appropriate security measures in place.

Container name leakage

The default server configuration makes it easy to list all cgroups on a system and, by exten-
sion, all running containers.

You can prevent this name leakage by blocking access to /sys/kernel/slab and /proc/
sched_debug before you start any containers. To do so, run the following commands:
218 https://linuxcontainers.org/lxc/security/

378 of 954

https://linuxcontainers.org/lxc/security/

chmod 400 /proc/sched_debug
chmod 700 /sys/kernel/slab/

Network security

Make sure to configure your network interfaces to be secure. Which aspects you should con-
sider depends on the networking mode you decide to use.

Bridged NIC security

The default networking mode in LXD is to provide a “managed” private network bridge that
each instance connects to. In this mode, there is an interface on the host called lxdbr0 that
acts as the bridge for the instances.

The host runs an instance of dnsmasq for each managed bridge, which is responsible for allo-
cating IP addresses and providing both authoritative and recursive DNS services.

Instances using DHCPv4 will be allocated an IPv4 address, and a DNS record will be created
for their instance name. This prevents instances from being able to spoof DNS records by
providing false host name information in the DHCP request.

The dnsmasq service also provides IPv6 router advertisement capabilities. This means that
instances will auto-configure their own IPv6 address using SLAAC, so no allocation is made
by dnsmasq. However, instances that are also using DHCPv4will also get an AAAADNS record
created for the equivalent SLAAC IPv6 address. This assumes that the instances are not using
any IPv6 privacy extensions when generating IPv6 addresses.

In this default configuration, whilst DNS names cannot not be spoofed, the instance is con-
nected to an Ethernet bridge and can transmit any layer 2 traffic that it wishes, which means
an instance that is not trusted can effectively do MAC or IP spoofing on the bridge.

In the default configuration, it is also possible for instances connected to the bridge to mod-
ify the LXD host’s IPv6 routing table by sending (potentially malicious) IPv6 router adver-
tisements to the bridge. This is because the lxdbr0 interface is created with /proc/sys/net/
ipv6/conf/lxdbr0/accept_ra set to 2, meaning that the LXDhostwill accept router advertise-
ments even though forwarding is enabled (see /proc/sys/net/ipv4/* Variables219 for more
information).

However, LXD offers several bridged NIC security features that can be used to control the
typeof traffic that an instance is allowed to sendonto thenetwork. TheseNIC settings should
be added to theprofile that the instance is using, or they canbe added to individual instances,
as shown below.

The following security features are available for bridged NICs:

219 https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

379 of 954

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

Key Type De-
fault

Re-
quired

Description

security.
mac_filtering

bool false no Prevent the instance from spoofing another in-
stance’s MAC address

security.
ipv4_filtering

bool false no Prevent the instance from spoofing another in-
stance’s IPv4 address (enables mac_filtering)

security.
ipv6_filtering

bool false no Prevent the instance from spoofing another in-
stance’s IPv6 address (enables mac_filtering)

One can override the default bridged NIC settings from the profile on a per-instance basis
using:

lxc config device override <instance> <NIC> security.mac_filtering=true

Used together, these features can prevent an instance connected to a bridge from spoof-
ing MAC and IP addresses. These options are implemented using either xtables (iptables,
ip6tables and ebtables) or nftables, depending on what is available on the host.

It’s worth noting that those options effectively prevent nested containers from using the
parent network with a different MAC address (i.e using bridged or macvlan NICs).

The IP filtering features block ARP andNDP advertisements that contain a spoofed IP, as well
as blocking any packets that contain a spoofed source address.

If security.ipv4_filtering or security.ipv6_filtering is enabled and the instance cannot
be allocated an IP address (because ipvX.address=none or there is no DHCP service enabled
on the bridge), then all IP traffic for that protocol is blocked from the instance.

When security.ipv6_filtering is enabled, IPv6 router advertisements are blocked from the
instance.

When security.ipv4_filteringor security.ipv6_filtering is enabled, any Ethernet frames
that are not ARP, IPv4 or IPv6 are dropped. This prevents stacked VLAN Q-in-Q (802.1ad)
frames from bypassing the IP filtering.

Routed NIC security

An alternative networking mode is available called “routed”. It provides a virtual Ethernet
device pair between container and host. In this networking mode, the LXD host functions
as a router, and static routes are added to the host directing traffic for the container’s IPs
towards the container’s veth interface.

By default, the veth interface created on the host has its accept_ra setting disabled to pre-
vent router advertisements from the container modifying the IPv6 routing table on the LXD
host. In addition to that, the rp_filter on the host is set to 1 to prevent source address
spoofing for IPs that the host does not know the container has.

Related topics

How-to guides:

• How to expose LXD to the network (page 44)

Explanation:

380 of 954

• Remote API authentication (page 358)

3.4.4. Privilege delegation using BPF Token
Overview

The security.delegate_bpf (page 434) option enables the BPF (Berkeley Packet Filter) func-
tionality delegationmechanism, using a BPF Token220. When enabled, LXDmounts a BPF File
System (BPFFS) inside a container instance. This file system is configured with the security.
delegate_bpf.* settings. For example:

none on /sys/fs/bpf type bpf (rw,relatime,uid=1000000,gid=1000000,
delegate_cmds=map_create:prog_load,
delegate_maps=ringbuf,
delegate_progs=socket_filter,
delegate_attachs=cgroup_inet_ingress)

Then, applications inside the container can create a BPF Token file descriptor using that
BPFFSmount and the bpf(BPF_TOKEN_CREATE) syscall. Later, this FileDescriptor canbepassed
to bpf(BPF_PROG_LOAD), bpf(BPF_MAP_CREATE), or another bpf()-command syscall, and the ker-
nel will perform a permission check against the token instead of the current user creden-
tials. To bemore precise, current user caps are also checked for CAP_BPF but in a current user
namespace when bpf(BPF_TOKEN_CREATE) is called.

It follows that user space applications inside the container must be aware of the BPF To-
ken kernel feature (which appeared in Linux kernel v6.9) and make use of it. In contrast to
security.syscalls.intercept.* features, this one is not fully transparent andmight require
updates or modifications to the software inside the container. Fortunately, the libbpf li-
brary221 supports BPF tokens. Thus if an application uses libbpf, then to make use of this
feature, you might only need to update libbpf.

Note

Configure the following instance options for the container, depending on its BPF work-
load:

• security.delegate_bpf.cmd_types (page 434)

• security.delegate_bpf.map_types (page 434)

• security.delegate_bpf.prog_types (page 435)

• security.delegate_bpf.attach_types (page 434)

See the BPF Token documentation page222 on docs.ebpf.io for details.

Example (socket filter)

Let’s consider an example with a socket filter program from libbpf-bootstrap223.

The following creates an unprivileged container instance and sets all the necessary configu-
ration options to enable BPF delegation:

220 https://docs.ebpf.io/linux/concepts/token
221 https://docs.kernel.org/bpf/libbpf/libbpf_overview.html
222 https://docs.ebpf.io/linux/concepts/token/
223 https://github.com/libbpf/libbpf-bootstrap

381 of 954

https://docs.ebpf.io/linux/concepts/token
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html
https://docs.ebpf.io/linux/concepts/token/
https://github.com/libbpf/libbpf-bootstrap

lxc launch ubuntu:noble bpf-experimentslxc config set bpf-experiments
limits.kernel.memlock=unlimitedlxc config set bpf-experiments
security.delegate_bpf=truelxc config set bpf-experiments
security.delegate_bpf.prog_types=socket_filterlxc config set bpf-experiments
security.delegate_bpf.attach_types=cgroup_inet_ingresslxc config set
bpf-experiments security.delegate_bpf.cmd_types=prog_load:map_createlxc
config set bpf-experiments security.delegate_bpf.map_types=ringbuf

The following set of commands clones and builds the libbpf-bootstrap.git repository within
the example bpf-experiments container:

lxc shell bpf-experimentsapt install clang build-essentialgit clone
https://github.com/libbpf/libbpf-bootstrap.gitgit submodule update --init
--recursivecd libbpf-bootstrap/examples/cmake

This experiment completes by running commands from two different shells into the
bpf-experiments container.

From one terminal:

lxc shell bpf-experiments./sockfilter

From another terminal:

lxc shell bpf-experimentsping -c 4 localhost

Sample output:

ibbpf: loading object 'sockfilter_bpf' from buffer
libbpf: elf: section(2) .symtab, size 192, link 1, flags 0, type=2
libbpf: elf: section(3) socket, size 576, link 0, flags 6, type=1
libbpf: sec 'socket': found program 'socket_handler' at insn offset 0 (0 bytes),
code size 72 insns (576 bytes)
...
libbpf: Kernel doesn't support BTF, skipping uploading it.
libbpf: map 'rb': created successfully, fd=3
interface: lo protocol: ICMP 127.0.0.1:2048(src) -> 127.0.0.
1:32429(dst)
interface: lo protocol: ICMP 127.0.0.1:0(src) -> 127.0.0.
1:34477(dst)
interface: lo protocol: ICMP 127.0.0.1:2048(src) -> 127.0.0.
1:46163(dst)
interface: lo protocol: ICMP 127.0.0.1:0(src) -> 127.0.0.
1:48211(dst)

We can see from this sample output that the ICMP packets were captured by the eBPF (ex-
tended Berkeley Capture Filter) program and logged.

382 of 954

Finding the right configuration

To figure out the right values for the security.delegate_bpf.cmd_types, security.
delegate_bpf.map_types, security.delegate_bpf.prog_types, security.delegate_bpf.
attach_types options, you must know how your application inside the container uses eBPF,
such as its program types and map types. You can consult the application’s source code, or
use the strace224 tool to trace bpf syscall and see how it is being used.

Example using strace:

strace -e bpf ./sockfilter

Sample output:

bpf(0x24 /* BPF_??? */, 0x7fffafdf5a40, 8) = 5
bpf(BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_SOCKET_FILTER, insn_cnt=2,
insns=0x7fffafdf59e0, license="GPL", log_level=0, log_size=0, log_buf=NULL, kern_
version=KERNEL_VERSION(0, 0, 0), prog_flags=0, prog_name="", prog_ifindex=0,
expected_attach_type=BPF_CGROUP_INET_INGRESS, prog_btf_fd=0, func_info_rec_size=0,
func_info=NULL, func_info_cnt=0, line_info_rec_size=0, line_info=NULL, line_info_
cnt=0, attach_btf_id=0, attach_prog_fd=0, fd_array=NULL}, 148) = -1 EPERM
(Operation not permitted)
bpf(BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_SOCKET_FILTER, insn_cnt=2,
insns=0x7fffafdf5c10, license="GPL", log_level=0, log_size=0, log_buf=NULL, kern_
version=KERNEL_VERSION(0, 0, 0), prog_flags=0x10000 /* BPF_F_??? */, prog_name="",
prog_ifindex=0, expected_attach_type=BPF_CGROUP_INET_INGRESS, prog_btf_fd=0, func_
info_rec_size=0, func_info=NULL, func_info_cnt=0, line_info_rec_size=0, line_
info=NULL, line_info_cnt=0, attach_btf_id=0, attach_prog_fd=0, fd_array=NULL, ...}
, 152) = 4
bpf(BPF_BTF_LOAD, {btf="\237\353\1\0\30\0\0\0\0\0\0\0000\0\0\0000\0\0\0\t\0\0\0\1\
0\0\0\0\0\0\1"..., btf_log_buf=NULL, btf_size=81, btf_log_size=0, btf_log_level=0,
...}, 40) = -1 EPERM (Operation not permitted)
bpf(BPF_BTF_LOAD, {btf="\237\353\1\0\30\0\0\0\0\0\0\0000\0\0\0000\0\0\0\5\0\0\0\0\
0\0\0\0\0\0\1"..., btf_log_buf=NULL, btf_size=77, btf_log_size=0, btf_log_level=0,
...}, 40) = -1 EPERM (Operation not permitted)
bpf(BPF_BTF_LOAD, {btf="\237\353\1\0\30\0\0\0\0\0\0\0\20\0\0\0\20\0\0\0\5\0\0\0\1\
0\0\0\0\0\0\1"..., btf_log_buf=NULL, btf_size=45, btf_log_size=0, btf_log_level=0,
...}, 40) = -1 EPERM (Operation not permitted)
libbpf: Kernel doesn't support BTF, skipping uploading it.
bpf(BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_SOCKET_FILTER, insn_cnt=2,
insns=0x7fffafdf59c0, license="GPL", log_level=0, log_size=0, log_buf=NULL, kern_
version=KERNEL_VERSION(0, 0, 0), prog_flags=0x10000 /* BPF_F_??? */, prog_name=
"libbpf_nametest", prog_ifindex=0, expected_attach_type=BPF_CGROUP_INET_INGRESS,
prog_btf_fd=0, func_info_rec_size=0, func_info=NULL, func_info_cnt=0, line_info_
rec_size=0, line_info=NULL, line_info_cnt=0, attach_btf_id=0, attach_prog_fd=0,
fd_array=NULL, ...}, 148) = 4
bpf(BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_SOCKET_FILTER, insn_cnt=2,
insns=0x7fffafdf58e0, license="GPL", log_level=0, log_size=0, log_buf=NULL, kern_
version=KERNEL_VERSION(0, 0, 0), prog_flags=0, prog_name="libbpf_nametest", prog_
ifindex=0, expected_attach_type=BPF_CGROUP_INET_INGRESS, prog_btf_fd=0, func_info_

(continues on next page)

224 https://github.com/strace/strace

383 of 954

https://github.com/strace/strace

(continued from previous page)

rec_size=0, func_info=NULL, func_info_cnt=0, line_info_rec_size=0, line_info=NULL,
line_info_cnt=0, attach_btf_id=0, attach_prog_fd=0, fd_array=NULL}, 148) = -1
EPERM (Operation not permitted)
bpf(BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_RINGBUF, key_size=0, value_size=0, max_
entries=262144, map_flags=0x10000 /* BPF_F_??? */, inner_map_fd=0, map_name="",
map_ifindex=0, btf_fd=0, btf_key_type_id=0, btf_value_type_id=0, btf_vmlinux_
value_type_id=0, map_extra=0, ...}, 80) = 4
libbpf: map 'rb': created successfully, fd=3
bpf(BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_SOCKET_FILTER, insn_cnt=72,
insns=0x56198b83c180, license="Dual BSD/GPL", log_level=0, log_size=0, log_
buf=NULL, kern_version=KERNEL_VERSION(6, 12, 14), prog_flags=0x10000 /* BPF_F_???
*/, prog_name="", prog_ifindex=0, expected_attach_type=BPF_CGROUP_INET_INGRESS,
prog_btf_fd=0, func_info_rec_size=0, func_info=NULL, func_info_cnt=0, line_info_
rec_size=0, line_info=NULL, line_info_cnt=0, attach_btf_id=0, attach_prog_fd=0,
fd_array=NULL, ...}, 152) = 4
bpf(BPF_OBJ_GET_INFO_BY_FD, {info={bpf_fd=3, info_len=88, info=0x7fffafdf5de0}},
16) = 0

This log shows that sockfilter is using:

1. Program types: BPF_PROG_TYPE_SOCKET_FILTER

2. Map types: BPF_MAP_TYPE_RINGBUF

3. Attachment types: BPF_CGROUP_INET_INGRESS

4. BPF commands: BPF_BTF_LOAD, BPF_PROG_LOAD, BPF_MAP_CREATE

384 of 954

4. Reference
The reference material in this section provides technical descriptions of LXD.

4.1. General information
Before you start using LXD, you should check the system requirements. You should also be
aware of the supported architectures, its release types and snap information, the available
image servers, the format for images, and the environment used for containers.

4.1.1. Requirements
Go

LXD requires Go 1.24.4 or higher and is only tested with the Golang compiler.

We recommend having at least 2GiB of RAM to allow the build to complete.

Kernel requirements

The minimum supported kernel version is 5.15, but older kernels should also work to some
degree.

LXD requires a kernel with support for:

• Namespaces (pid, net, uts, ipc and mount)

• Seccomp

• Native Linux AIO (io_setup(2)225, etc.)

The following optional features also require extra kernel options or newer versions:

• Namespaces (user and cgroup)

• AppArmor (including Ubuntu patch for mount mediation)

• Control Groups (blkio, cpuset, devices, memory, pids and net_prio)

• CRIU (exact details to be found with CRIU upstream)

• SKBPRIO/QFQ qdiscs (for limits.priority, minimum kernel 5.17)

As well as any other kernel feature required by the LXC version in use.

LXC

LXD requires LXC 5.0.0 or higher with the following build options:

• apparmor (if using LXD’s AppArmor support)

• seccomp

To run recent version of various distributions, including Ubuntu, LXCFS should also be in-
stalled.
225 https://man7.org/linux/man-pages/man2/io_setup.2.html

385 of 954

https://man7.org/linux/man-pages/man2/io_setup.2.html

QEMU

For virtual machines, QEMU 6.2 or higher and virtiofsd 1.10.0 or higher are required. Some
features like Confidential Guest support require a more recent QEMU and kernel version.

Hardware-assisted virtualization (Intel VT-x, AMD-V, etc) is required for running virtual ma-
chines. Additional hardware support (Intel VT-d, AMD-Vi) may be required for device pass-
through.

ZFS

For the ZFS storage driver, ZFS 2.1 or higher is required. Some features like zfs_delegate
requires 2.2 or higher to be used.

Additional libraries (and development headers)

LXD uses dqlite for its database, to build and set it up, you can run make deps.

LXD itself also uses a number of (usually packaged) C libraries:

• libacl1

• libcap2

• liblz4 (for dqlite)

• libuv1 (for dqlite)

• libsqlite3 >= 3.37.2 (for dqlite)

Make sure you have all these libraries themselves and their development headers (-dev pack-
ages) installed.

Related topics

Tutorials:

• First steps with LXD (page 4)

• Getting started with the UI (page 11)

How-to guides:

• Getting started (page 28)

4.1.2. Architectures
LXD can run on just about any architecture that is supported by the Linux kernel and by Go.

Some entities in LXD are tied to an architecture, for example, the instances, instance snap-
shots and images.

The following table lists all supported architectures including their unique identifier and the
name used to refer to them. The architecture names are typically aligned with the Linux
kernel architecture names.

386 of 954

ID Kernel name Description Personalities

1 i686 32bit Intel x86

2 x86_64 64bit Intel x86 x86
3 armv7l 32bit ARMv7 little-endian

4 aarch64 64bit ARMv8 little-endian armv7l (optional)
5 ppc 32bit PowerPC big-endian

6 ppc64 64bit PowerPC big-endian powerpc
7 ppc64le 64bit PowerPC little-endian

8 s390x 64bit ESA/390 big-endian

9 mips 32bit MIPS

10 mips64 64bit MIPS mips
11 riscv32 32bit RISC-V little-endian

12 riscv64 64bit RISC-V little-endian

13 armv6l 32bit ARMv6 little-endian

14 armv8l 32bit ARMv8 little-endian

15 loongarch64 64bit LoongArch

Note

LXD cares only about the kernel architecture, not the particular userspace flavor as deter-
mined by the toolchain.

That means that LXD considers ARMv7 hard-float to be the same as ARMv7 soft-float and
refers to both as armv7l. If useful to the user, the exact userspace ABI may be set as an
image and container property, allowing easy query.

Virtual machine support

LXD only supports running virtual machines on the following host architectures:

• x86_64

• aarch64

• ppc64le

• s390x

The virtual machine guest architecture can usually be the 32bit personality of the host archi-
tecture, so long as the virtual machine firmware is capable of booting it.

387 of 954

4.1.3. Releases and snap
Releases

The LXD team maintains both Long Term Support (LTS) and feature releases in parallel. Re-
lease notes are published on Discourse226.

LTS releases

LTS releases are intended for production use.

LXD follows the Ubuntu release cycle227 cadence, meaning that an LTS release of LXD is cre-
ated every two years. The release names follow the format x.y.z, always including the point
number z. Updates are provided through point releases, incrementing z.

Support

LTS releases receive standard support for five years, meaning that it receives continuous up-
dates according to the support levels described below. An Ubuntu Pro228 subscription can
provide additional support and extends the support duration by an additional five years.

Support levels

Standard support for an LTS release starts at full support for its first two years, thenmoves to
maintenance support for the remaining three years. Once an LTS reaches End of Life (EOL),
it no longer receives any updates.

• Full support: Somenew features, frequent bugfixes, and security updates are provided
every six months. This schedule is an estimate that can change based on priorities and
discovered bugs.

• Maintenance support: High impact bugfixes and critical security updates are provided
as needed.

Currently supported

The currently supported LTS releases are 5.21.z and 5.0.z.

• 5.21.z is supported until June 2029.

– Currently in full support phase.

• 5.0.z is supported until June 2027.

– Currently in maintenance support phase.

Feature releases

Feature releases are pushed out more often and contain the newest features and bugfixes.
Since they are less tested than LTS releases, they are not recommended for production use.

These releases follow the format x.y, and they never include a point number z. Currently,
feature releases for LXD are numbered 6.y, with y incrementing for each new release. Every
two years, the latest feature release becomes an LTS release.
226 https://discourse.ubuntu.com/tags/c/lxd/news/143/release
227 https://ubuntu.com/about/release-cycle
228 https://ubuntu.com/pro

388 of 954

https://discourse.ubuntu.com/tags/c/lxd/news/143/release
https://ubuntu.com/about/release-cycle
https://ubuntu.com/pro

Support

Feature releases receive continuous updates via each new release. The newest release at any
given time is also eligible for additional support through an Ubuntu Pro229 subscription.

The LXD snap

The recommendedway to install LXD (page28) is its snappackage230, if snaps are available for
your system. A key benefit of snap packaging is that it includes all required dependencies.
This allows LXD to run in a consistent environment on many different Linux distributions.
Using the snap also streamlines updates through its channels231.

Channels

Each installed LXD snap follows a channel232. Channels are composed of a track (page 389)
and a risk level (page 390) (for example, the 6/stable channel). Each channel points to one
release at a time, and when a new release is published to a channel, it replaces the previous
one. Updating the snap (page 321) then updates to that release.

To view all available channels, run:

snap info lxd

Tracks

LXD releases are grouped under snap tracks233, such as 6 or 5.21.

LTS tracks

LXD LTS tracks use the format x[.y], corresponding to the major and minor numbers of LTS
releases (page 388).

Tracks up to 5.21 include both x and y, but future LTS tracks will use only x.

Feature track

The LXD feature track uses the major number of the current feature release (page 388). The
current feature track is 6.

Feature releases within the same major version are published to the same track, replacing
the previous release. For example, the 6.4 release replaced 6.3 in the 6 track. This simplifies
updates, as you don’t need to switch channels to access new feature releaseswithin the same
major version.

Every two years, the current feature track becomes the next LTS, and a new feature track is
then created by incrementing x. For example, after the 6 track becomes an LTS, the 7 track is
created and becomes the next feature track.
229 https://ubuntu.com/pro
230 https://snapcraft.io/lxd
231 https://snapcraft.io/docs/channels
232 https://snapcraft.io/docs/channels
233 https://snapcraft.io/docs/channels#heading--tracks

389 of 954

https://ubuntu.com/pro
https://snapcraft.io/lxd
https://snapcraft.io/docs/channels
https://snapcraft.io/docs/channels
https://snapcraft.io/docs/channels#heading--tracks

The default track

If you install the LXD snap (page 28) without specifying a track, the recommended default is
used. The default track always points to the most recent LTS track, which is currently 5.21.

The latest track

In the list of channels shown by snap info lxd, you might see channels with a track named
latest. This track typically points to the latest feature release.

Since latest is a continuously rolling release track, it might become incompatible with your
host OS version over time. Due to this, this track is not recommended for general use and
might be removed in the future. Instead, use a feature or LTS track.

Risk levels

For each LXD track, there are three risk levels234: stable, candidate, and edge.

We recommend that you use the stable risk level to install fully tested releases; this is the
only risk level supported under Ubuntu Pro235, as well as the default risk level if one is not
specifiedat install. The candidate and edge levels offer newerbut less-testedupdates, posing
higher risk.

Updates

By default, installed snaps update automatically when new releases are published to the
channel they’re tracking. For control over LXD updates, we recommend that you modify this
auto-update behavior by either holding (page 322) or scheduling updates (page 322) as de-
scribed in our How to manage the LXD snap (page 321) guide. You can then apply updates
according to your needs.

Updates on clusters

New LXD releases are published progressively as snaps236. This means that updates might
not be immediately available to all machines at the same time.

This can cause issueswhen updating the LXD snap for clusters (page 370), as clustermembers
must use the sameversionof the snap at all times. For a guideonhow to avoid this issue using
the --cohort flag, see Synchronize updates for a LXD cluster cohort (page 323).

Related topics

How-to guides:

• How to get support (page 334)

• Install the LXD snap package (page 28)

• How to manage the LXD snap (page 321)

234 https://snapcraft.io/docs/channels#heading--risk-levels
235 https://ubuntu.com/pro
236 https://documentation.ubuntu.com/snapcraft/stable/how-to/publishing/manage-revisions-and-releases/

#deliver-a-progressive-release

390 of 954

https://snapcraft.io/docs/channels#heading--risk-levels
https://ubuntu.com/pro
https://documentation.ubuntu.com/snapcraft/stable/how-to/publishing/manage-revisions-and-releases/#deliver-a-progressive-release

4.1.4. Remote image servers
The lxc (page 690) CLI command comes pre-configured with the following default remote
image servers:

images:
This server provides unofficial images for a variety of Linux distributions. The images
are built to be compact and minimal, and therefore the default image variants do not
include cloud-init. Where possible, /cloud variants that include cloud-init are pro-
vided. See cloud-init support in images (page 116).

This server does not provide official Ubuntu images (for those, use the ubuntu: server).
It does, however, provide desktop variants of current Ubuntu releases.

See images.lxd.canonical.com237 for an overview of available images.

ubuntu:
This server provides official stable Ubuntu images. All images are cloud images, which
means that they include both cloud-init and the lxd-agent.

See cloud-images.ubuntu.com/releases238 for an overview of available images.

ubuntu-daily:
This server provides official daily Ubuntu images. All images are cloud images, which
means that they include both cloud-init and the lxd-agent.

See cloud-images.ubuntu.com/daily239 for an overview of available images.

ubuntu-minimal:
This server provides official UbuntuMinimal images. All images are cloud images, which
means that they include both cloud-init and the lxd-agent.

See cloud-images.ubuntu.com/minimal/releases240 for an overview of available im-
ages.

ubuntu-minimal-daily:
This server provides official daily Ubuntu Minimal images. All images are cloud images,
which means that they include both cloud-init and the lxd-agent.

See cloud-images.ubuntu.com/minimal/daily241 for an overview of available images.

Remote server types

LXD supports the following types of remote image servers:

Simple streams servers
Pure image servers that use the simple streams format242. The default image servers
are simple streams servers.

Public LXD servers
LXD servers that are used solely to serve images and do not run instances themselves.

237 https://images.lxd.canonical.com
238 https://cloud-images.ubuntu.com/releases/
239 https://cloud-images.ubuntu.com/daily/
240 https://cloud-images.ubuntu.com/minimal/releases/
241 https://cloud-images.ubuntu.com/minimal/daily/
242 https://git.launchpad.net/simplestreams/tree/

391 of 954

https://images.lxd.canonical.com
https://cloud-images.ubuntu.com/releases/
https://cloud-images.ubuntu.com/daily/
https://cloud-images.ubuntu.com/minimal/releases/
https://cloud-images.ubuntu.com/minimal/daily/
https://git.launchpad.net/simplestreams/tree/

To make a LXD server publicly available over the network on port 8443, set the core.
https_address (page 402) configuration option to :8443 and do not configure any au-
thentication methods (see How to expose LXD to the network (page 44) for more infor-
mation). Then set the images that you want to share to public.

LXD servers
Regular LXD servers that you can manage over a network, and that can also be used as
image servers.

For security reasons, you should restrict the access to the remote API and configure
an authentication method to control access. See How to expose LXD to the network
(page 44) and Remote API authentication (page 358) for more information.

Related topics

How-to guides:

• Images (page 148)

Explanation:

• Local and remote images (page 348)

4.1.5. Image format
Images contain a root file system and ametadata file that describes the image. They can also
contain templates for creating files inside an instance that uses the image.

Images can be packaged as either a unified image (single file) or a split image (two files).

Content

Images for containers have the following directory structure:

metadata.yaml
rootfs/
templates/

Images for VMs have the following directory structure:

metadata.yaml
rootfs.img
templates/

For both instance types, the templates/ directory is optional.

Metadata

The metadata.yaml file contains information that is relevant to running the image in LXD. It
includes the following information:

architecture: x86_64
creation_date: 1424284563
properties:
description: Ubuntu 24.04 LTS Intel 64bit
os: Ubuntu

(continues on next page)

392 of 954

(continued from previous page)

release: noble 24.04
templates:
...

The architecture and creation_date fields are mandatory. The properties field contains a
set of default properties for the image. The os, release, name and description fields are
commonly used, but are not mandatory.

The templates field is optional. See Templates (optional) (page 393) for information on how
to configure templates.

Root file system

For containers, the rootfs/ directory contains a full file system tree of the root directory (/)
in the container.

Virtual machines use a rootfs.img qcow2 file instead of a rootfs/ directory. This file becomes
the main disk device.

Templates (optional)

You can use templates to dynamically create files inside an instance. To do so, configure
template rules in the metadata.yamlfile andplace the templatefiles in a templates/directory.

As a general rule, you should never template a file that is owned by a package or is otherwise
expected to be overwritten by normal operation of an instance.

Template rules

For each file that should be generated, create a rule in the metadata.yaml file. For example:

templates:
/etc/hosts:

when:
- create
- rename

template: hosts.tpl
properties:

foo: bar
/etc/hostname:

when:
- start

template: hostname.tpl
/etc/network/interfaces:

when:
- create

template: interfaces.tpl
create_only: true

The when key can be one or more of:

• create - run at the time a new instance is created from the image

393 of 954

• copy - run when an instance is created from an existing one

• start - run every time the instance is started

The template key points to the template file in the templates/ directory.

You can pass user-defined template properties to the template file through the properties
key.

Set the create_only key if youwant LXD to create the file if it doesn’t exist, but not overwrite
an existing file.

Template files

Template files use the Pongo2243 format.

They always receive the following context:

Vari-
able

Type Description

trig-
ger

string Name of the event that triggered the template

path string Path of the file that uses the template
in-
stance

map[string]string Key/value map of instance properties (name, architec-
ture, privileged and ephemeral)

config map[string]string Key/value map of the instance’s configuration
de-
vices

map[string]map[string]stringKey/value map of the devices assigned to the instance

prop-
erties

map[string]string Key/value map of the template properties specified in
metadata.yaml

For convenience, the following functions are exported to the Pongo2 templates:

• config_get("user.foo", "bar") - Returns the value of user.foo, or "bar" if not set.

Image tarballs

LXD supports two LXD-specific image formats: a unified tarball and split tarballs.

These tarballs can be compressed. LXD supports a wide variety of compression algorithms
for tarballs. However, for compatibility purposes, you should use gzip or xz.

Unified tarball

A unified tarball is a single tarball (usually *.tar.xz) that contains the full content of the
image, including the metadata, the root file system and optionally the template files.

This is the format that LXD itself uses internallywhenpublishing images. It is usually easier to
work with; therefore, you should use the unified format when creating LXD-specific images.

The image identifier for such images is the SHA-256 of the tarball.

243 https://www.schlachter.tech/solutions/pongo2-template-engine/

394 of 954

https://www.schlachter.tech/solutions/pongo2-template-engine/

Split tarballs

Asplit image consists of two separate tarballs. One tarball contains themetadata andoption-
ally the template files (usually *.tar.xz), and the other contains the root file system (usually
*.squashfs for containers or *.qcow2 for virtual machines).

For containers, the root file system tarball can be SquashFS-formatted. For virtual machines,
the rootfs.img file always uses the qcow2 format. It can optionally be compressed using
qcow2’s native compression.

This format is designed to allow for easy imagebuilding fromexisting non-LXD rootfs tarballs
that are already available. You should also use this format if you want to create images that
can be consumed by both LXD and other tools.

The image identifier for such images is the SHA-256 of the concatenation of the metadata
and root file system tarball (in that order).

Related topics

How-to guides:

• Images (page 148)

Explanation:

• Local and remote images (page 348)

4.1.6. Guest OS compatibility
Virtual machines

The following operating systems (OS) were tested as virtual machine guest running on top
of on LXD 5.21/stable. Each OS was tested by doing a manual installation using the official
ISO as provided by the vendor.

395 of 954

OS
ven-
dor

OS ver-
sion

OS
sup-
port

LXD agent
(page 397)

VirtIO-
SCSI

VirtIO-
BLK

NVMeCSM
(BIOS)

UEFI Se-
cure
Boot

Cen-
tOS

CentOS
6.101

EOL �2 � �6 � � � �

Cen-
tOS

CentOS
7.9

EOL �2 � � � � � �

Cen-
tOS

CentOS
8.5

EOL � � � � � � �

Cen-
tOS

CentOS8-
Stream

EOL � � � � � � �

Cen-
tOS

CentOS9-
Stream

Sup-
ported

� � � � � � �

Red
Hat

RHEL 7.9 EOL �2 � � � � � �

Red
Hat

RHEL
8.10

Sup-
ported

� � � � � � �

Red
Hat

RHEL 9.4 Sup-
ported

� � � � � � �

SUSE SLES 12
SP5

Sup-
ported

� � � � � � �

SUSE SLES 15
SP6

Sup-
ported

� � � � � � �

Ubuntu 14.04.6
LTS

EOL �7 � � � � � �

Ubuntu 16.04.7
LTS

ESM �89 � � � � � �

Ubuntu 18.04.6
LTS

ESM �Page 397, 9 � � � � � �

Ubuntu 20.04.6
LTS

Sup-
ported

� � � � � � �

Ubuntu 22.04.4
LTS

Sup-
ported

� � � � � � �

Ubuntu 24.04.1
LTS

Sup-
ported

� � � � � � �

Win-
dows

Server
2012

Sup-
ported

� � � � � � �

Win-
dows

Server
2016

Sup-
ported

� � � �3 �5 � �

Win-
dows

Server
2019

Sup-
ported

� � � � �Page 397, 5� �

Win-
dows

Server
2022

Sup-
ported

� � � � �Page 397, 5� �

Win-
dows

10 22H2 Sup-
ported

� � � � �Page 397, 5� �

Win-
dows

11 23H24 Sup-
ported

� � � � � � �

1 No network support despite having VirtIO-NET module.
2 Support for 9P or virtiofs not available. Note: CentOS 7 has a kernel-plus kernel with 9P support allowing

396 of 954

Legend Icon

recommended �
supported �
not applicable �
not supported �

Notes

LXD agent

The LXD agent provides the ability to execute commands inside of the virtual machine guest
without relying on traditional access solution like secure shell (SSH) or Remote Desktop Pro-
tocol (RDP). This agent is only supported on Linux guests using systemd. For how tomanually
setup the agent, see Install the LXD agent into virtual machine instances (page 83).

CSM/BIOS boot

lxc config set v1 security.secureboot=false
lxc config set v1 security.csm=true

Virtual TPM

lxc config device add v1 vtpm tpm path=/dev/tpm0

VirtIO-BLK or NVMe

lxc config device override v1 root io.bus=virtio-blk
or
lxc config device override v1 root io.bus=nvme

Disconnect the ISO

lxc config device remove v1 iso

Containers

Unlike virtual machines, container guests rely on the host’s kernel for execution. Since each
Linux distribution ships with a unique set of features supported by their official kernels, the
possibilities are almost endless. As such, the following compatibility table focuses on hosts

LXD agent to work (with selinux=0).
6 The OS installer hangs when booting with VirtIO-BLK despite having VirtIO-BLK supported by the kernel.
7 This Linux version does not use systemdwhich the LXD agent requires.
8 Requires the HWE kernel (4.15) for proper vsock support which is required by the LXD agent.
9 The lxd-agent-installer package is not available so lxd-agent has to bemanually setup (see Install the LXD

agent into virtual machine instances (page 83)) or through cloud-init (see VM cloud-init (page 479)).
3 NVMe disks are visible but the installer lists all 255 namespaces slowing down the initialization.
5 The OS installer hangs when booting in CSM/BIOS mode.
4 A virtual TPM is required.

397 of 954

running Ubuntu LTS releases with LXD 5.21/stable and Ubuntu releases as container guests.
The main compatibility factor is the cgroup version required by the container and supported
by the host.

Host OS / Guest
OS

Ubuntu
16.04 LTS

Ubuntu
18.04 LTS

Ubuntu
20.04 LTS

Ubuntu
22.04 LTS

Ubuntu
24.04 LTS

Ubuntu
24.10

Ubuntu 20.04 LTS
5.4.010

� � � � � �11

Ubuntu 20.04 LTS
5.15.0 (HWE)

� � � � � �12

Ubuntu 22.04 LTS
5.15.0

�13 � � � � �

Ubuntu 22.04 LTS
6.8.0 (HWE)

�13 � � � � �

Ubuntu 24.04 LTS
6.8.0

�13 � � � � �

Legend Icon

recommended �
supported �
not applicable �
not supported �

4.1.7. Container runtime environment
LXD attempts to present a consistent environment to all containers it runs.

The exact environment will differ slightly based on kernel features and user configuration,
but otherwise, it is identical for all containers.

File system

LXD assumes that any image it uses to create a new container comes with at least the follow-
ing root-level directories:

• /dev (empty)

• /proc (empty)

• /sbin/init (executable)

• /sys (empty)

10 The 5.4.0 kernel is below the minimum required version (see Requirements (page 385))
11 Ubuntu 24.10 and later require cgroupv2which is not supported by Ubuntu 20.04 LTS regular kernel.
12 Requires enabling cgroupv2 support by booting with systemd.unified_cgroup_hierarchy=1
13 Requires enabling cgroupv1 support by booting with systemd.unified_cgroup_hierarchy=0

398 of 954

Devices

LXD containers have a minimal and ephemeral /dev based on a tmpfs file system. Since this
is a tmpfs and not a devtmpfs file system, device nodes appear only if manually created.

The following standard set of device nodes is set up automatically:

• /dev/console

• /dev/fd

• /dev/full

• /dev/log

• /dev/null

• /dev/ptmx

• /dev/random

• /dev/stdin

• /dev/stderr

• /dev/stdout

• /dev/tty

• /dev/urandom

• /dev/zero

In addition to the standard set of devices, the following devices are also set up for conve-
nience:

• /dev/fuse

• /dev/net/tun

• /dev/mqueue

Network

LXD containers may have any number of network devices attached to them. The naming for
those (unless overridden by the user) is ethX, where X is an incrementing number.

Container-to-host communication

LXD sets up a socket at /dev/lxd/sock that the root user in the container can use to commu-
nicate with LXD on the host.

See Communication between instance and host (page 685) for the API documentation.

Mounts

The following mounts are set up by default:

• /proc ()

• /sys (sysfs)

• /sys/fs/cgroup/* (cgroupfs) (only on kernels that lack cgroup namespace support)

399 of 954

If they are present on the host, the following paths will also automatically be mounted:

• /proc/sys/fs/binfmt_misc (only on kernels that lack binfmt_misc namespace support)

• /sys/firmware/efi/efivars

• /sys/fs/fuse/connections

• /sys/fs/pstore

• /sys/kernel/debug

• /sys/kernel/security

The reason for passing all of those paths is that legacy init systems require them to be
mounted, or be mountable, inside the container.

The majority of those paths will not be writable (or even readable) from inside an unprivi-
leged container. In privileged containers, they will be blocked by the AppArmor policy.

LXCFS

If LXCFS is present on the host, it is automatically set up for the container.

This normally results in a number of /proc files being overridden through bind-mounts. On
older kernels, a virtual version of /sys/fs/cgroupmight also be set up by LXCFS.

PID1

LXD spawns whatever is located at /sbin/init as the initial process of the container (PID 1).
This binary should act as a proper init system, including handling re-parented processes.

LXD’s communication with PID1 in the container is limited to two signals:

• SIGINT to trigger a reboot of the container

• SIGPWR (or alternatively SIGRTMIN+3) to trigger a clean shutdown of the container

The initial environment of PID1 is blank except for container=lxc, which can be used by the
init system to detect the runtime.

All file descriptors above the default three are closed prior to PID1 being spawned.

Related topics

How-to guides:

• Instances (page 73)

Explanation:

• Instance types in LXD (page 347)

4.2. Configuration options
LXD is highly configurable. Check the available configuration options for the LXD server and
the different entities used in LXD.

400 of 954

4.2.1. Index
4.2.2. Server configuration
The LXD server can be configured through a set of key/value configuration options.

The key/value configuration is namespaced. The following options are available:

• Core configuration (page 401)

• ACME configuration (page 405)

• OpenID Connect configuration (page 406)

• Cluster configuration (page 407)

• Images configuration (page 409)

• Loki configuration (page 410)

• Miscellaneous options (page 411)

SeeHow to configure the LXD server (page48) for instructions onhow to set the configuration
options.

Note

Options marked with a global scope are immediately applied to all cluster members. Op-
tions with a local scope must be set on a per-member basis.

Core configuration

The following server options control the core daemon configuration: core.bgp_address
Address to bind the BGP server to (page 401)

Key: core.
bgp_address

Type: string
Scope: local

See How to configure LXD as a BGP server (page 214).

core.bgp_asn BGP Autonomous System Number for the local server (page 401)

Key: core.
bgp_asn

Type: string
Scope: global

core.bgp_routerid A unique identifier for the BGP server (page 401)

Key: core.
bgp_routerid

Type: string
Scope: local

401 of 954

The identifier must be formatted as an IPv4 address.

core.debug_address Address to bind the pprof244 debug server to (HTTP) (page 402)

Key: core.
debug_address

Type: string
Scope: local

core.dns_address Address to bind the authoritative DNS server to (page 402)

Key: core.
dns_address

Type: string
Scope: local

See Enable the built-in DNS server (page 254).

core.https_address Address to bind for the remote API (HTTPS) (page 402)

Key: core.
https_address

Type: string
Scope: local

See How to expose LXD to the network (page 44).

core.https_allowed_credentials Whether to set Access-Control-Allow-Credentials
(page 402)

Key: core.
https_allowed_credentials

Type: bool
Default: false
Scope: global

If enabled, the Access-Control-Allow-Credentials HTTP header value is set to true.

core.https_allowed_headers Access-Control-Allow-HeadersHTTP header value (page 402)

Key: core.
https_allowed_headers

Type: string
Scope: global

core.https_allowed_methods Access-Control-Allow-MethodsHTTP header value (page 402)

244 https://pkg.go.dev/net/http/pprof

402 of 954

https://pkg.go.dev/net/http/pprof

Key: core.
https_allowed_methods

Type: string
Scope: global

core.https_allowed_origin Access-Control-Allow-Origin HTTP header value (page 403)

Key: core.
https_allowed_origin

Type: string
Scope: global

core.https_trusted_proxy Trusted servers to provide the client’s address (page 403)

Key: core.
https_trusted_proxy

Type: string
Scope: global

Specify a comma-separated list of IP addresses of trusted servers that provide the client’s
address through the proxy connection header.

core.metrics_address Address to bind the metrics server to (HTTPS) (page 403)

Key: core.
metrics_address

Type: string
Scope: local

See How to monitor metrics (page 301).

core.metrics_authentication Whether to enforce authentication on the metrics endpoint
(page 403)

Key: core.
metrics_authentication

Type: bool
Default: true
Scope: global

core.proxy_http HTTP proxy to use (page 403)

Key: core.
proxy_http

Type: string
Scope: global

403 of 954

If this option is not specified, LXD falls back to the HTTP_PROXY environment variable (if set).

core.proxy_https HTTPS proxy to use (page 404)

Key: core.
proxy_https

Type: string
Scope: global

If this option is not specified, LXD falls back to the HTTPS_PROXY environment variable (if set).

core.proxy_ignore_hosts Hosts that don’t need the proxy (page 404)

Key: core.
proxy_ignore_hosts

Type: string
Scope: global

Specify this option in a similar format to NO_PROXY (for example, 1.2.3.4,1.2.3.5)

If this option is not specified, LXD falls back to the NO_PROXY environment variable (if set).

core.remote_token_expiry Time after which a remote add token expires (page 404)

Key: core.
remote_token_expiry

Type: string
Default: no expiry
Scope: global

core.shutdown_timeout How long to wait before shutdown (page 404)

Key: core.shutdown_timeout
Type: integer
Default: 5
Scope: global

Specify the number of minutes to wait for running operations to complete before the LXD
server shuts down.

core.storage_buckets_address Address to bind the storage object server to (HTTPS)
(page 404)

Key: core.
storage_buckets_address

Type: string
Scope: local

See How to manage storage buckets and keys (page 193).

404 of 954

core.syslog_socketWhether to enable the syslog unixgram socket listener (page 404)

Key: core.
syslog_socket

Type: bool
Default: false
Scope: local

Set this option to true to enable the syslog unixgram socket to receive log messages from
external processes.

core.trust_ca_certificates Whether to automatically trust clients signed by the CA
(page 405)

Key: core.
trust_ca_certificates

Type: bool
Default: false
Scope: global

ACME configuration

The following server options control the ACME (page 361) configuration: acme.agree_tos
Agree to ACME terms of service (page 405)

Key: acme.
agree_tos

Type: bool
Default: false
Scope: global

acme.ca_url URL to the directory resource of the ACME service (page 405)

Key: acme.ca_url
Type: string
Default: https://acme-v02.api.letsencrypt.org/

directory
Scope: global

acme.domain Domain for which the certificate is issued (page 405)

Key: acme.domain
Type: string
Scope: global

acme.email Email address used for the account registration (page 405)

405 of 954

Key: acme.
email

Type: string
Scope: global

OpenID Connect configuration

The following server options configure external user authentication through OpenID Con-
nect authentication (page 361): oidc.audience Expected audience value for the application
(page 406)

Key: oidc.audience
Type: string
Scope: global

This value is required by some providers.

oidc.client.idOpenID Connect client ID (page 406)

Key: oidc.client.
id

Type: string
Scope: global

oidc.client.secretOpenID Connect client secret (page 406)

Key: oidc.client.
secret

Type: string
Scope: global

oidc.groups.claim A claim used for mapping identity provider groups to LXD groups.
(page 406)

Key: oidc.groups.
claim

Type: string
Scope: global

Specify a custom token claim to denote groups defined at the identity provider. The contents
of this claim can be mapped to LXD groups for managing access control. The value of the
claim is expected to be a JSON string array.

oidc.issuerOpenID Connect Discovery URL for the provider (page 406)

406 of 954

Key: oidc.issuer
Type: string
Scope: global

oidc.scopes Space-separated list of OpenID Connect scopes (page 407)

Key: oidc.scopes
Type: space-delimited string
Scope: global

A list of OpenID Connect scopes to request from the identity provider. This must include the
openid and email scopes. The remaining optional scopes are offline_access and profile. If
you remove the offline_access scope, users might be required to log in more frequently. If
you remove the profile scope, user information may not be displayed in LXD UI (or in lxc
auth identity commands). You may add additional scopes if this is required by your identity
provider, or if necessary for configuration of identity provider groups (page 367).

Important

Setting oidc.client.secret may prevent CLI clients from authenticating depending on
the Identity Provider policies. Set this key only if required by the Identity Provider.

Cluster configuration

The following server options control Clustering (page 280): cluster.healing_threshold
Threshold when to evacuate an offline cluster member (page 407)

Key: cluster.
healing_threshold

Type: integer
Default: 0
Scope: global

Specify the number of seconds after which an offline cluster member is to be evacuated. To
disable evacuating offline members, set this option to 0.

cluster.https_address Address to use for clustering traffic (page 407)

Key: cluster.
https_address

Type: string
Scope: local

See Separate REST API and clustering networks (page 289).

cluster.images_minimal_replica Number of cluster members that replicate an image
(page 407)

407 of 954

Key: cluster.
images_minimal_replica

Type: integer
Default: 3
Scope: global

Specify the minimal number of cluster members that keep a copy of a particular image. Set
this option to 1 for no replication, or to -1 to replicate images on all members.

cluster.join_token_expiry Time after which a cluster join token expires (page 408)

Key: cluster.
join_token_expiry

Type: string
Default: 3H
Scope: global

cluster.max_standby Number of database stand-by members (page 408)

Key: cluster.
max_standby

Type: integer
Default: 2
Scope: global

Specify the maximum number of cluster members that are assigned the database stand-by
role. This must be a number between 0 and 5.

cluster.max_voters Number of database voter members (page 408)

Key: cluster.
max_voters

Type: integer
Default: 3
Scope: global

Specify the maximum number of cluster members that are assigned the database voter role.
This must be an odd number >= 3.

cluster.offline_threshold Threshold when an unresponsive member is considered offline
(page 408)

Key: cluster.
offline_threshold

Type: integer
Default: 20
Scope: global

408 of 954

Specify the number of seconds after which an unresponsive member is considered offline.

Images configuration

The following server options configure how to handle Images (page 148): images.
auto_update_cachedWhether to automatically update cached images (page 409)

Key: images.auto_update_cached
Type: bool
Default: true
Scope: global

images.auto_update_interval Interval at which to look for updates to cached images
(page 409)

Key: images.
auto_update_interval

Type: integer
Default: 6
Scope: global

Specify the interval in hours. To disable looking for updates to cached images, set this option
to 0.

images.compression_algorithm Compression algorithm to use for new images (page 409)

Key: images.
compression_algorithm

Type: string
Default: gzip
Scope: global

Possible values are bzip2, gzip, lzma, xz, or none.

images.default_architecture Default architecture to use in a mixed-architecture cluster
(page 409)

Key: images.
default_architecture

Type: string

images.remote_cache_expiryWhen an unused cached remote image is flushed (page 409)

Key: images.
remote_cache_expiry

Type: integer
Default: 10
Scope: global

409 of 954

Specify the number of days after which the unused cached image expires.

Loki configuration

The following server options configure the external log aggregation system: loki.api.
ca_cert CA certificate for the Loki server (page 410)

Key: loki.api.
ca_cert

Type: string
Scope: global

loki.api.url URL to the Loki server (page 410)

Key: loki.api.
url

Type: string
Scope: global

Specify the protocol, nameor IP and port. For example https://loki.example.com:3100. LXD
will automatically add the /loki/api/v1/push suffix so there’s no need to add it here.

loki.auth.password Password used for Loki authentication (page 410)

Key: loki.auth.
password

Type: string
Scope: global

loki.auth.username User name used for Loki authentication (page 410)

Key: loki.auth.
username

Type: string
Scope: global

loki.instance Name to use as the instance field in Loki events. (page 410)

Key: loki.instance
Type: string
Default: Local server host name or cluster member name
Scope: global

This allows replacing the default instance value (server host name) by a more relevant value
like a cluster identifier.

loki.labels Labels for a Loki log entry (page 410)

410 of 954

Key: loki.labels
Type: string
Scope: global

Specify a comma-separated list of values that should be used as labels for a Loki log entry.

loki.loglevelMinimum log level to send to the Loki server (page 411)

Key: loki.loglevel
Type: string
Default: info
Scope: global

loki.types Events to send to the Loki server (page 411)

Key: loki.types
Type: string
Default: lifecycle,

logging
Scope: global

Specify a comma-separated list of events to send to the Loki server. The events can be any
combination of lifecycle, logging, and ovn.

Miscellaneous options

The following server options configure server-specific settings for Instances (page 73), MAAS
integration, OVN (page 587) integration, Backups (page 316) and Storage (page 175):
backups.compression_algorithm Compression algorithm to use for backups (page 411)

Key: backups.
compression_algorithm

Type: string
Default: gzip
Scope: global

Possible values are bzip2, gzip, lzma, xz, or none.

instances.migration.statefulWhether to set migration.stateful to true for the instances
(page 411)

Key: instances.migration.
stateful

Type: bool
Scope: global

You can override this setting for relevant instances, either in the instance-specific configura-
tion or through a profile.

411 of 954

instances.nic.host_name How to set the host name for a NIC (page 411)

Key: instances.nic.
host_name

Type: string
Default: random
Scope: global

Possible values are random and mac.

If set to random, use the random host interface name as the host name. If set to mac, generate
a host name in the form lxd<mac_address> (MAC without leading two digits).

instances.placement.scriptlet Instance placement scriptlet for automatic instance place-
ment (page 412)

Key: instances.placement.
scriptlet

Type: string
Scope: global

When using custom automatic instance placement logic, this option stores the scriptlet. See
Instance placement scriptlet (page 373) for more information.

maas.api.key API key to manage MAAS (page 412)

Key: maas.api.
key

Type: string
Scope: global

maas.api.url URL of the MAAS server (page 412)

Key: maas.api.
url

Type: string
Scope: global

maas.machine Name of this LXD host in MAAS (page 412)

Key: maas.
machine

Type: string
Default: host name
Scope: local

network.ovn.ca_certOVN SSL certificate authority (page 412)

412 of 954

Key: network.ovn.ca_cert
Type: string
Default: Content of /etc/ovn/ovn-central.crt if present
Scope: global

network.ovn.client_certOVN SSL client certificate (page 413)

Key: network.ovn.client_cert
Type: string
Default: Content of /etc/ovn/cert_host if present
Scope: global

network.ovn.client_keyOVN SSL client key (page 413)

Key: network.ovn.client_key
Type: string
Default: Content of /etc/ovn/key_host if present
Scope: global

network.ovn.integration_bridge OVS integration bridge to use for OVN networks
(page 413)

Key: network.ovn.
integration_bridge

Type: string
Default: br-int
Scope: global

network.ovn.northbound_connection OVN northbound database connection string
(page 413)

Key: network.ovn.
northbound_connection

Type: string
Default: unix:/var/run/ovn/ovnnb_db.sock
Scope: global

storage.backups_volume Volume to use to store backup tarballs (page 413)

Key: storage.
backups_volume

Type: string
Scope: local

Specify the volume using the syntax POOL/VOLUME.

413 of 954

storage.images_volume Volume to use to store the image tarballs (page 413)

Key: storage.
images_volume

Type: string
Scope: local

Specify the volume using the syntax POOL/VOLUME.

Related topics

How-to guides:

• How to configure the LXD server (page 48)

4.2.3. Instance configuration
The instance configuration consists of different categories:

Instance properties
Instance properties are specified when the instance is created. They include, for ex-
ample, the instance name and architecture. Some of the properties are read-only and
cannot be changed after creation, while others can be updated by setting their property
value (page 86) or editing the full instance configuration (page 91).

In the YAML configuration, properties are on the top level.

See Instance properties (page 415) for a reference of available instance properties.

Instance options
Instance options are configuration options that are related directly to the instance.
They include, for example, startup options, security settings, hardware limits, kernel
modules, snapshots and user keys. These options can be specified as key/value pairs
during instance creation (through the --config key=value flag). After creation, they
can be configuredwith the lxc config set (page 747) and lxc config unset (page 760)
commands.

In the YAML configuration, options are located under the config entry.

See Instance options (page 415) for a reference of available instance options, and Con-
figure instance options (page 84) for instructions on how to configure the options.

Instance devices
Instance devices are attached to an instance. They include, for example, network inter-
faces, mount points, USB and GPU devices. Devices are usually added after an instance
is created with the lxc config device add (page 739) command, but they can also be
added to a profile or a YAML configuration file that is used to create an instance.

Each type of device has its own specific set of options, referred to as instance device
options.

In the YAML configuration, devices are located under the devices entry.

See Devices (page 447) for a reference of available devices and the corresponding in-
stance device options, and Configure devices (page 87) for instructions on how to add
and configure instance devices.

414 of 954

Instance properties

Instance properties are set when the instance is created. They cannot be part of a profile
(page 97).

The following instance properties are available: architecture Instance architecture
(page 415)

Key: architecture
Type: string
Read-only: no

name Instance name (page 415)

Key: name
Type: string
Read-only: yes

See Instance name requirements (page 415).

Instance name requirements

The instance name can be changed only by renaming the instance with the lxc rename
(page 876) command.

Valid instance names must fulfill the following requirements:

• The name must be between 1 and 63 characters long.

• The name must contain only letters, numbers and dashes from the ASCII table.

• The name must not start with a digit or a dash.

• The name must not end with a dash.

The purpose of these requirements is to ensure that the instance name can be used in DNS
records, on the file system, in various security profiles and as the host name of the instance
itself.

Instance options

Instance options are configuration options that are directly related to the instance.

See Configure instance options (page 84) for instructions on how to set the instance options.

The key/value configuration is namespaced. The following options are available:

• Miscellaneous options (page 416)

• Boot-related options (page 418)

• cloud-init configuration (page 419)

• Resource limits (page 421)

• Migration options (page 428)

• NVIDIA and CUDA configuration (page 429)

415 of 954

• Raw instance configuration overrides (page 430)

• Security policies (page 433)

• Snapshot scheduling and configuration (page 441)

• Volatile internal data (page 443)

Note that while a type is defined for each option, all values are stored as strings and should
be exported over the REST API as strings (whichmakes it possible to support any extra values
without breaking backward compatibility).

Miscellaneous options

In addition to the configuration options listed in the following sections, these instance op-
tions are supported: agent.nic_config Whether to use the name and MTU of the default
network interfaces (page 416)

Key: agent.
nic_config

Type: bool
Default: false
Live update: no
Condition: virtual machine

When set to true, the name and MTU of the default network interfaces inside the virtual
machine will match those of the instance devices.

cluster.evacuateWhat to do when evacuating the instance (page 416)

Key: cluster.
evacuate

Type: string
Default: auto
Live update: no

The cluster.evacuate provides control over how instances are handled when a cluster mem-
ber is being evacuated.

Available Modes:

• auto (default): The systemwill automatically decide the best evacuation method based
on the instance’s type and configured devices:

– If any device is not suitable for migration, the instance will not be migrated (only
stopped).

– Live migration will be used only for virtual machines with the migration.stateful
setting enabled and for which all its devices can be migrated as well.

• live-migrate: Instances are live-migrated to another node. This means the instance
remains running and operational during the migration process, ensuring minimal dis-
ruption.

416 of 954

• migrate: In this mode, instances are migrated to another node in the cluster. The mi-
gration process will not be live, meaning therewill be a brief downtime for the instance
during the migration.

• stop: Instances are not migrated. Instead, they are stopped on the current node.

See Evacuate a cluster member (page 286) for more information.

linux.kernel_modules Kernel modules to load or allow loading (page 417)

Key: linux.
kernel_modules

Type: string
Live update: yes
Condition: container

Specify the kernel modules as a comma-separated list.

Themodules are loaded before the instance starts, or they can be loaded by a privileged user
if linux.kernel_modules.load (page 417) is set to ondemand.

linux.kernel_modules.load How to load kernel modules (page 417)

Key: linux.kernel_modules.
load

Type: string
Default: boot
Live update: no
Condition: container

This option specifies how to load the kernel modules that are specified in linux.
kernel_modules (page 417). Possible values are boot (load the modules when booting the
container) and ondemand (intercept the finit_modules() syscall and allow a privileged user in
the container’s user namespace to load the modules).

linux.sysctl.*Override for the corresponding sysctl setting in the container (page 417)

Key: linux.sysctl.
*

Type: string
Live update: no
Condition: container

ubuntu_pro.guest_attachWhether to auto-attach Ubuntu Pro. (page 417)

Key: ubuntu_pro.
guest_attach

Type: string
Live update: no

Indicate whether the guest should auto-attach Ubuntu Pro at start up.

417 of 954

See How to configure Ubuntu Pro guest attachment (page 104) for more information.

user.* Free-form user key/value storage (page 418)

Key: user.
*

Type: string
Live update: no

User keys can be used in search.

environment.* Environment variables for the instance (page 418)

Key: environment.
*

Type: string
Live update: yes (exec)

You can export key/value environment variables to the instance. These are then set for lxc
exec (page 763).

Boot-related options

The following instance options control the boot-related behavior of the instance: boot.
autostartWhether to always start the instance when LXD starts (page 418)

Key: boot.
autostart

Type: bool
Live update: no

If set to false, restore the last state.

boot.autostart.delay Delay after starting the instance (page 418)

Key: boot.autostart.
delay

Type: integer
Default: 0
Live update: no

The number of seconds to wait after the instance started before starting the next one.

boot.autostart.priorityWhat order to start the instances in (page 418)

418 of 954

Key: boot.autostart.
priority

Type: integer
Default: 0
Live update: no

The instance with the highest value is started first.

boot.debug_edk2 Enable debug version of the edk2 (page 419)

Key: boot.
debug_edk2

Type: bool

The instance should use a debug version of the edk2. A log file can be found in $LXD_DIR/
logs/<instance_name>/edk2.log.

boot.host_shutdown_timeout How long to wait for the instance to shut down (page 419)

Key: boot.
host_shutdown_timeout

Type: integer
Default: 30
Live update: yes

Number of seconds to wait for the instance to shut down before it is force-stopped.

boot.stop.priorityWhat order to shut down the instances in (page 419)

Key: boot.stop.
priority

Type: integer
Default: 0
Live update: no

The instance with the highest value is shut down first.

cloud-init configuration

The following instance options control the cloud-init (page 116) configuration of the in-
stance: cloud-init.network-config Network configuration for cloud-init (page 419)

Key: cloud-init.
network-config

Type: string
Default: DHCP on eth0
Live update: no
Condition: If supported by image

419 of 954

The content is used as seed value for cloud-init.

cloud-init.ssh-keys.KEYNAME Additional SSH key to be injected on the instance by
cloud-init (page 420)

Key: cloud-init.ssh-keys.
KEYNAME

Type: string
Live update: no
Condition: If supported by image

Represents an additional SSH public key to bemerged into existing cloud-init seed data and
injected into an instance. Has the format {user}:{key}, where {user} is a Linux username and
{key} can be either a pure SSH public key or an import ID for a key hosted elsewhere. // For
example: root:gh:githubUser, myUser:ssh-keyAlg publicKeyHash

cloud-init.user-data User data for cloud-init (page 420)

Key: cloud-init.user-data
Type: string
Default: #cloud-config
Live update: no
Condition: If supported by image

The content is used as seed value for cloud-init.

cloud-init.vendor-data Vendor data for cloud-init (page 420)

Key: cloud-init.vendor-data
Type: string
Default: #cloud-config
Live update: no
Condition: If supported by image

The content is used as seed value for cloud-init.

user.network-config Legacy version of cloud-init.network-config (page 420)

Key: user.network-config
Type: string
Default: DHCP on eth0
Live update: no
Condition: If supported by image

user.user-data Legacy version of cloud-init.user-data (page 420)

420 of 954

Key: user.user-data
Type: string
Default: #cloud-config
Live update: no
Condition: If supported by image

user.vendor-data Legacy version of cloud-init.vendor-data (page 421)

Key: user.vendor-data
Type: string
Default: #cloud-config
Live update: no
Condition: If supported by image

Support for these options depends on the image that is used and is not guaranteed.

If you specify both cloud-init.user-data and cloud-init.vendor-data, the content of both
options is merged. Therefore, make sure that the cloud-init configuration you specify in
those options does not contain the same keys.

Resource limits

The following instance options specify resource limits for the instance: limits.cpuWhich
CPUs to expose to the instance (page 421)

Key: limits.
cpu

Type: string
Default: 1 (VMs)
Live update: yes

A number or a specific range of CPUs to expose to the instance.

See CPU pinning (page 426) for more information.

limits.cpu.allowance Howmuch of the CPU can be used (page 421)

Key: limits.cpu.
allowance

Type: string
Default: 100%
Live update: yes
Condition: container

To control howmuch of the CPU can be used, specify either a percentage (50%) for a soft limit
or a chunk of time (25ms/100ms) for a hard limit.

See Allowance and priority (container only) (page 427) for more information.

limits.cpu.nodesWhich NUMA nodes to place the instance CPUs on (page 421)

421 of 954

Key: limits.cpu.
nodes

Type: string
Live update: yes

A comma-separated list of NUMA node IDs or ranges to place the instance CPUs on.

See Allowance and priority (container only) (page 427) for more information.

limits.cpu.pin_strategy VM CPU auto pinning strategy (page 422)

Key: limits.cpu.
pin_strategy

Type: string
Default: none
Live update: no
Condition: virtual machine

Specify the strategy for VM CPU auto pinning. Possible values: none (disables CPU auto pin-
ning) and auto (enables CPU auto pinning).

See CPU limits for virtual machines (page 426) for more information.

limits.cpu.priority CPU scheduling priority compared to other instances (page 422)

Key: limits.cpu.
priority

Type: integer
Default: 10 (maximum)
Live update: yes
Condition: container

When overcommitting resources, specify the CPU scheduling priority compared to other in-
stances that share the same CPUs. Specify an integer between 0 and 10.

See Allowance and priority (container only) (page 427) for more information.

limits.disk.priority Priority of the instance’s I/O requests (page 422)

Key: limits.disk.
priority

Type: integer
Default: 5 (medium)
Live update: yes

Controls how much priority to give to the instance’s I/O requests when under load.

Specify an integer between 0 and 10.

limits.hugepages.1GB Limit for the number of 1 GB huge pages (page 422)

422 of 954

Key: limits.hugepages.
1GB

Type: string
Live update: yes
Condition: container

Fixed value (in bytes) to limit the number of 1 GB huge pages. Various suffixes are supported
(see Units for storage and network limits (page 506)).

See Huge page limits (page 427) for more information.

limits.hugepages.1MB Limit for the number of 1 MB huge pages (page 423)

Key: limits.hugepages.
1MB

Type: string
Live update: yes
Condition: container

Fixed value (in bytes) to limit the number of 1MBhuge pages. Various suffixes are supported
(see Units for storage and network limits (page 506)).

See Huge page limits (page 427) for more information.

limits.hugepages.2MB Limit for the number of 2 MB huge pages (page 423)

Key: limits.hugepages.
2MB

Type: string
Live update: yes
Condition: container

Fixed value (in bytes) to limit the number of 2MBhuge pages. Various suffixes are supported
(see Units for storage and network limits (page 506)).

See Huge page limits (page 427) for more information.

limits.hugepages.64KB Limit for the number of 64 KB huge pages (page 423)

Key: limits.hugepages.
64KB

Type: string
Live update: yes
Condition: container

Fixed value (in bytes) to limit thenumber of 64KBhugepages. Various suffixes are supported
(see Units for storage and network limits (page 506)).

See Huge page limits (page 427) for more information.

limits.memory Usage limit for the host’s memory (page 423)

423 of 954

Key: limits.memory
Type: string
Default: 1GiB (VMs)
Live update: yes

Percentage of the host’s memory or a fixed value in bytes. Various suffixes are supported.

See Units for storage and network limits (page 506) for details.

limits.memory.enforceWhether the memory limit is hard or soft (page 424)

Key: limits.memory.
enforce

Type: string
Default: hard
Live update: yes
Condition: container

If the instance’s memory limit is hard, the instance cannot exceed its limit. If it is soft, the
instance can exceed its memory limit when extra host memory is available.

limits.memory.hugepagesWhether to back the instance using huge pages (page 424)

Key: limits.memory.
hugepages

Type: bool
Default: false
Live update: no
Condition: virtual machine

If this option is set to false, regular systemmemory is used.

limits.memory.swapWhether to encourage/discourage swapping less used pages for this in-
stance (page 424)

Key: limits.memory.
swap

Type: bool
Default: true
Live update: yes
Condition: container

limits.memory.swap.priorityPrevents the instance frombeing swapped to disk (page 424)

424 of 954

Key: limits.memory.swap.
priority

Type: integer
Default: 10 (maximum)
Live update: yes
Condition: container

Specify an integer between 0 and 10. The higher the value, the less likely the instance is to
be swapped to disk.

limits.processesMaximum number of processes that can run in the instance (page 425)

Key: limits.
processes

Type: integer
Default: empty
Live update: yes
Condition: container

If left empty, no limit is set.

limits.kernel.* Kernel resources per instance (page 425)

Key: limits.kernel.
*

Type: string
Live update: no
Condition: container

You can set kernel limits on an instance, for example, you can limit the number of open files.
See Kernel resource limits (page 427) for more information.

CPU limits

You have different options to limit CPU usage:

• Set limits.cpu (page 421) to restrict which CPUs the instance can see and use. See CPU
pinning (page 426) for how to set this option.

• Set limits.cpu.allowance (page 421) to restrict the load an instance can put on the
available CPUs. This option is available only for containers. See Allowance and priority
(container only) (page 427) for how to set this option.

• Set limits.cpu.pin_strategy (page 422) to specify the strategy for virtual-machine
CPU auto pinning. This option is available only for virtual machines. See CPU limits for
virtual machines (page 426) for how to set this option.

It is possible to set both options at the same time to restrict both which CPUs are visible
to the instance and the allowed usage of those instances. However, if you use limits.cpu.
allowance (page 421) with a time limit, you should avoid using limits.cpu (page 421) in addi-

425 of 954

tion, because that puts a lot of constraints on the scheduler and might lead to less efficient
allocations.

The CPU limits are implemented through a mix of the cpuset and cpu cgroup controllers.

CPU pinning

limits.cpu (page 421) results in CPU pinning through the cpuset controller. You can specify
either which CPUs or how many CPUs are visible and available to the instance:

• To specifywhichCPUs to use, set limits.cpu to either a set of CPUs (for example, 1,2,3)
or a CPU range (for example, 0-3).

To pin to a single CPU, use the range syntax (for example, 1-1) to differentiate it from
a number of CPUs.

• If you specify a number (for example, 4) of CPUs, LXD will do dynamic load-balancing
of all instances that aren’t pinned to specific CPUs, trying to spread the load on the
machine. Instances are re-balanced every time an instance starts or stops, as well as
whenever a CPU is added to the system.

CPU limits for virtual machines

Note

LXD supports live-updating the limits.cpu (page 421) option. However, for virtual ma-
chines, this onlymeans that the respective CPUs are hotplugged. Depending on the guest
operating system, youmight need to either restart the instance or complete somemanual
actions to bring the new CPUs online.

LXD virtual machines default to having just one vCPU allocated, which shows up as matching
the host CPU vendor and type, but has a single core and no threads.

When limits.cpu (page 421) is set to a single integer, LXD allocates multiple vCPUs and ex-
poses them to the guest as full cores. Unless limits.cpu.pin_strategy (page 422) is set to
auto, those vCPUs are not pinned to specific cores on the host. The number of vCPUs can be
updated while the VM is running.

When limits.cpu (page 421) is set to a range or comma-separated list of CPU IDs (as provided
by lxc info --resources (page 782)), the vCPUs are pinned to those cores. In this scenario,
LXD checks whether the CPU configuration lines up with a realistic hardware topology and if
it does, it replicates that topology in the guest. When doing CPU pinning, it is not possible to
change the configuration while the VM is running.

For example, if the pinning configuration includes eight threads, with each pair of thread
coming from the same core and an even number of cores spread across two CPUs, the guest
will show twoCPUs, eachwith two cores and each corewith two threads. TheNUMA layout is
similarly replicated and in this scenario, the guest would most likely end up with two NUMA
nodes, one for each CPU socket.

In such an environment with multiple NUMA nodes, the memory is similarly divided across
NUMA nodes and be pinned accordingly on the host and then exposed to the guest.

All this allows for very high performance operations in the guest as the guest scheduler can

426 of 954

properly reason about sockets, cores and threads as well as consider NUMA topology when
sharing memory or moving processes across NUMA nodes.

Allowance and priority (container only)

limits.cpu.allowance (page 421) drives either the CFS scheduler quotas when passed a time
constraint, or the generic CPU shares mechanism when passed a percentage value:

• The time constraint (for example, 20ms/50ms) is a hard limit. For example, if you want to
allow the container to use amaximumof oneCPU, set limits.cpu.allowance (page 421)
to a value like 100ms/100ms. The value is relative to one CPUworth of time, so to restrict
to two CPUs worth of time, use something like 100ms/50ms or 200ms/100ms.

• When using a percentage value, the limit is a soft limit that is applied only when under
load. It is used to calculate the scheduler priority for the instance, relative to any other
instance that is using the same CPU or CPUs. For example, to limit the CPU usage of the
container to one CPU when under load, set limits.cpu.allowance (page 421) to 100%.

limits.cpu.nodes (page 421) can be used to restrict the CPUs that the instance can use to
a specific set of NUMA nodes. To specify which NUMA nodes to use, set limits.cpu.nodes
(page 421) to either a set of NUMAnode IDs (for example, 0,1) or a set of NUMAnode ranges
(for example, 0-1,2-4).

limits.cpu.priority (page 422) is another factor that is used to compute the scheduler pri-
ority score when a number of instances sharing a set of CPUs have the same percentage of
CPU assigned to them.

Huge page limits

LXD allows to limit the number of huge pages available to a container through the limits.
hugepage.[size] key (for example, limits.hugepages.1MB (page 423)).

Architectures often expose multiple huge-page sizes. The available huge-page sizes depend
on the architecture.

Setting limits for huge pages is especially useful when LXD is configured to intercept the
mount syscall for the hugetlbfs file system in unprivileged containers. When LXD intercepts a
hugetlbfs mount syscall, it mounts the hugetlbfs file system for a container with correct uid
and gid values asmount options. This makes it possible to use huge pages from unprivileged
containers. However, it is recommended to limit the number of huge pages available to the
container through limits.hugepages.[size] to stop the container frombeing able toexhaust
the huge pages available to the host.

Limiting huge pages is done through the hugetlb cgroup controller, which means that the
host systemmust expose the hugetlb controller in the legacy or unified cgroup hierarchy for
these limits to apply.

Kernel resource limits

For container instances, LXD exposes a generic namespaced key limits.kernel.* (page 425)
that can be used to set resource limits.

It is generic in the sense that LXD does not perform any validation on the resource that is
specified following the limits.kernel.* prefix. LXD cannot know about all the possible re-
sources that a given kernel supports. Instead, LXD simply passes down the corresponding

427 of 954

resource key after the limits.kernel.* prefix and its value to the kernel. The kernel does
the appropriate validation. This allows users to specify any supported limit on their system.

Some common limits are:

Key Resource Description

limits.kernel.
as

RLIMIT_AS Maximum size of the process’s virtual memory

limits.kernel.
core

RLIMIT_CORE Maximum size of the process’s core dump file

limits.kernel.
cpu

RLIMIT_CPU Limit in seconds on the amount of CPU time the process
can consume

limits.kernel.
data

RLIMIT_DATA Maximum size of the process’s data segment

limits.kernel.
fsize

RLIMIT_FSIZE Maximum size of files the process may create

limits.kernel.
locks

RLIMIT_LOCKS Limit on the number of file locks that this process may
establish

limits.kernel.
memlock

RLIMIT_MEMLOCKLimit on the number of bytes of memory that the pro-
cess may lock in RAM

limits.kernel.
nice

RLIMIT_NICE Maximum value towhich the process’s nice value can be
raised

limits.kernel.
nofile

RLIMIT_NOFILEMaximum number of open files for the process

limits.kernel.
nproc

RLIMIT_NPROC Maximum number of processes that can be created for
the user of the calling process

limits.kernel.
rtprio

RLIMIT_RTPRIOMaximum value on the real-time-priority that may be
set for this process

limits.kernel.
sigpending

RLIMIT_SIGPENDINGMaximumnumber of signals thatmay bequeued for the
user of the calling process

A full list of all available limits can be found in the manpages for the getr-
limit(2)/setrlimit(2) system calls.

To specify a limitwithin the limits.kernel.* namespace, use the resource name in lowercase
without the RLIMIT_ prefix. For example, RLIMIT_NOFILE should be specified as nofile.

A limit is specified as two colon-separated values that are either numeric or the word unlim-
ited (for example, limits.kernel.nofile=1000:2000). A single value canbeusedas a shortcut
to set both soft and hard limit to the same value (for example, limits.kernel.nofile=3000).

A resource with no explicitly configured limit will inherit its limit from the process that starts
up the container. Note that this inheritance is not enforced by LXD but by the kernel.

Migration options

The following instance options control the behavior if the instance is moved from one LXD
server to another (page 135): migration.incremental.memory Whether to use incremental
memory transfer (page 428)

428 of 954

Key: migration.incremental.
memory

Type: bool
Default: false
Live update: yes
Condition: container

Using incremental memory transfer of the instance’s memory can reduce downtime.

migration.incremental.memory.goal Percentage of memory to have in sync before stopping
the instance (page 429)

Key: migration.incremental.memory.
goal

Type: integer
Default: 70
Live update: yes
Condition: container

migration.incremental.memory.iterations Maximum number of transfer operations to go
through before stopping the instance (page 429)

Key: migration.incremental.memory.
iterations

Type: integer
Default: 10
Live update: yes
Condition: container

migration.statefulWhether to allow for stateful stop/start and snapshots (page 429)

Key: migration.stateful
Type: bool
Default: false or value from profiles or instances.migration.stateful (if set)
Live update: no
Condition: virtual machine

Enabling this option prevents the use of some features that are incompatible with it.

NVIDIA and CUDA configuration

The following instance options specify the NVIDIA and CUDA configuration of the instance:
nvidia.driver.capabilitiesWhat driver capabilities the instance needs (page 429)

429 of 954

Key: nvidia.driver.
capabilities

Type: string
Default: compute,utility
Live update: no
Condition: container

The specified driver capabilities are used to set libnvidia-container
NVIDIA_DRIVER_CAPABILITIES.

nvidia.require.cuda Required CUDA version (page 430)

Key: nvidia.require.
cuda

Type: string
Live update: no
Condition: container

The specified version expression is used to set libnvidia-container NVIDIA_REQUIRE_CUDA.

nvidia.require.driver Required driver version (page 430)

Key: nvidia.require.
driver

Type: string
Live update: no
Condition: container

The specified version expression is used to set libnvidia-container NVIDIA_REQUIRE_DRIVER.

nvidia.runtime Whether to pass the host NVIDIA and CUDA runtime libraries into the in-
stance (page 430)

Key: nvidia.
runtime

Type: bool
Default: false
Live update: no
Condition: container

Raw instance configuration overrides

The following instance options allow direct interaction with the backend features that LXD
itself uses: raw.apparmor AppArmor profile entries (page 430)

430 of 954

Key: raw.
apparmor

Type: blob
Live update: yes

The specified entries are appended to the generated profile.

raw.idmap Raw idmap configuration (page 431)

Key: raw.idmap
Type: blob
Live update: no
Condition: unprivileged container

For example: both 1000 1000

raw.lxc Raw LXC configuration to be appended to the generated one (page 431)

Key: raw.lxc
Type: blob
Live update: no
Condition: container

raw.qemu Raw QEMU configuration to be appended to the generated command line
(page 431)

Key: raw.qemu
Type: blob
Live update: no
Condition: virtual machine

raw.qemu.conf Addition/override to the generated qemu.conf file (page 431)

Key: raw.qemu.conf
Type: blob
Live update: no
Condition: virtual machine

See Override QEMU configuration (page 432) for more information.

raw.seccomp Raw Seccomp configuration (page 431)

Key: raw.
seccomp

Type: blob
Live update: no
Condition: container

431 of 954

Important

Setting these raw.* keys might break LXD in non-obvious ways. Therefore, you should
avoid setting any of these keys.

Override QEMU configuration

For VM instances, LXD configures QEMU through a configuration file that is passed to QEMU
with the -readconfig command-line option. This configuration file is generated for each in-
stance before boot. It can be found at /var/log/lxd/<instance_name>/qemu.conf.

The default configuration works fine for LXD’s most common use case: modern UEFI guests
with VirtIO devices. In some situations, however, you might need to override the generated
configuration. For example:

• To run an old guest OS that doesn’t support UEFI.

• To specify custom virtual devices when VirtIO is not supported by the guest OS.

• To add devices that are not supported by LXD before the machines boots.

• To remove devices that conflict with the guest OS.

To override the configuration, set the raw.qemu.conf (page 431) option. It supports a format
similar to qemu.conf, with some additions. Since it is a multi-line configuration option, you
can use it to modify multiple sections or keys.

• To replace a section or key in the generated configuration file, add a section with a
different value.

For example, use the following section to override the default virtio-gpu-pci GPU
driver:

raw.qemu.conf: |-
[device "qemu_gpu"]
driver = "qxl-vga"

• To remove a section, specify a section without any keys. For example:

raw.qemu.conf: |-
[device "qemu_gpu"]

• To remove a key, specify an empty string as the value. For example:

raw.qemu.conf: |-
[device "qemu_gpu"]
driver = ""

• To add a new section, specify a section name that is not present in the configuration
file.

The configuration file format used by QEMU allows multiple sections with the same name.
Here’s a piece of the configuration generated by LXD:

432 of 954

[global]
driver = "ICH9-LPC"
property = "disable_s3"
value = "1"

[global]
driver = "ICH9-LPC"
property = "disable_s4"
value = "1"

To specify which section to override, specify an index. For example:

raw.qemu.conf: |-
[global][1]
value = "0"

Section indexes start at 0 (which is the default value when not specified), so the above exam-
ple would generate the following configuration:

[global]
driver = "ICH9-LPC"
property = "disable_s3"
value = "1"

[global]
driver = "ICH9-LPC"
property = "disable_s4"
value = "0"

Security policies

The following instance options control the Security (page 376) policies of the instance:
security.agent.metricsWhether the lxd-agent is queried for state information andmetrics
(page 433)

Key: security.agent.
metrics

Type: bool
Default: true
Live update: no
Condition: virtual machine

security.csmWhether to use a firmware that supports UEFI-incompatible operating systems
(page 433)

Key: security.csm
Type: bool
Default: false
Live update: no
Condition: virtual machine

433 of 954

When enabling this option, set security.secureboot (page 437) to false.

security.delegate_bpf Whether to enable eBPF delegation using BPF Token mechanism
(page 434)

Key: security.delegate_bpf
Type: bool
Default: false
Live update: no
Condition: unprivileged container

This option enables BPF functionality delegation mechanism (using BPF Token).

Note: security.delegate_bpf.cmd_types, security.delegate_bpf.map_types, security.
delegate_bpf.prog_types, security.delegate_bpf.attach_types need to be configured de-
pending on BPF workload in the container.

See Privilege delegation using BPF Token (page 381) for more information.

security.delegate_bpf.attach_types Which eBPF attach types to allow with delegation
mechanism (page 434)

Key: security.delegate_bpf.
attach_types

Type: bool
Default: false
Live update: no
Condition: unprivileged container

Which eBPF program attachment types to allow with delegation mechanism. Syntax follows
a kernel one for delegate_attachs bpffs mount option. A number (bitmask) or :-separated
list of attachment types to allow can be specified. For example, cgroup_inet_ingress allows
BPF_CGROUP_INET_INGRESS attachment type.

security.delegate_bpf.cmd_types Which eBPF commands to allow with delegation mecha-
nism (page 434)

Key: security.delegate_bpf.
cmd_types

Type: bool
Default: false
Live update: no
Condition: unprivileged container

Which eBPF commands to allow with delegation mechanism. Syntax follows a kernel one
for delegate_cmds bpffs mount option. A number (bitmask) or :-separated list of com-
mands to allow can be specified. For example, prog_load:map_create allows eBPF programs
loading and eBPF maps creation. Notice: security.delegate_bpf.prog_types and security.
delegate_bpf.map_types still need to be configured accordingly.

security.delegate_bpf.map_types Which eBPF maps to allow with delegation mechanism
(page 434)

434 of 954

Key: security.delegate_bpf.
map_types

Type: bool
Default: false
Live update: no
Condition: unprivileged container

Which eBPFmaps to allowwith delegationmechanism. Syntax follows a kernel one for dele-
gate_maps bpffs mount option. A number (bitmask) or :-separated list of map types to allow
can be specified. For example, ringbuf allows BPF_MAP_TYPE_RINGBUFmap.

security.delegate_bpf.prog_types Which eBPF program types to allow with delegation
mechanism (page 435)

Key: security.delegate_bpf.
prog_types

Type: bool
Default: false
Live update: no
Condition: unprivileged container

Which eBPF program types to allow with delegation mechanism. Syntax follows a ker-
nel one for delegate_progs bpffs mount option. A number (bitmask) or :-separated
list of program types to allow can be specified. For example, socket_filter allows
BPF_PROG_TYPE_SOCKET_FILTER program type.

security.devlxdWhether /dev/lxd is present in the instance (page 435)

Key: security.devlxd
Type: bool
Default: true
Live update: no

See Communication between instance and host (page 685) for more information.

security.devlxd.images Controls the availability of the /1.0/images API over devlxd
(page 435)

Key: security.devlxd.
images

Type: bool
Default: false
Live update: yes

security.idmap.base The base host ID to use for the allocation (page 435)

435 of 954

Key: security.idmap.base
Type: integer
Live update: no
Condition: unprivileged container

Setting this option overrides auto-detection.

security.idmap.isolatedWhether to use a unique idmap for this instance (page 436)

Key: security.idmap.
isolated

Type: bool
Default: false
Live update: no
Condition: unprivileged container

If specified, the idmap used for this instance is unique among instances that have this option
set.

security.idmap.size The size of the idmap to use (page 436)

Key: security.idmap.size
Type: integer
Live update: no
Condition: unprivileged container

security.nestingWhether to support running LXD (nested) inside the instance (page 436)

Key: security.
nesting

Type: bool
Default: false
Live update: yes
Condition: container

security.privilegedWhether to run the instance in privileged mode (page 436)

Key: security.privileged
Type: bool
Default: false
Live update: no
Condition: container

See Container security (page 378) for more information.

security.protection.delete Whether to prevent the instance from being deleted
(page 436)

436 of 954

Key: security.protection.
delete

Type: bool
Default: false
Live update: container

security.protection.shiftWhether to protect the file system from being UID/GID shifted
(page 437)

Key: security.protection.
shift

Type: bool
Default: false
Live update: yes
Condition: container

Set this option to true to prevent the instance’s file system from being UID/GID shifted on
startup.

security.protection.startWhether to prevent the instance frombeing started (page 437)

Key: security.protection.
start

Type: bool
Default: false
Live update: container

security.securebootWhether UEFI secure boot is enabled with the default Microsoft keys
(page 437)

Key: security.secureboot
Type: bool
Default: true
Live update: no
Condition: virtual machine

When disabling this option, consider enabling security.csm (page 433).

security.sev Whether AMD SEV (Secure Encrypted Virtualization) is enabled for this VM
(page 437)

Key: security.sev
Type: bool
Default: false
Live update: no
Condition: virtual machine

437 of 954

security.sev.policy.esWhether AMD SEV-ES (SEV Encrypted State) is enabled for this VM
(page 437)

Key: security.sev.policy.
es

Type: bool
Default: false
Live update: no
Condition: virtual machine

security.sev.session.data The guest owner’s base64-encoded session blob (page 438)

Key: security.sev.session.
data

Type: string
Default: true
Live update: no
Condition: virtual machine

security.sev.session.dh The guest owner’s base64-encodedDiffie-Hellman key (page 438)

Key: security.sev.session.
dh

Type: string
Default: true
Live update: no
Condition: virtual machine

security.syscalls.allow List of syscalls to allow (page 438)

Key: security.syscalls.
allow

Type: string
Live update: no
Condition: container

A \n-separated list of syscalls to allow. This list must be mutually exclusive with security.
syscalls.deny*.

security.syscalls.deny List of syscalls to deny (page 438)

Key: security.syscalls.
deny

Type: string
Live update: no
Condition: container

438 of 954

A \n-separated list of syscalls to deny. This list must be mutually exclusive with security.
syscalls.allow.

security.syscalls.deny_compatWhether toblock compat_* syscalls (x86_64only) (page439)

Key: security.syscalls.
deny_compat

Type: bool
Default: false
Live update: no
Condition: container

On x86_64, this option controls whether to block compat_* syscalls. On other architectures,
the option is ignored.

security.syscalls.deny_defaultWhether to enable the default syscall deny (page 439)

Key: security.syscalls.
deny_default

Type: bool
Default: true
Live update: no
Condition: container

security.syscalls.intercept.bpfWhether to handle the bpf() system call (page 439)

Key: security.syscalls.intercept.
bpf

Type: bool
Default: false
Live update: no
Condition: container

security.syscalls.intercept.bpf.devicesWhether to allow BPF programs (page 439)

Key: security.syscalls.intercept.bpf.
devices

Type: bool
Default: false
Live update: no
Condition: container

This option controls whether to allow BPF programs for the devices cgroup in the unified
hierarchy to be loaded.

security.syscalls.intercept.mknodWhether to handle the mknod and mknodat system calls
(page 439)

439 of 954

Key: security.syscalls.intercept.
mknod

Type: bool
Default: false
Live update: no
Condition: container

These system calls allow creation of a limited subset of char/block devices.

security.syscalls.intercept.mountWhether to handle the mount system call (page 440)

Key: security.syscalls.intercept.
mount

Type: bool
Default: false
Live update: no
Condition: container

security.syscalls.intercept.mount.allowed File systems that can bemounted (page 440)

Key: security.syscalls.intercept.mount.
allowed

Type: string
Live update: yes
Condition: container

Specify a comma-separated list of file systems that are safe to mount for processes inside
the instance.

security.syscalls.intercept.mount.fuse File system that should be redirected to FUSE im-
plementation (page 440)

Key: security.syscalls.intercept.mount.
fuse

Type: string
Live update: yes
Condition: container

Specify the mounts of a given file system that should be redirected to their FUSE implemen-
tation (for example, ext4=fuse2fs).

security.syscalls.intercept.mount.shiftWhether to use idmapped mounts for syscall in-
terception (page 440)

440 of 954

Key: security.syscalls.intercept.mount.
shift

Type: bool
Default: false
Live update: yes
Condition: container

security.syscalls.intercept.sched_setscheduler Whether to handle the
sched_setscheduler system call (page 441)

Key: security.syscalls.intercept.
sched_setscheduler

Type: bool
Default: false
Live update: no
Condition: container

This system call allows increasing process priority.

security.syscalls.intercept.setxattr Whether to handle the setxattr system call
(page 441)

Key: security.syscalls.intercept.
setxattr

Type: bool
Default: false
Live update: no
Condition: container

This system call allows setting a limited subset of restricted extended attributes.

security.syscalls.intercept.sysinfo Whether to handle the sysinfo system call
(page 441)

Key: security.syscalls.intercept.
sysinfo

Type: bool
Default: false
Live update: no
Condition: container

This system call can be used to get cgroup-based resource usage information.

Snapshot scheduling and configuration

The following instance options control the creation and expiry of instance snapshots
(page 128): snapshots.expiryWhen snapshots are to be deleted (page 441)

441 of 954

Key: snapshots.
expiry

Type: string
Live update: no

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name (page 442)

Key: snapshots.
pattern

Type: string
Default: snap%d
Live update: no

Specify a Pongo2 template string that represents the snapshot name. This template is used
for scheduled snapshots and for unnamed snapshots.

See Automatic snapshot names (page 442) for more information.

snapshots.schedule Schedule for automatic instance snapshots (page 442)

Key: snapshots.
schedule

Type: string
Default: empty
Live update: no

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated
list of schedule aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or
leave empty to disable automatic snapshots.

snapshots.schedule.stopped Whether to automatically snapshot stopped instances
(page 442)

Key: snapshots.schedule.
stopped

Type: bool
Default: false
Live update: no

Automatic snapshot names

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable cre-
ation_date. Make sure to format the date in your template string to avoid forbid-
den characters in the snapshot name. For example, set snapshots.pattern to {{ cre-
ation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of cre-
ation, down to the precision of a second.

442 of 954

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first
snapshot, the placeholder is replaced with 0. For subsequent snapshots, the existing snap-
shot names are taken into account to find the highest number at the placeholder’s position.
This number is then incremented by one for the new name.

Volatile internal data

Warning

The volatile.* keys cannot be manipulated by the user. Do not attempt to modify these
keys in any way. LXD modifies these keys, and attempting to manipulate them yourself
might break LXD in non-obvious ways.

The following volatile keys are currently used internally by LXD to store internal data specific
to an instance: volatile.<name>.apply_quota Disk quota (page 443)

Key: volatile.<name>.
apply_quota

Type: string

The disk quota is applied the next time the instance starts.

volatile.<name>.ceph_rbd RBD device path for Ceph disk devices (page 443)

Key: volatile.<name>.
ceph_rbd

Type: string

volatile.<name>.host_name Network device name on the host (page 443)

Key: volatile.<name>.
host_name

Type: string

volatile.<name>.hwaddr Network device MAC address (page 443)

Key: volatile.<name>.
hwaddr

Type: string

The network device MAC address is used when no hwaddr property is set on the device itself.

volatile.<name>.last_state.created Whether the network device physical device was cre-
ated (page 443)

443 of 954

Key: volatile.<name>.last_state.
created

Type: string

Possible values are true or false.

volatile.<name>.last_state.hwaddr Network device original MAC (page 444)

Key: volatile.<name>.last_state.
hwaddr

Type: string

The original MAC that was used when moving a physical device into an instance.

volatile.<name>.last_state.mtu Network device original MTU (page 444)

Key: volatile.<name>.last_state.
mtu

Type: string

The original MTU that was used when moving a physical device into an instance.

volatile.<name>.last_state.vdpa.name VDPA device name (page 444)

Key: volatile.<name>.last_state.vdpa.
name

Type: string

The VDPA device name used when moving a VDPA device file descriptor into an instance.

volatile.<name>.last_state.vf.hwaddr SR-IOV virtual function original MAC (page 444)

Key: volatile.<name>.last_state.vf.
hwaddr

Type: string

The original MAC used when moving a VF into an instance.

volatile.<name>.last_state.vf.id SR-IOV virtual function ID (page 444)

Key: volatile.<name>.last_state.vf.
id

Type: string

The ID used when moving a VF into an instance.

volatile.<name>.last_state.vf.spoofcheck SR-IOV virtual function original spoof check set-
ting (page 444)

444 of 954

Key: volatile.<name>.last_state.vf.
spoofcheck

Type: string

The original spoof check setting used when moving a VF into an instance.

volatile.<name>.last_state.vf.vlan SR-IOV virtual function original VLAN (page 445)

Key: volatile.<name>.last_state.vf.
vlan

Type: string

The original VLAN used when moving a VF into an instance.

volatile.apply_nvramWhether to regenerate VM NVRAM the next time the instance starts
(page 445)

Key: volatile.
apply_nvram

Type: bool

volatile.apply_template Template hook (page 445)

Key: volatile.
apply_template

Type: string

The template with the given name is triggered upon next startup.

volatile.base_image Hash of the base image (page 445)

Key: volatile.base_image
Type: string

The hash of the image that the instance was created from (empty if the instance was not
created from an image).

volatile.cloud-init.instance-id instance-id (UUID) exposed to cloud-init (page 445)

Key: volatile.cloud-init.
instance-id

Type: string

volatile.evacuate.origin The origin of the evacuated instance (page 445)

445 of 954

Key: volatile.evacuate.
origin

Type: string

The cluster member that the instance lived on before evacuation.

volatile.idmap.base The first ID in the container’s primary idmap range (page 446)

Key: volatile.idmap.
base

Type: integer
Condition: container

volatile.idmap.current The idmap currently in use by the container (page 446)

Key: volatile.idmap.
current

Type: string
Condition: container

volatile.idmap.next The idmap to use the next time the container starts (page 446)

Key: volatile.idmap.
next

Type: string
Condition: container

volatile.last_state.idmapOn-disk UID/GID map for the container’s rootfs (page 446)

Key: volatile.last_state.
idmap

Type: string
Condition: container

The UID/GID map that has been applied to the container’s underlying storage. This is usually
set for containers created on older kernels that don’t support idmapped mounts.

volatile.last_state.power Instance state as of last host shutdown (page 446)

Key: volatile.last_state.
power

Type: string

volatile.uuid Instance UUID (page 446)

446 of 954

Key: volatile.uuid
Type: string

The instance UUID is globally unique across all servers and projects.

volatile.uuid.generation Instance generation UUID (page 447)

Key: volatile.uuid.
generation

Type: string

The instance generation UUID changes whenever the instance’s place in time moves back-
wards. It is globally unique across all servers and projects.

volatile.vsock_id Instance vsock ID used as of last start (page 447)

Key: volatile.
vsock_id

Type: string

Devices

Devices are attached to an instance (see Configure devices (page 87)) or to a profile (see Edit
a profile (page 98)).

They include, for example, network interfaces, mount points, USB and GPU devices. These
devices can have instance device options, depending on the type of the instance device.

LXD supports the following device types:

ID (database) Name Condition Description

0 none (page 448) - Inheritance blocker
1 nic (page 449) - Network interface
2 disk (page 478) - Mount point inside the instance
3 unix-char (page 486) container Unix character device
4 unix-block (page 488) container Unix block device
5 usb (page 490) - USB device
6 gpu (page 491) - GPU device
7 infiniband (page 498) container InfiniBand device
8 proxy (page 499) container Proxy device
9 unix-hotplug (page 503) container Unix hotplug device
10 tpm (page 505) - TPM device
11 pci (page 506) VM PCI device

Each instance comes with a set of Standard devices (page 448).

447 of 954

Standard devices

LXD provides each instance with the basic devices that are required for a standard POSIX
system towork. These devices aren’t visible in the instance or profile configuration, and they
may not be overridden.

The standard devices are:

Device Type of device

/dev/null Character device
/dev/zero Character device
/dev/full Character device
/dev/
console

Character device

/dev/tty Character device
/dev/random Character device
/dev/
urandom

Character device

/dev/net/
tun

Character device

/dev/fuse Character device
lo Network interface

Any other devicesmust be defined in the instance configuration or in one of the profiles used
by the instance. The default profile typically contains a network interface that becomes eth0
in the instance.

Type: none

Note

The none device type is supported for both containers and VMs.

A none device doesn’t have any properties and doesn’t create anything inside the instance.

Its only purpose is to stop inheriting devices that come from profiles. To do so, add a device
with the same name as the one that you do notwant to inherit, but with the device type none.

You can add this device either in a profile that is applied after the profile that contains the
original device, or directly on the instance.

Configuration examples

Add a none device to an instance:

lxc config device add <instance_name> <device_name> none

See Configure devices (page 87) for more information.

448 of 954

Type: nic

Note

The nic device type is supported for both containers and VMs.

NICs support hotplugging for both containers and VMs (with the exception of the ipvlan
NIC type).

Network devices, also referred to as Network Interface Controllers or NICs, supply a connec-
tion to a network. LXD supports several different types of network devices (NIC types).

nictype vs. network

When adding a network device to an instance, there are two methods to specify the type of
device that youwant to add: through the nictype device option or the network device option.

These two device options are mutually exclusive, and you can specify only one of themwhen
you create a device. However, note that when you specify the network option, the nictype
option is derived automatically from the network type.

nictype
When using the nictype device option, you can specify a network interface that is not
controlled by LXD. Therefore, you must specify all information that LXD needs to use
the network interface.

When using this method, the nictype option must be specified when creating the de-
vice, and it cannot be changed later.

network
When using the network device option, theNIC is linked to an existingmanaged network
(page 354). In this case, LXD has all required information about the network, and you
need to specify only the network name when adding the device.

When using this method, LXD derives the nictype option automatically. The value is
read-only and cannot be changed.

Other device options that are inherited from the network are marked with a “yes” in
the “Managed” field of the NIC-specific device options. You cannot customize these
options directly for the NIC if you’re using the networkmethod.

See Networking setups (page 353) for more information.

Available NIC types

The following NICs can be added using the nictype or network options:

• bridged (page 450): Uses an existing bridge on the host and creates a virtual device pair
to connect the host bridge to the instance.

• macvlan (page 455): Sets up a new network device based on an existing one, but using
a different MAC address.

• sriov (page 457): Passes a virtual function of an SR-IOV-enabled physical network de-
vice into the instance.

449 of 954

• physical (page 460): Passes a physical device from the host through to the instance.
The targeted device will vanish from the host and appear in the instance.

The following NICs can be added using only the network option:

• ovn (page 462): Uses an existing OVN network and creates a virtual device pair to con-
nect the instance to it.

The following NICs can be added using only the nictype option:

• ipvlan (page 467): Sets up a new network device based on an existing one, using the
same MAC address but a different IP.

• p2p (page 470): Creates a virtual device pair, putting one side in the instance and leaving
the other side on the host.

• routed (page 472): Creates a virtual device pair to connect the host to the instance
and sets up static routes and proxy ARP/NDP entries to allow the instance to join the
network of a designated parent interface.

The available device options depend on the NIC type and are listed in the following sections.

nictype: bridged

Note

You can select this NIC type through the nictype option or the network option (see Bridge
network (page 573) for information about the managed bridge network).

A bridgedNIC uses an existing bridge on the host and creates a virtual device pair to connect
the host bridge to the instance.

Device options

NIC devices of type bridged have the following device options: boot.priority Boot priority
for VMs (page 450)

Key: boot.priority
Type: integer
Managed: no

A higher value for this option means that the VM boots first.

host_name Name of the interface inside the host (page 450)

Key: host_name
Type: string
Default: randomly assigned
Managed: no

hwaddrMAC address of the new interface (page 450)

450 of 954

Key: hwaddr
Type: string
Default: randomly assigned
Managed: no

ipv4.address IPv4 address to assign to the instance through DHCP (page 451)

Key: ipv4.
address

Type: string
Managed: no

Set this option to none to restrict all IPv4 traffic when security.ipv4_filtering (page 454)
is set.

ipv4.routes IPv4 static routes for the NIC to add on the host (page 451)

Key: ipv4.routes
Type: string
Managed: no

Specify a comma-delimited list of IPv4 static routes for this NIC to add on the host.

ipv4.routes.external IPv4 static routes to route to NIC (page 451)

Key: ipv4.routes.
external

Type: string
Managed: no

Specify a comma-delimited list of IPv4 static routes to route to the NIC and publish on the
uplink network (BGP).

ipv6.address IPv6 address to assign to the instance through DHCP (page 451)

Key: ipv6.
address

Type: string
Managed: no

Set this option to none to restrict all IPv6 traffic when security.ipv6_filtering (page 454)
is set.

ipv6.routes IPv6 static routes for the NIC to add on the host (page 451)

Key: ipv6.routes
Type: string
Managed: no

451 of 954

Specify a comma-delimited list of IPv6 static routes for this NIC to add on the host.

ipv6.routes.external IPv6 static routes to route to NIC (page 452)

Key: ipv6.routes.
external

Type: string
Managed: no

Specify a comma-delimited list of IPv6 static routes to route to the NIC and publish on the
uplink network (BGP).

limits.egress I/O limit for outgoing traffic (page 452)

Key: limits.egress
Type: string
Managed: no

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network
limits (page 506)).

limits.ingress I/O limit for incoming traffic (page 452)

Key: limits.
ingress

Type: string
Managed: no

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network
limits (page 506)).

limits.max I/O limit for both incoming and outgoing traffic (page 452)

Key: limits.
max

Type: string
Managed: no

This option is the same as setting both limits.ingress (page 452) and limits.egress
(page 452).

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network
limits (page 506)).

limits.priority skb->priority value for outgoing traffic (page 452)

Key: limits.priority
Type: integer
Managed: no

452 of 954

The skb->priority value for outgoing traffic is used by the kernel queuing discipline (qdisc)
to prioritize network packets. Specify the value as a 32-bit unsigned integer.

The effect of this value depends on the particular qdisc implementation, for example,
SKBPRIO or QFQ. Consult the kernel qdisc documentation before setting this value.

maas.subnet.ipv4MAAS IPv4 subnet to register the instance in (page 453)

Key: maas.subnet.
ipv4

Type: string
Managed: yes

maas.subnet.ipv6MAAS IPv6 subnet to register the instance in (page 453)

Key: maas.subnet.
ipv6

Type: string
Managed: yes

mtuMTU of the new interface (page 453)

Key: mtu
Type: integer
Default: parent MTU
Managed: yes

name Name of the interface inside the instance (page 453)

Key: name
Type: string
Default: kernel assigned
Managed: no

networkManaged network to link the device to (page 453)

Key: network
Type: string
Managed: no

You can specify this option instead of specifying the nictype directly.

parent Name of the host device (page 453)

Key: parent
Type: string
Managed: yes
Required: if specifying the nictype directly

453 of 954

queue.tx.length Transmit queue length for the NIC (page 454)

Key: queue.tx.
length

Type: integer
Managed: no

security.ipv4_filtering Whether to prevent the instance from spoofing an IPv4 address
(page 454)

Key: security.ipv4_filtering
Type: bool
Default: false
Managed: no

Set this option to true to prevent the instance fromspoofinganother instance’s IPv4 address.
This option enables security.mac_filtering (page 454).

security.ipv6_filtering Whether to prevent the instance from spoofing an IPv6 address
(page 454)

Key: security.ipv6_filtering
Type: bool
Default: false
Managed: no

Set this option to true to prevent the instance fromspoofinganother instance’s IPv6 address.
This option enables security.mac_filtering (page 454).

security.mac_filtering Whether to prevent the instance from spoofing a MAC address
(page 454)

Key: security.
mac_filtering

Type: bool
Default: false
Managed: no

Set this option to true to prevent the instance from spoofing another instance’s MAC ad-
dress.

security.port_isolationWhether to respect port isolation (page 454)

Key: security.port_isolation
Type: bool
Default: false
Managed: no

454 of 954

Set this option to true to prevent theNIC fromcommunicatingwith otherNICs in thenetwork
that have port isolation enabled.

vlan VLAN ID to use for non-tagged traffic (page 455)

Key: vlan
Type: integer
Managed: no

Set this option to none to remove the port from the default VLAN.

vlan.tagged VLAN IDs or VLAN ranges to join for tagged traffic (page 455)

Key: vlan.tagged
Type: integer
Managed: no

Specify the VLAN IDs or ranges as a comma-delimited list.

Configuration examples

Add a bridged network device to an instance, connecting to a LXD managed network:

lxc network create <network_name> --type=bridge
lxc config device add <instance_name> <device_name> nic network=<network_name>

Note that bridge is the type when creating amanaged bridge network, while the device nic-
type that is required when connecting to an unmanaged bridge is bridged.

Add a bridged network device to an instance, connecting to an existing bridge interface with
nictype:

lxc config device add <instance_name> <device_name> nic nictype=bridged parent=
<existing_bridge>

SeeHowto create a network (page210) andConfigure devices (page87) formore information.

nictype: macvlan

Note

You can select thisNIC type through the nictypeoptionor the networkoption (seeMacvlan
network (page 593) for information about the managed macvlan network).

A macvlan NIC sets up a new network device based on an existing one, but using a different
MAC address.

If you are using a macvlanNIC, communication between the LXD host and the instances is not
possible. Both the host and the instances can talk to the gateway, but they cannot commu-
nicate directly.

455 of 954

Device options

NIC devices of type macvlan have the following device options: boot.priority Boot priority
for VMs (page 456)

Key: boot.priority
Type: integer
Managed: no

A higher value for this option means that the VM boots first.

gvrpWhether to use GARP VLAN Registration Protocol (page 456)

Key: gvrp
Type: bool
Default: false
Managed: no

This option specifies whether to register the VLAN using the GARP VLAN Registration Pro-
tocol.

hwaddrMAC address of the new interface (page 456)

Key: hwaddr
Type: string
Default: randomly assigned
Managed: no

maas.subnet.ipv4MAAS IPv4 subnet to register the instance in (page 456)

Key: maas.subnet.
ipv4

Type: string
Managed: yes

maas.subnet.ipv6MAAS IPv6 subnet to register the instance in (page 456)

Key: maas.subnet.
ipv6

Type: string
Managed: yes

mtuMTU of the new interface (page 456)

Key: mtu
Type: integer
Default: parent MTU
Managed: yes

456 of 954

name Name of the interface inside the instance (page 457)

Key: name
Type: string
Default: kernel assigned
Managed: no

networkManaged network to link the device to (page 457)

Key: network
Type: string
Managed: no

You can specify this option instead of specifying the nictype directly.

parent Name of the host device (page 457)

Key: parent
Type: string
Managed: yes
Required: if specifying the nictype directly

vlan VLAN ID to attach to (page 457)

Key: vlan
Type: integer
Managed: no

Configuration examples

Add a macvlan network device to an instance, connecting to a LXD managed network:

lxc network create <network_name> --type=macvlan parent=<existing_NIC>
lxc config device add <instance_name> <device_name> nic network=<network_name>

Add a macvlan network device to an instance, connecting to an existing network interface
with nictype:

lxc config device add <instance_name> <device_name> nic nictype=macvlan parent=
<existing_NIC>

SeeHowto create a network (page210) andConfigure devices (page87) formore information.

nictype: sriov

457 of 954

Note

You can select this NIC type through the nictype option or the network option (see SR-IOV
network (page 600) for information about the managed sriov network).

An sriovNIC passes a virtual function of an SR-IOV-enabled physical network device into the
instance.

An SR-IOV-enabled network device associates a set of virtual functions (VFs) with the single
physical function (PF) of the network device. PFs are standard PCIe functions. VFs, on the
other hand, are very lightweight PCIe functions that are optimized for data movement. They
come with a limited set of configuration capabilities to prevent changing properties of the
PF.

Given that VFs appear as regular PCIe devices to the system, they can be passed to instances
just like a regular physical device.

VF allocation
The sriov interface type expects to be passed the name of an SR-IOV enabled network
device on the system via the parent property. LXD then checks for any available VFs on
the system.

By default, LXD allocates the first free VF it finds. If it detects that either none are
enabled or all currently enabled VFs are in use, it bumps the number of supported VFs
to the maximum value and uses the first free VF. If all possible VFs are in use or the
kernel or card doesn’t support incrementing the number of VFs, LXD returns an error.

Note

If you need LXD to use a specific VF, use a physical NIC instead of a sriov NIC and
set its parent option to the VF name.

Device options

NIC devices of type sriov have the following device options: boot.priority Boot priority
for VMs (page 458)

Key: boot.priority
Type: integer
Managed: no

A higher value for this option means that the VM boots first.

hwaddrMAC address of the new interface (page 458)

Key: hwaddr
Type: string
Default: randomly assigned
Managed: no

458 of 954

maas.subnet.ipv4MAAS IPv4 subnet to register the instance in (page 458)

Key: maas.subnet.
ipv4

Type: string
Managed: yes

maas.subnet.ipv6MAAS IPv6 subnet to register the instance in (page 459)

Key: maas.subnet.
ipv6

Type: string
Managed: yes

mtuMTU of the new interface (page 459)

Key: mtu
Type: integer
Default: kernel assigned
Managed: yes

name Name of the interface inside the instance (page 459)

Key: name
Type: string
Default: kernel assigned
Managed: no

networkManaged network to link the device to (page 459)

Key: network
Type: string
Managed: no

You can specify this option instead of specifying the nictype directly.

parent Name of the host device (page 459)

Key: parent
Type: string
Managed: yes
Required: if specifying the nictype directly

security.mac_filtering Whether to prevent the instance from spoofing a MAC address
(page 459)

459 of 954

Key: security.
mac_filtering

Type: bool
Default: false
Managed: no

Set this option to true to prevent the instance from spoofing another instance’s MAC ad-
dress.

vlan VLAN ID to attach to (page 460)

Key: vlan
Type: integer
Managed: no

Configuration examples

Add a sriov network device to an instance, connecting to a LXD managed network:

lxc network create <network_name> --type=sriov parent=<sriov_enabled_NIC>
lxc config device add <instance_name> <device_name> nic network=<network_name>

Add a sriov network device to an instance, connecting to an existing SR-IOV-enabled inter-
face with nictype:

lxc config device add <instance_name> <device_name> nic nictype=sriov parent=
<sriov_enabled_NIC>

SeeHowto create a network (page210) andConfigure devices (page87) formore information.

nictype: physical

Note

• You can select this NIC type through the nictype option or the network option (see
Physical network (page 595) for information about themanaged physical network).

• You can have only one physical NIC for each parent device.

A physical NIC provides straight physical device pass-through from the host. The targeted
device will vanish from the host and appear in the instance (which means that you can have
only one physical NIC for each targeted device).

Device options

NICdevices of type physicalhave the following device options: boot.priorityBoot priority
for VMs (page 460)

460 of 954

Key: boot.priority
Type: integer
Managed: no

A higher value for this option means that the VM boots first.

gvrpWhether to use GARP VLAN Registration Protocol (page 461)

Key: gvrp
Type: bool
Default: false
Managed: no

This option specifies whether to register the VLAN using the GARP VLAN Registration Pro-
tocol.

hwaddrMAC address of the new interface (page 461)

Key: hwaddr
Type: string
Default: parent MAC address
Condition: container
Managed: no

maas.subnet.ipv4MAAS IPv4 subnet to register the instance in (page 461)

Key: maas.subnet.
ipv4

Type: string
Managed: no

maas.subnet.ipv6MAAS IPv6 subnet to register the instance in (page 461)

Key: maas.subnet.
ipv6

Type: string
Managed: no

mtuMTU of the new interface (page 461)

Key: mtu
Type: integer
Default: parent MTU
Condition: container
Managed: no

461 of 954

name Name of the interface inside the instance (page 461)

Key: name
Type: string
Default: kernel assigned
Managed: no

networkManaged network to link the device to (page 462)

Key: network
Type: string
Managed: no

You can specify this option instead of specifying the nictype directly.

parent Name of the host device (page 462)

Key: parent
Type: string
Managed: yes
Required: if specifying the nictype directly

vlan VLAN ID to attach to (page 462)

Key: vlan
Type: integer
Condition: container
Managed: no

Configuration examples

Add a physical network device to an instance, connecting to an existing physical network
interface with nictype:

lxc config device add <instance_name> <device_name> nic nictype=physical parent=
<physical_NIC>

Adding a physical network device to an instance using a managed network is not possible,
because the physicalmanagednetwork type is intended to be used onlywithOVNnetworks.

See Configure devices (page 87) for more information.

nictype: ovn

Note

You can select this NIC type only through the network option (seeOVNnetwork (page 587)
for information about the managed ovn network).

462 of 954

An ovn NIC uses an existing OVN network and creates a virtual device pair to connect the
instance to it.

SR-IOV hardware acceleration
To use acceleration=sriov, you must have a compatible SR-IOV physical NIC that sup-
ports the Ethernet switch device driver model (switchdev) in your LXD host. LXD as-
sumes that the physical NIC (PF) is configured in switchdevmode and connected to the
OVN integration OVS bridge, and that it has one or more virtual functions (VFs) active.

To achieve this, follow these basic prerequisite setup steps:

1. Set up PF and VF:

1. Activate some VFs on PF (called enp9s0f0np0 in the following example, with a
PCI address of 0000:09:00.0) and unbind them.

2. Enable switchdevmode and hw-tc-offload on the PF.

3. Rebind the VFs.

echo 4 > /sys/bus/pci/devices/0000:09:00.0/sriov_numvfs
for i in $(lspci -nnn | grep "Virtual Function" | cut -d' ' -f1); do echo
0000:$i > /sys/bus/pci/drivers/mlx5_core/unbind; done
devlink dev eswitch set pci/0000:09:00.0 mode switchdev
ethtool -K enp9s0f0np0 hw-tc-offload on
for i in $(lspci -nnn | grep "Virtual Function" | cut -d' ' -f1); do echo
0000:$i > /sys/bus/pci/drivers/mlx5_core/bind; done

2. Set upOVS by enabling hardware offload and adding the PF NIC to the integration
bridge (normally called br-int):

ovs-vsctl set open_vswitch . other_config:hw-offload=true
systemctl restart openvswitch-switch
ovs-vsctl add-port br-int enp9s0f0np0
ip link set enp9s0f0np0 up

VDPA hardware acceleration
To use acceleration=vdpa, you must have a compatible VDPA physical NIC. The setup
is the same as for SR-IOV hardware acceleration, except that you must also enable the
vhost_vdpamodule and check that you have some available VDPAmanagement devices
:

modprobe vhost_vdpa && vdpa mgmtdev show

Device options

NIC devices of type ovn have the following device options: acceleration Enable hardware
offloading (page 463)

Key: acceleration
Type: string
Default: none
Managed: no

463 of 954

Possible values are none, sriov, or vdpa. See SR-IOVhardware acceleration (page463) formore
information.

boot.priority Boot priority for VMs (page 464)

Key: boot.priority
Type: integer
Managed: no

A higher value for this option means that the VM boots first.

host_name Name of the interface inside the host (page 464)

Key: host_name
Type: string
Default: randomly assigned
Managed: no

hwaddrMAC address of the new interface (page 464)

Key: hwaddr
Type: string
Default: randomly assigned
Managed: no

ipv4.address IPv4 address to assign to the instance through DHCP (page 464)

Key: ipv4.
address

Type: string
Managed: no

ipv4.routes IPv4 static routes to route for the NIC (page 464)

Key: ipv4.routes
Type: string
Managed: no

Specify a comma-delimited list of IPv4 static routes to route for this NIC.

ipv4.routes.external IPv4 static routes to route to NIC (page 464)

Key: ipv4.routes.
external

Type: string
Managed: no

464 of 954

Specify a comma-delimited list of IPv4 static routes to route to the NIC and publish on the
uplink network.

ipv6.address IPv6 address to assign to the instance through DHCP (page 465)

Key: ipv6.
address

Type: string
Managed: no

ipv6.routes IPv6 static routes to route to the NIC (page 465)

Key: ipv6.routes
Type: string
Managed: no

Specify a comma-delimited list of IPv6 static routes to route to the NIC.

ipv6.routes.external IPv6 static routes to route to NIC (page 465)

Key: ipv6.routes.
external

Type: string
Managed: no

Specify a comma-delimited list of IPv6 static routes to route to the NIC and publish on the
uplink network.

name Name of the interface inside the instance (page 465)

Key: name
Type: string
Default: kernel assigned
Managed: no

nested Parent NIC name to nest this NIC under (page 465)

Key: nested
Type: string
Managed: no

See also vlan (page 466).

networkManaged network to link the device to (page 465)

Key: network
Type: string
Managed: yes
Required: yes

465 of 954

security.acls Network ACLs to apply (page 466)

Key: security.acls
Type: string
Managed: no

Specify a comma-separated list

security.acls.default.egress.action Default action to use for egress traffic (page 466)

Key: security.acls.default.egress.
action

Type: string
Default: reject
Managed: no

The specified action is used for all egress traffic that doesn’t match any ACL rule.

security.acls.default.egress.loggedWhether to log egress traffic that doesn’t match any
ACL rule (page 466)

Key: security.acls.default.egress.
logged

Type: bool
Default: false
Managed: no

security.acls.default.ingress.action Default action to use for ingress traffic (page 466)

Key: security.acls.default.ingress.
action

Type: string
Default: reject
Managed: no

The specified action is used for all ingress traffic that doesn’t match any ACL rule.

security.acls.default.ingress.logged Whether to log ingress traffic that doesn’t match
any ACL rule (page 466)

Key: security.acls.default.ingress.
logged

Type: bool
Default: false
Managed: no

vlan VLAN ID to use when nesting (page 466)

466 of 954

Key: vlan
Type: integer
Managed: no

See also nested (page 465).

Configuration examples

An ovn network device must be added using a managed network. To do so:

lxc network create <network_name> --type=ovn network=<parent_network>
lxc config device add <instance_name> <device_name> nic network=<network_name>

SeeHow to set up OVNwith LXD (page 266) for full instructions, andHow to create a network
(page 210) and Configure devices (page 87) for more information.

nictype: ipvlan

Note

• This NIC type is available only for containers, not for virtual machines.

• You can select this NIC type only through the nictype option.

• This NIC type does not support hotplugging.

An ipvlan NIC sets up a new network device based on an existing one, using the same MAC
address but a different IP.

If you are using an ipvlanNIC, communication between the LXD host and the instances is not
possible. Both the host and the instances can talk to the gateway, but they cannot commu-
nicate directly.

LXD currently supports IPVLAN in L2 and L3S mode. In this mode, the gateway is automat-
ically set by LXD, but the IP addresses must be manually specified using the ipv4.address
and/or ipv6.address options before the container is started.

DNS
The name servers must be configured inside the container, because they are not set
automatically. To do this, set the following sysctls:

• When using IPv4 addresses:

net.ipv4.conf.<parent>.forwarding=1

• When using IPv6 addresses:

net.ipv6.conf.<parent>.forwarding=1
net.ipv6.conf.<parent>.proxy_ndp=1

467 of 954

Device options

NIC devices of type ipvlan have the following device options: gvrp Whether to use GARP
VLAN Registration Protocol (page 468)

Key: gvrp
Type: bool
Default: false

This option specifies whether to register the VLAN using the GARP VLAN Registration Pro-
tocol.

hwaddrMAC address of the new interface (page 468)

Key: hwaddr
Type: string
Default: randomly assigned

ipv4.address IPv4 static addresses to add to the instance (page 468)

Key: ipv4.
address

Type: string

Specify a comma-delimited list of IPv4 static addresses to add to the instance. In l2 mode,
you can specify them as CIDR values or singular addresses using a subnet of /24.

ipv4.gateway IPv4 gateway (page 468)

Key: ipv4.gateway
Type: string
Default: auto (l3s), - (l2)

In l3smode, theoption specifieswhether to add an automatic default IPv4gateway. Possible
values are auto and none.

In l2mode, this option specifies the IPv4 address of the gateway.

ipv4.host_table Custom policy routing table ID to add IPv4 static routes to (page 468)

Key: ipv4.host_table
Type: integer

The custom policy routing table is in addition to the main routing table.

ipv6.address IPv6 static addresses to add to the instance (page 468)

468 of 954

Key: ipv6.
address

Type: string

Specify a comma-delimited list of IPv6 static addresses to add to the instance. In l2 mode,
you can specify them as CIDR values or singular addresses using a subnet of /64.

ipv6.gateway IPv6 gateway (page 469)

Key: ipv6.gateway
Type: string
Default: auto (l3s), - (l2)

In l3smode, theoption specifieswhether to add an automatic default IPv6gateway. Possible
values are auto and none.

In l2mode, this option specifies the IPv6 address of the gateway.

ipv6.host_table Custom policy routing table ID to add IPv6 static routes to (page 469)

Key: ipv6.host_table
Type: integer

The custom policy routing table is in addition to the main routing table.

mode IPVLAN mode (page 469)

Key: mode
Type: string
Default: l3s

Possible values are l2 and l3s.

mtu The MTU of the new interface (page 469)

Key: mtu
Type: integer
Default: parent MTU

name Name of the interface inside the instance (page 469)

Key: name
Type: string
Default: kernel assigned

parent Name of the host device (page 469)

469 of 954

Key: parent
Type: string
Required: yes

vlan VLAN ID to attach to (page 470)

Key: vlan
Type: integer

Configuration examples

Add an ipvlan network device to an instance, connecting to an existing network interface
with nictype:

lxc stop <instance_name>
lxc config device add <instance_name> <device_name> nic nictype=ipvlan parent=
<existing_NIC>

Adding an ipvlan network device to an instance using a managed network is not possible.

See Configure devices (page 87) for more information.

nictype: p2p

Note

You can select this NIC type only through the nictype option.

A p2p NIC creates a virtual device pair, putting one side in the instance and leaving the other
side on the host.

Device options

NIC devices of type p2p have the following device options: boot.priority Boot priority for
VMs (page 470)

Key: boot.priority
Type: integer

A higher value for this option means that the VM boots first.

host_name Name of the interface inside the host (page 470)

Key: host_name
Type: string
Default: randomly assigned

470 of 954

hwaddrMAC address of the new interface (page 470)

Key: hwaddr
Type: string
Default: randomly assigned

ipv4.routes IPv4 static routes for the NIC to add on the host (page 471)

Key: ipv4.routes
Type: string

Specify a comma-delimited list of IPv4 static routes for this NIC to add on the host.

ipv6.routes IPv6 static routes for the NIC to add on the host (page 471)

Key: ipv6.routes
Type: string

Specify a comma-delimited list of IPv6 static routes for this NIC to add on the host.

limits.egress I/O limit for outgoing traffic (page 471)

Key: limits.egress
Type: string

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network
limits (page 506)).

limits.ingress I/O limit for incoming traffic (page 471)

Key: limits.
ingress

Type: string

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network
limits (page 506)).

limits.max I/O limit for both incoming and outgoing traffic (page 471)

Key: limits.
max

Type: string

This option is the same as setting both limits.ingress (page 452) and limits.egress
(page 452).

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network
limits (page 506)).

471 of 954

limits.priority skb->priority value for outgoing traffic (page 471)

Key: limits.priority
Type: integer

The skb->priority value for outgoing traffic is used by the kernel queuing discipline (qdisc)
to prioritize network packets. Specify the value as a 32-bit unsigned integer.

The effect of this value depends on the particular qdisc implementation, for example,
SKBPRIO or QFQ. Consult the kernel qdisc documentation before setting this value.

mtuMTU of the new interface (page 472)

Key: mtu
Type: integer
Default: kernel assigned

name Name of the interface inside the instance (page 472)

Key: name
Type: string
Default: kernel assigned

queue.tx.length Transmit queue length for the NIC (page 472)

Key: queue.tx.
length

Type: integer

Configuration examples

Add a p2p network device to an instance using nictype:

lxc config device add <instance_name> <device_name> nic nictype=p2p

Adding a p2p network device to an instance using a managed network is not possible.

See Configure devices (page 87) for more information.

nictype: routed

Note

You can select this NIC type only through the nictype option.

A routedNIC creates a virtual device pair to connect the host to the instance and sets up static
routes and proxy ARP/NDP entries to allow the instance to join the network of a designated

472 of 954

parent interface. For containers it uses a virtual Ethernet device pair, and for VMs it uses a
TAP device.

This NIC type is similar in operation to ipvlan, in that it allows an instance to join an external
networkwithout needing to configure a bridge and shares the host’sMAC address. However,
it differs from ipvlan because it does not need IPVLAN support in the kernel, and the host
and the instance can communicate with each other.

This NIC type respects netfilter rules on the host and uses the host’s routing table to route
packets, which can be useful if the host is connected to multiple networks.

IP addresses, gateways and routes
You must manually specify the IP addresses (using ipv4.address and/or ipv6.address)
before the instance is started.

For containers, the NIC configures the following link-local gateway IPs on the host end
and sets them as the default gateways in the container’s NIC interface:

169.254.0.1
fe80::1

For VMs, the gatewaysmust be configuredmanually or via amechanism like cloud-init
(see the how to guide (page 123)).

Note

If your container image is configured to perform DHCP on the interface, it will likely
remove the automatically added configuration. In this case, you must configure the
IP addresses and gateways manually or via a mechanism like cloud-init.

The NIC type configures static routes on the host pointing to the instance’s veth inter-
face for all of the instance’s IPs.

Multiple IP addresses
Each NIC device can have multiple IP addresses added to it.

However, it might be preferable to use multiple routed NIC interfaces instead. In this
case, set the ipv4.gateway and ipv6.gateway values to none on any subsequent inter-
faces to avoid default gateway conflicts. Also consider specifying a different host-
side address for these subsequent interfaces using ipv4.host_address and/or ipv6.
host_address.

Parent interface
This NIC can operate with and without a parent network interface set.

With the parent network interface set, proxy ARP/NDP entries of the instance’s IPs are
added to the parent interface, which allows the instance to join the parent interface’s
network at layer 2.

To enable this, the following network configuration must be applied on the host via
sysctl:

• When using IPv4 addresses:

net.ipv4.conf.<parent>.forwarding=1

473 of 954

• When using IPv6 addresses:

net.ipv6.conf.all.forwarding=1
net.ipv6.conf.<parent>.forwarding=1
net.ipv6.conf.all.proxy_ndp=1
net.ipv6.conf.<parent>.proxy_ndp=1

Device options

NIC devices of type routed have the following device options: gvrp Whether to use GARP
VLAN Registration Protocol (page 474)

Key: gvrp
Type: bool
Default: false

This option specifies whether to register the VLAN using the GARP VLAN Registration Pro-
tocol.

host_name Name of the interface inside the host (page 474)

Key: host_name
Type: string
Default: randomly assigned

hwaddrMAC address of the new interface (page 474)

Key: hwaddr
Type: string
Default: randomly assigned

ipv4.address IPv4 static addresses to add to the instance (page 474)

Key: ipv4.
address

Type: string

Specify a comma-delimited list of IPv4 static addresses to add to the instance.

ipv4.gatewayWhether to add an automatic default IPv4 gateway (page 474)

Key: ipv4.
gateway

Type: string
Default: auto

Possible values are auto and none.

474 of 954

ipv4.host_address IPv4 address to add to the host-side veth interface (page 474)

Key: ipv4.host_address
Type: string
Default: 169.254.0.1

ipv4.host_table Custom policy routing table ID to add IPv4 static routes to (page 475)

Key: ipv4.host_table
Type: integer

The custom policy routing table is in addition to the main routing table.

ipv4.neighbor_probe Whether to probe the parent network for IPv4 address availability
(page 475)

Key: ipv4.neighbor_probe
Type: bool
Default: true

ipv4.routes IPv4 static routes for the NIC to add on the host (page 475)

Key: ipv4.routes
Type: string

Specify a comma-delimited list of IPv4 static routes for this NIC to add on the host (without
L2 ARP/NDP proxy).

ipv6.address IPv6 static addresses to add to the instance (page 475)

Key: ipv6.
address

Type: string

Specify a comma-delimited list of IPv6 static addresses to add to the instance.

ipv6.gatewayWhether to add an automatic default IPv6 gateway (page 475)

Key: ipv6.
gateway

Type: string
Default: auto

Possible values are auto and none.

ipv6.host_address IPv6 address to add to the host-side veth interface (page 475)

475 of 954

Key: ipv6.host_address
Type: string
Default: fe80::1

ipv6.host_table Custom policy routing table ID to add IPv6 static routes to (page 476)

Key: ipv6.host_table
Type: integer

The custom policy routing table is in addition to the main routing table.

ipv6.neighbor_probe Whether to probe the parent network for IPv6 address availability
(page 476)

Key: ipv6.neighbor_probe
Type: bool
Default: true

ipv6.routes IPv6 static routes for the NIC to add on the host (page 476)

Key: ipv6.routes
Type: string

Specify a comma-delimited list of IPv6 static routes for this NIC to add on the host (without
L2 ARP/NDP proxy).

limits.egress I/O limit for outgoing traffic (page 476)

Key: limits.egress
Type: string

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network
limits (page 506)).

limits.ingress I/O limit for incoming traffic (page 476)

Key: limits.
ingress

Type: string

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network
limits (page 506)).

limits.max I/O limit for both incoming and outgoing traffic (page 476)

476 of 954

Key: limits.
max

Type: string

This option is the same as setting both limits.ingress (page 452) and limits.egress
(page 452).

Specify the limit in bit/s. Various suffixes are supported (see Units for storage and network
limits (page 506)).

limits.priority skb->priority value for outgoing traffic (page 477)

Key: limits.priority
Type: integer

The skb->priority value for outgoing traffic is used by the kernel queuing discipline (qdisc)
to prioritize network packets. Specify the value as a 32-bit unsigned integer.

The effect of this value depends on the particular qdisc implementation, for example,
SKBPRIO or QFQ. Consult the kernel qdisc documentation before setting this value.

mtu The MTU of the new interface (page 477)

Key: mtu
Type: integer
Default: parent MTU

name Name of the interface inside the instance (page 477)

Key: name
Type: string
Default: kernel assigned

parent Name of the host device to join the instance to (page 477)

Key: parent
Type: string

queue.tx.length Transmit queue length for the NIC (page 477)

Key: queue.tx.
length

Type: integer

vlan VLAN ID to attach to (page 477)

477 of 954

Key: vlan
Type: integer

Configuration examples

Add a routed network device to an instance using nictype:

lxc config device add <instance_name> <device_name> nic nictype=routed ipv4.
address=192.0.2.2 ipv6.address=2001:db8::2

Adding a routed network device to an instance using a managed network is not possible.

See Configure devices (page 87) for more information.

bridged, macvlan or ipvlan for connection to physical network

The bridged, macvlan and ipvlan interface types canbeused to connect to anexistingphysical
network.

macvlan effectively lets you fork your physical NIC, getting a second interface that is then
used by the instance. This method saves you from creating a bridge device and virtual Ether-
net device pairs and usually offers better performance than a bridge.

The downside to this method is that macvlan devices, while able to communicate between
themselves and to the outside, cannot talk to their parent device. This means that you can’t
use macvlan if you ever need your instances to talk to the host itself.

In such case, a bridge device is preferable. A bridge also lets you use MAC filtering and I/O
limits, which cannot be applied to a macvlan device.

ipvlan is similar to macvlan, with the difference being that the forked device has IPs statically
assigned to it and inherits the parent’s MAC address on the network.

MAAS integration

If you’re usingMAAS tomanage thephysical network under your LXDhost andwant to attach
your instances directly to a MAAS-managed network, LXD can be configured to interact with
MAAS so that it can track your instances.

At the daemon level, you must configure maas.api.url (page 412) and maas.api.key
(page 412), and then set the NIC-specific maas.subnet.ipv4 and/or maas.subnet.ipv6 keys
on the instance or profile’s nic entry.

With this configuration, LXD registers all your instances with MAAS, giving them proper
DHCP leases and DNS records.

If you set the ipv4.address or ipv6.address keys on the NIC, those are registered as static
assignments in MAAS.

Type: disk

478 of 954

Note

The disk device type is supported for both containers and VMs. It supports hotplugging
for both containers and VMs.

Disk devices supply additional storage to instances.

For containers, they are essentially mount points inside the instance (either as a bind-mount
of an existing file or directory on the host, or, if the source is a block device, a regularmount).
Virtual machines share host-side mounts or directories through 9p or virtiofs (if available),
or as VirtIO disks for block-based disks.

Types of disk devices

You can create disk devices from different sources. The value that you specify for the source
option specifies the type of disk device that is added. See Configuration examples (page 485)
for more detailed information on how to add each type of disk device.

Storage volume
The most common type of disk device is a storage volume. Specify the storage vol-
ume name as the source (page 484) to add a storage volume as a disk device. `virtual-
machine’ storage volumes (and their snapshots) can also be attached as disk devices.

Path on the host
Youcan shareapathonyourhost (either afile systemorablockdevice) to your instance.
Specify the host path as the source to add it as a disk device.

Ceph RBD
LXD can use Ceph tomanage an internal file system for the instance, but if you have an
existing, externally managed Ceph RBD that you would like to use for an instance, you
can add it by specifying ceph:<pool_name>/<volume_name> as the source.

CephFS
LXD can use Ceph tomanage an internal file system for the instance, but if you have an
existing, externallymanagedCephfile system that youwould like touse for an instance,
you can add it by specifying cephfs:<fs_name>/<path> as the source.

ISO file
You can add an ISO file as a disk device for a virtual machine by specifying its file path
as the source. It is added as a ROM device inside the VM.

This source type is applicable only to VMs.

VM cloud-init
You can generate a cloud-init configuration ISO from the cloud-init.vendor-data
(page 420) and cloud-init.user-data (page 420) configuration keys and attach it to
a virtual machine by specifying cloud-init:config as the source. The cloud-init that
is running inside the VM then detects the drive on boot and applies the configuration.

This source type is applicable only to VMs.

Adding such a configuration diskmight be needed if the VM image that is used includes
cloud-init but not the lxd-agent. This is the case for official Ubuntu images prior to
20.04. On such images, the following steps enable the LXD agent and thus provide the
ability to use lxc exec to access the VM:

479 of 954

lxc init ubuntu-daily:18.04 --vm u1
lxc config device add u1 config disk source=cloud-init:config
lxc config set u1 cloud-init.user-data - << EOF
#cloud-config
#packages:
- linux-image-virtual-hwe-16.04 # 16.04 GA kernel as a problem with vsock
runcmd:
- mount -t 9p config /mnt
- cd /mnt
- ./install.sh
- cd /
- umount /mnt
- systemctl start lxd-agent # XXX: causes a reboot

EOF
lxc start --console u1

Note that for 16.04, the HWE kernel is required to work around a problem with vsock
(see the commented out section in the above cloud-config).

Initial volume configuration for instance root disk devices

Initial volume configuration allows setting specific configurations for the root disk devices
of new instances. These settings are prefixed with initial. and are only applied when the
instance is created. This method allows creating instances that have unique configurations,
independent of the default storage pool settings.

For example, you can add an initial volume configuration for zfs.block_mode (page 569) to
an existing profile, and this will then take effect for each new instance you create using this
profile:

lxc profile device set <profile_name> <device_name> initial.zfs.block_mode=true

You can also set an initial configuration directly when creating an instance. For example:

lxc init <image> <instance_name> --device <device_name>,initial.zfs.block_
mode=true

Note that you cannot use initial volume configurations with custom volume options or to set
the volume’s size (quota).

Device options

disk devices have the following device options: boot.priority Boot priority for VMs
(page 480)

Key: boot.priority
Type: integer
Condition: virtual machine
Required: no

A higher value indicates a higher boot precedence for the disk device. This is useful for pri-

480 of 954

oritizing boot sources like ISO-backed disks.

ceph.cluster_name Cluster name of the Ceph cluster (page 481)

Key: ceph.cluster_name
Type: string
Default: ceph
Required: for Ceph or CephFS sources

ceph.user_name User name of the Ceph cluster (page 481)

Key: ceph.user_name
Type: string
Default: admin
Required: for Ceph or CephFS sources

initial.* Initial volume configuration (page 481)

Key: initial.
*

Type: n/a
Required: no

Initial volume configuration allows setting unique configurations independent of the default
storagepool settings. See Initial volume configuration for instance root disk devices (page 480)
for more information.

io.bus Bus for the device (page 481)

Key: io.bus
Type: string
Default: virtio-scsi
Condition: virtual machine
Required: no

Possible values are virtio-scsi, virtio-blk or nvme.

io.cache Caching mode for the device (page 481)

Key: io.cache
Type: string
Default: none
Condition: virtual machine
Required: no

Possible values are none, writeback, or unsafe.

io.threads Thread pool for virtiofs file system shares (page 481)

481 of 954

Key: io.threads
Type: integer
Default: 0
Condition: virtual machine
Required: no

This option controls the virtiofsd thread pool size, which can help improve I/O performance.
Only applies to virtiofs file system shares. In restricted (page 514) projects, it can only be
used when restricted.virtual-machines.lowlevel (page 520) is set to allow.

limits.max I/O limit in byte/s or IOPS for both read and write (page 482)

Key: limits.
max

Type: string
Required: no

This option is the same as setting both limits.read (page 482) and limits.write (page 482).

You can specify a value inbyte/s (various suffixes supported, seeUnits for storageandnetwork
limits (page 506)) or in IOPS (must be suffixed with iops). See also Configure I/O options
(page 188).

limits.read Read I/O limit in byte/s or IOPS (page 482)

Key: limits.read
Type: string
Required: no

Youcan specify a value inbyte/s (various suffixes supported, seeUnits for storageandnetwork
limits (page 506)) or in IOPS (must be suffixed with iops). See also Configure I/O options
(page 188).

limits.writeWrite I/O limit in byte/s or IOPS (page 482)

Key: limits.
write

Type: string
Required: no

Youcan specify a value inbyte/s (various suffixes supported, seeUnits for storageandnetwork
limits (page 506)) or in IOPS (must be suffixed with iops). See also Configure I/O options
(page 188).

pathMount path (page 482)

482 of 954

Key: path
Type: string
Condition: container
Required: yes

This option specifies the path inside the container where the disk will be mounted.

pool Storage pool to which the disk device belongs (page 483)

Key: pool
Type: string
Condition: storage volumes managed by LXD
Required: no

propagation How a bind-mount is shared between the instance and the host (page 483)

Key: propagation
Type: string
Default: private
Required: no

Possible values are private (thedefault), shared, slave, unbindable, rshared, rslave, runbind-
able, rprivate. See the Linux Kernel shared subtree245 documentation for a full explanation.

raw.mount.options File system specific mount options (page 483)

Key: raw.mount.
options

Type: string
Required: no

readonlyWhether to make the mount read-only (page 483)

Key: readonly
Type: bool
Default: false
Required: no

recursiveWhether to recursively mount the source path (page 483)

Key: recursive
Type: bool
Default: false
Required: no

245 https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt

483 of 954

https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt

requiredWhether to fail if the source doesn’t exist (page 483)

Key: required
Type: bool
Default: true
Required: no

shiftWhether to set up a UID/GID shifting overlay (page 484)

Key: shift
Type: bool
Default: false
Condition: container
Required: no

If enabled, this option sets up a shifting overlay to translate the source UID/GID tomatch the
container instance.

size Disk size (page 484)

Key: size
Type: string
Required: no

This option is supported only for the rootfs (/).

Specify a value in bytes (various suffixes supported, see Units for storage and network limits
(page 506)).

size.state Size of the file-system volume used for saving runtime state (page 484)

Key: size.state
Type: string
Condition: virtual machine
Required: no

This option is similar to size (page 484), but applies to the file-system volume used for saving
the runtime state in VMs.

source Source of a file system or block device (page 484)

Key: source
Type: string
Required: yes

See Types of disk devices (page 479) for details.

source.snapshot source snapshot name (page 484)

484 of 954

Key: source.snapshot
Type: string
Required: no

Snapshot of the volume given by source.

source.type Type of the backing storage volume (page 485)

Key: source.type
Type: string
Default: custom
Required: no

Possible values are custom (thedefault) or virtual-machine. This key is only validwhen source
is the name of a storage volume.

Configuration examples

How to add a disk device depends on its type (page 479).

Storage volume
To add a storage volume, specify its name as the source of the device:

lxc config device add <instance_name> <device_name> disk pool=<pool_name>
source=<volume_name> [path=<path_in_instance>]

The path is required for file system volumes, but not for block volumes.

Alternatively, you can use the lxc storage volume attach (page 898) command to At-
tach the volume to an instance (page 186). Both commands use the samemechanism to
add a storage volume as a disk device.

Path on the host
To add a host device, specify the host path as the source:

lxc config device add <instance_name> <device_name> disk source=<path_on_
host> [path=<path_in_instance>]

The path is required for file systems, but not for block devices.

Ceph RBD
To add an existing Ceph RBD volume, specify its pool and volume name:

lxc config device add <instance_name> <device_name> disk source=ceph:<pool_
name>/<volume_name> ceph.user_name=<user_name> ceph.cluster_name=<cluster_
name> [path=<path_in_instance>]

The path is required for file systems, but not for block devices.

CephFS
To add an existing CephFS file system, specify its name and path:

485 of 954

lxc config device add <instance_name> <device_name> disk source=cephfs:<fs_
name>/<path> ceph.user_name=<user_name> ceph.cluster_name=<cluster_name>
path=<path_in_instance>

ISO file
To add an ISO file, specify its file path as the source:

lxc config device add <instance_name> <device_name> disk source=<file_path_
on_host>

VM cloud-init
To add cloud-init configuration, specify cloud-init:config as the source:

lxc config device add <instance_name> <device_name> disk source=cloud-
init:config

See Configure devices (page 87) for more information.

Type: unix-char

Note

The unix-char device type is supported for containers. It supports hotplugging.

Unix character devicesmake the specified characterdevice appear as adevice in the container
(under /dev). You can read from the device and write to it.

Device options

unix-char devices have the following device options: gid GID of the device owner in the
container (page 486)

Key: gid
Type: integer
Default: 0

major Device major number (page 486)

Key: major
Type: integer
Default: device on host

minor Device minor number (page 486)

Key: minor
Type: integer
Default: device on host

486 of 954

modeMode of the device in the container (page 486)

Key: mode
Type: integer
Default: 0660

path Path inside the container (page 487)

Key: path
Type: string
Required: either source or pathmust be set

requiredWhether this device is required to start the container (page 487)

Key: required
Type: bool
Default: true

See Hotplugging (page 488) for more information.

source Path on the host (page 487)

Key: source
Type: string
Required: either source or pathmust be set

uid UID of the device owner in the container (page 487)

Key: uid
Type: integer
Default: 0

Configuration examples

Add a unix-char device to a container by specifying its source and path:

lxc config device add <instance_name> <device_name> unix-char source=<path_on_
host> path=<path_on_instance>

If you want to use the same path on the container as on the host, you can omit the source
option:

lxc config device add <instance_name> <device_name> unix-char path=<path_to_the_
device>

See Configure devices (page 87) for more information.

487 of 954

Hotplugging

Hotplugging is enabled if you set required=false and specify the source option for the de-
vice.

In this case, the device is automatically passed into the containerwhen it appears on the host,
even after the container starts. If the device disappears from the host system, it is removed
from the container as well.

Type: unix-block

Note

The unix-block device type is supported for containers. It supports hotplugging.

Unix block devicesmake the specified block device appear as a device in the container (under
/dev). You can read from the device and write to it.

Device options

unix-block devices have the following device options: gid GID of the device owner in the
container (page 488)

Key: gid
Type: integer
Default: 0

major Device major number (page 488)

Key: major
Type: integer
Default: device on host

minor Device minor number (page 488)

Key: minor
Type: integer
Default: device on host

modeMode of the device in the container (page 488)

Key: mode
Type: integer
Default: 0660

path Path inside the container (page 488)

488 of 954

Key: path
Type: string
Required: either source or pathmust be set

requiredWhether this device is required to start the container (page 489)

Key: required
Type: bool
Default: true

See Hotplugging (page 489) for more information.

source Path on the host (page 489)

Key: source
Type: string
Required: either source or pathmust be set

uid UID of the device owner in the container (page 489)

Key: uid
Type: integer
Default: 0

Configuration examples

Add a unix-block device to a container by specifying its source and path:

lxc config device add <instance_name> <device_name> unix-block source=<path_on_
host> path=<path_on_instance>

If you want to use the same path on the container as on the host, you can omit the source
option:

lxc config device add <instance_name> <device_name> unix-block path=<path_to_the_
device>

See Configure devices (page 87) for more information.

Hotplugging

Hotplugging is enabled if you set required=false and specify the source option for the de-
vice.

In this case, the device is automatically passed into the containerwhen it appears on the host,
even after the container starts. If the device disappears from the host system, it is removed
from the container as well.

489 of 954

Type: usb

Note

The usb device type is supported for both containers and VMs. It supports hotplugging
for both containers and VMs.

USB devices make the specified USB device appear in the instance. For performance issues,
avoid using devices that require high throughput or low latency.

For containers, only libusbdevices (at /dev/bus/usb) are passed to the instance. Thismethod
works for devices that have user-space drivers. For devices that require dedicated kernel
drivers, use a unix-char device (page 486) or a unix-hotplug device (page 503) instead.

For virtualmachines, the entireUSBdevice is passed through, so anyUSBdevice is supported.
When a device is passed to the instance, it vanishes from the host.

Device options

usb devices have the following device options: busnum The bus number of which the USB
device is attached (page 490)

Key: busnum
Type: int

devnum The device number of the USB device (page 490)

Key: devnum
Type: int

gid GID of the device owner in the instance (page 490)

Key: gid
Type: integer
Default: 0
Condition: container

modeMode of the device in the instance (page 490)

Key: mode
Type: integer
Default: 0660
Condition: container

productid Product ID of the USB device (page 490)

Key: productid
Type: string

490 of 954

requiredWhether this device is required to start the instance (page 491)

Key: required
Type: bool
Default: false

The default is false, which means that all devices can be hotplugged.

serial The serial number of the USB device (page 491)

Key: serial
Type: string

uid UID of the device owner in the instance (page 491)

Key: uid
Type: integer
Default: 0
Condition: container

vendorid Vendor ID of the USB device (page 491)

Key: vendorid
Type: string

Configuration examples

Add a usb device to an instance by specifying its vendor ID and product ID:

lxc config device add <instance_name> <device_name> usb vendorid=<vendor_ID>
productid=<product_ID>

To determine the vendor ID and product ID, you can use lsusb, for example.

See Configure devices (page 87) for more information.

Type: gpu

GPU devices make the specified GPU device or devices appear in the instance.

Note

For containers, a gpu device may match multiple GPUs at once. For VMs, each device can
match only a single GPU.

The following types of GPUs can be added using the gputype device option:

• physical (page492) (container andVM): Passes anentireGPUthrough into the instance.
This value is the default if gputype is unspecified.

491 of 954

• mdev (page 494) (VM only): Creates and passes a virtual GPU (vGPU) through into the
instance.

• mig (page 495) (container only): Creates and passes aMIG (Multi-Instance GPU) through
into the instance.

• sriov (page 497) (VMonly): Passes a virtual function of an SR-IOV-enabledGPU into the
instance.

The available device options depend on the GPU type and are listed in the tables in the fol-
lowing sections.

gputype: physical

Note

The physicalGPU type is supported for both containers andVMs. It supports hotplugging
only for containers, not for VMs.

A physical GPU device passes an entire GPU through into the instance.

Device options

GPU devices of type physical have the following device options: gid GID of the device
owner in the container (page 492)

Key: gid
Type: integer
Default: 0
Condition: container

id ID of the GPU device (page 492)

Key: id
Type: string

The ID can either be the DRM card ID of the GPU device (container or VM) or a fully-qualified
Container Device Interface (CDI) name (container only). Here are some examples of fully-
qualified CDI names:

• nvidia.com/gpu=0: Instructs LXD to operate a discrete GPU (dGPU) pass-through of
brandNVIDIAwith the first discoveredGPUon your system. You can use the nvidia-smi
tool on your host to find out which identifier to use.

• nvidia.com/gpu=1833c8b5-9aa0-5382-b784-68b7e77eb185: Instructs LXD to operate a
discrete GPU (dGPU) pass-through of brand NVIDIA with a given GPU unique identifier.
This identifier should also appear with nvidia-smi -L.

• nvidia.com/igpu=all: Instructs LXD to pass all the host integrated GPUs (iGPU) of
brand NVIDIA. The concept of an index does not currently map to iGPUs. It is possible

492 of 954

to list them with the nvidia-smi -L command. A special nvgpumention should appear
in the generated list to indicate a device to be an iGPU.

• nvidia.com/gpu=all: Instructs LXD to pass all the host GPUs of brand NVIDIA through
to the container.

modeMode of the device in the container (page 493)

Key: mode
Type: integer
Default: 0660
Condition: container

pci PCI address of the GPU device (page 493)

Key: pci
Type: string

productid Product ID of the GPU device (page 493)

Key: productid
Type: string

uid UID of the device owner in the container (page 493)

Key: uid
Type: integer
Default: 0
Condition: container

vendorid Vendor ID of the GPU device (page 493)

Key: vendorid
Type: string

Configuration examples

Add all GPUs from the host system as a physical GPU device to an instance:

lxc config device add <instance_name> <device_name> gpu gputype=physical

Adda specificGPU fromthehost systemas a physicalGPUdevice to an instanceby specifying
its PCI address:

lxc config device add <instance_name> <device_name> gpu gputype=physical pci=<pci_
address>

See Configure devices (page 87) for more information.

493 of 954

CDI mode

Note

The CDI mode is currently not supported on armhf architectures.

Add a specific GPU from the host system as a physical GPU device to an instance using the
Container Device Interface246 (CDI) notation through a fully-qualified CDI name:

lxc config device add <instance_name> <device_name> gpu gputype=physical id=
<fully_qualified_CDI_name>

For example, add the first available NVIDIA discrete GPU on your system:

lxc config device add <instance_name> <device_name> gpu gputype=physical
id=nvidia.com/gpu=0

If your machine has an NVIDIA iGPU (integrated GPU) located at index 0, you can add it like
this:

lxc config device add <instance_name> <device_name> gpu gputype=physical
id=nvidia.com/igpu=0

For a complete example on how to use a GPU CDI pass-through, see How to pass an NVIDIA
GPU to a container (page 144).

gputype: mdev

Note

The mdev GPU type is supported only for VMs. It does not support hotplugging.

An mdev GPU device creates and passes a virtual GPU (vGPU) through into the instance. You
can check the list of available mdev profiles by running lxc info --resources (page 782).

Device options

GPU devices of type mdev have the following device options: id DRM card ID of the GPU
device (page 494)

Key: id
Type: string

mdev The mdev profile to use (page 494)

246 https://github.com/cncf-tags/container-device-interface

494 of 954

https://github.com/cncf-tags/container-device-interface

Key: mdev
Type: string
Default: 0
Required: yes

For example: i915-GVTg_V5_4

pci PCI address of the GPU device (page 495)

Key: pci
Type: string

productid Product ID of the GPU device (page 495)

Key: productid
Type: string

vendorid Vendor ID of the GPU device (page 495)

Key: vendorid
Type: string

Configuration examples

Add an mdev GPU device to an instance by specifying its mdev profile and the PCI address of
the GPU:

lxc config device add <instance_name> <device_name> gpu gputype=mdev mdev=<mdev_
profile> pci=<pci_address>

See Configure devices (page 87) for more information.

gputype: mig

Note

The mig GPU type is supported only for containers. It does not support hotplugging.

A mig GPU device creates and passes a MIG compute instance through into the instance. Cur-
rently, this requires NVIDIA MIG instances to be pre-created.

Device options

GPU devices of type mig have the following device options: id DRM card ID of the GPU
device (page 495)

495 of 954

Key: id
Type: string

mig.ci Existing MIG compute instance ID (page 496)

Key: mig.ci
Type: integer

mig.gi Existing MIG GPU instance ID (page 496)

Key: mig.gi
Type: integer

mig.uuid Existing MIG device UUID (page 496)

Key: mig.
uuid

Type: string

You can omit the MIG- prefix when specifying this option.

pci PCI address of the GPU device (page 496)

Key: pci
Type: string

productid Product ID of the GPU device (page 496)

Key: productid
Type: string

vendorid Vendor ID of the GPU device (page 496)

Key: vendorid
Type: string

Youmust set either mig.uuid (page 496) (NVIDIA drivers 470+) or both mig.ci (page 496) and
mig.gi (page 496) (old NVIDIA drivers).

Configuration examples

Add a mig GPU device to an instance by specifying its UUID and the PCI address of the GPU:

lxc config device add <instance_name> <device_name> gpu gputype=mig mig.uuid=<mig_
uuid> pci=<pci_address>

496 of 954

See Configure devices (page 87) for more information.

gputype: sriov

Note

The sriov GPU type is supported only for VMs. It does not support hotplugging.

An sriov GPU device passes a virtual function of an SR-IOV-enabled GPU into the instance.

Device options

GPU devices of type sriov have the following device options: id DRM card ID of the parent
GPU device (page 497)

Key: id
Type: string

pci PCI address of the parent GPU device (page 497)

Key: pci
Type: string

productid Product ID of the parent GPU device (page 497)

Key: productid
Type: string

vendorid Vendor ID of the parent GPU device (page 497)

Key: vendorid
Type: string

Configuration examples

Add a sriov GPU device to an instance by specifying the PCI address of the parent GPU:

lxc config device add <instance_name> <device_name> gpu gputype=sriov pci=<pci_
address>

See Configure devices (page 87) for more information.

497 of 954

Related topics

• How to pass an NVIDIA GPU to a container (page 144)

• Why does my VM stop responding when I try to pass through a GPU? (page 334)

Type: infiniband

Note

The infiniband device type is supported for both containers and VMs. It supports hot-
plugging only for containers, not for VMs.

LXD supports two different kinds of network types for InfiniBand devices:

• physical: Passes a physical device from the host through to the instance. The targeted
device will vanish from the host and appear in the instance.

• sriov: Passes a virtual function of an SR-IOV-enabled physical network device into the
instance.

Note

InfiniBand devices support SR-IOV, but in contrast to other SR-IOV-enabled devices,
InfiniBand does not support dynamic device creation in SR-IOV mode. Therefore,
you must pre-configure the number of virtual functions by configuring the corre-
sponding kernel module.

Device options

infiniband devices have the following device options: hwaddr MAC address of the new
interface (page 498)

Key: hwaddr
Type: string
Default: randomly assigned
Required: no

You can specify either the full 20-byte variant or the short 8-byte variant (which will modify
only the last 8 bytes of the parent device).

mtuMTU of the new interface (page 498)

Key: mtu
Type: integer
Default: parent MTU
Required: no

name Name of the interface inside the instance (page 498)

498 of 954

Key: name
Type: string
Default: kernel assigned
Required: no

nictype Device type (page 499)

Key: nictype
Type: string
Required: yes

Possible values are physical and sriov.

parent The name of the host device or bridge (page 499)

Key: parent
Type: string
Required: yes

Configuration examples

Add a physical infiniband device to an instance:

lxc config device add <instance_name> <device_name> infiniband nictype=physical
parent=<device>

Add an sriov infiniband device to an instance:

lxc config device add <instance_name> <device_name> infiniband nictype=sriov
parent=<sriov_enabled_device>

See Configure devices (page 87) for more information.

Type: proxy

Note

The proxy device type is supported for both containers (NAT and non-NAT modes) and
VMs (NAT mode only). It supports hotplugging for both containers and VMs.

Proxy devices allow you to forward network connections between a host and an instance
running on that host.

You can use them to:

• Forward traffic from an address on the host to an address inside the instance.

• Do the reverse, enabling an address inside the instance to connect through the host.

499 of 954

InNATmode (page 500), proxy devices support TCP and UDP proxying (traffic forwarding). In
non-NAT mode, proxy devices can also forward traffic between Unix sockets, which is useful
for tasks such as forwarding a GUI or audio traffic from a container to the host system. Ad-
ditionally, they can proxy traffic across different protocols—for example, forwarding traffic
from a TCP listener on the host to a Unix socket inside a container.

The supported connection types are:

• tcp <-> tcp

• udp <-> udp

• unix <-> unix

• tcp <-> unix

• unix <-> tcp

• tcp <-> udp

• unix <-> udp

To add a proxy device, use the following command:

lxc config device add <instance_name> <device_name> proxy listen=<type>:<addr>:
<port>[-<port>][,<port>] connect=<type>:<addr>:<port> bind=<host/instance_name>

Tip

Using a proxy device in NAT mode is very similar to adding a network forward (page 235).

The difference is that network forwards are applied on a network level, while a proxy
device is added for an instance. In addition, network forwards cannot be used to proxy
traffic between different connection types.

NAT mode

The proxy device supports a NATmode (nat=true), which forwards packets usingNAT instead
of creating a separate proxy connection.

This mode has the benefit that the client address is maintained without requiring the tar-
get destination to support the HAProxy PROXY protocol. This is necessary for passing client
addresses in non-NAT mode.

However, NAT mode is only available when the host running the instance also acts as the
gateway. This is the typical case when using lxdbr0, for example.

In NAT mode, the supported connection types are:

• tcp <-> tcp

• udp <-> udp

When configuring a proxy devicewith nat=true, youmust ensure that the target instance has
a static IP configured on its NIC device.

500 of 954

Specifying IP addresses

Use the following command to configure a static IP for an instance NIC:

lxc config device set <instance_name> <nic_name> ipv4.address=<ipv4_address> ipv6.
address=<ipv6_address>

To define a static IPv6 address, the parent managed network must have ipv6.dhcp.stateful
enabled.

When defining IPv6 addresses, use square bracket notation. Example:

connect=tcp:[2001:db8::1]:80

You can specify that the connect address should be the IP of the instance by setting the con-
nect IP to the wildcard address, which is 0.0.0.0 for IPv4 and [::] for IPv6.

Note

The listenaddress canalsousewildcardaddresses innon-NATmode. However,whenusing
NAT mode, you must specify an IP address on the LXD host.

Device options

proxy devices have the following device options: bindWhich side to bind on (page 501)

Key: bind
Type: string
Default: host
Required: no

Possible values are host and instance.

connect Address and port to connect to (page 501)

Key: connect
Type: string
Required: yes

Use the following format to specify the address and port: <type>:<addr>:<port>[-<port>][,
<port>]

gid GID of the owner of the listening Unix socket (page 501)

Key: gid
Type: integer
Default: 0
Required: no

listen Address and port to bind and listen (page 501)

501 of 954

Key: listen
Type: string
Required: yes

Use the following format to specify the address and port: <type>:<addr>:<port>[-<port>][,
<port>]

modeMode for the listening Unix socket (page 502)

Key: mode
Type: integer
Default: 0644
Required: no

natWhether to optimize proxying via NAT (page 502)

Key: nat
Type: bool
Default: false
Required: no

This option requires that the instance NIC has a static IP address.

proxy_protocolWhether to use the HAProxy PROXY protocol (page 502)

Key: proxy_protocol
Type: bool
Default: false
Required: no

This option specifies whether to use the HAProxy PROXY protocol to transmit sender infor-
mation.

security.gidWhat GID to drop privilege to (page 502)

Key: security.
gid

Type: integer
Default: 0
Required: no

security.uidWhat UID to drop privilege to (page 502)

Key: security.
uid

Type: integer
Default: 0
Required: no

502 of 954

uid UID of the owner of the listening Unix socket (page 503)

Key: uid
Type: integer
Default: 0
Required: no

Configuration examples

Add a proxy device that forwards traffic from one address (the listen address) to another
address (the connect address) using NAT mode:

lxc config device add <instance_name> <device_name> proxy nat=true listen=tcp:<ip_
address>:<port> connect=tcp:<ip_address>:<port>

Add a proxy device that forwards traffic going to a specific IP to a Unix socket on an instance
that might not have a network connection:

lxc config device add <instance_name> <device_name> proxy listen=tcp:<ip_address>:
<port> connect=unix:/<socket_path_on_instance>

Add a proxy device that forwards traffic going to a Unix socket on an instance that might not
have a network connection to a specific IP address:

lxc config device add <instance_name> <device_name> proxy bind=instance
listen=unix:/<socket_path_on_instance> connect=tcp:<ip_address>:<port>

See Configure devices (page 87) for more information.

Type: unix-hotplug

Note

The unix-hotplug device type is supported for containers. It supports hotplugging.

Unix hotplug devices make the requested Unix device appear as a device in the container
(under /dev). If the device exists on the host system, you can read from it and write to it.

The implementation depends on systemd-udev to be run on the host.

Device options

unix-hotplug devices have the following device options: gid GID of the device owner in the
container (page 503)

Key: gid
Type: integer
Default: 0

modeMode of the device in the container (page 503)

503 of 954

Key: mode
Type: integer
Default: 0660

ownership.inherit Whether this device inherits ownership (GID and/or UID) from the host
(page 504)

Key: ownership.
inherit

Type: bool
Default: false

productid Product ID of the Unix device (page 504)

Key: productid
Type: string

requiredWhether this device is required to start the container (page 504)

Key: required
Type: bool
Default: false

The default is false, which means that all devices can be hotplugged.

subsystem Subsystem of the Unix device (page 504)

Key: subsystem
Type: string

uid UID of the device owner in the container (page 504)

Key: uid
Type: integer
Default: 0

vendorid Vendor ID of the Unix device (page 504)

Key: vendorid
Type: string

504 of 954

Configuration examples

Add a unix-hotplug device to an instance by specifying its vendor ID, product ID, and/or sub-
system:

lxc config device add <instance_name> <device_name> unix-hotplug vendorid=<vendor_
ID> productid=<product_ID> subsystem=<subsystem>

See Configure devices (page 87) for more information.

Type: tpm

Note

The tpm device type is supported for both containers and VMs. It supports hotplugging
only for containers, not for VMs.

TPM devices enable access to a TPM (Trusted Platform Module) emulator.

TPM devices can be used to validate the boot process and ensure that no steps in the boot
chain have been tampered with, and they can securely generate and store encryption keys.

LXD uses a software TPM that supports TPM 2.0. For containers, the main use case is seal-
ing certificates, which means that the keys are stored outside of the container, making it
virtually impossible for attackers to retrieve them. For virtual machines, TPM can be used
both for sealing certificates and for validating the boot process, which allows using full disk
encryption compatible with, for example, Windows BitLocker.

Device options

tpm devices have the following device options: path Path inside the container (page 505)

Key: path
Type: string
Required: for containers

For example: /dev/tpm0

pathrm Resource manager path inside the container (page 505)

Key: pathrm
Type: string
Required: for containers

For example: /dev/tpmrm0

505 of 954

Configuration examples

Add a tpm device to a container by specifying its path and the resource manager path:

lxc config device add <instance_name> <device_name> tpm path=<path_on_instance>
pathrm=<resource_manager_path>

Add a tpm device to a virtual machine:

lxc config device add <instance_name> <device_name> tpm

See Configure devices (page 87) for more information.

Type: pci

Note

The pci device type is supported for VMs. It does not support hotplugging.

PCI devices are used to pass raw PCI devices from the host into a virtual machine.

They aremainly intended to be used for specialized single-function PCI cards like sound cards
or video capture cards. In theory, you can also use them for more advanced PCI devices like
GPUs or network cards, but it’s usually more convenient to use the specific device types that
LXD provides for these devices (gpu device (page 491) or nic device (page 449)).

Device options

pcidevices have the followingdeviceoptions: addressPCI address of thedevice (page506)

Key: address
Type: string
Required: yes

Configuration examples

Add a pci device to a virtual machine by specifying its PCI address:

lxc config device add <instance_name> <device_name> pci address=<pci_address>

To determine the PCI address, you can use lspci, for example.

See Configure devices (page 87) for more information.

Units for storage and network limits

Any value that represents bytes or bits canmake use of a number of suffixes tomake it easier
to understand what a particular limit is.

Both decimal and binary (kibi) units are supported, with the latter mostly making sense for
storage limits.

The full list of bit suffixes currently supported is:

506 of 954

• bit (1)

• kbit (1000)

• Mbit (1000^2)

• Gbit (1000^3)

• Tbit (1000^4)

• Pbit (1000^5)

• Ebit (1000^6)

• Kibit (1024)

• Mibit (1024^2)

• Gibit (1024^3)

• Tibit (1024^4)

• Pibit (1024^5)

• Eibit (1024^6)

The full list of byte suffixes currently supported is:

• B or bytes (1)

• kB (1000)

• MB (1000^2)

• GB (1000^3)

• TB (1000^4)

• PB (1000^5)

• EB (1000^6)

• KiB (1024)

• MiB (1024^2)

• GiB (1024^3)

• TiB (1024^4)

• PiB (1024^5)

• EiB (1024^6)

Related topics

How-to guides:

• Instances (page 73)

Explanation:

• Instance types in LXD (page 347)

507 of 954

4.2.4. Preseed YAML file fields
You can configure a new LXD installation and reconfigure an existing installation with a pre-
seed YAML file.

The preseed YAML file fields are as follows:

config:
core.https_address: ""
images.auto_update_interval: 6

networks:
- config:

ipv4.address: auto
ipv4.nat: "true"
ipv6.address: auto
ipv6.nat: "true"

description: ""
name: lxdbr0
type: bridge
project: default

storage_pools:
- config: {}

description: ""
name: default
driver: zfs

storage_volumes:
- name: my-vol
pool: data

profiles:
- config:

limits.memory: 2GiB
description: Default LXD profile
devices:

eth0:
name: eth0
network: lxdbr0
type: nic

root:
path: /
pool: default
type: disk

name: default

projects:
- config:

features.images: "true"
features.networks: "true"
features.networks.zones: "true"

(continues on next page)

508 of 954

(continued from previous page)

features.profiles: "true"
features.storage.buckets: "true"
features.storage.volumes: "true"

description: Default LXD project
name: default

cluster:
enabled: true
server_address: ""
cluster_token: ""
member_config:
- entity: storage-pool

name: default
key: source
value: ""

- entity: storage-pool
name: my-pool
key: source
value: ""

- entity: storage-pool
name: my-pool
key: driver
value: "zfs"

Related topics

How-to guides:

• How to initialize LXD (page 35)

4.2.5. Project configuration
Projects can be configured through a set of key/value configuration options. See Configure
a project (page 164) for instructions on how to set these options.

The key/value configuration is namespaced. The following options are available:

• Project features (page 509)

• Project limits (page 511)

• Project restrictions (page 513)

• Project-specific configuration (page 520)

Project features

The project features define which entities are isolated in the project and which are inherited
from the default project.

If a feature.* option is set to true, the corresponding entity is isolated in the project.

Note

509 of 954

When you create a project without explicitly configuring a specific option, this option is
set to the initial value given in the following table.

However, if you unset one of the feature.* options, it does not go back to the initial value,
but to the default value. The default value for all feature.* options is false.

features.imagesWhether to use a separate set of images for the project (page 510)

Key: features.images
Type: bool
Default: false
Initial value: true

This setting applies to both images and image aliases.

features.networksWhether to use a separate set of networks for the project (page 510)

Key: features.networks
Type: bool
Default: false
Initial value: false

features.networks.zones Whether to use a separate set of network zones for the project
(page 510)

Key: features.networks.
zones

Type: bool
Default: false
Initial value: false

features.profilesWhether to use a separate set of profiles for the project (page 510)

Key: features.profiles
Type: bool
Default: false
Initial value: true

features.storage.bucketsWhether to use a separate set of storage buckets for the project
(page 510)

Key: features.storage.
buckets

Type: bool
Default: false
Initial value: true

510 of 954

features.storage.volumesWhether to use a separate set of storage volumes for the project
(page 510)

Key: features.storage.
volumes

Type: bool
Default: false
Initial value: true

Project limits

Project limits define a hard upper bound for the resources that can be used by the containers
and VMs that belong to a project.

Depending on the limits.* option, the limit applies to the number of entities that are
allowed in the project (for example, limits.containers (page 511) or limits.networks
(page 512)) or to the aggregate value of resource usage for all instances in the project (for
example, limits.cpu (page 511) or limits.processes (page 513)). In the latter case, the limit
usually applies to the Resource limits (page 421) that are configured for each instance (either
directly or via a profile), and not to the resources that are actually in use.

For example, if you set the project’s limits.memory (page 512) configuration to 50GiB, the
sum of the individual values of all limits.memory (page 423) configuration keys defined on
the project’s instances will be kept under 50 GiB.

Similarly, setting the project’s limits.cpu (page 511) configuration key to 100means that the
sum of individual limits.cpu (page 421) values will be kept below 100.

When using project limits, the following conditions must be fulfilled:

• When you set one of the limits.* configurations and there is a corresponding configu-
ration for the instance, all instances in the project must have the corresponding config-
uration defined (either directly or via a profile). See Resource limits (page 421) for the
instance configuration options.

• The limits.cpu (page 511) configuration cannot be used if CPU pinning (page 426) is
enabled. This means that to use limits.cpu (page 511) on a project, the limits.cpu
(page 421) configuration of each instance in the project must be set to a number of
CPUs, not a set or a range of CPUs.

• The limits.memory (page 512) configuration must be set to an absolute value, not a
percentage.

limits.containers Maximum number of containers that can be created in the project
(page 511)

Key: limits.containers
Type: integer

limits.cpuMaximum number of CPUs to use in the project (page 511)

511 of 954

Key: limits.
cpu

Type: integer

This value is the maximum value for the sum of the individual limits.cpu (page 421) config-
urations set on the instances of the project.

limits.diskMaximum disk space used by the project (page 512)

Key: limits.disk
Type: string

This value is the maximum value of the aggregate disk space used by all instance volumes,
custom volumes, and images of the project.

limits.disk.pool.POOL_NAME Maximum disk space used by the project on this pool
(page 512)

Key: limits.disk.pool.
POOL_NAME

Type: string

This value is the maximum value of the aggregate disk space used by all instance volumes,
custom volumes, and images of the project on this specific storage pool.

When set to 0, the pool is excluded from storage pool list for the project.

limits.instances Maximum number of instances that can be created in the project
(page 512)

Key: limits.
instances

Type: integer

limits.memory Usage limit for the host’s memory for the project (page 512)

Key: limits.memory
Type: string

The value is the maximum value for the sum of the individual limits.memory (page 423) con-
figurations set on the instances of the project.

limits.networksMaximum number of networks that the project can have (page 512)

Key: limits.networks
Type: integer

512 of 954

limits.networks.uplink_ips.ipv4.NETWORK_NAME Quota of IPv4 addresses from a specified
uplink network that can be used by entities in this project (page 512)

Key: limits.networks.uplink_ips.ipv4.
NETWORK_NAME

Type: string

Maximum number of IPv4 addresses that this project can consume from the specified uplink
network. This number of IPs can be consumed by networks, forwards and load balancers in
this project.

limits.networks.uplink_ips.ipv6.NETWORK_NAME Quota of IPv6 addresses from a specified
uplink network that can be used by entities in this project (page 513)

Key: limits.networks.uplink_ips.ipv6.
NETWORK_NAME

Type: string

Maximum number of IPv6 addresses that this project can consume from the specified uplink
network. This number of IPs can be consumed by networks, forwards and load balancers in
this project.

limits.processesMaximum number of processes within the project (page 513)

Key: limits.
processes

Type: integer

This value is the maximum value for the sum of the individual limits.processes (page 425)
configurations set on the instances of the project.

limits.virtual-machines Maximum number of VMs that can be created in the project
(page 513)

Key: limits.
virtual-machines

Type: integer

Project restrictions

To prevent the instances of a project from accessing security-sensitive features (such as con-
tainer nesting or raw LXC configuration), set the restricted (page 514) configuration option
to true. You can then use the various restricted.* options to pick individual features that
would normally be blocked by restricted (page 514) and allow them, so they can be used by
the instances of the project.

For example, to restrict a project and block all security-sensitive features, but allow container
nesting, enter the following commands:

513 of 954

lxc project set <project_name> restricted=true
lxc project set <project_name> restricted.containers.nesting=allow

Each security-sensitive feature has an associated restricted.* project configuration option.
If youwant to allow the usage of a feature, change the value of its restricted.* option. Most
restricted.* configurations are binary switches that can be set to either block (the default)
or allow. However, some options support other values for more fine-grained control.

Note

You must set the restricted configuration to true for any of the restricted.* options to
be effective. If restricted is set to false, changing a restricted.* option has no effect.

Setting all restricted.* keys to allow is equivalent to setting restricted itself to false.

restrictedWhether to block access to security-sensitive features (page 514)

Key: restricted
Type: bool
Default: false

This option must be enabled to allow the restricted.* keys to take effect. To temporarily
remove the restrictions, you can disable this option instead of clearing the related keys.

restricted.backupsWhether to prevent creating instance or volume backups (page 514)

Key: restricted.
backups

Type: string
Default: block

Possible values are allow or block.

restricted.cluster.groups Cluster groups that can be targeted (page 514)

Key: restricted.cluster.
groups

Type: string

If specified, this option prevents targeting cluster groups other than the provided ones.

restricted.cluster.targetWhether to prevent targeting of cluster members (page 514)

Key: restricted.cluster.
target

Type: string
Default: block

514 of 954

Possible values are allow or block. When set to allow, this option allows targeting of cluster
members (either directly or via a group) when creating or moving instances.

restricted.containers.interceptionWhether to prevent using system call interception op-
tions (page 515)

Key: restricted.containers.
interception

Type: string
Default: block

Possible values are allow, block, or full. When set to allow, interception options that are
usually safe are allowed. File systemmounting remains blocked.

restricted.containers.lowlevel Whether to prevent using low-level container options
(page 515)

Key: restricted.containers.
lowlevel

Type: string
Default: block

Possible values are allow or block. When set to allow, low-level container options like raw.
lxc (page 431), raw.idmap (page 431), volatile.*, etc. can be used.

restricted.containers.nestingWhether to prevent running nested LXD (page 515)

Key: restricted.containers.
nesting

Type: string
Default: block

Possible values are allow or block. When set to allow, security.nesting (page 436) can be
set to true for an instance.

restricted.containers.privilege Which settings for privileged containers to prevent
(page 515)

Key: restricted.containers.
privilege

Type: string
Default: unprivileged

Possible values are unprivileged, isolated, and allow.

• When set to unpriviliged, this option prevents setting security.privileged
(page 436) to true.

• When set to isolated, this option prevents setting security.privileged (page 436)
to true and forces using a unique idmap per container using security.idmap.isolated
(page 436) set to true.

515 of 954

• When set to allow, there is no restriction.

restricted.devices.diskWhich disk devices can be used (page 516)

Key: restricted.devices.
disk

Type: string
Default: managed

Possible values are allow, block, or managed.

• When set to block, this option prevents using all disk devices except the root one.

• When set to managed, this option allows using disk devices only if pool= is set.

• When set to allow, there is no restriction on which disk devices can be used.

Important

When allowing all disk devices, make sure to set restricted.devices.disk.paths
(page 516) to a list of path prefixes that you want to allow. If you do not restrict
the allowed paths, users can attach any disk device, including shifted devices (disk
devices with shift (page 480) set to true), which can be used to gain root access to
the system.

restricted.devices.disk.pathsWhich source can be used for disk devices (page 516)

Key: restricted.devices.disk.
paths

Type: string

If restricted.devices.disk (page 516) is set to allow, this option controls which source can
be used for disk devices. Specify a comma-separated list of path prefixes that restrict the
source setting. If this option is left empty, all paths are allowed.

restricted.devices.gpuWhether to prevent using devices of type gpu (page 516)

Key: restricted.devices.
gpu

Type: string
Default: block

Possible values are allow or block.

restricted.devices.infiniband Whether to prevent using devices of type infiniband
(page 516)

516 of 954

Key: restricted.devices.
infiniband

Type: string
Default: block

Possible values are allow or block.

restricted.devices.nicWhich network devices can be used (page 517)

Key: restricted.devices.
nic

Type: string
Default: managed

Possible values are allow, block, or managed.

• When set to block, this option prevents using all network devices.

• When set to managed, this option allows using network devices only if network= is set.

• When set to allow, there is no restriction on which network devices can be used.

restricted.devices.pciWhether to prevent using devices of type pci (page 517)

Key: restricted.devices.
pci

Type: string
Default: block

Possible values are allow or block.

restricted.devices.proxyWhether to prevent using devices of type proxy (page 517)

Key: restricted.devices.
proxy

Type: string
Default: block

Possible values are allow or block.

restricted.devices.unix-block Whether to prevent using devices of type unix-block
(page 517)

Key: restricted.devices.
unix-block

Type: string
Default: block

Possible values are allow or block.

517 of 954

restricted.devices.unix-char Whether to prevent using devices of type unix-char
(page 517)

Key: restricted.devices.
unix-char

Type: string
Default: block

Possible values are allow or block.

restricted.devices.unix-hotplug Whether to prevent using devices of type unix-hotplug
(page 518)

Key: restricted.devices.
unix-hotplug

Type: string
Default: block

Possible values are allow or block.

restricted.devices.usbWhether to prevent using devices of type usb (page 518)

Key: restricted.devices.
usb

Type: string
Default: block

Possible values are allow or block.

restricted.idmap.gidWhich host GID ranges are allowed in raw.idmap (page 518)

Key: restricted.idmap.
gid

Type: string

This option specifies the host GID ranges that are allowed in the instance’s raw.idmap
(page 431) setting.

restricted.idmap.uidWhich host UID ranges are allowed in raw.idmap (page 518)

Key: restricted.idmap.
uid

Type: string

This option specifies the host UID ranges that are allowed in the instance’s raw.idmap
(page 431) setting.

restricted.networks.access Which network names are allowed for use in this project
(page 518)

518 of 954

Key: restricted.networks.
access

Type: string

Specify a comma-delimited list of network names that are allowed for use in this project. If
this option is not set, all networks are accessible.

Note that this setting depends on the restricted.devices.nic (page 517) setting.

restricted.networks.subnets Which network subnets are allocated for use in this project
(page 519)

Key: restricted.networks.
subnets

Type: string
Default: block

Specify a comma-delimited list of CIDR network routes from the uplink network’s ipv4.
routes (page 597) ipv6.routes (page 598) that are allowed for use in this project. Use the
form <uplink>:<subnet>.

Example value: lxdbr0:192.0.168.0/24,lxdbr0:10.1.19.5/32

restricted.networks.uplinks Which network names can be used as uplink in this project
(page 519)

Key: restricted.networks.
uplinks

Type: string
Default: block

Specify a comma-delimited list of network names that can be used as uplink for networks in
this project.

restricted.networks.zonesWhich network zones can be used in this project (page 519)

Key: restricted.networks.
zones

Type: string
Default: block

Specify a comma-delimited list of network zones that can be used (or something under them)
in this project.

restricted.snapshots Whether to prevent creating instance or volume snapshots
(page 519)

519 of 954

Key: restricted.
snapshots

Type: string
Default: block

restricted.virtual-machines.lowlevel Whether to prevent using low-level VM options
(page 520)

Key: restricted.virtual-machines.
lowlevel

Type: string
Default: block

Possible values are allow or block. When set to allow, low-level VM options like raw.qemu
(page 431), volatile.*, etc. can be used.

Project-specific configuration

There are some Server configuration (page 401) options that you can override for a project.
In addition, you can add user metadata for a project. backups.compression_algorithm Com-
pression algorithm to use for backups (page 520)

Key: backups.
compression_algorithm

Type: string

Specify which compression algorithm to use for backups in this project. Possible values are
bzip2, gzip, lzma, xz, or none.

images.auto_update_cachedWhether to automatically update cached images in the project
(page 520)

Key: images.auto_update_cached
Type: bool

images.auto_update_interval Interval at which to look for updates to cached images
(page 520)

Key: images.
auto_update_interval

Type: integer

Specify the interval in hours. To disable looking for updates to cached images, set this option
to 0.

images.compression_algorithm Compression algorithm to use for new images in the project
(page 520)

520 of 954

Key: images.
compression_algorithm

Type: string

Possible values are bzip2, gzip, lzma, xz, or none.

images.default_architecture Default architecture to use in a mixed-architecture cluster
(page 521)

Key: images.
default_architecture

Type: string

images.remote_cache_expiryWhen an unused cached remote image is flushed in the project
(page 521)

Key: images.
remote_cache_expiry

Type: integer

Specify the number of days after which the unused cached image expires.

user.* User-provided free-form key/value pairs (page 521)

Key: user.
*

Type: string

Related topics

How-to guides:

• Projects (page 161)

Explanation:

• Instances grouping with projects (page 368)

4.2.6. Storage drivers
LXD supports the following storage drivers for storing images, instances and custom vol-
umes:

Btrfs - btrfs

Btrfs (B-tree file system) is a local file system based on the COW (copy-on-write) principle.
COW means that data is stored to a different block after it has been modified instead of
overwriting the existing data, reducing the risk of data corruption. Unlike other file systems,
Btrfs is extent-based, which means that it stores data in contiguous areas of memory.

In addition to basic file system features, Btrfs offers RAID and volumemanagement, pooling,
snapshots, checksums, compression and other features.

521 of 954

To use Btrfs, make sure you have btrfs-progs installed on your machine.

Terminology

ABtrfs file system can have subvolumes, which are named binary subtrees of themain tree of
the file system with their own independent file and directory hierarchy. A Btrfs snapshot is
a special type of subvolume that captures a specific state of another subvolume. Snapshots
can be read-write or read-only.

btrfs driver in LXD

The btrfs driver in LXD uses a subvolume per instance, image and snapshot. When creating
a new entity (for example, launching a new instance), it creates a Btrfs snapshot.

Btrfs doesn’t natively support storing block devices. Therefore, when using Btrfs for VMs,
LXD creates a big file on disk to store the VM. This approach is not very efficient and might
cause issues when creating snapshots.

Btrfs can be used as a storagebackend inside a container in a nested LXDenvironment. In this
case, the parent container itself must use Btrfs. Note, however, that the nested LXD setup
does not inherit the Btrfs quotas from the parent (see Quotas (page 522) below).

Quotas

Btrfs supports storage quotas via qgroups. Btrfs qgroups are hierarchical, but new subvol-
umeswill not automatically be added to the qgroups of their parent subvolumes. Thismeans
that users can trivially escape any quotas that are set. Therefore, if strict quotas are needed,
you should consider using a different storage driver (for example, ZFS with refquota or LVM
with Btrfs on top).

When using quotas, you must take into account that Btrfs extents are immutable. When
blocks are written, they end up in new extents. The old extents remain until all their data is
dereferenced or rewritten. This means that a quota can be reached even if the total amount
of space used by the current files in the subvolume is smaller than the quota.

Note

This issue is seen most often when using VMs on Btrfs, due to the random I/O nature of
using raw disk image files on top of a Btrfs subvolume.

Therefore, you should never use VMs with Btrfs storage pools.

If you really need to use VMs with Btrfs storage pools, set the instance root disk’s size.
state (page484) property to twice the sizeof the rootdisk’s size. This configurationallows
all blocks in the disk imagefile to be rewrittenwithout reaching the qgroupquota. Setting
the btrfs.mount_options (page 523) storage pool option to compress-force can also avoid
this scenario, because a side effect of enabling compression is to reduce the maximum
extent size such that block rewrites don’t cause as much storage to be double-tracked.
However, this is a storage pool option, and it therefore affects all volumes on the pool.

522 of 954

Configuration options

The following configuration options are available for storage pools that use the btrfs driver
and for storage volumes in these pools.

Storage pool configuration

btrfs.mount_optionsMount options for block devices (page 523)

Key: btrfs.mount_options
Type: string
Default: user_subvol_rm_allowed
Scope: global

size Size of the storage pool (for loop-based pools) (page 523)

Key: size
Type: string
Default: auto (20% of free disk space, >= 5 GiB and <= 30 GiB)
Scope: local

When creating loop-based pools, specify the size in bytes (suffixes (page 506) are supported).
You can increase the size to grow the storage pool.

Thedefault (auto) creates a storagepool that uses20%of the freedisk space,with aminimum
of 5 GiB and a maximum of 30 GiB.

source Path to an existing block device, loop file, or Btrfs subvolume (page 523)

Key: source
Type: string
Scope: local

source.wipeWhether to wipe the block device before creating the pool (page 523)

Key: source.wipe
Type: bool
Default: false
Scope: local

Set this option to true to wipe the block device specified in source prior to creating the stor-
age pool.

Tip

In addition to these configurations, you can also set default values for the storage volume
configurations. See Configure default values for storage volumes (page 190).

523 of 954

Storage volume configuration

security.shared Enable volume sharing (page 524)

Key: security.shared
Type: bool
Default: same as volume.security.shared or false
Condition: virtual-machine or custom block volume
Scope: global

Enabling this option allows sharing the volume across multiple instances despite the possi-
bility of data loss.

security.shifted Enable ID shifting overlay (page 524)

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume
Scope: global

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume (page 524)

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume
Scope: global

size Size/quota of the storage volume (page 524)

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver
Scope: global

snapshots.expiryWhen snapshots are to be deleted (page 524)

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume
Scope: global

Specify an expression like 1M 2H 3d 4w 5m 6y.

524 of 954

snapshots.pattern Template for the snapshot name (page 524)

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume
Scope: global

You can specify a naming template that is used for scheduled snapshots and unnamed snap-
shots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable cre-
ation_date. Make sure to format the date in your template string to avoid forbid-
den characters in the snapshot name. For example, set snapshots.pattern to {{ cre-
ation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of cre-
ation, down to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first
snapshot, the placeholder is replaced with 0. For subsequent snapshots, the existing snap-
shot names are taken into account to find the highest number at the placeholder’s position.
This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots (page 525)

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume
Scope: global

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated
list of schedule aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or
leave empty to disable automatic snapshots (the default).

volatile.idmap.last JSON-serialized UID/GID map that has been applied to the volume
(page 525)

Key: volatile.idmap.
last

Type: string
Condition: filesystem

volatile.idmap.next JSON-serialized UID/GID map that has been applied to the volume
(page 525)

Key: volatile.idmap.
next

Type: string
Condition: filesystem

525 of 954

volatile.uuid The volume’s UUID (page 526)

Key: volatile.uuid
Type: string
Default: random UUID
Scope: global

Storage bucket configuration

To enable storage buckets for local storage pool drivers and allow applications to access
the buckets via the S3 protocol, you must configure the core.storage_buckets_address
(page 404) server setting. size Size/quota of the storage bucket (page 526)

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver
Scope: local

CephFS - cephfs

Ceph247 is an open-source storage platform that stores its data in a storage cluster based
on RADOS (Reliable Autonomic Distributed Object Store). It is highly scalable and, as a dis-
tributed system without a single point of failure, very reliable.

Tip

If you want to quickly set up a basic Ceph cluster, check out MicroCeph248.

Ceph provides different components for block storage and for file systems.

CephFS (Ceph File System) is Ceph’s file system component that provides a robust, fully-
featured POSIX-compliant distributed file system. Internally, it maps files to Ceph objects
and stores filemetadata (for example, file ownership, directory paths, access permissions) in
a separate data pool.

Terminology

Ceph uses the term object for the data that it stores. The daemon that is responsible for stor-
ing and managing data is the Ceph OSD (Object Storage Daemon). Ceph’s storage is divided
into pools, which are logical partitions for storing objects. They are also referred to as data
pools, storage pools or OSD pools.

A CephFS file system consists of two OSD storage pools, one for the actual data and one for
the file metadata.
247 https://ceph.io/en/
248 https://canonical.com/microcloud

526 of 954

https://ceph.io/en/
https://canonical.com/microcloud

cephfs driver in LXD

Note

The cephfsdriver canonly beused for customstorage volumeswith content type filesys-
tem.

For other storage volumes, use theCeph (page 534) driver. That driver can also be used for
custom storage volumes with content type filesystem, but it implements them through
Ceph RBD images.

Unlike other storage drivers, this driver does not set up the storage system but assumes that
you already have a Ceph cluster installed.

You can either create the CephFS file system that you want to use beforehand and specify
it through the source (page 529) option, or specify the cephfs.create_missing (page 527)
option to automatically create the file system and the data and metadata OSD pools (with
the names given in cephfs.data_pool (page 528) and cephfs.meta_pool (page 528)).

This driver also behaves differently than other drivers in that it provides remote storage. As
a result and depending on the internal network, storage access might be a bit slower than
for local storage. On the other hand, using remote storage has big advantages in a cluster
setup, because all cluster members have access to the same storage pools with the exact
same contents, without the need to synchronize storage pools.

LXD assumes that it has full control over the OSD storage pool. Therefore, you should never
maintain any file system entities that are not owned by LXD in a LXD OSD storage pool, be-
cause LXD might delete them.

The cephfs driver in LXD supports snapshots if snapshots are enabled on the server side.

Configuration options

The following configuration options are available for storage pools that use the cephfs driver
and for storage volumes in these pools.

Storage pool configuration

cephfs.cluster_name Name of the Ceph cluster that contains the CephFS file system
(page 527)

Key: cephfs.
cluster_name

Type: string
Default: ceph
Scope: global

cephfs.create_missing Automatically create the CephFS file system (page 527)

527 of 954

Key: cephfs.create_missing
Type: bool
Default: false
Scope: global

Use this option if the CephFS file system does not exist yet. LXD will then automatically
create the file system and the missing data and metadata OSD pools.

cephfs.data_pool Data OSD pool name (page 528)

Key: cephfs.
data_pool

Type: string
Scope: global

This option specifies the name for the data OSD pool that should be used when creating a
file system automatically.

cephfs.fscache Enable use of kernel fscache and cachefilesd (page 528)

Key: cephfs.
fscache

Type: bool
Default: false
Scope: global

cephfs.meta_poolMetadata OSD pool name (page 528)

Key: cephfs.
meta_pool

Type: string
Scope: global

This option specifies the name for the file metadata OSD pool that should be used when
creating a file system automatically.

cephfs.osd_pg_num Number of placement groups when creating missing OSD pools
(page 528)

Key: cephfs.
osd_pg_num

Type: string
Scope: global

This option specifies the number of OSD pool placement groups (pg_num) to use when creat-
ing a missing OSD pool.

cephfs.osd_pool_size Number of RADOS object replicas. Set to 1 for no replication.
(page 528)

528 of 954

Key: cephfs.
osd_pool_size

Type: string
Default: 3

This option specifies the number of OSD pool replicas to use when creating an OSD pool.

cephfs.path The base path for the CephFS mount (page 529)

Key: cephfs.path
Type: string
Default: /
Scope: global

cephfs.user.name The Ceph user to use (page 529)

Key: cephfs.user.
name

Type: string
Default: admin
Scope: global

source Existing CephFS file system or file system path to use (page 529)

Key: source
Type: string
Scope: local

volatile.pool.pristine Whether the CephFS file system was empty on creation time
(page 529)

Key: volatile.pool.
pristine

Type: string
Default: true
Scope: global

Tip

In addition to these configurations, you can also set default values for the storage volume
configurations. See Configure default values for storage volumes (page 190).

529 of 954

Storage volume configuration

security.shifted Enable ID shifting overlay (page 530)

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume
Scope: global

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume (page 530)

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume
Scope: global

size Size/quota of the storage volume (page 530)

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver
Scope: global

snapshots.expiryWhen snapshots are to be deleted (page 530)

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume
Scope: global

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name (page 530)

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume
Scope: global

You can specify a naming template that is used for scheduled snapshots and unnamed snap-
shots.

530 of 954

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable cre-
ation_date. Make sure to format the date in your template string to avoid forbid-
den characters in the snapshot name. For example, set snapshots.pattern to {{ cre-
ation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of cre-
ation, down to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first
snapshot, the placeholder is replaced with 0. For subsequent snapshots, the existing snap-
shot names are taken into account to find the highest number at the placeholder’s position.
This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots (page 531)

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume
Scope: global

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated
list of schedule aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or
leave empty to disable automatic snapshots (the default).

volatile.idmap.last JSON-serialized UID/GID map that has been applied to the volume
(page 531)

Key: volatile.idmap.
last

Type: string
Condition: filesystem

volatile.idmap.next JSON-serialized UID/GID map that has been applied to the volume
(page 531)

Key: volatile.idmap.
next

Type: string
Condition: filesystem

volatile.uuid The volume’s UUID (page 531)

Key: volatile.uuid
Type: string
Default: random UUID
Scope: global

531 of 954

Ceph Object - cephobject

Ceph249 is an open-source storage platform that stores its data in a storage cluster based on
RADOS. It is highly scalable and, as a distributed systemwithout a single point of failure, very
reliable.

Tip

If you want to quickly set up a basic Ceph cluster, check out MicroCeph250.

Ceph provides different components for block storage and for file systems.

Ceph Object Gateway251 is an object storage interface built on top of librados252 to provide
applications with a RESTful gateway to Ceph Storage Clusters253. It provides object storage
functionality with an interface that is compatible with a large subset of the Amazon S3 REST-
ful API.

Terminology

Ceph uses the term object for the data that it stores. The daemon that is responsible for
storing and managing data is the Ceph OSD. Ceph’s storage is divided into pools, which are
logical partitions for storing objects. They are also referred to as data pools, storage pools or
OSD pools.

A Ceph Object Gateway consists of several OSD pools and one or more Ceph Object Gateway
daemon (radosgw) processes that provide object gateway functionality.

cephobject driver in LXD

Note

The cephobject driver can only be used for buckets.

For storage volumes, use the Ceph (page 534) or CephFS (page 526) drivers.

Unlike other storage drivers, this driver does not set up the storage system but assumes that
you already have a Ceph cluster installed.

You must set up a radosgw environment beforehand and ensure that its HTTP/HTTPS end-
point URL is reachable from the LXD server or servers. See Manual Deployment254 for in-
formation on how to set up a Ceph cluster and Ceph Object Gateway255 on how to set up a
radosgw environment.

The radosgw URL can be specified at pool creation time using the cephobject.radosgw.
endpoint (page 533) option.

249 https://ceph.io/en/
250 https://canonical.com/microcloud
251 https://docs.ceph.com/en/latest/radosgw/
252 https://docs.ceph.com/en/latest/rados/api/librados-intro/
253 https://docs.ceph.com/en/latest/rados/
254 https://docs.ceph.com/en/latest/install/manual-deployment/
255 https://docs.ceph.com/en/latest/radosgw/

532 of 954

https://ceph.io/en/
https://canonical.com/microcloud
https://docs.ceph.com/en/latest/radosgw/
https://docs.ceph.com/en/latest/rados/api/librados-intro/
https://docs.ceph.com/en/latest/rados/
https://docs.ceph.com/en/latest/install/manual-deployment/
https://docs.ceph.com/en/latest/radosgw/

LXD uses the radosgw-admin command to manage buckets. So this command must be avail-
able and operational on the LXD servers.

This driver also behaves differently than other drivers in that it provides remote storage. As
a result and depending on the internal network, storage access might be a bit slower than
for local storage. On the other hand, using remote storage has big advantages in a cluster
setup, because all cluster members have access to the same storage pools with the exact
same contents, without the need to synchronize storage pools.

LXD assumes that it has full control over the OSD storage pool. Therefore, you should never
maintain any file system entities that are not owned by LXD in a LXD OSD storage pool, be-
cause LXD might delete them.

Configuration options

The following configuration options are available for storage pools that use the cephobject
driver and for storage buckets in these pools.

Storage pool configuration

cephobject.bucket.name_prefix Prefix to add to bucket names in Ceph (page 533)

Key: cephobject.bucket.
name_prefix

Type: string
Scope: global

cephobject.cluster_name The Ceph cluster to use (page 533)

Key: cephobject.
cluster_name

Type: string
Scope: global

cephobject.radosgw.endpoint URL of the radosgw gateway process (page 533)

Key: cephobject.radosgw.
endpoint

Type: string
Scope: global

cephobject.radosgw.endpoint_cert_file TLS client certificate to use for endpoint communi-
cation (page 533)

Key: cephobject.radosgw.
endpoint_cert_file

Type: string
Scope: global

533 of 954

Specify the path to the file that contains the TLS client certificate.

cephobject.user.name The Ceph user to use (page 534)

Key: cephobject.user.
name

Type: string
Default: admin
Scope: global

volatile.pool.pristine Whether the radosgw lxd-admin user existed at creation time
(page 534)

Key: volatile.pool.
pristine

Type: string
Default: true
Scope: global

Storage bucket configuration

sizeQuota of the storage bucket (page 534)

Key: size
Type: string
Scope: local

Ceph RBD - ceph

Ceph256 is an open-source storage platform that stores its data in a storage cluster based on
RADOS. It is highly scalable and, as a distributed systemwithout a single point of failure, very
reliable.

Tip

If you want to quickly set up a basic Ceph cluster, check out MicroCeph257.

Ceph provides different components for block storage and for file systems.

CephRBD (RADOSBlockDevice) is Ceph’s block storage component that distributes data and
workload across the Ceph cluster. It uses thin provisioning, which means that it is possible to
over-commit resources.
256 https://ceph.io/en/
257 https://canonical.com/microcloud

534 of 954

https://ceph.io/en/
https://canonical.com/microcloud

Terminology

Ceph uses the term object for the data that it stores. The daemon that is responsible for
storing and managing data is the Ceph OSD. Ceph’s storage is divided into pools, which are
logical partitions for storing objects. They are also referred to as data pools, storage pools or
OSD pools.

Ceph block devices are also called RBD images, and you can create snapshots and clones of
these RBD images.

ceph driver in LXD

Note

Touse theCephRBDdriver, youmust specify it as ceph. This is slightlymisleading, because
it uses only Ceph RBD (block storage) functionality, not full Ceph functionality. For stor-
age volumes with content type filesystem (images, containers and custom file-system
volumes), the ceph driver uses Ceph RBD images with a file system on top (see block.
filesystem (page 538)).

Alternatively, you can use the CephFS (page 526) driver to create storage volumes with
content type filesystem.

Unlike other storage drivers, this driver does not set up the storage system but assumes that
you already have a Ceph cluster installed.

This driver also behaves differently than other drivers in that it provides remote storage. As
a result and depending on the internal network, storage access might be a bit slower than
for local storage. On the other hand, using remote storage has big advantages in a cluster
setup, because all cluster members have access to the same storage pools with the exact
same contents, without the need to synchronize storage pools.

The ceph driver in LXD uses RBD images for images, and snapshots and clones to create in-
stances and snapshots.

LXD assumes that it has full control over the OSD storage pool. Therefore, you should never
maintain any file system entities that are not owned by LXD in a LXD OSD storage pool, be-
cause LXD might delete them.

Due to the way copy-on-write works in Ceph RBD, parent RBD images can’t be removed until
all children are gone. As a result, LXD automatically renames any objects that are removed
but still referenced. Such objects are kept with a zombie_ prefix until all references are gone
and the object can safely be removed.

Limitations

The ceph driver has the following limitations:

Sharing custom volumes between instances
Custom storage volumeswith content type (page 352) filesystem can usually be shared
between multiple instances different cluster members. However, because the Ceph
RBD driver “simulates” volumes with content type filesystem by putting a file system
on top of an RBD image, custom storage volumes can only be assigned to a single in-

535 of 954

stance at a time. If you need to share a custom volume with content type filesystem,
use the CephFS (page 526) driver instead.

Sharing the OSD storage pool between installations
Sharing the same OSD storage pool between multiple LXD installations is not sup-
ported.

Using an OSD pool of type “erasure”
To use a Ceph OSD pool of type “erasure”, you must create the OSD pool beforehand.
Youmust also create a separateOSDpool of type “replicated” thatwill be used for stor-
ing metadata. This is required because Ceph RBD does not support omap. To specify
which pool is “erasure coded”, set the ceph.osd.data_pool_name (page 536) configura-
tion option to the erasure coded pool name and the source (page 538) configuration
option to the replicated pool name.

Configuration options

The following configuration options are available for storage pools that use the ceph driver
and for storage volumes in these pools.

Storage pool configuration

ceph.cluster_name Name of the Ceph cluster in which to create new storage pools
(page 536)

Key: ceph.
cluster_name

Type: string
Default: ceph
Scope: global

ceph.osd.data_pool_name Name of the OSD data pool (page 536)

Key: ceph.osd.
data_pool_name

Type: string
Scope: global

ceph.osd.pg_num Number of placement groups for the OSD storage pool (page 536)

Key: ceph.osd.
pg_num

Type: string
Default: 32
Scope: global

ceph.osd.pool_name Name of the OSD storage pool (page 536)

536 of 954

Key: ceph.osd.
pool_name

Type: string
Default: name of the pool
Scope: global

ceph.osd.pool_size Number of RADOS object replicas. Set to 1 for no replication.
(page 537)

Key: ceph.osd.
pool_size

Type: string
Default: 3

This option specifies the name for the file metadata OSD pool that should be used when
creating a file system automatically.

ceph.rbd.clone_copyWhether to use RBD lightweight clones (page 537)

Key: ceph.rbd.
clone_copy

Type: bool
Default: true
Scope: global

Enable this option to use RBD lightweight clones rather than full dataset copies.

ceph.rbd.duWhether to use RBD du (page 537)

Key: ceph.rbd.
du

Type: bool
Default: true
Scope: global

This option specifies whether to use RBD du to obtain disk usage data for stopped instances.

ceph.rbd.features Comma-separated list of RBD features to enable on the volumes
(page 537)

Key: ceph.rbd.
features

Type: string
Default: layering
Scope: global

ceph.user.name The Ceph user to use when creating storage pools and volumes (page 537)

537 of 954

Key: ceph.user.
name

Type: string
Default: admin
Scope: global

source Existing OSD storage pool to use (page 538)

Key: source
Type: string
Scope: local

volatile.pool.pristineWhether the pool was empty on creation time (page 538)

Key: volatile.pool.
pristine

Type: string
Default: true
Scope: global

Tip

In addition to these configurations, you can also set default values for the storage volume
configurations. See Configure default values for storage volumes (page 190).

Storage volume configuration

block.filesystem File system of the storage volume (page 538)

Key: block.filesystem
Type: string
Default: same as volume.block.filesystem
Condition: block-based volume with content type filesystem
Scope: global

Valid options are: btrfs, ext4, xfs If not set, ext4 is assumed.

block.mount_optionsMount options for block-backed file system volumes (page 538)

Key: block.mount_options
Type: string
Default: same as volume.block.mount_options
Condition: block-based volume with content type filesystem
Scope: global

538 of 954

security.shared Enable volume sharing (page 538)

Key: security.shared
Type: bool
Default: same as volume.security.shared or false
Condition: virtual-machine or custom block volume
Scope: global

Enabling this option allows sharing the volume across multiple instances despite the possi-
bility of data loss.

security.shifted Enable ID shifting overlay (page 539)

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume
Scope: global

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume (page 539)

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume
Scope: global

size Size/quota of the storage volume (page 539)

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver
Scope: global

snapshots.expiryWhen snapshots are to be deleted (page 539)

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume
Scope: global

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name (page 539)

539 of 954

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume
Scope: global

You can specify a naming template that is used for scheduled snapshots and unnamed snap-
shots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable cre-
ation_date. Make sure to format the date in your template string to avoid forbid-
den characters in the snapshot name. For example, set snapshots.pattern to {{ cre-
ation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of cre-
ation, down to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first
snapshot, the placeholder is replaced with 0. For subsequent snapshots, the existing snap-
shot names are taken into account to find the highest number at the placeholder’s position.
This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots (page 540)

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume
Scope: global

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated
list of schedule aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or
leave empty to disable automatic snapshots (the default).

volatile.idmap.last JSON-serialized UID/GID map that has been applied to the volume
(page 540)

Key: volatile.idmap.
last

Type: string
Condition: filesystem

volatile.idmap.next JSON-serialized UID/GID map that has been applied to the volume
(page 540)

Key: volatile.idmap.
next

Type: string
Condition: filesystem

540 of 954

volatile.uuid The volume’s UUID (page 540)

Key: volatile.uuid
Type: string
Default: random UUID
Scope: global

Dell PowerFlex - powerflex

Dell PowerFlex258 is a software-defined storage solution from Dell Technologies259. Among
other things it offers the consumption of redundant block storage across the network.

LXD offers access to PowerFlex storage clusters using either NVMe/TCP or Dell’s Storage
Data Client (SDC). In addition, PowerFlex offers copy-on-write snapshots, thin provisioning
and other features.

To use PowerFlex with NVMe/TCP, make sure you have the required kernel modules installed
on your host system. On Ubuntu these are nvme_fabrics and nvme_tcp, which come bundled
in the linux-modules-extra-$(uname -r) package. LXD takes care of connecting to the re-
spective subsystem.

When using the SDC, LXD requires it to already be connected to the Dell Metadata Manager
(MDM) beforehand. As LXD doesn’t set up the SDC, follow the official guides from Dell for
configuration details.

Terminology

PowerFlex groups various so-called SDS (storage data servers) under logical groups within a
protection domain. Those SDS are the hosts that contribute storage capacity to the Power-
Flex cluster. A protection domain contains storage pools, which represent a set of physical
storage devices from different SDS. LXD creates its volumes in those storage pools.

You can take a snapshot of any volume in PowerFlex, which will create an independent copy
of the parent volume. PowerFlex volumes get added as a drive to the respective LXD host
the volume got mapped to. In case of NVMe/TCP, the LXD host connects to one or multiple
NVMe SDT (storage data targets) provided by PowerFlex. Those SDT run as components on
the PowerFlex storage layer. In case of SDC, the LXD hosts don’t set up any connection by
themselves. Instead they depend on the SDC to make the volumes available on the system
for consumption.

powerflex driver in LXD

The powerflex driver in LXD uses PowerFlex volumes for custom storage volumes, instances
and snapshots. For storage volumes with content type filesystem (containers and custom
file-system volumes), the powerflex driver uses volumeswith a file system on top (see block.
filesystem (page 545)). By default, LXD creates thin-provisioned PowerFlex volumes.

LXD expects the PowerFlex protection domain and storage pool already to be set up. Fur-
thermore, LXD assumes that it has full control over the storage pool. Therefore, you should
nevermaintain any volumes that are not owned by LXD in a PowerFlex storage pool, because
LXD might delete them.

258 https://www.dell.com/en-us/shop/powerflex/sf/powerflex
259 https://www.dell.com/

541 of 954

https://www.dell.com/en-us/shop/powerflex/sf/powerflex
https://www.dell.com/

This driver behaves differently than some of the other drivers in that it provides remote stor-
age. As a result and depending on the internal network, storage access might be a bit slower
than for local storage. On the other hand, using remote storage has big advantages in a clus-
ter setup, because all cluster members have access to the same storage pools with the exact
same contents, without the need to synchronize storage pools.

When creating a new storage pool using the powerflex driver in nvmemode, LXD tries to dis-
cover one of the SDT from the given storage pool. Alternatively, you can specify which SDT
to use with powerflex.sdt (page 544). LXD instructs the NVMe initiator to connect to all the
other SDT when first connecting to the subsystem.

Due to the way copy-on-write works in PowerFlex, snapshots of any volume don’t rely on
its parent. As a result, volume snapshots are fully functional volumes themselves, and it’s
possible to takeadditional snapshots fromsuch volumesnapshots. This treeofdependencies
is called the PowerFlex vTree. Both volumes and their snapshots get added as standalone
disks to the LXD host.

Volume names

Due to a limitation (page 542) in PowerFlex, volume names cannot exceed 31 characters.
Therefore the driver is using the volume’s volatile.uuid (page 548) to generate a fixed
length volume name. A UUID of 5a2504b0-6a6c-4849-8ee7-ddb0b674fd14 will render to the
base64-encoded string WiUEsGpsSEmO592wtnT9FA==.

To be able to identify the volume types and snapshots, special identifiers are prepended to
the volume names:

Type Identifier Example

Container c_ c_WiUEsGpsSEmO592wtnT9FA==
Virtual machine v_ v_WiUEsGpsSEmO592wtnT9FA==.

b
Image (ISO) i_ i_WiUEsGpsSEmO592wtnT9FA==.

i
Custom volume u_ u_WiUEsGpsSEmO592wtnT9FA==

Limitations

The powerflex driver has the following limitations:

Limit of snapshots in a single vTree
An internal limitation in the PowerFlex vTree does not allow to take more than 126
snapshots of any volume in PowerFlex. This limit also applies to any child of any of the
parent volume’s snapshots. A single vTree can only have 126 branches.

Non-optimized image storage
Due to the limit of 126 snapshots in the vTree, the PowerFlex driver doesn’t come
with support for optimized image storage. This would limit LXD to create only 126 in-
stances from an image. Instead, when launching a new instance, the image’s contents
get copied to the instance’s root volume.

Copying volumes
PowerFlex does not support creating a copy of the volume so that it gets its own vTree.
Therefore, LXD falls back to copying the volume on the local system. This implicates an

542 of 954

increased use of bandwidth due to the volume’s contents being transferred over the
network twice.

Volume size constraints
In PowerFlex, the size (quota) of a volume must be in multiples of 8 GiB. This results in
the smallest possible volume size of 8GiB. However, if not specifiedotherwise, volumes
are getting thin-provisioned by LXD. PowerFlex volumes can only be increased in size.

Sharing custom volumes between instances
The PowerFlex driver “simulates” volumes with content type filesystem by putting a
file system on top of a PowerFlex volume. Therefore, custom storage volumes can only
be assigned to a single instance at a time.

Sharing the PowerFlex storage pool between installations
Sharing the same PowerFlex storage pool between multiple LXD installations is not
supported.

Recovering PowerFlex storage pools
Recovery of PowerFlex storage pools using lxd recover is not supported.

Configuration options

The following configuration options are available for storage pools that use the powerflex
driver and for storage volumes in these pools.

Storage pool configuration

powerflex.clone_copyWhether to use non-sparse copies for snapshots (page 543)

Key: powerflex.
clone_copy

Type: bool
Default: true
Scope: global

If this option is set to true, PowerFlex makes a non-sparse copy when creating a snapshot of
an instance or custom volume. See Limitations (page 542) for more information.

powerflex.domain Name of the PowerFlex protection domain (page 543)

Key: powerflex.
domain

Type: string
Scope: global

This option is required only if powerflex.pool (page 544) is specified using its name.

powerflex.gateway Address of the PowerFlex Gateway (page 543)

543 of 954

Key: powerflex.
gateway

Type: string
Scope: global

powerflex.gateway.verify Whether to verify the PowerFlex Gateway’s certificate
(page 544)

Key: powerflex.gateway.
verify

Type: bool
Default: true
Scope: global

powerflex.mode How volumes are mapped to the local server (page 544)

Key: powerflex.mode
Type: string
Default: the discovered mode
Scope: global

The mode gets discovered automatically if the system provides the necessary kernel mod-
ules. This can be either nvme or sdc.

powerflex.pool ID of the PowerFlex storage pool (page 544)

Key: powerflex.
pool

Type: string
Scope: global

If you want to specify the storage pool via its name, also set powerflex.domain (page 543).

powerflex.sdt Comma separated list of PowerFlex NVMe/TCP SDTs (page 544)

Key: powerflex.
sdt

Type: string
Scope: global

powerflex.user.name User for PowerFlex Gateway authentication (page 544)

Key: powerflex.user.
name

Type: string
Default: admin
Scope: global

544 of 954

Must have at least SystemAdmin role to give LXD full control over managed storage pools.

powerflex.user.password Password for PowerFlex Gateway authentication (page 545)

Key: powerflex.user.
password

Type: string
Scope: global

rsync.bwlimit Upper limit on the socket I/O for rsync (page 545)

Key: rsync.
bwlimit

Type: string
Default: 0 (no limit)
Scope: global

When rsync must be used to transfer storage entities, this option specifies the upper limit
to be placed on the socket I/O.

rsync.compressionWhether to use compression while migrating storage pools (page 545)

Key: rsync.
compression

Type: bool
Default: true
Scope: global

volume.size Size/quota of the storage volume (page 545)

Key: volume.size
Type: string
Default: 8GiB
Scope: global

The size must be in multiples of 8 GiB. See Limitations (page 542) for more information.

Tip

In addition to these configurations, you can also set default values for the storage volume
configurations. See Configure default values for storage volumes (page 190).

Storage volume configuration

block.filesystem File system of the storage volume (page 545)

545 of 954

Key: block.filesystem
Type: string
Default: same as volume.block.filesystem
Condition: block-based volume with content type filesystem
Scope: global

Valid options are: btrfs, ext4, xfs If not set, ext4 is assumed.

block.mount_optionsMount options for block-backed file system volumes (page 546)

Key: block.mount_options
Type: string
Default: same as volume.block.mount_options
Condition: block-based volume with content type filesystem
Scope: global

block.typeWhether to create a thin or thick provisioned volume (page 546)

Key: block.type
Type: string
Default: same as volume.block.type or thick
Scope: global

security.shared Enable volume sharing (page 546)

Key: security.shared
Type: bool
Default: same as volume.security.shared or false
Condition: virtual-machine or custom block volume
Scope: global

Enabling this option allows sharing the volume across multiple instances despite the possi-
bility of data loss.

security.shifted Enable ID shifting overlay (page 546)

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume
Scope: global

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume (page 546)

546 of 954

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume
Scope: global

size Size/quota of the storage volume (page 547)

Key: size
Type: string
Default: same as volume.size
Scope: global

The size must be in multiples of 8 GiB. See Limitations (page 542) for more information.

snapshots.expiryWhen snapshots are to be deleted (page 547)

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume
Scope: global

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name (page 547)

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume
Scope: global

You can specify a naming template that is used for scheduled snapshots and unnamed snap-
shots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable cre-
ation_date. Make sure to format the date in your template string to avoid forbid-
den characters in the snapshot name. For example, set snapshots.pattern to {{ cre-
ation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of cre-
ation, down to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first
snapshot, the placeholder is replaced with 0. For subsequent snapshots, the existing snap-
shot names are taken into account to find the highest number at the placeholder’s position.
This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots (page 547)

547 of 954

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume
Scope: global

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated
list of schedule aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or
leave empty to disable automatic snapshots (the default).

volatile.idmap.last JSON-serialized UID/GID map that has been applied to the volume
(page 548)

Key: volatile.idmap.
last

Type: string
Condition: filesystem

volatile.idmap.next JSON-serialized UID/GID map that has been applied to the volume
(page 548)

Key: volatile.idmap.
next

Type: string
Condition: filesystem

volatile.uuid The volume’s UUID (page 548)

Key: volatile.uuid
Type: string
Default: random UUID
Scope: global

Pure Storage - pure

Pure Storage260 is a software-defined storage solution. It offers the consumption of redun-
dant block storage across the network.

LXD supports connecting to Pure Storage storage clusters through two protocols: either
iSCSI (Internet Small Computer Systems Interface) or NVMe/TCP (Non-Volatile Memory Ex-
press over Transmission Control Protocol). In addition, Pure Storage offers copy-on-write
snapshots, thin provisioning, and other features.

To use Pure Storage with LXD requires a Pure Storage API version of at least 2.21, corre-
sponding to a minimum Purity//FA version of 6.4.2.

260 https://www.purestorage.com/

548 of 954

https://www.purestorage.com/

Additionally, ensure that the required kernel modules for the selected protocol are installed
on your host system. For iSCSI, the iSCSI CLI named iscsiadm needs to be installed in addition
to the required kernel modules.

Terminology

Each storage pool created in LXD using a Pure Storage driver represents a Pure Storage pod,
which is an abstraction that groups multiple volumes under a specific name. One benefit
of using Pure Storage pods is that they can be linked with multiple Pure Storage arrays to
provide additional redundancy.

LXD creates volumes within a pod that is identified by the storage pool name. When the
first volume needs to be mapped to a specific LXD host, a corresponding Pure Storage host
is created with the name of the LXD host and a suffix of the used protocol. For example,
if the LXD host is host01 and the mode is nvme, the resulting Pure Storage host would be
host01-nvme.

The Pure Storage host is then connected with the required volumes, to allow attaching and
accessing volumes from the LXD host. The created Pure Storage host is automatically re-
moved once there are no volumes connected to it.

The pure driver in LXD

The puredriver in LXDuses Pure Storage volumes for custom storage volumes, instances, and
snapshots. All created volumes are thin-provisioned block volumes. If required (for example,
for containers and custom file system volumes), LXD formats the volume with a desired file
system.

LXD expects Pure Storage to be pre-configuredwith a specific service (e.g. iSCSI) on network
interfaces whose address is provided during storage pool configuration. Furthermore, LXD
assumes that it has full control over the Pure Storage pods itmanages. Therefore, you should
never maintain any volumes in Pure Storage pods that are not owned by LXD because LXD
might disconnect or even delete them.

This driver behaves differently than some of the other drivers in that it provides remote stor-
age. As a result, and depending on the internal network, storage accessmight be a bit slower
compared to local storage. On the other hand, using remote storage has significant advan-
tages in a cluster setup: all cluster members have access to the same storage pools with the
exact same contents, without the need to synchronize them.

When creating a new storage pool using the pure driver in either iscsi or nvmemode, LXD au-
tomatically discovers the array’s qualified name and target address (portal). Upon successful
discovery, LXD attaches all volumes that are connected to the Pure Storage host that is as-
sociated with a specific LXD server. Pure Storage hosts and volume connections are fully
managed by LXD.

Volume snapshots are also supported by Pure Storage. However, each snapshot is associated
with a parent volume and cannot be directly attached to the host. Therefore, when a snap-
shot is being exported, LXD creates a temporary volume behind the scenes. This volume is
attached to the LXD host and removed once the operation is completed. Similarly, when a
volume with at least one snapshot is being copied, LXD sequentially copies snapshots into
destination volume, from which a new snapshot is created. Finally, once all snapshots are
copied, the source volume is copied into the destination volume.

549 of 954

Volume names

Due to a limitation (page 550) in Pure Storage, volume names cannot exceed 63 characters.
Therefore, the driver uses the volume’s volatile.uuid (page 553) to generate a shorter vol-
ume name.

For example, a UUID 5a2504b0-6a6c-4849-8ee7-ddb0b674fd14 is first trimmed of any hyphens
(-), resulting in the string 5a2504b06a6c48498ee7ddb0b674fd14. To distinguish volume types
and snapshots, special identifiers are prepended and appended to the volume names, as de-
picted in the table below:

Type Iden-
tifier

Example

Con-
tainer

c- c-5a2504b06a6c48498ee7ddb0b674fd14

Virtual
machine

v- v-5a2504b06a6c48498ee7ddb0b674fd14-b (block volume) and
v-5a2504b06a6c48498ee7ddb0b674fd14 (file system volume)

Image
(ISO)

i- i-5a2504b06a6c48498ee7ddb0b674fd14-i

Custom
volume

u- u-5a2504b06a6c48498ee7ddb0b674fd14

Snap-
shot

s sc-5a2504b06a6c48498ee7ddb0b674fd14 (container snapshot)

Limitations

The pure driver has the following limitations:

Volume size constraints
Minimum volume size (quota) is 1MiB and must be a multiple of 512B.

Snapshots cannot be mounted
Snapshots cannot be mounted directly to the host. Instead, a temporary volume must
be created to access the snapshot’s contents. For internal operations, such as copying
instances or exporting snapshots, LXD handles this automatically.

Sharing the Pure Storage storage pool between multiple LXD installations
Sharing a Pure Storage array between multiple LXD installations is possible provided
that installations use distinct storage pool names. Storage pools are implemented as
Pods on the array and pod names have to be unique.

Recovering Pure Storage storage pools
Recovery of Pure Storage storage pools using lxd recover is currently not supported.

Configuration options

The following configuration options are available for storage pools that use the pure driver,
as well as storage volumes in these pools.

550 of 954

Storage pool configuration

pure.api.token API authorization token for Pure Storage gateway (page 551)

Key: pure.api.
token

Type: string

API authorization token for Pure Storage gateway. Must have array_admin role to give LXD
full control over managed storage pools (Pure Storage pods).

pure.gateway Address of the Pure Storage gateway (page 551)

Key: pure.
gateway

Type: string

pure.gateway.verifyWhether to verify the Pure Storage gateway’s certificate (page 551)

Key: pure.gateway.
verify

Type: bool
Default: true

pure.mode How volumes are mapped to the local server (page 551)

Key: pure.mode
Type: string
Default: the discovered mode

Themode touse tomapPure Storage volumes to the local server. Supported values are iscsi
and nvme.

pure.target List of target addresses. (page 551)

Key: pure.target
Type: string
Default: the discovered mode

A comma-separated list of target addresses. If empty, LXDdiscovers and connects to all avail-
able targets. Otherwise, it only connects to the specified addresses.

volume.size Size/quota of the storage volume (page 551)

Key: volume.size
Type: string
Default: 10GiB

551 of 954

Default Pure Storage volume size rounded to 512B. The minimum size is 1MiB.

Tip

In addition to these configurations, you can also set default values for the storage volume
configurations. See Configure default values for storage volumes (page 190).

Storage volume configuration

block.filesystem File system of the storage volume (page 552)

Key: block.filesystem
Type: string
Default: same as volume.block.filesystem
Condition: block-based volume with content type filesystem

Valid options are: btrfs, ext4, xfs If not set, ext4 is assumed.

block.mount_optionsMount options for block-backed file system volumes (page 552)

Key: block.mount_options
Type: string
Default: same as volume.block.mount_options
Condition: block-based volume with content type filesystem

size Size/quota of the storage volume (page 552)

Key: size
Type: string
Default: same as volume.size

Default Pure Storage volume size rounded to 512B. The minimum size is 1MiB.

snapshots.expiryWhen snapshots are to be deleted (page 552)

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume
Scope: global

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name (page 552)

552 of 954

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume
Scope: global

You can specify a naming template that is used for scheduled snapshots and unnamed snap-
shots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable cre-
ation_date. Make sure to format the date in your template string to avoid forbid-
den characters in the snapshot name. For example, set snapshots.pattern to {{ cre-
ation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of cre-
ation, down to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first
snapshot, the placeholder is replaced with 0. For subsequent snapshots, the existing snap-
shot names are taken into account to find the highest number at the placeholder’s position.
This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots (page 553)

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume
Scope: global

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated
list of schedule aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or
leave empty to disable automatic snapshots (the default).

volatile.uuid The volume’s UUID (page 553)

Key: volatile.uuid
Type: string
Default: random UUID
Scope: global

Directory - dir

The directory storage driver is a basic backend that stores its data in a standard file and direc-
tory structure. This driver is quick to set up and allows inspecting thefiles directly on the disk,
which can be convenient for testing. However, LXD operations are not optimized (page 571)
for this driver.

553 of 954

dir driver in LXD

The dirdriver in LXD is fully functional and provides the same set of features as other drivers.
However, it is much slower than all the other drivers because it must unpack images and do
instant copies of instances, snapshots and images.

Unless specified differently during creation (with the source configuration option), the data
is stored in the /var/snap/lxd/common/lxd/storage-pools/ (for snap installations) or /var/
lib/lxd/storage-pools/ directory.

Quotas

The dir driver supports storage quotas when running on either ext4 or XFS with project quo-
tas enabled at the file system level.

Configuration options

The following configuration options are available for storage pools that use the dir driver
and for storage volumes in these pools.

Storage pool configuration

rsync.bwlimit Upper limit on the socket I/O for rsync (page 554)

Key: rsync.
bwlimit

Type: string
Default: 0 (no limit)
Scope: global

When rsync must be used to transfer storage entities, this option specifies the upper limit
to be placed on the socket I/O.

rsync.compressionWhether to use compression while migrating storage pools (page 554)

Key: rsync.
compression

Type: bool
Default: true
Scope: global

source Path to an existing directory (page 554)

Key: source
Type: string
Scope: local

554 of 954

Tip

In addition to these configurations, you can also set default values for the storage volume
configurations. See Configure default values for storage volumes (page 190).

Storage volume configuration

security.shared Enable volume sharing (page 555)

Key: security.shared
Type: bool
Default: same as volume.security.shared or false
Condition: virtual-machine or custom block volume
Scope: global

Enabling this option allows sharing the volume across multiple instances despite the possi-
bility of data loss.

security.shifted Enable ID shifting overlay (page 555)

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume
Scope: global

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume (page 555)

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume
Scope: global

size Size/quota of the storage volume (page 555)

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver
Scope: global

snapshots.expiryWhen snapshots are to be deleted (page 555)

555 of 954

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume
Scope: global

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name (page 556)

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume
Scope: global

You can specify a naming template that is used for scheduled snapshots and unnamed snap-
shots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable cre-
ation_date. Make sure to format the date in your template string to avoid forbid-
den characters in the snapshot name. For example, set snapshots.pattern to {{ cre-
ation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of cre-
ation, down to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first
snapshot, the placeholder is replaced with 0. For subsequent snapshots, the existing snap-
shot names are taken into account to find the highest number at the placeholder’s position.
This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots (page 556)

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume
Scope: global

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated
list of schedule aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or
leave empty to disable automatic snapshots (the default).

volatile.idmap.last JSON-serialized UID/GID map that has been applied to the volume
(page 556)

Key: volatile.idmap.
last

Type: string
Condition: filesystem

556 of 954

volatile.idmap.next JSON-serialized UID/GID map that has been applied to the volume
(page 557)

Key: volatile.idmap.
next

Type: string
Condition: filesystem

volatile.uuid The volume’s UUID (page 557)

Key: volatile.uuid
Type: string
Default: random UUID
Scope: global

Storage bucket configuration

To enable storage buckets for local storage pool drivers and allow applications to access
the buckets via the S3 protocol, you must configure the core.storage_buckets_address
(page 404) server setting.

Storage buckets do not have any configuration for dir pools. Unlike the other storage pool
drivers, the dir driver does not support bucket quotas via the size setting.

LVM - lvm

LVM (Logical VolumeManager) is a storagemanagement framework rather than afile system.
It is used to manage physical storage devices, allowing you to create a number of logical
storage volumes that use and virtualize the underlying physical storage devices.

Note that it is possible to over-commit the physical storage in the process, to allow flexibility
for scenarios where not all available storage is in use at the same time.

To use LVM, make sure you have lvm2 installed on your machine.

Terminology

LVM can combine several physical storage devices into a volume group. You can then allocate
logical volumes of different types from this volume group.

One supported volume type is a thin pool, which allows over-committing the resources by
creating thinly provisioned volumeswhose total allowedmaximum size (quota) is larger than
the available physical storage. Another type is a volume snapshot, which captures a specific
state of a logical volume.

lvm driver in LXD

The lvm driver in LXD uses logical volumes for images, and volume snapshots for instances
and snapshots.

LXD assumes that it has full control over the volume group. Therefore, you should not main-
tain any file system entities that are not owned by LXD in an LVM volume group, because

557 of 954

LXD might delete them. However, if you need to reuse an existing volume group (for exam-
ple, because your setup has only one volume group), you can do so by setting the lvm.vg.
force_reuse (page 559) configuration.

By default, LVM storage pools use an LVM thin pool and create logical volumes for all LXD
storage entities (images, instances and custom volumes) in there. This behavior can be
changed by setting lvm.use_thinpool (page 558) to false when you create the pool. In this
case, LXD uses “normal” logical volumes for all storage entities that are not snapshots. Note
that this entails serious performance and space reductions for the lvm driver (close to the
dir driver both in speed and storage usage). The reason for this is that most storage oper-
ations must fall back to using rsync, because logical volumes that are not thin pools do not
support snapshots of snapshots. In addition, non-thin snapshots take upmuchmore storage
space than thin snapshots, because they must reserve space for their maximum size (quota)
at creation time. Therefore, this option should only be chosen if the use case requires it.

For environments with a high instance turnover (for example, continuous integration) you
should tweak the backup retain_min and retain_days settings in /etc/lvm/lvm.conf to avoid
slowdowns when interacting with LXD.

Configuration options

The following configuration options are available for storage pools that use the lvm driver
and for storage volumes in these pools.

Storage pool configuration

lvm.thinpool_metadata_size The size of the thin pool metadata volume (page 558)

Key: lvm.
thinpool_metadata_size

Type: string
Default: 0 (auto)
Scope: global

By default, LVM calculates an appropriate size.

lvm.thinpool_name Thin pool where volumes are created (page 558)

Key: lvm.
thinpool_name

Type: string
Default: LXDThinPool
Scope: local

lvm.use_thinpoolWhether the storage pool uses a thin pool for logical volumes (page 558)

Key: lvm.
use_thinpool

Type: bool
Default: true
Scope: global

558 of 954

lvm.vg.force_reuse Force using an existing non-empty volume group (page 559)

Key: lvm.vg.
force_reuse

Type: bool
Default: false
Scope: global

lvm.vg_name Name of the volume group to create (page 559)

Key: lvm.vg_name
Type: string
Default: name of the pool
Scope: local

rsync.bwlimit Upper limit on the socket I/O for rsync (page 559)

Key: rsync.
bwlimit

Type: string
Default: 0 (no limit)
Scope: global

When rsync must be used to transfer storage entities, this option specifies the upper limit
to be placed on the socket I/O.

rsync.compressionWhether to use compression while migrating storage pools (page 559)

Key: rsync.
compression

Type: bool
Default: true
Scope: global

size Size of the storage pool (for loop-based pools) (page 559)

Key: size
Type: string
Default: auto (20% of free disk space, >= 5 GiB and <= 30 GiB)
Scope: local

When creating loop-based pools, specify the size in bytes (suffixes (page 506) are supported).
You can increase the size to grow the storage pool.

Thedefault (auto) creates a storagepool that uses20%of the freedisk space,with aminimum
of 5 GiB and a maximum of 30 GiB.

source Path to an existing block device, loop file, or LVM volume group (page 559)

559 of 954

Key: source
Type: string
Scope: local

source.wipeWhether to wipe the block device before creating the pool (page 560)

Key: source.wipe
Type: bool
Default: false
Scope: local

Set this option to true to wipe the block device specified in source prior to creating the stor-
age pool.

Tip

In addition to these configurations, you can also set default values for the storage volume
configurations. See Configure default values for storage volumes (page 190).

Storage volume configuration

block.filesystem File system of the storage volume (page 560)

Key: block.filesystem
Type: string
Default: same as volume.block.filesystem
Condition: block-based volume with content type filesystem
Scope: global

Valid options are: btrfs, ext4, xfs If not set, ext4 is assumed.

block.mount_optionsMount options for block-backed file system volumes (page 560)

Key: block.mount_options
Type: string
Default: same as volume.block.mount_options
Condition: block-based volume with content type filesystem
Scope: global

lvm.stripes Number of stripes to use for new volumes (or thin pool volume) (page 560)

Key: lvm.stripes
Type: string
Default: same as volume.lvm.stripes
Scope: global

560 of 954

lvm.stripes.size Size of stripes to use (page 560)

Key: lvm.stripes.size
Type: string
Default: same as volume.lvm.stripes.size
Scope: global

The size must be at least 4096 bytes, and a multiple of 512 bytes.

security.shared Enable volume sharing (page 561)

Key: security.shared
Type: bool
Default: same as volume.security.shared or false
Condition: virtual-machine or custom block volume
Scope: global

Enabling this option allows sharing the volume across multiple instances despite the possi-
bility of data loss.

security.shifted Enable ID shifting overlay (page 561)

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume
Scope: global

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume (page 561)

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume
Scope: global

size Size/quota of the storage volume (page 561)

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver
Scope: global

snapshots.expiryWhen snapshots are to be deleted (page 561)

561 of 954

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume
Scope: global

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name (page 562)

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume
Scope: global

You can specify a naming template that is used for scheduled snapshots and unnamed snap-
shots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable cre-
ation_date. Make sure to format the date in your template string to avoid forbid-
den characters in the snapshot name. For example, set snapshots.pattern to {{ cre-
ation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of cre-
ation, down to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first
snapshot, the placeholder is replaced with 0. For subsequent snapshots, the existing snap-
shot names are taken into account to find the highest number at the placeholder’s position.
This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots (page 562)

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume
Scope: global

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated
list of schedule aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or
leave empty to disable automatic snapshots (the default).

volatile.idmap.last JSON-serialized UID/GID map that has been applied to the volume
(page 562)

Key: volatile.idmap.
last

Type: string
Condition: filesystem

562 of 954

volatile.idmap.next JSON-serialized UID/GID map that has been applied to the volume
(page 563)

Key: volatile.idmap.
next

Type: string
Condition: filesystem

volatile.uuid The volume’s UUID (page 563)

Key: volatile.uuid
Type: string
Default: random UUID
Scope: global

Storage bucket configuration

To enable storage buckets for local storage pool drivers and allow applications to access
the buckets via the S3 protocol, you must configure the core.storage_buckets_address
(page 404) server setting. size Size/quota of the storage bucket (page 563)

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver
Scope: local

ZFS - zfs

ZFS (Zettabyte file system) combines both physical volumemanagement and a file system. A
ZFS installation can span across a series of storage devices and is very scalable, allowing you
to add disks to expand the available space in the storage pool immediately.

ZFS is a block-based file system that protects against data corruption by using checksums
to verify, confirm and correct every operation. To run at a sufficient speed, this mechanism
requires a powerful environment with a lot of RAM.

In addition, ZFS offers snapshots and replication, RAID management, copy-on-write clones,
compression and other features.

To use ZFS, make sure you have zfsutils-linux installed on your machine.

Terminology

ZFS creates logical units based on physical storage devices. These logical units are called ZFS
pools or zpools. Each zpool is then divided into a number of . These can be of different types:

• A can be seen as a partition or a mounted file system.

• A ZFS volume represents a block device.

563 of 954

• A ZFS snapshot captures a specific state of either a or a ZFS volume. ZFS snapshots are
read-only.

• A ZFS clone is a writable copy of a ZFS snapshot.

zfs driver in LXD

The zfs driver in LXD uses and ZFS volumes for images and custom storage volumes, and ZFS
snapshots and clones to create instances from images and for instance and custom volume
snapshots. By default, LXD enables compression when creating a ZFS pool.

LXD assumes that it has full control over the ZFS pool and . Therefore, you should never
maintain any or file system entities that are not owned by LXD in a ZFS pool or , because LXD
might delete them.

Due to the way copy-on-write works in ZFS, parent can’t be removed until all children are
gone. As a result, LXD automatically renames any objects that are removed but still refer-
enced. Such objects are kept at a random deleted/ path until all references are gone and the
object can safely be removed. Note that this method might have ramifications for restoring
snapshots. See Limitations (page 564) below.

LXD automatically enables trimming support on all newly created pools on ZFS 0.8 or later.
This increases the lifetime of SSDs by allowing better block re-use by the controller, and it
also allows to free space on the root file system when using a loop-backed ZFS pool. If you
are running a ZFS version earlier than 0.8 and want to enable trimming, upgrade to at least
version 0.8. Then use the following commands to make sure that trimming is automatically
enabled for the ZFS pool in the future and trim all currently unused space:

zpool upgrade ZPOOL-NAME
zpool set autotrim=on ZPOOL-NAME
zpool trim ZPOOL-NAME

Limitations

The zfs driver has the following limitations:

Restoring from older snapshots
ZFS doesn’t support restoring from snapshots other than the latest one. You can, how-
ever, create new instances from older snapshots. This method makes it possible to
confirm whether a specific snapshot contains what you need. After determining the
correct snapshot, you can remove the newer snapshots (page 201) so that the snapshot
you need is the latest one and you can restore it.

Alternatively, you can configure LXD to automatically discard the newer snapshots dur-
ing restore. To do so, set the zfs.remove_snapshots (page 570) configuration for the
volume (or the corresponding volume.zfs.remove_snapshots configuration on the stor-
age pool for all volumes in the pool).

Note, however, that if zfs.clone_copy (page 566) is set to true, instance copies use ZFS
snapshots too. In that case, you cannot restore an instance to a snapshot taken before
the last copy without having to also delete all its descendants. If this is not an option,
you can copy thewanted snapshot into a new instance and then delete the old instance.
You will, however, lose any other snapshots the instance might have had.

564 of 954

Observing I/O quotas
I/O quotas are unlikely to affect very much. That’s because ZFS is a port of a Solaris
module (using SPL) and not a native Linux file system using the Linux VFS API, which is
where I/O limits are applied.

Feature support in ZFS
Some features, like the use of idmaps or delegation of a ZFS dataset, require ZFS 2.2 or
higher and are therefore not widely available yet.

Quotas

ZFS provides two different quota properties: quota and refquota. quota restricts the total
size of a , including its snapshots and clones. refquota restricts only the size of the data in
the , not its snapshots and clones.

By default, LXD uses the quota property when you set up a size/quota for your storage vol-
ume. If you want to use the refquota property instead, set the zfs.use_refquota (page 570)
configuration for the volume (or the corresponding volume.zfs.use_refquota configuration
on the storage pool for all volumes in the pool).

You can also set the zfs.reserve_space (page 570) (or volume.zfs.reserve_space) configura-
tion to use ZFS reservation or refreservation along with quota or refquota.

Configuration options

The following configuration options are available for storage pools that use the zfs driver
and for storage volumes in these pools.

Storage pool configuration

size Size of the storage pool (for loop-based pools) (page 565)

Key: size
Type: string
Default: auto (20% of free disk space, >= 5 GiB and <= 30 GiB)
Scope: local

When creating loop-based pools, specify the size in bytes (suffixes (page 506) are supported).
You can increase the size to grow the storage pool.

Thedefault (auto) creates a storagepool that uses20%of the freedisk space,with aminimum
of 5 GiB and a maximum of 30 GiB.

source Path to an existing block device, loop file, or ZFS dataset/pool (page 565)

Key: source
Type: string
Scope: local

source.wipeWhether to wipe the block device before creating the pool (page 565)

565 of 954

Key: source.wipe
Type: bool
Default: false
Scope: local

Set this option to true to wipe the block device specified in source prior to creating the stor-
age pool.

zfs.clone_copyWhether to use ZFS lightweight clones (page 566)

Key: zfs.
clone_copy

Type: string
Default: true
Scope: global

Set this option to true or false to enable or disable using ZFS lightweight clones rather than
full dataset copies. Set the option to rebase to copy based on the initial image.

zfs.exportWhether to export the zpool when an unmount is being performed (page 566)

Key: zfs.
export

Type: bool
Default: true
Scope: global

zfs.pool_name Name of the zpool (page 566)

Key: zfs.pool_name
Type: string
Default: name of the pool
Scope: local

Tip

In addition to these configurations, you can also set default values for the storage volume
configurations. See Configure default values for storage volumes (page 190).

Storage volume configuration

block.filesystem File system of the storage volume (page 566)

566 of 954

Key: block.filesystem
Type: string
Default: same as volume.block.filesystem
Condi-
tion:

block-based volume with content type filesystem (zfs.block_mode enabled)

Scope: global

Valid options are: btrfs, ext4, xfs If not set, ext4 is assumed.

block.mount_optionsMount options for block-backed file system volumes (page 567)

Key: block.mount_options
Type: string
Default: same as volume.block.mount_options
Condi-
tion:

block-based volume with content type filesystem (zfs.block_mode enabled)

Scope: global

security.shared Enable volume sharing (page 567)

Key: security.shared
Type: bool
Default: same as volume.security.shared or false
Condition: virtual-machine or custom block volume
Scope: global

Enabling this option allows sharing the volume across multiple instances despite the possi-
bility of data loss.

security.shifted Enable ID shifting overlay (page 567)

Key: security.shifted
Type: bool
Default: same as volume.security.shifted or false
Condition: custom volume
Scope: global

Enabling this option allows attaching the volume to multiple isolated instances.

security.unmapped Disable ID mapping for the volume (page 567)

Key: security.unmapped
Type: bool
Default: same as volume.security.unmappped or false
Condition: custom volume
Scope: global

size Size/quota of the storage volume (page 567)

567 of 954

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver
Scope: global

snapshots.expiryWhen snapshots are to be deleted (page 568)

Key: snapshots.expiry
Type: string
Default: same as volume.snapshots.expiry
Condition: custom volume
Scope: global

Specify an expression like 1M 2H 3d 4w 5m 6y.

snapshots.pattern Template for the snapshot name (page 568)

Key: snapshots.pattern
Type: string
Default: same as volume.snapshots.pattern or snap%d
Condition: custom volume
Scope: global

You can specify a naming template that is used for scheduled snapshots and unnamed snap-
shots.

The snapshots.pattern option takes a Pongo2 template string to format the snapshot name.

To add a time stamp to the snapshot name, use the Pongo2 context variable cre-
ation_date. Make sure to format the date in your template string to avoid forbid-
den characters in the snapshot name. For example, set snapshots.pattern to {{ cre-
ation_date|date:'2006-01-02_15-04-05' }} to name the snapshots after their time of cre-
ation, down to the precision of a second.

Another way to avoid name collisions is to use the placeholder %d in the pattern. For the first
snapshot, the placeholder is replaced with 0. For subsequent snapshots, the existing snap-
shot names are taken into account to find the highest number at the placeholder’s position.
This number is then incremented by one for the new name.

snapshots.schedule Schedule for automatic volume snapshots (page 568)

Key: snapshots.schedule
Type: string
Default: same as snapshots.schedule
Condition: custom volume
Scope: global

Specify either a cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated
list of schedule aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or

568 of 954

leave empty to disable automatic snapshots (the default).

volatile.idmap.last JSON-serialized UID/GID map that has been applied to the volume
(page 569)

Key: volatile.idmap.
last

Type: string
Condition: filesystem

volatile.idmap.next JSON-serialized UID/GID map that has been applied to the volume
(page 569)

Key: volatile.idmap.
next

Type: string
Condition: filesystem

volatile.uuid The volume’s UUID (page 569)

Key: volatile.uuid
Type: string
Default: random UUID
Scope: global

zfs.block_modeWhether to use a formatted zvol rather than a dataset (page 569)

Key: zfs.block_mode
Type: bool
Default: same as volume.zfs.block_mode
Scope: global

zfs.block_mode can be set only for custom storage volumes. To enable ZFS block mode for
all storage volumes in the pool, including instance volumes, use volume.zfs.block_mode.

zfs.blocksize Size of the ZFS block (page 569)

Key: zfs.blocksize
Type: string
Default: same as volume.zfs.blocksize
Scope: global

The sizemust bebetween512bytes and16MiB andmust be apower of 2. For a block volume,
a maximum value of 128 KiB will be used even if a higher value is set.

Depending on the value of zfs.block_mode (page 569), the specified size is used to set either
volblocksize or recordsize in ZFS.

zfs.delegateWhether to delegate the ZFS dataset (page 569)

569 of 954

Key: zfs.delegate
Type: bool
Default: same as volume.zfs.delegate
Condition: ZFS 2.2 or higher
Scope: global

This option controls whether to delegate the ZFS dataset and anything underneath it to
the container or containers that use it. When used in conjunction with security.nesting
(page 436), this allows using the zfs command in the container.

zfs.remove_snapshots Remove snapshots as needed (page 570)

Key: zfs.remove_snapshots
Type: bool
Default: same as volume.zfs.remove_snapshots or false
Scope: global

zfs.reserve_space Use reservation/refreservation along with quota/refquota (page 570)

Key: zfs.reserve_space
Type: bool
Default: same as volume.zfs.reserve_space or false
Scope: global

zfs.use_refquota Use refquota instead of quota for space (page 570)

Key: zfs.use_refquota
Type: bool
Default: same as volume.zfs.use_refquota or false
Scope: global

Storage bucket configuration

To enable storage buckets for local storage pool drivers and allow applications to access
the buckets via the S3 protocol, you must configure the core.storage_buckets_address
(page 404) server setting. size Size/quota of the storage bucket (page 570)

Key: size
Type: string
Default: same as volume.size
Condition: appropriate driver
Scope: local

See the corresponding pages for driver-specific information and configuration options.

570 of 954

Feature comparison

Where possible, LXD uses the advanced features of each storage system to optimize opera-
tions.

Feature Di-
rec-
tory

Btrfs LVM ZFS Ceph
RBD

CephFSCeph
Object

Dell
Power-
Flex

Pure
Stor-
age

Optimized image stor-
age (page 571)

� � � � � � � � �

Optimized instance
creation

� � � � � � � � �

Optimized snapshot
creation

� � � � � � � � �

Optimized image
transfer

� � � � � � � � �

Optimized backup
(import/export)

� � � � � � � � �

Optimized volume
transfer (page 572)

� � � � �1 � � � �

Optimized volume re-
fresh (page 572)

� � �2 � �3 � � � �

Copy on write � � � � � � � � �
Block based � � � � � � � � �
Instant cloning � � � � � � � � �
Storage driver usable
inside a container

� � � �4 � � � � �

Restore from older
snapshots (not latest)

� � � � � � � � �

Storage quotas �5 � � � � � � � �
Available on lxd init � � � � � � � � �
Object storage � � � � � � � � �

Optimized image storage

Most of the storage drivers have some kind of optimized image storage format. To make
instance creation near instantaneous, LXD clones a pre-made image volume when creating
an instance rather than unpacking the image tarball from scratch.

To prevent preparing such a volume on a storage pool that might never be used with that
image, the volume is generated on demand. Therefore, the first instance takes longer to
create than subsequent ones.

1 Volumes of type block will fall back to non-optimized transfer when migrating to an older LXD server that
doesn’t yet support the RBD_AND_RSYNCmigration type.

2 Requires lvm.use_thinpool (page 558) to be enabled. Only when refreshing local volumes.
3 Only for volumes of type block.
4 Requires zfs.delegate (page 569) to be enabled.
5

The dir driver supports storage quotas when running on either ext4 or XFS with project quotas enabled at the
file system level.

571 of 954

Optimized volume transfer

Btrfs, ZFS and Ceph RBD have an internal send/receive mechanism that allows for optimized
volume transfer.

LXD uses this optimized transfer when transferring instances and snapshots between stor-
age pools that use the same storage driver, if the storage driver supports optimized transfer
and the optimized transfer is actually quicker. Otherwise, LXD uses rsync to transfer con-
tainer and file system volumes, or raw block transfer to transfer virtual machine and custom
block volumes.

The optimized transfer uses the underlying storage driver’s native functionality for transfer-
ring data, which is usually faster than using rsync or raw block transfer.

Optimized volume refresh

The full potential of the optimized transfer becomes apparent when refreshing a copy of
an instance or custom volume that uses periodic snapshots. If the optimized transfer isn’t
supported by the driver or its implementation of volume refresh, instead of the delta, the
entire volume including its snapshot(s) will be copied using either rsyncor rawblock transfer.
LXDwill try to keep the overhead low by transferring only the volume itself or any snapshots
that are missing on the target.

When optimized refresh is available for an instance or custom volume, LXD bases the refresh
on the latest snapshot, which means:

• When you take a first snapshot and refresh the copy, the transfer will take roughly the
same time as a full copy. LXD transfers the new snapshot and the difference between
the snapshot and the main volume.

• For subsequent snapshots, the transfer is considerably faster. LXD does not transfer
the full new snapshot, but only thedifferencebetween thenew snapshot and the latest
snapshot that already exists on the target.

• When refreshing without a new snapshot, LXD transfers only the differences between
the main volume and the latest snapshot on the target. This transfer is usually faster
than using rsync (as long as the latest snapshot is not too outdated).

On the other hand, refreshing copies of instances without snapshots (either because the in-
stance doesn’t have any snapshots or because the refresh uses the --instance-only flag)
would actually be slower than using rsync or raw block transfer. In such cases, the optimized
transfer would transfer the difference between the (non-existent) latest snapshot and the
main volume, thus the full volume. Therefore, LXD uses rsync or raw block transfer instead
of the optimized transfer for refreshes without snapshots.

Recommended setup

The two best options for use with LXD are ZFS and Btrfs. They have similar functionalities,
but ZFS is more reliable.

Whenever possible, you should dedicate a full disk or partition to your LXD storage pool. LXD
allows to create loop-based storage, but this isn’t recommended forproductionuse. SeeData
storage location (page 350) for more information.

The directory backend should be considered as a last resort option. It supports all main LXD
features, but is slow and inefficient because it cannot perform instant copies or snapshots.

572 of 954

Therefore, it constantly copies the instance’s full storage.

Security considerations

Currently, the Linux kernel might silently ignore mount options and not apply them when a
block-basedfile system (for example, ext4) is alreadymountedwith differentmount options.
This means when dedicated disk devices are shared between different storage pools with
differentmount options set, the secondmountmight not have the expectedmount options.
This becomes security relevant when, for example, one storage pool is supposed to provide
acl support and the second one is supposed to not provide acl support.

For this reason, it is currently recommended toeither havededicateddisk devices per storage
pool or to ensure that all storage pools that share the same dedicated disk device use the
same mount options.

Related topics

How-to guides:

• Storage (page 175)

Explanation:

• Storage pools, volumes, and buckets (page 349)

4.2.7. Networks
LXD supports different network types forManaged networks (page 354).

Fully controlled networks

Fully controlled networks create network interfaces and provide most functionality, includ-
ing, for example, the ability to do IP management.

LXD supports the following network types:

Bridge network

As one of the possible network configuration types under LXD, LXD supports creating and
managing network bridges.

A network bridge creates a virtual L2 Ethernet switch that instance NICs can connect to, mak-
ing it possible for them to communicate with each other and the host. LXD bridges can lever-
age underlying native Linux bridges and Open vSwitch.

The bridge network type allows to create an L2 bridge that connects the instances that use
it together into a single network L2 segment. Bridges created by LXD are managed, which
means that in addition to creating the bridge interface itself, LXD also sets up a local dnsmasq
process to provide DHCP, IPv6 route announcements and DNS services to the network. By
default, it also performs NAT for the bridge.

See How to configure your firewall (page 258) for instructions on how to configure your fire-
wall to work with LXD bridge networks.

573 of 954

Note

Static DHCP assignments depend on the client using its MAC address as the DHCP identi-
fier. This method prevents conflicting leases when copying an instance, and thus makes
statically assigned leases work properly.

IPv6 prefix size

If you’re using IPv6 for your bridge network, you should use a prefix size of 64.

Larger subnets (i.e., using a prefix smaller than 64) should work properly too, but they aren’t
typically that useful for SLAAC (Stateless Address Auto-configuration).

Smaller subnets are in theory possible (when using stateful DHCPv6 for IPv6 allocation), but
they aren’t properly supported by dnsmasq and might cause problems. If you must create a
smaller subnet, use static allocation or another standalone router advertisement daemon.

Configuration options

The following configuration key namespaces are currently supported for the bridge network
type:

• bgp (BGP peer configuration)

• bridge (L2 interface configuration)

• dns (DNS server and resolution configuration)

• fan (configuration specific to the Ubuntu FAN overlay)

• ipv4 (L3 IPv4 configuration)

• ipv6 (L3 IPv6 configuration)

• maas (MAAS network identification)

• security (network ACL configuration)

• raw (raw configuration file content)

• tunnel (cross-host tunneling configuration)

• user (free-form key/value for user metadata)

Note

LXD uses the CIDR notation261 where network subnet information is required, for exam-
ple, 192.0.2.0/24 or 2001:db8::/32. This does not apply to cases where a single address
is required, for example, local/remote addresses of tunnels, NAT addresses or specific ad-
dresses to apply to an instance.

The following configuration options are available for the bridge network type: bgp.ipv4.
nexthopOverride the IPv4 next-hop for advertised prefixes (page 574)

261 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

574 of 954

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Key: bgp.ipv4.
nexthop

Type: string
Default: local address
Condition: BGP server
Scope: local

bgp.ipv6.nexthopOverride the IPv6 next-hop for advertised prefixes (page 575)

Key: bgp.ipv6.
nexthop

Type: string
Default: local address
Condition: BGP server
Scope: local

bgp.peers.NAME.address Peer address (IPv4 or IPv6) (page 575)

Key: bgp.peers.NAME.
address

Type: string
Condition: BGP server
Scope: global

bgp.peers.NAME.asn Peer AS number (page 575)

Key: bgp.peers.NAME.
asn

Type: integer
Condition: BGP server
Scope: global

bgp.peers.NAME.holdtime Peer session hold time (page 575)

Key: bgp.peers.NAME.
holdtime

Type: integer
Default: 180
Condition: BGP server
Required: no
Scope: global

Specify the hold time in seconds.

bgp.peers.NAME.password Peer session password (page 575)

575 of 954

Key: bgp.peers.NAME.
password

Type: string
Default: (no password)
Condition: BGP server
Required: no
Scope: global

bridge.driver Bridge driver (page 576)

Key: bridge.driver
Type: string
Default: native
Scope: global

Possible values are native and openvswitch.

bridge.external_interfaces Unconfigured network interfaces to include in the bridge
(page 576)

Key: bridge.
external_interfaces

Type: string
Scope: local

Specify a comma-separated list of unconfigured network interfaces to include in the bridge.

bridge.hwaddrMAC address for the bridge (page 576)

Key: bridge.hwaddr
Type: string
Scope: global

bridge.mode Bridge operation mode (page 576)

Key: bridge.mode
Type: string
Default: standard
Scope: global

Possible values are standard and fan.

bridge.mtu Bridge MTU (page 576)

576 of 954

Key: bridge.mtu
Type: integer
De-
fault:

1500 if bridge.mode=standard, 1480 if bridge.mode=fan and fan.type=ipip, or 1450
if bridge.mode=fan and fan.type=vxlan

Scope: global

The default value varies depending on whether the bridge uses a tunnel or a fan setup.

dns.domain Domain to advertise to DHCP clients and use for DNS resolution (page 577)

Key: dns.
domain

Type: string
Default: lxd
Scope: global

dns.mode DNS registration mode (page 577)

Key: dns.
mode

Type: string
Default: managed
Scope: global

Possible values are none for no DNS record, managed for LXD-generated static records, and
dynamic for client-generated records.

dns.search Full domain search list (page 577)

Key: dns.search
Type: string
Default: dns.domain value
Scope: global

Specify a comma-separated list of domains.

dns.zone.forward DNS zone names for forward DNS records (page 577)

Key: dns.zone.
forward

Type: string
Scope: global

Specify a comma-separated list of DNS zone names.

dns.zone.reverse.ipv4 DNS zone name for IPv4 reverse DNS records (page 577)

577 of 954

Key: dns.zone.reverse.
ipv4

Type: string
Scope: global

dns.zone.reverse.ipv6 DNS zone name for IPv6 reverse DNS records (page 578)

Key: dns.zone.reverse.
ipv6

Type: string
Scope: global

fan.overlay_subnet Subnet to use as the overlay for the FAN (page 578)

Key: fan.
overlay_subnet

Type: string
Default: 240.0.0.0/8
Condition: fan mode
Scope: global

Use CIDR notation.

fan.type Tunneling type for the FAN (page 578)

Key: fan.type
Type: string
Default: vxlan
Condition: fan mode
Scope: global

Possible values are vxlan and ipip.

fan.underlay_subnet Subnet to use as the underlay for the FAN (page 578)

Key: fan.underlay_subnet
Type: string
Default: initial value on creation: auto
Condition: fan mode
Scope: global

Use CIDR notation.

You can set the option to auto to use the default gateway subnet.

ipv4.address IPv4 address for the bridge (page 578)

578 of 954

Key: ipv4.address
Type: string
Default: initial value on creation: auto
Condition: standard mode
Scope: global

Use CIDR notation.

You can set the option to none to turn off IPv4, or to auto to generate a new random unused
subnet.

ipv4.dhcpWhether to allocate IPv4 addresses using DHCP (page 579)

Key: ipv4.dhcp
Type: bool
Default: true
Condition: IPv4 address
Scope: global

ipv4.dhcp.expiryWhen to expire DHCP leases (page 579)

Key: ipv4.dhcp.
expiry

Type: string
Default: 1h
Condition: IPv4 DHCP
Scope: global

ipv4.dhcp.gateway Address of the gateway for the IPv4 subnet (page 579)

Key: ipv4.dhcp.
gateway

Type: string
Default: IPv4 address
Condition: IPv4 DHCP
Scope: global

ipv4.dhcp.ranges IPv4 ranges to use for DHCP (page 579)

Key: ipv4.dhcp.
ranges

Type: string
Default: all addresses
Condition: IPv4 DHCP
Scope: global

Specify a comma-separated list of IPv4 ranges in FIRST-LAST format.

579 of 954

ipv4.firewallWhether to generate filtering firewall rules for this network (page 579)

Key: ipv4.firewall
Type: bool
Default: true
Condition: IPv4 address
Scope: global

ipv4.natWhether to use NAT for IPv4 (page 580)

Key: ipv4.nat
Type: bool
Default: false (initial value on creation if ipv4.address is set to auto: true)
Condition: IPv4 address
Scope: global

ipv4.nat.address Source address used for outbound traffic from the bridge (page 580)

Key: ipv4.nat.
address

Type: string
Condition: IPv4 address
Scope: global

ipv4.nat.orderWhere to add the required NAT rules (page 580)

Key: ipv4.nat.
order

Type: string
Default: before
Condition: IPv4 address
Scope: global

Set this option to before to add the NAT rules before any pre-existing rules, or to after to
add them after the pre-existing rules.

ipv4.ovn.ranges IPv4 ranges to use for child OVN network routers (page 580)

Key: ipv4.ovn.
ranges

Type: string
Scope: global

Specify a comma-separated list of IPv4 ranges in FIRST-LAST format.

ipv4.routes Additional IPv4 CIDR subnets to route to the bridge (page 580)

580 of 954

Key: ipv4.routes
Type: string
Condition: IPv4 address
Scope: global

Specify a comma-separated list of IPv4 CIDR subnets.

ipv4.routingWhether to route IPv4 traffic in and out of the bridge (page 581)

Key: ipv4.
routing

Type: bool
Default: true
Condition: IPv4 address
Scope: global

ipv6.address IPv6 address for the bridge (page 581)

Key: ipv6.address
Type: string
Default: initial value on creation: auto
Condition: standard mode
Scope: global

Use CIDR notation.

You can set the option to none to turn off IPv6, or to auto to generate a new random unused
subnet.

ipv6.dhcpWhether to provide additional network configuration over DHCP (page 581)

Key: ipv6.dhcp
Type: bool
Default: true
Condition: IPv6 address
Scope: global

ipv6.dhcp.expiryWhen to expire DHCP leases (page 581)

Key: ipv6.dhcp.
expiry

Type: string
Default: 1h
Condition: IPv6 DHCP
Scope: global

ipv6.dhcp.ranges IPv6 ranges to use for DHCP (page 581)

581 of 954

Key: ipv6.dhcp.ranges
Type: string
Default: all addresses
Condition: IPv6 stateful DHCP
Scope: global

Specify a comma-separated list of IPv6 ranges in FIRST-LAST format.

ipv6.dhcp.statefulWhether to allocate IPv6 addresses using DHCP (page 582)

Key: ipv6.dhcp.
stateful

Type: bool
Default: false
Condition: IPv6 DHCP
Scope: global

ipv6.firewallWhether to generate filtering firewall rules for this network (page 582)

Key: ipv6.firewall
Type: bool
Default: true
Condition: IPv6 DHCP
Scope: global

ipv6.natWhether to use NAT for IPv6 (page 582)

Key: ipv6.nat
Type: bool
Default: false (initial value on creation if ipv6.address is set to auto: true)
Condition: IPv6 address
Scope: global

ipv6.nat.address Source address used for outbound traffic from the bridge (page 582)

Key: ipv6.nat.
address

Type: string
Condition: IPv6 address
Scope: global

ipv6.nat.orderWhere to add the required NAT rules (page 582)

582 of 954

Key: ipv6.nat.
order

Type: string
Default: before
Condition: IPv6 address
Scope: global

Set this option to before to add the NAT rules before any pre-existing rules, or to after to
add them after the pre-existing rules.

ipv6.ovn.ranges IPv6 ranges to use for child OVN network routers (page 583)

Key: ipv6.ovn.
ranges

Type: string
Scope: global

Specify a comma-separated list of IPv6 ranges in FIRST-LAST format.

ipv6.routes Additional IPv6 CIDR subnets to route to the bridge (page 583)

Key: ipv6.routes
Type: string
Condition: IPv6 address
Scope: global

Specify a comma-separated list of IPv6 CIDR subnets.

ipv6.routingWhether to route IPv6 traffic in and out of the bridge (page 583)

Key: ipv6.
routing

Type: bool
Condition: IPv6 address
Scope: global

maas.subnet.ipv4MAAS IPv4 subnet to register instances in (page 583)

Key: maas.subnet.ipv4
Type: string
Condition: IPv4 address; using the network property on the NIC
Scope: global

maas.subnet.ipv6MAAS IPv6 subnet to register instances in (page 583)

583 of 954

Key: maas.subnet.ipv6
Type: string
Condition: IPv6 address; using the network property on the NIC
Scope: global

raw.dnsmasqAdditional dnsmasq configuration to append to the configurationfile (page 584)

Key: raw.
dnsmasq

Type: string
Scope: global

security.acls Network ACLs to apply to NICs connected to this network (page 584)

Key: security.acls
Type: string
Scope: global

Specify a comma-separated list of network ACLs.

Also see Bridge limitations (page 234).

security.acls.default.egress.action Default action to use for egress traffic (page 584)

Key: security.acls.default.egress.
action

Type: string
Condition: security.acls
Scope: global

The specified action is used for all egress traffic that doesn’t match any ACL rule.

security.acls.default.egress.loggedWhether to log egress traffic that doesn’t match any
ACL rule (page 584)

Key: security.acls.default.egress.
logged

Type: bool
Condition: security.acls
Scope: global

security.acls.default.ingress.action Default action to use for ingress traffic (page 584)

Key: security.acls.default.ingress.
action

Type: string
Condition: security.acls
Scope: global

584 of 954

The specified action is used for all ingress traffic that doesn’t match any ACL rule.

security.acls.default.ingress.logged Whether to log ingress traffic that doesn’t match
any ACL rule (page 585)

Key: security.acls.default.ingress.
logged

Type: bool
Condition: security.acls
Scope: global

tunnel.NAME.groupMulticast address for vxlan (page 585)

Key: tunnel.NAME.
group

Type: string
Condition: vxlan

This address is used if tunnel.NAME.local (page 585) and tunnel.NAME.remote (page 586)
aren’t set.

tunnel.NAME.id Specific tunnel ID to use for the vxlan tunnel (page 585)

Key: tunnel.NAME.
id

Type: integer
Condition: vxlan

tunnel.NAME.interface Specific host interface to use for the tunnel (page 585)

Key: tunnel.NAME.
interface

Type: string
Condition: vxlan

tunnel.NAME.local Local address for the tunnel (page 585)

Key: tunnel.NAME.local
Type: string
Condition: gre or vxlan
Required: not required for multicast vxlan

tunnel.NAME.port Specific port to use for the vxlan tunnel (page 585)

585 of 954

Key: tunnel.NAME.
port

Type: integer
Default: 0
Condition: vxlan

tunnel.NAME.protocol Tunneling protocol (page 586)

Key: tunnel.NAME.
protocol

Type: string
Condition: standard mode

Possible values are vxlan and gre.

tunnel.NAME.remote Remote address for the tunnel (page 586)

Key: tunnel.NAME.remote
Type: string
Condition: gre or vxlan
Required: not required for multicast vxlan

tunnel.NAME.ttl Specific TTL to use for multicast routing topologies (page 586)

Key: tunnel.NAME.
ttl

Type: string
Default: 1
Condition: vxlan

user.* User-provided free-form key/value pairs (page 586)

Key: user.
*

Type: string
Scope: global

Supported features

The following features are supported for the bridge network type:

• How to configure network ACLs (page 216)

• How to configure network forwards (page 235)

• How to configure network zones (page 252)

• How to configure LXD as a BGP server (page 214)

586 of 954

• How to integrate with systemd-resolved (page 262)

Firewall issues

SeeHow to configure your firewall (page 258) for instructions on how to troubleshoot firewall
issues.

OVN network

OVN is a software-definednetworking system that supports virtual network abstraction. You
can use it to build your own private cloud. See www.ovn.org262 for more information.

The ovnnetwork type allows to create logical networks using theOVNSDN (software-defined
networking). This kind of network can be useful for labs and multi-tenant environments
where the same logical subnets are used in multiple discrete networks.

A LXD OVN network can be connected to an existing managed Bridge network (page 573) or
Physical network (page 595) to gain access to the wider network. By default, all connections
from the OVN logical networks are NATed to an IP allocated from the uplink network.

See How to set up OVN with LXD (page 266) for basic instructions for setting up an OVN net-
work.

Note

Static DHCP assignments depend on the client using its MAC address as the DHCP identi-
fier. This method prevents conflicting leases when copying an instance, and thus makes
statically assigned leases work properly.

OVN networking architecture

The following figure shows the OVN network traffic flow in a LXD cluster:

Fig. 1: OVN networking (one network)

262 https://www.ovn.org/

587 of 954

https://www.ovn.org/

The OVN network connects the different cluster members. Network traffic between the
cluster members passes through the NIC for inter-cluster traffic (eth1 in the figure) and is
transmitted through an OVN tunnel. This traffic between cluster members is referred to as
OVN east/west traffic.

For outside connectivity, the OVN network requires an uplink network (a Bridge network
(page 573) or a Physical network (page 595)). The OVN network uses a virtual router to con-
nect to the uplink network through the NIC for uplink traffic (eth0 in the figure). The virtual
router is active on only one of the cluster members, and can move to a different member
at any time. Independent of where the router resides, the OVN network is available on all
cluster members.

Every instance on any cluster member can connect to the OVN network through its virtual
NIC (usually eth0 for containers and enp5s0 for virtual machines). The traffic between the
instances and the uplink network is referred to as OVN north/south traffic.

The strengths of using OVN become apparent when looking at a networking architecture
with more than one OVN network:

Fig. 2: OVN networking (two networks)

In this case, both depicted OVN networks are completely independent. Both networks are
available on all cluster members (with each virtual router being active on one random cluster
member). Each instance can use either of the networks, and the traffic on either network is
completely isolated from the other network.

Configuration options

The following configuration key namespaces are currently supported for the ovn network
type:

• bridge (L2 interface configuration)

• dns (DNS server and resolution configuration)

• ipv4 (L3 IPv4 configuration)

• ipv6 (L3 IPv6 configuration)

• security (network ACL configuration)

588 of 954

• user (free-form key/value for user metadata)

Note

LXD uses the CIDR notation263 where network subnet information is required, for exam-
ple, 192.0.2.0/24 or 2001:db8::/32. This does not apply to cases where a single address
is required, for example, local/remote addresses of tunnels, NAT addresses or specific ad-
dresses to apply to an instance.

The following configuration options are available for the ovn network type: bridge.hwaddr
MAC address for the bridge (page 589)

Key: bridge.hwaddr
Type: string

bridge.mtu Bridge MTU (page 589)

Key: bridge.
mtu

Type: integer
Default: 1442

The default value allows the host to host Geneve tunnels.

dns.domain Domain to advertise to DHCP clients and use for DNS resolution (page 589)

Key: dns.
domain

Type: string
Default: lxd

dns.search Full domain search list (page 589)

Key: dns.search
Type: string
Default: dns.domain value

Specify a comma-separated list of domains.

dns.zone.forward DNS zone names for forward DNS records (page 589)

Key: dns.zone.
forward

Type: string

Specify a comma-separated list of DNS zone names.
263 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

589 of 954

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

dns.zone.reverse.ipv4 DNS zone name for IPv4 reverse DNS records (page 589)

Key: dns.zone.reverse.
ipv4

Type: string

dns.zone.reverse.ipv6 DNS zone name for IPv6 reverse DNS records (page 590)

Key: dns.zone.reverse.
ipv6

Type: string

ipv4.address IPv4 address for the OVN network (page 590)

Key: ipv4.address
Type: string
Default: initial value on creation: auto
Condition: standard mode

Use CIDR notation.

You can set the option to none to turn off IPv4, or to auto to generate a new random unused
subnet.

ipv4.dhcpWhether to allocate IPv4 addresses using DHCP (page 590)

Key: ipv4.dhcp
Type: bool
Default: true
Condition: IPv4 address

ipv4.l3onlyWhether to enable layer 3 only mode for IPv4 (page 590)

Key: ipv4.l3only
Type: bool
Default: false
Condition: IPv4 address

ipv4.natWhether to use NAT for IPv4 (page 590)

Key: ipv4.nat
Type: bool
Default: false (initial value on creation if ipv4.address is set to auto: true)
Condition: IPv4 address

ipv4.nat.address Source address used for outbound traffic from the network (page 590)

590 of 954

Key: ipv4.nat.address
Type: string
Condition: IPv4 address; requires uplink ovn.ingress_mode=routed

ipv6.address IPv6 address for the OVN network (page 591)

Key: ipv6.address
Type: string
Default: initial value on creation: auto
Condition: standard mode

Use CIDR notation.

You can set the option to none to turn off IPv6, or to auto to generate a new random unused
subnet.

ipv6.dhcpWhether to provide additional network configuration over DHCP (page 591)

Key: ipv6.dhcp
Type: bool
Default: true
Condition: IPv6 address

ipv6.dhcp.statefulWhether to allocate IPv6 addresses using DHCP (page 591)

Key: ipv6.dhcp.
stateful

Type: bool
Default: false
Condition: IPv6 DHCP

ipv6.l3onlyWhether to enable layer 3 only mode for IPv6 (page 591)

Key: ipv6.l3only
Type: bool
Default: false
Condition: IPv6 DHCP stateful

ipv6.natWhether to use NAT for IPv6 (page 591)

Key: ipv6.nat
Type: bool
Default: false (initial value on creation if ipv6.address is set to auto: true)
Condition: IPv6 address

ipv6.nat.address Source address used for outbound traffic from the network (page 591)

591 of 954

Key: ipv6.nat.address
Type: string
Condition: IPv6 address; requires uplink ovn.ingress_mode=routed

network Uplink network to use for external network access (page 592)

Key: network
Type: string

security.acls Network ACLs to apply to NICs connected to this network (page 592)

Key: security.acls
Type: string

Specify a comma-separated list of network ACLs.

security.acls.default.egress.action Default action to use for egress traffic (page 592)

Key: security.acls.default.egress.
action

Type: string
Default: reject
Condition: security.acls

The specified action is used for all egress traffic that doesn’t match any ACL rule.

security.acls.default.egress.loggedWhether to log egress traffic that doesn’t match any
ACL rule (page 592)

Key: security.acls.default.egress.
logged

Type: bool
Default: false
Condition: security.acls

security.acls.default.ingress.action Default action to use for ingress traffic (page 592)

Key: security.acls.default.ingress.
action

Type: string
Default: reject
Condition: security.acls

The specified action is used for all ingress traffic that doesn’t match any ACL rule.

security.acls.default.ingress.logged Whether to log ingress traffic that doesn’t match
any ACL rule (page 592)

592 of 954

Key: security.acls.default.ingress.
logged

Type: bool
Default: false
Condition: security.acls

user.* User-provided free-form key/value pairs (page 593)

Key: user.
*

Type: string

Supported features

The following features are supported for the ovn network type:

• How to configure network ACLs (page 216)

• How to configure network forwards (page 235)

• How to configure network zones (page 252)

• How to create OVN peer routing relationships (page 276)

• How to configure network load balancers (page 271)

External networks

External networks use network interfaces that already exist. Therefore, LXD has limited pos-
sibility to control them, and LXD features like network ACLs, network forwards and network
zones are not supported.

Themain purpose for using external networks is to provide an uplink network through a par-
ent interface. This external network specifies the presets to use when connecting instances
or other networks to a parent interface.

LXD supports the following external network types:

Macvlan network

Macvlan is a virtual LAN that you can use if you want to assign several IP addresses to
the same network interface, basically splitting up the network interface into several sub-
interfaces with their own IP addresses. You can then assign IP addresses based on the ran-
domly generated MAC addresses.

The macvlan network type allows to specify presets to use when connecting instances to a
parent interface. In this case, the instance NICs can simply set the network option to the
network they connect to without knowing any of the underlying configuration details.

Note

593 of 954

If you are using a macvlan network, communication between the LXD host and the in-
stances is not possible. Both the host and the instances can talk to the gateway, but they
cannot communicate directly.

Configuration options

The following configuration key namespaces are currently supported for the macvlan net-
work type:

• maas (MAAS network identification)

• user (free-form key/value for user metadata)

Note

LXD uses the CIDR notation264 where network subnet information is required, for exam-
ple, 192.0.2.0/24 or 2001:db8::/32. This does not apply to cases where a single address
is required, for example, local/remote addresses of tunnels, NAT addresses or specific ad-
dresses to apply to an instance.

The following configuration options are available for the macvlan network type: gvrp
Whether to use GARP VLAN Registration Protocol (page 594)

Key: gvrp
Type: bool
Default: false
Scope: global

This option specifies whether to register the VLAN using the GARP VLAN Registration Pro-
tocol.

maas.subnet.ipv4MAAS IPv4 subnet to register instances in (page 594)

Key: maas.subnet.ipv4
Type: string
Condition: IPv4 address; using the network property on the NIC
Scope: global

maas.subnet.ipv6MAAS IPv6 subnet to register instances in (page 594)

Key: maas.subnet.ipv6
Type: string
Condition: IPv4 address; using the network property on the NIC
Scope: global

mtuMTU of the new interface (page 594)

264 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

594 of 954

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Key: mtu
Type: integer
Scope: global

parent Parent interface to create macvlan NICs on (page 595)

Key: parent
Type: string
Scope: local

user.* User-provided free-form key/value pairs (page 595)

Key: user.
*

Type: string
Scope: global

vlan VLAN ID to attach to (page 595)

Key: vlan
Type: integer
Scope: global

Physical network

The physical network type connects to an existing physical network, which can be a network
interface or a bridge, and serves as an uplink network for OVN.

This network type allows to specify presets to use when connecting OVN networks to a par-
ent interface or to allow an instance to use a physical interface as a NIC. In this case, the
instanceNICs can simply set the networkoption to the network they connect towithout know-
ing any of the underlying configuration details.

Configuration options

The following configuration key namespaces are currently supported for the physical net-
work type:

• bgp (BGP peer configuration)

• dns (DNS server and resolution configuration)

• ipv4 (L3 IPv4 configuration)

• ipv6 (L3 IPv6 configuration)

• maas (MAAS network identification)

• ovn (OVN configuration)

• user (free-form key/value for user metadata)

595 of 954

Note

LXD uses the CIDR notation265 where network subnet information is required, for exam-
ple, 192.0.2.0/24 or 2001:db8::/32. This does not apply to cases where a single address
is required, for example, local/remote addresses of tunnels, NAT addresses or specific ad-
dresses to apply to an instance.

The following configurationoptions are available for the physicalnetwork type: bgp.peers.
NAME.address Peer address for use by ovn downstream networks (page 596)

Key: bgp.peers.NAME.
address

Type: string
Condition: BGP server
Scope: global

The address can be IPv4 or IPv6.

bgp.peers.NAME.asn Peer AS number for use by ovn downstream networks (page 596)

Key: bgp.peers.NAME.
asn

Type: integer
Condition: BGP server
Scope: global

bgp.peers.NAME.holdtime Peer session hold time (page 596)

Key: bgp.peers.NAME.
holdtime

Type: integer
Default: 180
Condition: BGP server
Required: no
Scope: global

Specify the peer session hold time in seconds.

bgp.peers.NAME.password Peer session password for use by ovn downstream networks
(page 596)

265 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

596 of 954

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Key: bgp.peers.NAME.
password

Type: string
Default: (no password)
Condition: BGP server
Required: no
Scope: global

dns.nameservers DNS server IPs on physical network (page 597)

Key: dns.
nameservers

Type: string
Condition: standard mode
Scope: global

Specify a list of DNS server IPs.

gvrpWhether to use GARP VLAN Registration Protocol (page 597)

Key: gvrp
Type: bool
Default: false
Scope: global

This option specifies whether to register the VLAN using the GARP VLAN Registration Pro-
tocol.

ipv4.gateway IPv4 address for the gateway and network (page 597)

Key: ipv4.gateway
Type: string
Condition: standard mode
Scope: global

Use CIDR notation.

ipv4.ovn.ranges IPv4 ranges to use for child OVN network routers (page 597)

Key: ipv4.ovn.
ranges

Type: string
Scope: global

Specify a comma-separated list of IPv4 ranges in FIRST-LAST format.

ipv4.routes Additional IPv4 CIDR subnets (page 597)

597 of 954

Key: ipv4.routes
Type: string
Condition: IPv4 address
Scope: global

Specify a comma-separated list of IPv4CIDR subnets that canbeusedwith childOVNnetwork
forwarders, load-balancers and ipv4.routes.external (page 464) setting.

ipv4.routes.anycastWhether to allow IPv4 routes on multiple networks/NICs (page 598)

Key: ipv4.routes.
anycast

Type: bool
Default: false
Condition: IPv4 address
Scope: global

If set to true, this option allows the overlapping routes to be used onmultiple networks/NICs
at the same time.

ipv6.gateway IPv6 address for the gateway and network (page 598)

Key: ipv6.gateway
Type: string
Condition: standard mode
Scope: global

Use CIDR notation.

ipv6.ovn.ranges IPv6 ranges to use for child OVN network routers (page 598)

Key: ipv6.ovn.
ranges

Type: string
Scope: global

Specify a comma-separated list of IPv6 ranges in FIRST-LAST format.

ipv6.routes Additional IPv6 CIDR subnets (page 598)

Key: ipv6.routes
Type: string
Condition: IPv6 address
Scope: global

Specify a comma-separated list of IPv6CIDR subnets that canbeusedwith childOVNnetwork
forwarders, load-balancers and ipv6.routes.external (page 465) setting.

ipv6.routes.anycastWhether to allow IPv6 routes on multiple networks/NICs (page 598)

598 of 954

Key: ipv6.routes.
anycast

Type: bool
Default: false
Condition: IPv6 address
Scope: global

If set to true, this option allows the overlapping routes to be used onmultiple networks/NICs
at the same time.

maas.subnet.ipv4MAAS IPv4 subnet to register instances in (page 599)

Key: maas.subnet.ipv4
Type: string
Condition: IPv4 address; using the network property on the NIC
Scope: global

maas.subnet.ipv6MAAS IPv6 subnet to register instances in (page 599)

Key: maas.subnet.ipv6
Type: string
Condition: IPv6 address; using the network property on the NIC
Scope: global

mtuMTU of the new interface (page 599)

Key: mtu
Type: integer
Scope: global

ovn.ingress_mode How OVN NIC external IPs are advertised on uplink network (page 599)

Key: ovn.
ingress_mode

Type: string
Default: l2proxy
Condition: standard mode
Scope: global

Possible values are l2proxy (proxy ARP/NDP) and routed.

parent Existing interface to use for network (page 599)

Key: parent
Type: string
Scope: local

599 of 954

user.* User-provided free-form key/value pairs (page 599)

Key: user.
*

Type: string
Scope: global

vlan VLAN ID to attach to (page 600)

Key: vlan
Type: integer
Scope: global

Supported features

The following features are supported for the physical network type:

• How to configure LXD as a BGP server (page 214)

SR-IOV network

SR-IOV is a hardware standard that allows a single network card port to appear as several
virtual network interfaces in a virtualized environment.

The sriov network type allows to specify presets to use when connecting instances to a par-
ent interface. In this case, the instanceNICs can simply set the network option to the network
they connect to without knowing any of the underlying configuration details.

Configuration options

The following configuration key namespaces are currently supported for the sriov network
type:

• maas (MAAS network identification)

• user (free-form key/value for user metadata)

Note

LXD uses the CIDR notation266 where network subnet information is required, for exam-
ple, 192.0.2.0/24 or 2001:db8::/32. This does not apply to cases where a single address
is required, for example, local/remote addresses of tunnels, NAT addresses or specific ad-
dresses to apply to an instance.

The following configuration options are available for the sriov network type: maas.subnet.
ipv4MAAS IPv4 subnet to register instances in (page 600)

266 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

600 of 954

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Key: maas.subnet.ipv4
Type: string
Condition: IPv4 address; using the network property on the NIC
Scope: global

maas.subnet.ipv6MAAS IPv6 subnet to register instances in (page 601)

Key: maas.subnet.ipv6
Type: string
Condition: IPv6 address; using the network property on the NIC
Scope: global

mtuMTU of the new interface (page 601)

Key: mtu
Type: integer
Scope: global

parent Parent interface to create sriov NICs on (page 601)

Key: parent
Type: string
Scope: local

user.* User-provided free-form key/value pairs (page 601)

Key: user.
*

Type: string
Scope: global

vlan VLAN ID to attach to (page 601)

Key: vlan
Type: integer
Scope: global

Related topics

How-to guides:

• Networking (page 210)

Explanation:

• Networking setups (page 353)

601 of 954

4.2.8. Cluster member configuration
Each cluster member has its own key/value configuration with the following supported
namespaces:

• user (free form key/value for user metadata)

• scheduler (options related to how themember is automatically targeted by the cluster)

The following keys are currently supported: scheduler.instance Controls how instances
are scheduled to run on this member (page 602)

Key: scheduler.
instance

Type: string
Default: all

Possible values are all, manual, and group. See Automatic placement of instances (page 372)
for more information.

user.* Free form user key/value storage (page 602)

Key: user.
*

Type: string

User keys can be used in search.

Related topics

How-to guides:

• Clustering (page 280)

Explanation:

• Clusters (page 370)

4.3. Production setup
Once you are ready for production, make sure your LXD server is configured to support the
required load. You should also regularlymonitor the server metrics (page 301).

4.3.1. Server settings for a LXD production setup
To allow your LXD server to run a large number of instances, configure the following settings
to avoid hitting server limits.

The Value column contains the suggested value for each parameter.

/etc/security/limits.conf

Note

For users of the snap, those limits are automatically raised.

602 of 954

Do-
main

Type Item Value De-
fault

Description

* soft nofile 1048576 un-
set

Maximum number of open files

* hard nofile 1048576 un-
set

Maximum number of open files

root soft nofile 1048576 un-
set

Maximum number of open files

root hard nofile 1048576 un-
set

Maximum number of open files

* soft mem-
lock

un-
lim-
ited

un-
set

Maximum locked-in-memory address space (KB)

* hard mem-
lock

un-
lim-
ited

un-
set

Maximum locked-in-memory address space (KB)

root soft mem-
lock

un-
lim-
ited

un-
set

Maximum locked-in-memory address space (KB), only
need with bpf syscall supervision

root hard mem-
lock

un-
lim-
ited

un-
set

Maximum locked-in-memory address space (KB), only
need with bpf syscall supervision

/etc/sysctl.conf

Note

Reboot the server after changing any of these parameters.

fs.aio-max-nrMaximum number of concurrent asynchronous I/O operations (page 603)

Key: fs.
aio-max-nr

Type: integer
Default: 65536

Suggested value: 524288

You might need to increase this limit further if you have a lot of workloads that use the AIO
subsystem (for example, MySQL).

fs.inotify.max_queued_events Upper limit on the number of events that can be queued
(page 603)

Key: fs.inotify.
max_queued_events

Type: integer
Default: 16384

603 of 954

Suggested value: 1048576

This option specifies the maximum number of events that can be queued to the correspond-
ing inotify instance (see inotify267 for more information).

fs.inotify.max_user_instancesUpper limit on the number of inotify instances (page 604)

Key: fs.inotify.
max_user_instances

Type: integer
Default: 128

Suggested value: 1048576

This option specifies the maximum number of inotify instances that can be created per real
user ID (see inotify268 for more information).

fs.inotify.max_user_watches Upper limit on the number of watches (page 604)

Key: fs.inotify.
max_user_watches

Type: integer
Default: 8192

Suggested value: 1048576

This option specifies the maximum number of watches that can be created per real user ID
(see inotify269 for more information).

kernel.dmesg_restrict Whether to deny access to the messages in the kernel ring buffer
(page 604)

Key: kernel.
dmesg_restrict

Type: integer
Default: 0

Suggested value: 1

Set this option to 1 to deny container access to the messages in the kernel ring buffer. Note
that setting this value to 1will also deny access to non-root users on the host system.

kernel.keys.maxbytesMaximum size of the key ring that non-root users can use (page 604)

Key: kernel.keys.
maxbytes

Type: integer
Default: 20000

267 https://man7.org/linux/man-pages/man7/inotify.7.html
268 https://man7.org/linux/man-pages/man7/inotify.7.html
269 https://man7.org/linux/man-pages/man7/inotify.7.html

604 of 954

https://man7.org/linux/man-pages/man7/inotify.7.html
https://man7.org/linux/man-pages/man7/inotify.7.html
https://man7.org/linux/man-pages/man7/inotify.7.html

Suggested value: 2000000

kernel.keys.maxkeysMaximum number of keys that a non-root user can use (page 605)

Key: kernel.keys.
maxkeys

Type: integer
Default: 200

Suggested value: 2000

Set this option to a value that is higher than the number of instances.

net.core.bpf_jit_limit Limit on the size of eBPF JIT allocations (page 605)

Key: net.core.
bpf_jit_limit

Type: integer
Default: varies

Suggested value: 1000000000

On kernels < 5.15 that are compiled with CONFIG_BPF_JIT_ALWAYS_ON=y, this value might limit
the amount of instances that can be created.

net.ipv4.neigh.default.gc_thresh3 Maximum number of entries in the IPv4 ARP table
(page 605)

Key: net.ipv4.neigh.default.
gc_thresh3

Type: integer
Default: 1024

Suggested value: 8192

Increase this value if you plan to create over 1024 instances. Otherwise, youwill get the error
neighbour: ndisc_cache: neighbor table overflow! when the ARP table gets full and the
instances cannot get a network configuration. See ip-sysctl270 for more information.

net.ipv6.neigh.default.gc_thresh3 Maximum number of entries in IPv6 ARP table
(page 605)

Key: net.ipv6.neigh.default.
gc_thresh3

Type: integer
Default: 1024

Suggested value: 8192

270 https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

605 of 954

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

Increase this value if you plan to create over 1024 instances. Otherwise, youwill get the error
neighbour: ndisc_cache: neighbor table overflow! when the ARP table gets full and the
instances cannot get a network configuration. See ip-sysctl271 for more information.

vm.max_map_countMaximum number of memory map areas a process may have (page 606)

Key: vm.
max_map_count

Type: integer
Default: 65530

Suggested value: 262144

Memory map areas are used as a side-effect of calling malloc, directly by mmap and mprotect,
and also when loading shared libraries.

Related topics

How-to guides:

• How to benchmark performance (page 297)

• How to increase the network bandwidth (page 299)

• How to monitor metrics (page 301)

Explanation:

• Performance tuning (page 375)

4.3.2. Provided metrics
LXD provides a number of instance metrics and internal metrics. See How to monitor metrics
(page 301) for instructions on how to work with these metrics.

Instance metrics

The following instance metrics are provided:

Metric Description

lxd_cpu_effective_total Total number of effective CPUs
lxd_cpu_seconds_total{cpu="<cpu>", mode="<mode>"} Total number of CPU time used (in seconds)
lxd_disk_read_bytes_total{device="<dev>"} Total number of bytes read
lxd_disk_reads_completed_total{device="<dev>"} Total number of completed reads
lxd_disk_written_bytes_total{device="<dev>"} Total number of bytes written
lxd_disk_writes_completed_total{device="<dev>"} Total number of completed writes
lxd_filesystem_avail_bytes{device="<dev>",fstype="<type>"} Available space (in bytes)
lxd_filesystem_free_bytes{device="<dev>",fstype="<type>"} Free space (in bytes)
lxd_filesystem_size_bytes{device="<dev>",fstype="<type>"} Size of the file system (in bytes)
lxd_memory_Active_anon_bytes Amount of anonymous memory on active LRU list
lxd_memory_Active_bytes Amount of memory on active LRU list
lxd_memory_Active_file_bytes Amount of file-backed memory on active LRU list

continues on next page

271 https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

606 of 954

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

Table 1 – continued from previous page

Metric Description

lxd_memory_Cached_bytes Amount of cached memory
lxd_memory_Dirty_bytes Amount of memory waiting to be written back to the disk
lxd_memory_HugepagesFree_bytes Amount of free memory for hugetlb
lxd_memory_HugepagesTotal_bytes Amount of used memory for hugetlb
lxd_memory_Inactive_anon_bytes Amount of anonymous memory on inactive LRU list
lxd_memory_Inactive_bytes Amount of memory on inactive LRU list
lxd_memory_Inactive_file_bytes Amount of file-backed memory on inactive LRU list
lxd_memory_Mapped_bytes Amount of mapped memory
lxd_memory_MemAvailable_bytes Amount of available memory
lxd_memory_MemFree_bytes Amount of free memory
lxd_memory_MemTotal_bytes Amount of used memory
lxd_memory_OOM_kills_total The number of out-of-memory kills
lxd_memory_RSS_bytes Amount of anonymous and swap cache memory
lxd_memory_Shmem_bytes Amount of cached file system data that is swap-backed
lxd_memory_Swap_bytes Amount of used swap memory
lxd_memory_Unevictable_bytes Amount of unevictable memory
lxd_memory_Writeback_bytes Amount of memory queued for syncing to disk
lxd_network_receive_bytes_total{device="<dev>"} Amount of received bytes on a given interface
lxd_network_receive_drop_total{device="<dev>"} Amount of received dropped bytes on a given interface
lxd_network_receive_errs_total{device="<dev>"} Amount of received errors on a given interface
lxd_network_receive_packets_total{device="<dev>"} Amount of received packets on a given interface
lxd_network_transmit_bytes_total{device="<dev>"} Amount of transmitted bytes on a given interface
lxd_network_transmit_drop_total{device="<dev>"} Amount of transmitted dropped bytes on a given interface
lxd_network_transmit_errs_total{device="<dev>"} Amount of transmitted errors on a given interface
lxd_network_transmit_packets_total{device="<dev>"} Amount of transmitted packets on a given interface
lxd_procs_total Number of running processes

Internal metrics

The following internal metrics are provided:

607 of 954

Metric Description

lxd_api_requests_completed_totalTotal number of completed requests. See API rates metrics
(page 608).

lxd_api_requests_ongoing Number of requests currently being handled. See API rates
metrics (page 608).

lxd_go_alloc_bytes_total Total number of bytes allocated (even if freed)
lxd_go_alloc_bytes Number of bytes allocated and still in use
lxd_go_buck_hash_sys_bytes Number of bytes used by the profiling bucket hash table
lxd_go_frees_total Total number of frees
lxd_go_gc_sys_bytes Number of bytes used for garbage collection system meta-

data
lxd_go_goroutines Number of goroutines that currently exist
lxd_go_heap_alloc_bytes Number of heap bytes allocated and still in use
lxd_go_heap_idle_bytes Number of heap bytes waiting to be used
lxd_go_heap_inuse_bytes Number of heap bytes that are in use
lxd_go_heap_objects Number of allocated objects
lxd_go_heap_released_bytes Number of heap bytes released to OS
lxd_go_heap_sys_bytes Number of heap bytes obtained from system
lxd_go_lookups_total Total number of pointer lookups
lxd_go_mallocs_total Total number of mallocs
lxd_go_mcache_inuse_bytes Number of bytes in use by mcache structures
lxd_go_mcache_sys_bytes Number of bytes used for mcache structures obtained from

system
lxd_go_mspan_inuse_bytes Number of bytes in use by mspan structures
lxd_go_mspan_sys_bytes Number of bytes used for mspan structures obtained from

system
lxd_go_next_gc_bytes Number of heap bytes when next garbage collection will

take place
lxd_go_other_sys_bytes Number of bytes used for other system allocations
lxd_go_stack_inuse_bytes Number of bytes in use by the stack allocator
lxd_go_stack_sys_bytes Number of bytes obtained from system for stack allocator
lxd_go_sys_bytes Number of bytes obtained from system
lxd_operations_total Number of running operations
lxd_uptime_seconds Daemon uptime (in seconds)
lxd_warnings_total Number of active warnings

API rates metrics

The API rates metrics include lxd_api_requests_completed_total and
lxd_api_requests_ongoing. These metrics can be consumed by an observability tool
deployed externally (for example, the Canonical Observability Stack272 or another third-
party tool) to help identify failures or overload on a LXD server. You can set thresholds on
the observability tools for these metrics’ values to trigger alarms and take programmatic
actions.

These metrics consider all endpoints in the LXD REST API (page 623), with the exception of
the / endpoint. Requests using an invalid URL are also counted. Requests against themetrics
server are also counted. Both introduced metrics include a label entity_type based on the
main entity type that the endpoint is operating on.

272 https://charmhub.io/topics/canonical-observability-stack

608 of 954

https://charmhub.io/topics/canonical-observability-stack

lxd_api_requests_ongoing contains the number of requests that are not yet completed by
the time the metrics are queried. A request is considered completed when the response is
returned to the client and any asynchronous operations spawned by that request are done.
lxd_api_requests_completed_total contains the number of completed requests. This metric
includes an additional label named result based on the outcome of the request. The label
can have one of the following values:

• error_server, for errors on the server side, this includes responses with HTTP status
codes from 500 to 599. Any failed asynchronous operations also fall into this category.

• error_client, for responseswithHTTP status codes from400 to499, indicating anerror
on the client side.

• succeeded, for endpoints that executed successfully.

Related topics

How-to guides:

• How to monitor metrics (page 301)

Explanation:

• Performance tuning (page 375)

4.4. Fine-grained permissions
If you are managing user access via Fine-grained authorization (page 364), check which per-
missions (page 365) can be assigned to groups.

4.4.1. Permissions
When managing user access via Fine-grained authorization (page 364), you add identities to
groups and then grant entitlements against specific LXD API resources to these groups.

Each LXD API resource has a particular entity type, and each entity type has a set of entitle-
ments that can be granted against API resources of that type.

Below is a description of each entity type, and a list of entitlements that can be granted
against entities of that type.

Server

Entity type name: server

The server entity type is the top-level entity type for the LXD system. Entitlements that are
granted at this level might cascade to projects and other resources:

admin
Grants full access to LXD as if via Unix socket.

viewer
Grants access to view all resources in the LXD server.

can_edit
Grants permission to edit server configuration, to edit cluster member configuration,
to update the state of a cluster member, to create, edit, and delete cluster groups, to
update cluster member certificates, and to edit or delete warnings.

permission_manager
Grants permission to view permissions, to create, edit, and delete identities, to view,

609 of 954

create, edit, and delete authorization groups, and to view, create, edit, and delete iden-
tity provider groups. Note that clientswith this permission are able to elevate their own
privileges.

can_view_permissions
Grants permission to view permissions.

can_create_identities
Grants permission to create identities.

can_view_identities
Grants permission to view identities.

can_edit_identities
Grants permission to edit identities.

can_delete_identities
Grants permission to delete identities.

can_create_groups
Grants permission to create authorization groups.

can_view_groups
Grants permission to view authorization groups.

can_edit_groups
Grants permission to edit authorization groups.

can_delete_groups
Grants permission to delete authorization groups.

can_create_identity_provider_groups
Grants permission to create identity provider groups.

can_view_identity_provider_groups
Grants permission to view identity provider groups.

can_edit_identity_provider_groups
Grants permission to edit identity provider groups.

can_delete_identity_provider_groups
Grants permission to delete identity provider groups.

storage_pool_manager
Grants permission to create, edit, and delete storage pools.

can_create_storage_pools
Grants permission to create storage pools.

can_edit_storage_pools
Grants permission to edit storage pools.

can_delete_storage_pools
Grants permission to delete storage pools.

project_manager
Grants permission to view, create, edit, and delete projects, and to create, edit, and
delete any resources that are owned by those projects.

can_create_projects
Grants permission to create projects.

610 of 954

can_view_projects
Grants permission to view projects, and all resources within those projects.

can_edit_projects
Grants permission to edit projects, and all resources within those projects.

can_delete_projects
Grants permission to delete projects.

can_override_cluster_target_restriction
If a project is configured with restricted.cluster.target, clients with this permission
can override the restriction.

can_view_privileged_events
Grants permission to view privileged event types, such as logging events.

can_view_resources
Grants permission to view server and storage pool resource usage information.

can_view_metrics
Grants permission to view all server and project level metrics.

can_view_warnings
Grants permission to view warnings.

can_view_unmanaged_networks
Grants permission to view unmanaged networks on the LXD host machines.

Project

Entity type name: project

Entitlements that are granted at the project levelmight cascade toproject specific resources
(such as instances):

operator
Grants permission to create, view, edit, and delete all resources belonging to the
project, but does not grant permission to edit the project configuration itself.

viewer
Grants permission to view all resources belonging to the project.

can_view
Grants permission to view the project.

can_edit
Grants permission to edit the project.

can_delete
Grants permission to delete the project.

image_manager
Grants permission to create, view, edit, and delete all images belonging to the project.

can_create_images
Grants permission to create images.

can_view_images
Grants permission to view images.

611 of 954

can_edit_images
Grants permission to edit images.

can_delete_images
Grants permission to delete images.

image_alias_manager
Grants permission to create, view, edit, and delete all image aliases belonging to the
project.

can_create_image_aliases
Grants permission to create image aliases.

can_view_image_aliases
Grants permission to view image aliases.

can_edit_image_aliases
Grants permission to edit image aliases.

can_delete_image_aliases
Grants permission to delete image aliases.

instance_manager
Grants permission to create, view, edit, and delete all instances belonging to the
project.

can_create_instances
Grants permission to create instances.

can_view_instances
Grants permission to view instances.

can_edit_instances
Grants permission to edit instances.

can_delete_instances
Grants permission to delete instances.

can_operate_instances
Grants permission to view instances, manage their state, manage their snapshots and
backups, start terminal or console sessions, and access their files.

network_manager
Grants permission to create, view, edit, and delete all networks belonging to the
project.

can_create_networks
Grants permission to create networks.

can_view_networks
Grants permission to view networks.

can_edit_networks
Grants permission to edit networks.

can_delete_networks
Grants permission to delete networks.

network_acl_manager
Grants permission to create, view, edit, and delete all network ACLs belonging to the

612 of 954

project.

can_create_network_acls
Grants permission to create network ACLs.

can_view_network_acls
Grants permission to view network ACLs.

can_edit_network_acls
Grants permission to edit network ACLs.

can_delete_network_acls
Grants permission to delete network ACLs.

network_zone_manager
Grants permission to create, view, edit, and delete all network zones belonging to the
project.

can_create_network_zones
Grants permission to create network zones.

can_view_network_zones
Grants permission to view network zones.

can_edit_network_zones
Grants permission to edit network zones.

can_delete_network_zones
Grants permission to delete network zones.

profile_manager
Grants permission to create, view, edit, and delete all profiles belonging to the project.

can_create_profiles
Grants permission to create profiles.

can_view_profiles
Grants permission to view profiles.

can_edit_profiles
Grants permission to edit profiles.

can_delete_profiles
Grants permission to delete profiles.

storage_volume_manager
Grants permission to create, view, edit, and delete all storage volumes belonging to the
project.

can_create_storage_volumes
Grants permission to create storage volumes.

can_view_storage_volumes
Grants permission to view storage volumes.

can_edit_storage_volumes
Grants permission to edit storage volumes.

can_delete_storage_volumes
Grants permission to delete storage volumes.

613 of 954

storage_bucket_manager
Grants permission to create, view, edit, and delete all storage buckets belonging to the
project.

can_create_storage_buckets
Grants permission to create storage buckets.

can_view_storage_buckets
Grants permission to view storage buckets.

can_edit_storage_buckets
Grants permission to edit storage buckets.

can_delete_storage_buckets
Grants permission to delete storage buckets.

can_view_operations
Grants permission to view operations relating to the project.

can_view_events
Grants permission to view events relating to the project.

can_view_metrics
Grants permission to view project level metrics.

Storage pool

Entity type name: storage_pool

can_edit
Grants permission to edit the storage pool.

can_delete
Grants permission to delete the storage pool.

Identity

Entity type name: identity

can_view
Grants permission to view the identity.

can_edit
Grants permission to edit the identity.

can_delete
Grants permission to delete the identity.

Group

Entity type name: group

can_view
Grants permission to view the group. Identities can always view groups that they are a
member of.

can_edit
Grants permission to edit the group.

614 of 954

can_delete
Grants permission to delete the group.

Identity provider group

Entity type name: identity_provider_group

can_view
Grants permission to view the identity provider group.

can_edit
Grants permission to edit the identity provider group.

can_delete
Grants permission to delete the identity provider group.

Certificate

Entity type name: certificate

can_view
Grants permission to view the certificate.

can_edit
Grants permission to edit the certificate.

can_delete
Grants permission to delete the certificate.

Instance

Entity type name: instance

user
Grants permission to view the instance, to access files, and to start a terminal or console
session.

operator
Grants permission to view the instance, to access files, start a terminal or console ses-
sion, and to manage snapshots and backups.

can_edit
Grants permission to edit the instance.

can_delete
Grants permission to delete the instance.

can_view
Grants permission to view the instance and any snapshots or backups it might have.

can_update_state
Grants permission to change the instance state.

can_manage_snapshots
Grants permission to create and delete snapshots of the instance.

can_manage_backups
Grants permission to create and delete backups of the instance.

615 of 954

can_connect_sftp
Grants permission to get an SFTP client for the instance.

can_access_files
Grants permission to push or pull files into or out of the instance.

can_access_console
Grants permission to start a console session.

can_exec
Grants permission to start a terminal session.

Image

Entity type name: image

can_edit
Grants permission to edit the image.

can_delete
Grants permission to delete the image.

can_view
Grants permission to view the image.

Image alias

Entity type name: image_alias

can_edit
Grants permission to edit the image alias.

can_delete
Grants permission to delete the image alias.

can_view
Grants permission to view the image alias.

Network

Entity type name: network

can_edit
Grants permission to edit the network.

can_delete
Grants permission to delete the network.

can_view
Grants permission to view the network.

Network ACL

Entity type name: network_acl

can_edit
Grants permission to edit the network ACL.

616 of 954

can_delete
Grants permission to delete the network ACL.

can_view
Grants permission to view the network ACL.

Network zone

Entity type name: network_zone

can_edit
Grants permission to edit the network zone.

can_delete
Grants permission to delete the network zone.

can_view
Grants permission to view the network zone.

Profile

Entity type name: profile

can_edit
Grants permission to edit the profile.

can_delete
Grants permission to delete the profile.

can_view
Grants permission to view the profile.

Storage volume

Entity type name: storage_volume

can_edit
Grants permission to edit the storage volume.

can_delete
Grants permission to delete the storage volume.

can_view
Grants permission to view the storage volume and any snapshots or backups it might
have.

can_manage_snapshots
Grants permission to create and delete snapshots of the storage volume.

can_manage_backups
Grants permission to create and delete backups of the storage volume.

Storage bucket

Entity type name: storage_bucket

can_edit
Grants permission to edit the storage bucket.

617 of 954

can_delete
Grants permission to delete the storage bucket.

can_view
Grants permission to view the storage bucket.

4.5. REST API
All communicationbetweenLXDand its clients happens using aRESTful API overHTTP. Check
the list of API extensions to see if a feature is available in your version of the API.

4.5.1. REST API
REST API

All communication between LXD and its clients happens using a RESTful API over HTTP. This
API is encapsulated over either TLS (for remote operations) or a Unix socket (for local oper-
ations).

See Remote API authentication (page 358) for information about how to access the API re-
motely.

Tip

• For examples on how the API is used, run any command of the LXD client (lxc
(page 690)) with the --debug flag. The debug information displays the API calls and
the return values.

• For quickly querying the API, the LXD client provides a lxc query (page 869) com-
mand.

API versioning

The list of supported major API versions can be retrieved using GET /.

The reason for a major API bump is if the API breaks backward compatibility.

Feature additions done without breaking backward compatibility only result in addition to
api_extensions which can be used by the client to check if a given feature is supported by
the server.

Return values

There are three standard return types:

• Standard return value

• Background operation

• Error

Standard return value

For a standard synchronous operation, the following JSON object is returned:

{
"type": "sync",

(continues on next page)

618 of 954

(continued from previous page)

"status": "Success",
"status_code": 200,
"metadata": {} // Extra resource/action specific

metadata
}

HTTP code must be 200.

Background operation

When a request results in a background operation, the HTTP code is set to 202 (Accepted)
and the Location HTTP header is set to the operation URL.

The body is a JSON object with the following structure:

{
"type": "async",
"status": "OK",
"status_code": 100,
"operation": "/1.0/instances/<id>", // URL to the

background operation
"metadata": {} // Operation metadata

(see below)
}

The operation metadata structure looks like:

{
"id": "a40f5541-5e98-454f-b3b6-8a51ef5dbd3c", // UUID of the

operation
"class": "websocket", // Class of the

operation (task, websocket or token)
"created_at": "2015-11-17T22:32:02.226176091-05:00", // When the operation

was created
"updated_at": "2015-11-17T22:32:02.226176091-05:00", // Last time the

operation was updated
"status": "Running", // String version of

the operation's status
"status_code": 103, // Integer version of

the operation's status (use this rather than status)
"resources": { // Dictionary of

resource types (container, snapshots, images) and affected resources
"containers": [
"/1.0/instances/test"

]
},
"metadata": { // Metadata specific

to the operation in question (in this case, exec)
"fds": {
"0": "2a4a97af81529f6608dca31f03a7b7e47acc0b8dc6514496eb25e325f9e4fa6a",

(continues on next page)

619 of 954

(continued from previous page)

"control":
"5b64c661ef313b423b5317ba9cb6410e40b705806c28255f601c0ef603f079a7"

}
},
"may_cancel": false, // Whether the

operation can be canceled (DELETE over REST)
"err": "" // The error string

should the operation have failed
}

The body is mostly provided as a user friendly way of seeing what’s going on without hav-
ing to pull the target operation, all information in the body can also be retrieved from the
background operation URL.

Error

There are various situations in which something may immediately go wrong, in those cases,
the following return value is used:

{
"type": "error",
"error": "Failure",
"error_code": 400,
"metadata": {} // More details about the error

}

HTTP code must be one of of 400, 401, 403, 404, 409, 412 or 500.

Status codes

The LXD REST API often has to return status information, be that the reason for an error, the
current state of an operation or the state of the various resources it exports.

Tomake it simple todebug, all of thoseare alwaysdoubled. There is anumeric representation
of the state which is guaranteed never to change and can be relied on by API clients. Then
there is a text version meant to make it easier for people manually using the API to figure
out what’s happening.

In most cases, those will be called status and status_code, the former being the user-friendly
string representation and the latter the fixed numeric value.

The codes are always 3 digits, with the following ranges:

• 100 to 199: resource state (started, stopped, ready, …)

• 200 to 399: positive action result

• 400 to 599: negative action result

• 600 to 999: future use

620 of 954

List of current status codes

Code Meaning

100 Operation created
101 Started
102 Stopped
103 Running
104 Canceling
105 Pending
106 Starting
107 Stopping
108 Aborting
109 Freezing
110 Frozen
111 Thawed
112 Error
113 Ready
200 Success
400 Failure
401 Canceled

Recursion

To optimize queries of large lists, recursion is implemented for collections. A recursion ar-
gument can be passed to a GET query against a collection.

The default value is 0 which means that collectionmember URLs are returned. Setting it to 1
will have those URLs be replaced by the object they point to (typically another JSON object).

Recursion is implemented by simply replacing any pointer to an job (URL) by the object itself.

Filtering

To filter your results on certain values, filter is implemented for collections. A filter argu-
ment can be passed to a GET query against a collection.

Filtering is available for the instance, image and storage volume endpoints.

There is no default value for filter which means that all results found will be returned. The
following is the language used for the filter argument:

?filter=field_name eq desired_field_assignment

The language follows the OData conventions for structuring REST API filtering logic. Logical
operators are also supported for filtering: not (not), equals (eq), not equals (ne), and (and), or
(or). Filters are evaluated with left associativity. Values with spaces can be surrounded with
quotes. Nesting filtering is also supported. For instance, to filter on a field in a configuration
you would pass:

?filter=config.field_name eq desired_field_assignment

For filtering on device attributes you would pass:

621 of 954

?filter=devices.device_name.field_name eq desired_field_assignment

Here are a few GET query examples of the different filtering methods mentioned above:

containers?filter=name eq "my container" and status eq Running

containers?filter=config.image.os eq ubuntu or devices.eth0.nictype eq bridged

images?filter=Properties.os eq Centos and not UpdateSource.Protocol eq
simplestreams

Asynchronous operations

Any operation which may take more than a second to be done must be done in the back-
ground, returning a background operation ID to the client.

The client will then be able to either poll for a status update or wait for a notification using
the long-poll API.

Notifications

AWebSocket-basedAPI is available for notifications, different notification types exist to limit
the traffic going to the client.

It’s recommended that the client always subscribes to theoperations notification typebefore
triggering remote operations so that it doesn’t have to then poll for their status.

PUT vs PATCH

The LXD API supports both PUT and PATCH to modify existing objects:

The PUT method

PUT replaces the entire object with a new definition. Since it overwrites the existing state,
it’s often called after retrieving and recording the current object state through GET.

To avoid race conditions, the ETag header should be read from the GET response and sent as
If-Match for thePUT request. Thiswill cause LXD to fail the request if theobjectwasmodified
between GET and PUT.

The PATCH method

PATCH can be used to modify a single field inside an object by only specifying the property
that youwant to change. To unset a key, setting it to emptywill usually do the trick, but there
are cases where PATCH won’t work and PUT needs to be used instead.

Instances, containers and virtual-machines

The documentation shows paths such as /1.0/instances/..., which were introduced with
LXD 3.19. Older releases that supported only containers and not virtual machines supply the
exact same API at /1.0/containers/....

622 of 954

For backward compatibility reasons, LXD does still expose and support that /1.0/containers
API, though for the sake of brevity, we decided not to double-document everything.

An additional endpoint at /1.0/virtual-machines is also present and much like /1.0/
containerswill only show you instances of that type.

API structure

LXD has an auto-generated Swagger273 specification describing its API endpoints. The YAML
version of this API specification can be found in rest-api.yaml274. SeeMain API specification
(page 623) for a convenient web rendering of it.

Main API specification

API extensions

The changes below were introduced to the LXD API after the 1.0 API was finalized.

They are all backward compatible and can be detected by client tools by looking at the
api_extensions field in GET /1.0.

storage_zfs_remove_snapshots

A zfs.remove_snapshots (page 570) daemon configuration key was introduced.

It’s a Boolean that defaults to false and that when set to true instructs LXD to remove any
needed snapshot when attempting to restore another.

This is needed as ZFS will only let you restore the latest snapshot.

container_host_shutdown_timeout

A boot.host_shutdown_timeout (page 419) container configuration key was introduced.

It’s an integer which indicates how long LXD should wait for the container to stop before
killing it.

Its value is only used on clean LXD daemon shutdown. It defaults to 30s.

container_stop_priority

A boot.stop.priority (page 419) container configuration key was introduced.

It’s an integer which indicates the priority of a container during shutdown.

Containers will shutdown starting with the highest priority level.

Containers with the same priority will shutdown in parallel. It defaults to 0.

container_syscall_filtering

A number of new syscalls related container configuration keys were introduced.

• security.syscalls.deny_default (page 439)

273 https://swagger.io/
274 https://github.com/canonical/lxd/blob/main/doc/rest-api.yaml

623 of 954

https://swagger.io/
https://github.com/canonical/lxd/blob/main/doc/rest-api.yaml

• security.syscalls.deny_compat (page 439)

• security.syscalls.deny (page 438)

• security.syscalls.allow (page 438)

See Instance configuration (page 414) for how to use them.

Note

Initially, those configuration keys were (accidentally) introduced with offensive names.
They have since been renamed (container_syscall_filtering_allow_deny_syntax), and
the old names are no longer accepted.

auth_pki

This indicates support for PKI authentication mode.

In this mode, the client and server both must use certificates issued by the same PKI.

See Security (page 376) for details.

container_last_used_at

A last_used_at field was added to the GET /1.0/containers/<name> endpoint.

It is a timestamp of the last time the container was started.

If a container has been created but not started yet, last_used_at field will be
1970-01-01T00:00:00Z

etag

Add support for the ETag header on all relevant endpoints.

This adds the following HTTP header on answers to GET:

• ETag (SHA-256 of user modifiable content)

And adds support for the following HTTP header on PUT requests:

• If-Match (ETag value retrieved through previous GET)

This makes it possible to GET a LXD object, modify it and PUT it without risking to hit a race
condition where LXD or another client modified the object in the meantime.

patch

Add support for the HTTP PATCH method.

PATCH allows for partial update of an object in place of PUT.

624 of 954

usb_devices

Add support for USB hotplug.

https_allowed_credentials

To use LXD API with all Web Browsers (via SPAs) you must send credentials (certificate) with
each XHR (in order for this to happen, you should set withCredentials=true275 flag to each
XHR Request).

Some browsers like Firefox and Safari can’t accept server response without
Access-Control-Allow-Credentials: true header. To ensure that the server will re-
turn a response with that header, set core.https_allowed_credentials (page 402) to
true.

image_compression_algorithm

This adds support for a compression_algorithm property when creating an image (POST /1.
0/images).

Setting this property overrides the server default value (images.compression_algorithm
(page 409)).

directory_manipulation

This allows for creating and listing directories via the LXD API, and exports the file type via
the X-LXD-type header, which can be either file or directory right now.

container_cpu_time

This adds support for retrieving CPU time for a running container.

storage_zfs_use_refquota

Introduces a new server property zfs.use_refquota (page 570) which instructs LXD to set
the refquota property instead of quotawhen setting a size limit on a container. LXD will also
then use usedbydataset in place of usedwhen being queried about disk utilization.

This effectively controls whether disk usage by snapshots should be considered as part of
the container’s disk space usage.

storage_lvm_mount_options

Adds a new storage.lvm_mount_options daemon configuration option which defaults to dis-
card and allows the user to set addition mount options for the file system used by the LVM
LV.
275 https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/withCredentials

625 of 954

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/withCredentials

network

Network management API for LXD.

This includes:

• Addition of the managed property on /1.0/networks entries

• All thenetwork configurationoptions (seeNetwork configuration (page210) for details)

• POST /1.0/networks (see RESTful API (page 618) for details)

• PUT /1.0/networks/<entry> (see RESTful API (page 618) for details)

• PATCH /1.0/networks/<entry> (see RESTful API (page 618) for details)

• DELETE /1.0/networks/<entry> (see RESTful API (page 618) for details)

• ipv4.address property on nic type devices (when nictype is bridged)

• ipv6.address property on nic type devices (when nictype is bridged)

• security.mac_filtering property on nic type devices (when nictype is bridged)

profile_usedby

Adds a new used_by field to profile entries listing the containers that are using it.

container_push

When a container is created in push mode, the client serves as a proxy between the source
and target server. This is useful in cases where the target server is behind a NAT or firewall
and cannot directly communicate with the source server and operate in pull mode.

container_exec_recording

Introduces a new Boolean record-output, parameter to /1.0/containers/<name>/execwhich
when set to true and combinedwithwith wait-for-websocket set to false, will record stdout
and stderr to disk and make them available through the logs interface.

The URL to the recorded output is included in the operation metadata once the command is
done running.

That output will expire similarly to other log files, typically after 48 hours.

certificate_update

Adds the following to the REST API:

• ETag header on GET of a certificate

• PUT of certificate entries

• PATCH of certificate entries

626 of 954

container_exec_signal_handling

Adds support /1.0/containers/<name>/exec for forwarding signals sent to the client to the
processes executing in the container. Currently SIGTERMand SIGHUP are forwarded. Further
signals that can be forwarded might be added later.

gpu_devices

Enables adding GPUs to a container.

container_image_properties

Introduces a new image configuration key space. Read-only, includes the properties of the
parent image.

migration_progress

Transfer progress is now exported as part of the operation, on both sending and receiving
ends. This shows up as a fs_progress attribute in the operation metadata.

id_map

Enables setting the security.idmap.isolated (page 436), security.idmap.size (page 436),
and raw.idmap (page 431) fields.

network_firewall_filtering

Add two new keys, ipv4.firewall (page 579) and ipv6.firewall (page 582) which if set to
false will turn off the generation of iptables FORWARDING rules. NAT rules will still be
added so long as the matching ipv4.nat (page 580) or ipv6.nat (page 582) key is set to true.

Rules necessary for dnsmasq to work (DHCP/DNS) will always be applied if dnsmasq is enabled
on the bridge.

network_routes

Introduces ipv4.routes (page 580) and ipv6.routes (page 583) which allow routing addi-
tional subnets to a LXD bridge.

storage

Storage management API for LXD.

This includes:

• GET /1.0/storage-pools

• POST /1.0/storage-pools (see RESTful API (page 618) for details)

• GET /1.0/storage-pools/<name> (see RESTful API (page 618) for details)

• POST /1.0/storage-pools/<name> (see RESTful API (page 618) for details)

• PUT /1.0/storage-pools/<name> (see RESTful API (page 618) for details)

• PATCH /1.0/storage-pools/<name> (see RESTful API (page 618) for details)

627 of 954

• DELETE /1.0/storage-pools/<name> (see RESTful API (page 618) for details)

• GET /1.0/storage-pools/<name>/volumes (see RESTful API (page 618) for details)

• GET /1.0/storage-pools/<name>/volumes/<volume_type> (see RESTful API (page 618)
for details)

• POST /1.0/storage-pools/<name>/volumes/<volume_type> (see RESTful API (page 618)
for details)

• GET /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API
(page 618) for details)

• POST /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API
(page 618) for details)

• PUT /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API
(page 618) for details)

• PATCH /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API
(page 618) for details)

• DELETE /1.0/storage-pools/<pool>/volumes/<volume_type>/<name> (see RESTful API
(page 618) for details)

• All storage configuration options (see Storage configuration (page 175) for details)

file_delete

Implements DELETE in /1.0/containers/<name>/files

file_append

Implements the X-LXD-write header which can be one of overwrite or append.

network_dhcp_expiry

Introduces ipv4.dhcp.expiry (page579) and ipv6.dhcp.expiry (page581) allowing to set the
DHCP lease expiry time.

storage_lvm_vg_rename

Introduces the ability to rename a volume group by setting lvm.vg_name (page 559).

storage_lvm_thinpool_rename

Introduces the ability to rename a thin pool name by setting lvm.thinpool_name (page 558).

network_vlan

This adds a new vlan (page 457) property to macvlan network devices.

When set, this will instruct LXD to attach to the specified VLAN. LXD will look for an existing
interface for that VLAN on the host. If one can’t be found it will create one itself and then
use that as the macvlan parent.

628 of 954

image_create_aliases

Adds a new aliases field to POST /1.0/images allowing for aliases to be set at image cre-
ation/import time.

container_stateless_copy

This introduces a new live attribute in POST /1.0/containers/<name>. Setting it to false tells
LXD not to attempt running state transfer.

container_only_migration

Introduces a newBoolean container_only attribute. When set to true only the container will
be copied or moved.

storage_zfs_clone_copy

Introduces a new Boolean zfs.clone_copy (page 566) property for ZFS storage pools. When
set to false copying a container will be done through zfs send and receive. This will make
the target container independent of its source container thus avoiding the need to keep de-
pendent snapshots in the ZFS pool around. However, this also entails less efficient storage
usage for the affected pool. The default value for this property is true, i.e. space-efficient
snapshots will be used unless explicitly set to false.

unix_device_rename

Introduces the ability to rename the unix-block/unix-char device inside container by setting
path, and the source attribute is added to specify the device on host. If source is set without
a path, we should assume that path will be the same as source. If path is set without source
and major/minor isn’t set, we should assume that sourcewill be the same as path. So at least
one of themmust be set.

storage_rsync_bwlimit

When rsync has to be invoked to transfer storage entities setting rsync.bwlimit places an
upper limit on the amount of socket I/O allowed.

network_vxlan_interface

This introduces a new tunnel.NAME.interface (page 585) option for networks.

This key control what host network interface is used for a VXLAN tunnel.

storage_btrfs_mount_options

This introduces the btrfs.mount_options (page 523) property for Btrfs storage pools.

This key controls what mount options will be used for the Btrfs storage pool.

629 of 954

entity_description

This adds descriptions to entities like containers, snapshots, networks, storage pools and
volumes.

image_force_refresh

This allows forcing a refresh for an existing image.

storage_lvm_lv_resizing

This introduces the ability to resize logical volumes by setting the size property in the con-
tainers root disk device.

id_map_base

This introduces anew security.idmap.base (page435) allowing theuser to skip themapauto-
selection process for isolated containers and specify what host UID/GID to use as the base.

file_symlinks

This adds support for transferring symlinks through the file API. X-LXD-type can now be sym-
linkwith the request content being the target path.

container_push_target

This adds the target field to POST /1.0/containers/<name> which can be used to have the
source LXD host connect to the target during migration.

network_vlan_physical

Allows use of vlan (page 600) property with physical network devices.

When set, this will instruct LXD to attach to the specified VLAN on the parent interface. LXD
will look for an existing interface for that parent and VLAN on the host. If one can’t be found
it will create one itself. Then, LXD will directly attach this interface to the container.

storage_images_delete

This enabled the storage API to delete storage volumes for images from a specific storage
pool.

container_edit_metadata

This adds support for editing a container metadata.yaml and related templates via API, by
accessing URLs under /1.0/containers/<name>/metadata. It can be used to edit a container
before publishing an image from it.

630 of 954

container_snapshot_stateful_migration

This enables migrating stateful container snapshots to new containers.

storage_driver_ceph

This adds a Ceph storage driver.

storage_ceph_user_name

This adds the ability to specify the Ceph user.

instance_types

This adds the instance_type field to the container creation request. Its value is expanded to
LXD resource limits.

storage_volatile_initial_source

This records the actual source passed to LXD during storage pool creation.

storage_ceph_force_osd_reuse

This introduces the ceph.osd.force_reuse property for the Ceph storage driver. When set to
true LXD will reuse an OSD storage pool that is already in use by another LXD instance.

storage_block_filesystem_btrfs

This adds support for Btrfs as a storage volume file system, in addition to ext4 and xfs.

resources

This adds support for querying a LXD daemon for the system resources it has available.

kernel_limits

This adds support for setting process limits such as maximum number of open files for the
container via nofile. The format is limits.kernel.[limit name].

storage_api_volume_rename

This adds support for renaming custom storage volumes.

network_sriov

This adds support for SR-IOV enabled network devices.

console

This adds support to interact with the container console device and console log.

631 of 954

restrict_devlxd

A new security.devlxd (page 435) container configuration key was introduced. The key con-
trols whether the /dev/lxd interface is made available to the instance. If set to false, this
effectively prevents the container from interacting with the LXD daemon.

migration_pre_copy

This adds support for optimized memory transfer during live migration.

infiniband

This adds support to use InfiniBand network devices.

maas_network

This adds support for MAAS network integration.

When configured at the daemon level, it’s then possible to attach a nic device to a particular
MAAS subnet.

devlxd_events

This adds a WebSocket API to the devlxd socket.

When connecting to /1.0/events over the devlxd socket, you will now be getting a stream of
events over WebSocket.

proxy

This adds a new proxydevice type to containers, allowing forwardingof connections between
the host and container.

network_dhcp_gateway

Introduces a new ipv4.dhcp.gateway (page 579) network configuration key to set an alter-
nate gateway.

file_get_symlink

This makes it possible to retrieve symlinks using the file API.

network_leases

Adds a new /1.0/networks/NAME/leasesAPI endpoint to query the lease database on bridges
which run a LXD-managed DHCP server.

unix_device_hotplug

This adds support for the required (page 504) property for Unix devices.

632 of 954

storage_api_local_volume_handling

This add the ability to copy and move custom storage volumes locally in the same and be-
tween storage pools.

operation_description

Adds a description field to all operations.

clustering

Clustering API for LXD.

This includes the following new endpoints (see RESTful API (page 618) for details):

• GET /1.0/cluster

• UPDATE /1.0/cluster

• GET /1.0/cluster/members

• GET /1.0/cluster/members/<name>

• POST /1.0/cluster/members/<name>

• DELETE /1.0/cluster/members/<name>

The following existing endpoints have been modified:

• POST /1.0/containers accepts a new target query parameter

• POST /1.0/storage-pools accepts a new target query parameter

• GET /1.0/storage-pool/<name> accepts a new target query parameter

• POST /1.0/storage-pool/<pool>/volumes/<type> accepts a new target query parame-
ter

• GET /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query pa-
rameter

• POST /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query
parameter

• PUT /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query pa-
rameter

• PATCH /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query
parameter

• DELETE /1.0/storage-pool/<pool>/volumes/<type>/<name> accepts a new target query
parameter

• POST /1.0/networks accepts a new target query parameter

• GET /1.0/networks/<name> accepts a new target query parameter

633 of 954

event_lifecycle

This adds a new lifecyclemessage type to the events API.

storage_api_remote_volume_handling

This adds the ability to copy and move custom storage volumes between remote.

nvidia_runtime

Adds a nvidia.runtime (page 430) configuration option for containers, setting this to true
will have the NVIDIA runtime and CUDA libraries passed to the container.

container_mount_propagation

This adds a new propagation (page 483) option to the disk device type, allowing the configu-
ration of kernel mount propagation.

container_backup

Add container backup support.

This includes the following new endpoints (see RESTful API (page 618) for details):

• GET /1.0/containers/<name>/backups

• POST /1.0/containers/<name>/backups

• GET /1.0/containers/<name>/backups/<name>

• POST /1.0/containers/<name>/backups/<name>

• DELETE /1.0/containers/<name>/backups/<name>

• GET /1.0/containers/<name>/backups/<name>/export

The following existing endpoint has been modified:

• POST /1.0/containers accepts the new source type backup

devlxd_images

Adds a security.devlxd.images (page 435) configuration option for containers which con-
trols the availability of a /1.0/images/FINGERPRINT/export API over devlxd. This can be used
by a container running nested LXD to access raw images from the host.

container_local_cross_pool_handling

This enables copying ormoving containers between storage pools on the same LXD instance.

proxy_unix

Add support for both Unix sockets and abstract Unix sockets in proxy devices. They can be
used by specifying the address as unix:/path/to/unix.sock (normal socket) or unix:@/tmp/
unix.sock (abstract socket).

Supported connections are now:

634 of 954

• TCP <-> TCP

• UNIX <-> UNIX

• TCP <-> UNIX

• UNIX <-> TCP

proxy_udp

Add support for UDP in proxy devices.

Supported connections are now:

• TCP <-> TCP

• UNIX <-> UNIX

• TCP <-> UNIX

• UNIX <-> TCP

• UDP <-> UDP

• TCP <-> UDP

• UNIX <-> UDP

clustering_join

Thismakes GET /1.0/cluster return information aboutwhich storagepools andnetworks are
required to be created by joining nodes and which node-specific configuration keys they are
required to use when creating them. Likewise the PUT /1.0/cluster endpoint now accepts
the same format to pass information about storage pools and networks to be automatically
created before attempting to join a cluster.

proxy_tcp_udp_multi_port_handling

Adds support for forwarding traffic for multiple ports. Forwarding is allowed between a
range of ports if the port range is equal for source and target (for example 1.2.3.4 0-1000
-> 5.6.7.8 1000-2000) and between a range of source ports and a single target port (for
example 1.2.3.4 0-1000 -> 5.6.7.8 1000).

network_state

Adds support for retrieving a network’s state.

This adds the following new endpoint (see RESTful API (page 618) for details):

• GET /1.0/networks/<name>/state

proxy_unix_dac_properties

This adds support for GID, UID, and mode properties for non-abstract Unix sockets.

635 of 954

container_protection_delete

Enables setting the security.protection.delete (page 436) field which prevents containers
from being deleted if set to true. Snapshots are not affected by this setting.

proxy_priv_drop

Adds security.uid (page 502) and security.gid (page 502) for the proxy devices, allowing
privilege dropping and effectively changing theUID/GIDused for connections toUnix sockets
too.

pprof_http

This adds a new core.debug_address (page 402) configuration option to start a debugging
HTTP server.

That server currently includes a pprof API and replaces the old cpu-profile, memory-profile
and print-goroutines debug options.

proxy_haproxy_protocol

Adds a proxy_protocol (page 502) key to the proxy device which controls the use of the
HAProxy PROXY protocol header.

network_hwaddr

Adds a bridge.hwaddr (page 576) key to control the MAC address of the bridge.

proxy_nat

This adds optimized UDP/TCP proxying. If the configuration allows, proxying will be done via
iptables instead of proxy devices.

network_nat_order

This introduces the ipv4.nat.order (page 580) and ipv6.nat.order (page 582) configuration
keys for LXD bridges. Those keys control whether to put the LXD rules before or after any
pre-existing rules in the chain.

container_full

This introduces a new recursion=2 mode for GET /1.0/containers which allows for the re-
trieval of all container structs, including the state, snapshots and backup structs.

This effectively allows for lxc list (page 785) to get all it needs in one query.

backup_compression

This introduces a new backups.compression_algorithm (page 411) configuration key which
allows configuration of backup compression.

636 of 954

nvidia_runtime_config

This introduces a few extra configuration keys when using nvidia.runtime (page 430) and
the libnvidia-container library. Those keys translate pretty much directly to the matching
NVIDIA container environment variables:

• nvidia.driver.capabilities (page 429) => NVIDIA_DRIVER_CAPABILITIES

• nvidia.require.cuda (page 430) => NVIDIA_REQUIRE_CUDA

• nvidia.require.driver (page 430) => NVIDIA_REQUIRE_DRIVER

storage_api_volume_snapshots

Add support for storage volume snapshots. They work like container snapshots, only for
volumes.

This adds the following new endpoint (see RESTful API (page 618) for details):

• GET /1.0/storage-pools/<pool>/volumes/<type>/<name>/snapshots

• POST /1.0/storage-pools/<pool>/volumes/<type>/<name>/snapshots

• GET /1.0/storage-pools/<pool>/volumes/<type>/<volume>/snapshots/<name>

• PUT /1.0/storage-pools/<pool>/volumes/<type>/<volume>/snapshots/<name>

• POST /1.0/storage-pools/<pool>/volumes/<type>/<volume>/snapshots/<name>

• DELETE /1.0/storage-pools/<pool>/volumes/<type>/<volume>/snapshots/<name>

storage_unmapped

Introduces a new security.unmapped Boolean on storage volumes.

Setting it to true will flush the current map on the volume and prevent any further idmap
tracking and remapping on the volume.

This can be used to share data between isolated containers after attaching it to the container
which requires write access.

projects

Add a new project API, supporting creation, update and deletion of projects.

Projects can hold containers, profiles or images at this point and let you get a separate view
of your LXD resources by switching to it.

network_vxlan_ttl

This adds a new tunnel.NAME.ttl (page 586) network configuration option which makes it
possible to raise the TTL on VXLAN tunnels.

637 of 954

container_incremental_copy

This adds support for incremental container copy. When copying a container using the
--refresh flag, only the missing or outdated files will be copied over. Should the target con-
tainer not exist yet, a normal copy operation is performed.

usb_optional_vendorid

As the name implies, the vendorid (page 491) field onUSB devices attached to containers has
now been made optional, allowing for all USB devices to be passed to a container (similar to
what’s done for GPUs).

snapshot_scheduling

This adds support for snapshot scheduling. It introduces three new configuration keys:
snapshots.schedule, snapshots.schedule.stopped, and snapshots.pattern. Snapshots can
be created automatically up to every minute.

snapshots_schedule_aliases

Snapshot schedule can be configured by a comma-separated list of schedule aliases. Avail-
able aliases are <@hourly> <@daily> <@midnight> <@weekly> <@monthly> <@annually>
<@yearly> <@startup> for instances, and <@hourly> <@daily> <@midnight> <@weekly>
<@monthly> <@annually> <@yearly> for storage volumes.

container_copy_project

Introduces a project field to the container source JSON object, allowing for copy/move of
containers between projects.

clustering_server_address

This adds support for configuring a server network address which differs from the REST API
client network address. When bootstrapping a new cluster, clients can set the new cluster.
https_address (page 407) configuration key to specify the address of the initial server. When
joining a new server, clients can set the core.https_address (page 402) configuration key of
the joining server to the REST API address the joining server should listen at, and set the
server_address key in the PUT /1.0/cluster API to the address the joining server should use
for clustering traffic (the valueof server_addresswill be automatically copied to the cluster.
https_address configuration key of the joining server).

clustering_image_replication

Enable image replication across the nodes in the cluster. A new cluster.
images_minimal_replica (page 407) configuration key was introduced can be used to
specify to the minimal numbers of nodes for image replication.

638 of 954

container_protection_shift

Enables setting the security.protection.shift (page 437) optionwhich prevents containers
from having their file system shifted.

snapshot_expiry

This adds support for snapshot expiration. The task is runminutely. The configuration option
snapshots.expiry (page 441) takes an expression in the form of 1M 2H 3d 4w 5m 6y (1minute,
2 hours, 3 days, 4 weeks, 5 months, 6 years), however not all parts have to be used.

Snapshots which are then created will be given an expiry date based on the expression. This
expiry date, defined by expires_at, can bemanually edited using the API or lxc config edit
(page 744). Snapshots with a valid expiry date will be removed when the task in run. Ex-
piry can be disabled by setting expires_at to an empty string or 0001-01-01T00:00:00Z (zero
time). This is the default if snapshots.expiry is not set.

This adds the following new endpoint (see RESTful API (page 618) for details):

• PUT /1.0/containers/<name>/snapshots/<name>

snapshot_expiry_creation

Adds expires_at to container creation, allowing for override of a snapshot’s expiry at cre-
ation time.

network_leases_location

Introduces a Location field in the leases list. This is used when querying a cluster to show
what node a particular lease was found on.

resources_cpu_socket

Add Socket field to CPU resources in case we get out of order socket information.

resources_gpu

Add a new GPU struct to the server resources, listing all usable GPUs on the system.

resources_numa

Shows the NUMA node for all CPUs and GPUs.

kernel_features

Exposes the state of optional kernel features through the server environment.

id_map_current

This introduces a new internal volatile.idmap.current (page 446) key which is used to track
the current mapping for the container.

This effectively gives us:

639 of 954

• volatile.last_state.idmap (page 446) => On-disk idmap

• volatile.idmap.current (page 446) => Current kernel map

• volatile.idmap.next (page 446) => Next on-disk idmap

This is required to implement environments where the on-disk map isn’t changed but the
kernel map is (e.g. idmapped mounts).

event_location

Expose the location of the generation of API events.

storage_api_remote_volume_snapshots

This allows migrating storage volumes including their snapshots.

network_nat_address

This introduces the ipv4.nat.address (page 580) and ipv6.nat.address (page 582) configu-
ration keys for LXD bridges. Those keys control the source address used for outbound traffic
from the bridge.

container_nic_routes

This introduces the ipv4.routes (page 451) and ipv6.routes (page 451) properties on nic
type devices. This allows adding static routes on host to container’s NIC.

cluster_internal_copy

This makes it possible to do a normal POST /1.0/containers to copy a container between
cluster nodes with LXD internally detecting whether a migration is required.

seccomp_notify

If the kernel supports seccomp-based syscall interception LXD can be notified by a container
that a registered syscall has been performed. LXD can then decide to trigger various actions.

lxc_features

This introduces the lxc_features section output from the lxc info (page 782) command via
the GET /1.0 route. It outputs the result of checks for key features being present in the
underlying LXC library.

container_nic_ipvlan

This introduces the ipvlan nic device type.

network_vlan_sriov

This introduces VLAN (vlan (page 460)) and MAC filtering (security.mac_filtering
(page 459)) support for SR-IOV devices.

640 of 954

storage_cephfs

Add support for CephFS as a storage pool driver. This can only be used for custom volumes,
images and containers should be on Ceph (RBD) instead.

container_nic_ipfilter

This introduces container IP filtering (security.ipv4_filtering (page 454) and security.
ipv6_filtering (page 454)) support for bridged NIC devices.

resources_v2

Rework the resources API at /1.0/resources, especially:

• CPU

– Fix reporting to track sockets, cores and threads

– Track NUMA node per core

– Track base and turbo frequency per socket

– Track current frequency per core

– Add CPU cache information

– Export the CPU architecture

– Show online/offline status of threads

• Memory

– Add huge-pages tracking

– Track memory consumption per NUMA node too

• GPU

– Split DRM information to separate struct

– Export device names and nodes in DRM struct

– Export device name and node in NVIDIA struct

– Add SR-IOV VF tracking

container_exec_user_group_cwd

Adds support for specifying User, Group and Cwd during POST /1.0/containers/NAME/exec.

container_syscall_intercept

Adds the security.syscalls.intercept.* configuration keys to controlwhat systemcallswill
be intercepted by LXD and processed with elevated permissions.

641 of 954

container_disk_shift

Adds the shift (page 484) property on disk devices which controls the use of the idmapped
mounts overlay.

storage_shifted

Introduces a new security.shifted Boolean on storage volumes.

Setting it to true will allow multiple isolated containers to attach the same storage volume
while keeping the file system writable from all of them.

This makes use of idmapped mounts as an overlay file system.

resources_infiniband

Export InfiniBand character device information (issm, umad, uverb) as part of the resources
API.

daemon_storage

This introduces two new configuration keys storage.images_volume (page 413) and storage.
backups_volume (page 413) to allow for a storage volume on an existing pool be used for
storing the daemon-wide images and backups artifacts.

instances

This introduces the concept of instances, of which currently the only type is container.

image_types

This introduces support for a new Type field on images, indicating what type of images they
are.

resources_disk_sata

Extends the disk resource API struct to include:

• Proper detection of SATA devices (type)

• Device path

• Drive RPM

• Block size

• Firmware version

• Serial number

clustering_roles

This adds a new roles attribute to cluster entries, exposing a list of roles that the member
serves in the cluster.

642 of 954

images_expiry

This allows for editing of the expiry date on images.

resources_network_firmware

Adds a FirmwareVersion field to network card entries.

backup_compression_algorithm

This adds support for a compression_algorithm property when creating a backup (POST /1.
0/containers/<name>/backups).

Setting this property overrides the server default value (backups.compression_algorithm
(page 411)).

ceph_data_pool_name

This adds support for an optional argument (ceph.osd.data_pool_name (page 536)) when cre-
ating storage pools using Ceph RBD, when this argument is used the pool will store it’s actual
data in the pool specified with data_pool_namewhile keeping the metadata in the pool spec-
ified by pool_name.

container_syscall_intercept_mount

Adds the security.syscalls.intercept.mount (page 440), security.syscalls.intercept.
mount.allowed (page 440), and security.syscalls.intercept.mount.shift (page 440) con-
figuration keys to control whether and how the mount system call will be intercepted by LXD
and processed with elevated permissions.

compression_squashfs

Adds support for importing/exporting of images/backups using SquashFSfile system format.

container_raw_mount

This adds support for passing in raw mount options for disk devices.

container_nic_routed

This introduces the routed nic device type.

container_syscall_intercept_mount_fuse

Adds the security.syscalls.intercept.mount.fuse (page 440) key. It can be used to redirect
file-system mounts to their fuse implementation. To this end, set e.g. security.syscalls.
intercept.mount.fuse=ext4=fuse2fs.

643 of 954

container_disk_ceph

This allows for existing a Ceph RBD or CephFS to be directly connected to a LXD container.

virtual-machines

Add virtual machine support.

image_profiles

Allows a list of profiles to be applied to an image when launching a new container.

clustering_architecture

This adds a new architecture attribute to cluster members which indicates a cluster mem-
ber’s architecture.

resources_disk_id

Add a new device_id field in the disk entries on the resources API.

storage_lvm_stripes

This adds the ability to use LVM stripes on normal volumes and thin pool volumes.

vm_boot_priority

Adds a boot.priority property on NIC and disk devices to control the boot order.

unix_hotplug_devices

Adds support for Unix char and block device hotplugging.

api_filtering

Adds support for filtering the result of a GET request for instances and images.

instance_nic_network

Adds support for the network property on a NIC device to allow a NIC to be linked to a man-
aged network. This allows it to inherit some of the network’s settings and allows better val-
idation of IP settings.

clustering_sizing

Support specifying a custom values for database voters and standbys. The new cluster.
max_voters (page 408) and cluster.max_standby (page 408) configuration keys were intro-
duced to specify to the ideal number of database voter and standbys.

644 of 954

firewall_driver

Adds the Firewall property to the ServerEnvironment struct indicating the firewall driver
being used.

storage_lvm_vg_force_reuse

Introduces the ability to create a storage pool from an existing non-empty volume group.
This option should be used with care, as LXD can then not guarantee that volume name con-
flicts won’t occur with non-LXD created volumes in the same volume group. This could also
potentially lead to LXD deleting a non-LXD volume should name conflicts occur.

container_syscall_intercept_hugetlbfs

Whenmount syscall interception is enabled and hugetlbfs is specified as an allowed file sys-
tem type LXD will mount a separate hugetlbfs instance for the container with the UID and
GIDmount options set to the container’s root UID and GID. This ensures that processes in the
container can use huge pages.

limits_hugepages

This allows to limit thenumberof hugepages a container canuse through the hugetlb cgroup.
Thismeans the hugetlb cgroupneeds tobe available. Note, that limiting hugepages is recom-
mended when intercepting the mount syscall for the hugetlbfs file system to avoid allowing
the container to exhaust the host’s huge pages resources.

container_nic_routed_gateway

This introduces the ipv4.gateway (page 474) and ipv6.gateway (page 475) NIC configuration
keys that can take a value of either auto or none. The default value for the key if unspecified
is auto. This will cause the current behavior of a default gateway being added inside the
container and the same gateway address being added to the host-side interface. If the value
is set to none thennodefault gatewaynorwill the address be added to thehost-side interface.
This allows multiple routed NIC devices to be added to a container.

projects_restrictions

This introduces support for the restricted (page 514) configuration key on project, which
can prevent the use of security-sensitive features in a project.

custom_volume_snapshot_expiry

This allows custom volume snapshots to expiry. Expiry dates can be set individually, or by
setting the snapshots.expiry configuration key on the parent custom volume which then
automatically applies to all created snapshots.

volume_snapshot_scheduling

This adds support for custom volume snapshot scheduling. It introduces two new configura-
tion keys: snapshots.schedule and snapshots.pattern. Snapshots can be created automati-
cally up to every minute.

645 of 954

trust_ca_certificates

This allows for checking client certificates trusted by the provided CA (server.ca). It can be
enabled by setting core.trust_ca_certificates (page 405) to true. If enabled, it will per-
form the check, and bypass the trusted password if true. An exception will be made if the
connecting client certificate is in the provided CRL (ca.crl). In this case, it will ask for the
password.

snapshot_disk_usage

This adds a new size field to the output of /1.0/instances/<name>/snapshots/<snapshot>
which represents the disk usage of the snapshot.

clustering_edit_roles

This adds a writable endpoint for cluster members, allowing the editing of their roles.

container_nic_routed_host_address

This introduces the ipv4.host_address (page474) and ipv6.host_address (page475)NIC con-
figuration keys that can be used to control the host-side veth interface’s IP addresses. This
can be useful when using multiple routed NICs at the same time and needing a predictable
next-hop address to use.

This also alters the behavior of ipv4.gateway (page 474) and ipv6.gateway (page 475) NIC
configuration keys. When they are set to auto the container will have its default gateway set
to the value of ipv4.host_address or ipv6.host_address respectively.

The default values are:

ipv4.host_address: 169.254.0.1 ipv6.host_address: fe80::1

This is backward compatible with the previous default behavior.

container_nic_ipvlan_gateway

This introduces the ipv4.gateway (page 468) and ipv6.gateway (page 469) NIC configuration
keys that can take a value of either auto or none. The default value for the key if unspecified
is auto. This will cause the current behavior of a default gateway being added inside the
container and the same gateway address being added to the host-side interface. If the value
is set to none thennodefault gatewaynorwill the address be added to thehost-side interface.
This allows multiple IPVLAN NIC devices to be added to a container.

resources_usb_pci

This adds USB and PCI devices to the output of /1.0/resources.

resources_cpu_threads_numa

This indicates that the numa_node field is now recorded per-thread rather than per core as
some hardware apparently puts threads in different NUMA domains.

646 of 954

resources_cpu_core_die

Exposes the die_id information on each core.

api_os

This introduces two new fields in /1.0, os and os_version.

Those are taken from the OS-release data on the system.

container_nic_routed_host_table

This introduces the ipv4.host_table (page 475) and ipv6.host_table (page 476) NIC config-
uration keys that can be used to add static routes for the instance’s IPs to a custom policy
routing table by ID.

container_nic_ipvlan_host_table

This introduces the ipv4.host_table (page 468) and ipv6.host_table (page 469) NIC config-
uration keys that can be used to add static routes for the instance’s IPs to a custom policy
routing table by ID.

container_nic_ipvlan_mode

This introduces the mode (page 469) NIC configuration key that can be used to switch the
ipvlan mode into either l2 or l3s. If not specified, the default value is l3s (which is the old
behavior).

In l2 mode the ipv4.address (page 468) and ipv6.address (page 468) keys will accept ad-
dresses in either CIDR or singular formats. If singular format is used, the default subnet size
is taken to be /24 and /64 for IPv4 and IPv6 respectively.

In l2mode the ipv4.gateway (page 468) and ipv6.gateway (page 469) keys accept only a sin-
gular IP address.

resources_system

This adds system information to the output of /1.0/resources.

images_push_relay

This adds the push and relay modes to image copy. It also introduces the following new end-
point:

• POST 1.0/images/<fingerprint>/export

network_dns_search

This introduces the dns.search configuration option on networks.

647 of 954

container_nic_routed_limits

This introduces limits.ingress (page 476), limits.egress (page 476) and limits.max
(page 476) for routed NICs.

instance_nic_bridged_vlan

This introduces the vlan (page 455) and vlan.tagged (page 455) settings for bridged NICs.

vlan specifies the non-tagged VLAN to join, and vlan.tagged is a comma-delimited list of
tagged VLANs to join.

network_state_bond_bridge

This adds a bridge and bond section to the /1.0/networks/NAME/state API.

Those contain additional state information relevant to those particular types.

Bond:

• Mode

• Transmit hash

• Up delay

• Down delay

• MII frequency

• MII state

• Lower devices

Bridge:

• ID

• Forward delay

• STP mode

• Default VLAN

• VLAN filtering

• Upper devices

resources_cpu_isolated

Add an Isolated property on CPU threads to indicate if the thread is physically Online but is
configured not to accept tasks.

usedby_consistency

This extension indicates that UsedBy should now be consistent with suitable ?project= and
?target=when appropriate.

The 5 entities that have UsedBy are:

• Profiles

648 of 954

• Projects

• Networks

• Storage pools

• Storage volumes

custom_block_volumes

This adds support for creating andattaching customblock volumes to instances. It introduces
the new --type flag when creating custom storage volumes, and accepts the values fs and
block.

clustering_failure_domains

This extension adds a new failure_domain field to the PUT /1.0/cluster/<node> API, which
can be used to set the failure domain of a node.

container_syscall_filtering_allow_deny_syntax

A number of new syscalls related container configuration keys were updated.

• security.syscalls.deny_default (page 439)

• security.syscalls.deny_compat (page 439)

• security.syscalls.deny (page 438)

• security.syscalls.allow (page 438)

Support for the offensively named variants was removed.

resources_gpu_mdev

Expose available mediated device profiles and devices in /1.0/resources.

console_vga_type

This extends the /1.0/console endpoint to take a ?type= argument, which can be set to con-
sole (default) or vga (the new type added by this extension).

When doing a POST to /1.0/<instance name>/console?type=vga the dataWebSocket returned
by the operation in the metadata field will be a bidirectional proxy attached to a SPICE Unix
socket of the target virtual machine.

projects_limits_disk

Add limits.disk (page 512) to the available project configuration keys. If set, it limits the
total amount of disk space that instances volumes, custom volumes and images volumes can
use in the project.

649 of 954

network_type_macvlan

Adds support for additional network type macvlan and adds parent (page 595) configuration
key for this network type to specify which parent interface should be used for creating NIC
device interfaces on top of.

Also adds network (page 457) configuration key support for macvlan NICs to allow them to
specify the associated network of the same type that they should use as the basis for the NIC
device.

network_type_sriov

Adds support for additional network type sriov and adds parent (page 601) configuration
key for this network type to specify which parent interface should be used for creating NIC
device interfaces on top of.

Also adds network (page 459) configuration key support for sriovNICs to allow them to spec-
ify the associated network of the same type that they should use as the basis for the NIC
device.

container_syscall_intercept_bpf_devices

This adds support to intercept the bpf syscall in containers. Specifically, it allows to manage
device cgroup bpf programs.

network_type_ovn

Adds support for additional network type ovnwith theability to specify a bridge typenetwork
as the parent.

Introduces a newNIC device type of ovnwhich allows the network configuration key to specify
which ovn type network they should connect to.

Also introduces two new global configuration keys that apply to all ovn networks and NIC
devices:

• network.ovn.integration_bridge (page 413) - the OVS integration bridge to use.

• network.ovn.northbound_connection (page 413) - the OVN northbound database con-
nection string.

projects_networks

Adds the features.networks (page 510) configuration key to projects and the ability for a
project to hold networks.

projects_networks_restricted_uplinks

Adds the restricted.networks.uplinks (page 519) project configuration key to indicate (as
a comma-delimited list) which networks the networks created inside the project can use as
their uplink network.

650 of 954

custom_volume_backup

Add custom volume backup support.

This includes the following new endpoints (see RESTful API (page 618) for details):

• GET /1.0/storage-pools/<pool>/<type>/<volume>/backups

• POST /1.0/storage-pools/<pool>/<type>/<volume>/backups

• GET /1.0/storage-pools/<pool>/<type>/<volume>/backups/<name>

• POST /1.0/storage-pools/<pool>/<type>/<volume>/backups/<name>

• DELETE /1.0/storage-pools/<pool>/<type>/<volume>/backups/<name>

• GET /1.0/storage-pools/<pool>/<type>/<volume>/backups/<name>/export

The following existing endpoint has been modified:

• POST /1.0/storage-pools/<pool>/<type>/<volume> accepts the new source type backup

backup_override_name

Adds Name field to InstanceBackupArgs to allow specifying a different instance name when
restoring a backup.

Adds Name and PoolNamefields to StoragePoolVolumeBackupArgs to allow specifying adifferent
volume name when restoring a custom volume backup.

storage_rsync_compression

Adds rsync.compression configuration key to storage pools. This key can be used to disable
compression in rsyncwhile migrating storage pools.

network_type_physical

Adds support for additional network type physical that can be used as an uplink for ovn net-
works.

The interface specified by parent (page 599) on the physical network will be connected to
the ovn network’s gateway.

network_ovn_external_subnets

Adds support for ovn networks to use external subnets from uplink networks.

Introduces the ipv4.routes (page 597) and ipv6.routes (page 598) setting on physical net-
works that defines the external routes allowed to be used in child OVN networks in their
ipv4.routes.external (page 464) and ipv6.routes.external (page 465) settings.

Introduces the restricted.networks.subnets (page 519) project setting that specifies which
external subnets are allowed to be used by OVN networks inside the project (if not set then
all routes defined on the uplink network are allowed).

651 of 954

network_ovn_nat

Adds support for ipv4.nat (page 590) and ipv6.nat (page 591) settings on ovn networks.

When creating the network if these settings are unspecified, and an equivalent IP address is
being generated for the subnet, then the appropriate NAT setting will added set to true.

If the setting is missing then the value is taken as false.

network_ovn_external_routes_remove

Removes the settings ipv4.routes.external and ipv6.routes.external from ovn networks.

The equivalent settings on the ovn NIC type can be used instead for this, rather than having
to specify them both at the network and NIC level.

tpm_device_type

This introduces the tpm device type.

storage_zfs_clone_copy_rebase

This introduces rebase as a value for zfs.clone_copy (page 566) causing LXD to track down
any image dataset in the ancestry line and then perform send/receive on top of that.

gpu_mdev

This adds support for virtual GPUs (vGPUs). It introduces the mdev (page 494) configuration
key for GPU devices which takes a supported mdev type, e.g. i915-GVTg_V5_4.

resources_pci_iommu

This adds the IOMMUGroup field for PCI entries in the resources API.

resources_network_usb

Adds the usb_address field to the network card entries in the resources API.

resources_disk_address

Adds the usb_address and pci_address fields to the disk entries in the resources API.

network_physical_ovn_ingress_mode

Adds ovn.ingress_mode (page 599) setting for physical networks.

Sets the method that OVN NIC external IPs will be advertised on uplink network.

Either l2proxy (proxy ARP/NDP) or routed.

652 of 954

network_ovn_dhcp

Adds ipv4.dhcp (page 590) and ipv6.dhcp (page 591) settings for ovn networks.

Allows DHCP (and RA for IPv6) to be disabled. Defaults to on.

network_physical_routes_anycast

Adds ipv4.routes.anycast (page 598) and ipv6.routes.anycast (page 598) Boolean settings
for physical networks. Defaults to false.

AllowsOVNnetworks usingphysical network as uplink to relax external subnet/routeoverlap
detection when used with ovn.ingress_mode (page 599) set to routed.

projects_limits_instances

Adds limits.instances (page 512) to the available project configuration keys. If set, it limits
the total number of instances (VMs and containers) that can be used in the project.

network_state_vlan

This adds a vlan section to the /1.0/networks/NAME/state API.

Those contain additional state information relevant to VLAN interfaces:

• lower_device

• vid

instance_nic_bridged_port_isolation

This adds the security.port_isolation (page 454) field for bridged NIC instances.

instance_bulk_state_change

Adds the following endpoint for bulk state change (see RESTful API (page 618) for details):

• PUT /1.0/instances

network_gvrp

This adds anoptional gvrpproperty to macvlanand physicalnetworks, and to ipvlan, macvlan,
routed and physical NIC devices.

When set, this specifies whether the VLAN should be registered using GARP VLAN Registra-
tion Protocol. Defaults to false.

instance_pool_move

This adds a pool field to the POST /1.0/instances/NAME API, allowing for easy move of an
instance root disk between pools.

653 of 954

gpu_sriov

This adds support for SR-IOV enabled GPUs. It introduces the sriov GPU type property.

pci_device_type

This introduces the pci device type.

storage_volume_state

Addnew /1.0/storage-pools/POOL/volumes/VOLUME/stateAPI endpoint to get usage data on
a volume.

network_acl

This adds the concept of network ACLs to API under the API endpoint prefix /1.0/
network-acls.

migration_stateful

Add a new migration.stateful (page 429) configuration key.

disk_state_quota

This introduces the size.state (page 484) device configuration key on disk devices.

storage_ceph_features

Adds a new ceph.rbd.features (page 537) configuration key on storage pools to control the
RBD features used for new volumes.

projects_compression

Adds new backups.compression_algorithm (page 520) and images.compression_algorithm
(page 520) configuration keys which allows configuration of backup and image compression
per-project.

projects_images_remote_cache_expiry

Add new images.remote_cache_expiry (page 409) configuration key to projects, allowing for
set number of days after which an unused cached remote image will be flushed.

certificate_project

Adds a new restricted property to certificates in the API as well as projects holding a list of
project names that the certificate has access to.

654 of 954

network_ovn_acl

Adds a new security.acls property to OVN networks and OVNNICs, allowing Network ACLs
to be applied.

projects_images_auto_update

Adds new images.auto_update_cached (page 409) and images.auto_update_interval
(page 409) configuration keys which allows configuration of images auto update in projects

projects_restricted_cluster_target

Adds new restricted.cluster.target (page 514) configuration key to project which prevent
the user from using –target to specify what cluster member to place a workload on or the
ability to move a workload between members.

images_default_architecture

Adds new images.default_architecture (page 409) global configuration key and matching
per-project key which lets user tell LXD what architecture to go with when no specific one is
specified as part of the image request.

network_ovn_acl_defaults

Adds new security.acls.default.{in,e}gress.action and security.acls.default.{in,
e}gress.logged configuration keys for OVN networks and NICs. This replaces the removed
ACL default.action and default.logged keys.

gpu_mig

This adds support for NVIDIA MIG. It introduces the mig GPU type and associated configura-
tion keys.

project_usage

Adds an API endpoint to get current resource allocations in a project. Accessible at API GET
/1.0/projects/<name>/state.

network_bridge_acl

Adds a new security.acls (page 584) configuration key to bridge networks, allowing Net-
work ACLs to be applied.

Also adds security.acls.default.{in,e}gress.action and security.acls.default.{in,
e}gress.logged configuration keys for specifying the default behavior for unmatched traffic.

warnings

Warning API for LXD.

This includes the following endpoints (see Restful API (page 618) for details):

• GET /1.0/warnings

655 of 954

• GET /1.0/warnings/<uuid>

• PUT /1.0/warnings/<uuid>

• DELETE /1.0/warnings/<uuid>

projects_restricted_backups_and_snapshots

Adds new restricted.backups (page 514) and restricted.snapshots (page 519) configura-
tion keys to project which prevents the user from creation of backups and snapshots.

clustering_join_token

Adds POST /1.0/cluster/membersAPI endpoint for requesting a join token usedwhen adding
new cluster members without using the trust password.

clustering_description

Adds an editable description to the cluster members.

server_trusted_proxy

This introduces support for core.https_trusted_proxy (page 403) which has LXD parse a
HAProxy style connection header on such connections and if present, will rewrite the re-
quest’s source address to that provided by the proxy server.

clustering_update_cert

Adds PUT /1.0/cluster/certificate endpoint for updating the cluster certificate across the
whole cluster

storage_api_project

This adds support for copy/move custom storage volumes between projects.

server_instance_driver_operational

This modifies the driver output for the /1.0 endpoint to only include drivers which are actu-
ally supported and operational on the server (as opposed to being included in LXD but not
operational on the server).

server_supported_storage_drivers

This adds supported storage driver info to server environment info.

event_lifecycle_requestor_address

Adds a new address field to lifecycle requestor.

656 of 954

resources_gpu_usb

Add a new USBAddress (usb_address) field to ResourcesGPUCard (GPU entries) in the resources
API.

clustering_evacuation

Adds POST /1.0/cluster/members/<name>/state endpoint for evacuating and restoring clus-
termembers. It also adds the configuration keys cluster.evacuate (page 416) and volatile.
evacuate.origin (page 445) for setting the evacuation method (auto, stop or migrate) and
the origin of any migrated instance respectively.

network_ovn_nat_address

This introduces the ipv4.nat.address (page 590) and ipv6.nat.address (page 591) configu-
ration keys for LXD ovn networks. Those keys control the source address used for outbound
traffic from the OVN virtual network. These keys can only be specified when the OVN net-
work’s uplink network has ovn.ingress_mode (page 599) set to routed.

network_bgp

This introduces support for LXD acting as a BGP router to advertise routes to bridge and ovn
networks.

This comes with the addition to global configuration of:

• core.bgp_address (page 401)

• core.bgp_asn (page 401)

• core.bgp_routerid (page 401)

The following network configurations keys (bridge and physical):

• bgp.peers.<name>.address

• bgp.peers.<name>.asn

• bgp.peers.<name>.password

The nexthop configuration keys (bridge):

• bgp.ipv4.nexthop (page 574)

• bgp.ipv6.nexthop (page 575)

And the following NIC-specific configuration keys (bridged NIC type):

• ipv4.routes.external (page 451)

• ipv6.routes.external (page 452)

network_forward

This introduces the networking address forward functionality. Allowing for bridge and ovn
networks to define external IP addresses that can be forwarded to internal IP(s) inside their
respective networks.

657 of 954

custom_volume_refresh

Adds support for refresh during volume migration.

network_counters_errors_dropped

This adds the received and sent errors as well as inbound and outbound dropped packets to
the network counters.

metrics

This adds metrics to LXD. It returns metrics of running instances using the OpenMetrics for-
mat.

This includes the following endpoints:

• GET /1.0/metrics

image_source_project

Adds a new project field to POST /1.0/images allowing for the source project to be set at
image copy time.

clustering_config

Adds new config property to cluster members with configurable key/value pairs.

network_peer

This adds network peering to allow traffic to flow between OVN networks without leaving
the OVN subsystem.

linux_sysctl

Adds new linux.sysctl.* configuration keys allowing users to modify certain kernel param-
eters within containers.

network_dns

Introduces a built-in DNS server and zones API to provide DNS records for LXD instances.

This introduces the following server configuration key:

• core.dns_address (page 402)

The following network configuration key:

• dns.zone.forward

• dns.zone.reverse.ipv4

• dns.zone.reverse.ipv6

And the following project configuration key:

• restricted.networks.zones (page 519)

658 of 954

A new REST API is also introduced to manage DNS zones:

• /1.0/network-zones (GET, POST)

• /1.0/network-zones/<name> (GET, PUT, PATCH, DELETE)

ovn_nic_acceleration

Adds new acceleration (page 463) configuration key to OVN NICs which can be used for
enabling hardware offloading. It takes the values none or sriov.

certificate_self_renewal

This adds support for renewing a client’s own trust certificate.

instance_project_move

This adds a project field to the POST /1.0/instances/NAME API, allowing for easy move of an
instance between projects.

storage_volume_project_move

This adds support for moving storage volume between projects.

cloud_init

This adds a new cloud-init configuration key namespace which contains the following keys:

• cloud-init.vendor-data (page 420)

• cloud-init.user-data (page 420)

• cloud-init.network-config (page 419)

It also adds a new endpoint /1.0/devices to devlxdwhich shows an instance’s devices.

network_dns_nat

This introduces network.nat as a configuration option on network zones (DNS).

It defaults to the current behavior of generating records for all instances NICs but if set to
false, it will instruct LXD to only generate records for externally reachable addresses.

database_leader

Adds new database-leader role which is assigned to cluster leader.

instance_all_projects

This adds support for displaying instances from all projects.

659 of 954

clustering_groups

Add support for grouping cluster members.

This introduces the following new endpoints:

• /1.0/cluster/groups (GET, POST)

• /1.0/cluster/groups/<name> (GET, POST, PUT, PATCH, DELETE)

The following project restriction is added:

• restricted.cluster.groups (page 514)

ceph_rbd_du

Adds a new ceph.rbd.du (page 537) Boolean on Ceph storage pools which allows disabling
the use of the potentially slow rbd du calls.

instance_get_full

This introduces a new recursion=1mode for GET /1.0/instances/{name}which allows for the
retrieval of all instance structs, including the state, snapshots and backup structs.

qemu_metrics

This adds a new security.agent.metrics (page 433) Boolean which defaults to true. When
set to false, it doesn’t connect to the lxd-agent for metrics and other state information, but
relies on stats from QEMU.

gpu_mig_uuid

Adds support for the new MIG UUID format used by NVIDIA 470+ drivers (for example,
MIG-74c6a31a-fde5-5c61-973b-70e12346c202), the MIG- prefix can be omitted

This extension supersedes old mig.gi and mig.ciparameterswhich are kept for compatibility
with old drivers and cannot be set together.

event_project

Expose the project an API event belongs to.

clustering_evacuation_live

This adds live-migrate as a configuration option to cluster.evacuate (page 416), which
forces live-migration of instances during cluster evacuation.

instance_allow_inconsistent_copy

Adds allow_inconsistent field to instance source on POST /1.0/instances. If true, rsyncwill
ignore the Partial transfer due to vanished source files (code 24) error when creating
an instance from a copy.

660 of 954

network_state_ovn

This adds an ovn section to the /1.0/networks/NAME/stateAPIwhich contains additional state
information relevant to OVN networks:

• chassis

storage_volume_api_filtering

Adds support for filtering the result of a GET request for storage volumes.

image_restrictions

This extension adds on to the image properties to include image restrictions/host require-
ments. These requirements help determine the compatibility between an instance and the
host system.

storage_zfs_export

Introduces the ability to disable zpool export when unmounting pool by setting zfs.export
(page 566).

network_dns_records

This extends the network zones (DNS) API to add the ability to create and manage custom
records.

This adds:

• GET /1.0/network-zones/ZONE/records

• POST /1.0/network-zones/ZONE/records

• GET /1.0/network-zones/ZONE/records/RECORD

• PUT /1.0/network-zones/ZONE/records/RECORD

• PATCH /1.0/network-zones/ZONE/records/RECORD

• DELETE /1.0/network-zones/ZONE/records/RECORD

storage_zfs_reserve_space

Adds ability to set the reservation/refreservation ZFS property along with quota/refquota.

network_acl_log

Adds a new GET /1.0/networks-acls/NAME/log API to retrieve ACL firewall logs.

storage_zfs_blocksize

Introduces a new zfs.blocksize (page 569) property for ZFS storage volumes which allows
to set volume block size.

661 of 954

metrics_cpu_seconds

This is used to detect whether LXDwas fixed to output used CPU time in seconds rather than
as milliseconds.

instance_snapshot_never

Adds a @never option to snapshots.schedulewhich allows disabling inheritance.

certificate_token

This adds token-based certificate addition to the trust store as a safer alternative to a trust
password.

It adds the token field to POST /1.0/certificates.

instance_nic_routed_neighbor_probe

This adds the ability to disable the routed NIC IP neighbor probing for availability on the par-
ent network.

Adds the ipv4.neighbor_probe (page 475) and ipv6.neighbor_probe (page 476) NIC settings.
Defaulting to true if not specified.

event_hub

This adds support for event-hub cluster member role and the ServerEventMode environment
field.

agent_nic_config

If set to true, on VM start-up the lxd-agentwill apply NIC configuration to change the names
and MTU of the instance NIC devices.

projects_restricted_intercept

Adds new restricted.containers.interception (page 515) configuration key to allow usu-
ally safe system call interception options.

metrics_authentication

Introduces a new core.metrics_authentication (page 403) server configuration option to
allow for the /1.0/metrics endpoint to be generally available without client authentication.

images_target_project

Adds ability to copy image to a project different from the source.

662 of 954

cluster_migration_inconsistent_copy

Adds allow_inconsistent field to POST /1.0/instances/<name>. Set to true to allow inconsis-
tent copying between cluster members.

cluster_ovn_chassis

Introduces a new ovn-chassis cluster role which allows for specifying what cluster member
should act as an OVN chassis.

container_syscall_intercept_sched_setscheduler

Adds the security.syscalls.intercept.sched_setscheduler (page 441) to allow advanced
process priority management in containers.

storage_lvm_thinpool_metadata_size

Introduces the ability to specify the thin pool metadata volume size via lvm.
thinpool_metadata_size (page 558).

If this is not specified then the default is to let LVM pick an appropriate thin pool metadata
volume size.

storage_volume_state_total

This adds totalfield to the GET /1.0/storage-pools/{name}/volumes/{type}/{volume}/state
API.

instance_file_head

Implements HEAD on /1.0/instances/NAME/file.

instances_nic_host_name

This introduces the instances.nic.host_name (page 411) server configuration key that can
take a value of either random or mac. The default value for the key if unspecified is random. If it
is set to random then use the random host interface names. If it’s set to mac, then generate
a name in the form lxd1122334455.

image_copy_profile

Adds ability to modify the set of profiles when image is copied.

container_syscall_intercept_sysinfo

Adds the security.syscalls.intercept.sysinfo (page 441) to allow the sysinfo syscall to be
populated with cgroup-based resource usage information.

663 of 954

clustering_evacuation_mode

This introduces a mode field to the evacuation request which allows for overriding the evacu-
ation mode traditionally set through cluster.evacuate (page 416).

resources_pci_vpd

Adds a new VPD struct to the PCI resource entries. This struct extracts vendor provided data
including the full product name and additional key/value configuration pairs.

qemu_raw_conf

Introduces a raw.qemu.conf (page 431) configuration key to override select sections of the
generated qemu.conf.

storage_cephfs_fscache

Add support for fscache/cachefilesd on CephFS pools through a new cephfs.fscache
(page 528) configuration option.

network_load_balancer

This introduces the networking load balancer functionality. Allowing ovn networks to define
port(s) on external IP addresses that can be forwarded to one or more internal IP(s) inside
their respective networks.

vsock_api

This introduces a bidirectional vsock interfacewhich allows the lxd-agent and the LXD server
to communicate better.

instance_ready_state

This introduces a new Ready state for instances which can be set using devlxd.

network_bgp_holdtime

This introduces a new bgp.peers.<name>.holdtime configuration key to control the BGP hold
time for a particular peer.

storage_volumes_all_projects

This introduces the ability to list storage volumes from all projects.

metrics_memory_oom_total

This introduces a new lxd_memory_OOM_kills_totalmetric to the /1.0/metricsAPI. It reports
the number of times the out of memory killer (OOM) has been triggered.

664 of 954

storage_buckets

This introduces the storage bucket API. It allows themanagement of S3 object storage buck-
ets for storage pools.

storage_buckets_create_credentials

This updates the storage bucket API to return initial admin credentials at bucket creation
time.

metrics_cpu_effective_total

This introduces a new lxd_cpu_effective_total metric to the /1.0/metrics API. It reports
the total number of effective CPUs.

projects_networks_restricted_access

Adds the restricted.networks.access (page 518) project configuration key to indicate (as
a comma-delimited list) which networks can be accessed inside the project. If not speci-
fied, all networks are accessible (assuming it is also allowed by the restricted.devices.nic
(page 517) setting, described below).

This also introduces a change whereby network access is controlled by the project’s
restricted.devices.nic (page 517) setting:

• If restricted.devices.nic is set to managed (the default if not specified), only managed
networks are accessible.

• If restricted.devices.nic is set to allow, all networks are accessible (dependent on
the restricted.networks.access setting).

• If restricted.devices.nic is set to block, no networks are accessible.

storage_buckets_local

This introduces the ability to use storage buckets on local storage pools by setting the new
core.storage_buckets_address (page 404) global configuration setting.

loki

This adds support for sending life cycle and logging events to a Loki server.

It adds the following global configuration keys:

• loki.api.ca_cert (page 410): CA certificate which can be used when sending events to
the Loki server

• loki.api.url (page 410): URL to the Loki server (protocol, name or IP and port)

• loki.auth.username (page 410) and loki.auth.password (page 410): Used if Loki is be-
hind a reverse proxy with basic authentication enabled

• loki.labels (page 410): Comma-separated list of values which are to be used as labels
for Loki events.

• loki.loglevel (page 411): Minimum log level for events sent to the Loki server.

665 of 954

• loki.types (page 411): Types of events which are to be sent to the Loki server
(lifecycle and/or logging).

acme

This adds ACME support, which allows Let’s Encrypt276 or other ACME services to issue cer-
tificates.

It adds the following global configuration keys:

• acme.domain (page 405): The domain for which the certificate should be issued.

• acme.email (page 405): The email address used for the account of the ACME service.

• acme.ca_url (page 405): The directory URL of the ACME service, defaults to https://
acme-v02.api.letsencrypt.org/directory.

It also adds the following endpoint, which is required for the HTTP-01 challenge:

• /.well-known/acme-challenge/<token>

internal_metrics

This adds internal metrics to the list of metrics. These include:

• Total running operations

• Total active warnings

• Daemon uptime in seconds

• Go memory stats

• Number of goroutines

cluster_join_token_expiry

This adds an expiry to cluster join tokens which defaults to 3 hours, but can be changed by
setting the cluster.join_token_expiry (page 408) configuration key.

remote_token_expiry

This adds an expiry to remote add join tokens. It can be set in the core.remote_token_expiry
(page 404) configuration key, and default to no expiry.

storage_volumes_created_at

This change adds support for storing the creation date and time of storage volumes and their
snapshots.

This adds the CreatedAt field to the StorageVolume and StorageVolumeSnapshot API types.

276 https://letsencrypt.org/

666 of 954

https://letsencrypt.org/

cpu_hotplug

This adds CPU hotplugging for VMs. Hotplugging is disabled when using CPU pinning, be-
cause this would require hotplugging NUMA devices as well, which is not possible.

projects_networks_zones

This adds support for the features.networks.zones (page 510) project feature, which
changes which project network zones are associated with when they are created. Previously
network zones were tied to the value of features.networks (page 510), meaning they were
created in the same project as networks were.

Now this has beendecoupled from features.networks (page 510) to allowprojects that share
a network in the default project (i.e those with features.networks=false) to have their own
project level DNS zones that give a project oriented “view” of the addresses on that shared
network (which only includes addresses from instances in their project).

This also introduces a change to the network dns.zone.forward setting, which now accepts a
comma-separated of DNS zone names (a maximum of one per project) in order to associate
a shared network with multiple zones.

No change to the dns.zone.reverse.* settings have been made, they still only allow a single
DNS zone to be set. However the resulting zone content that is generated now includes PTR
records covering addresses from all projects that are referencing that network via one of
their forward zones.

Existing projects that have features.networks=truewill have features.networks.zones=true
set automatically, but new projects will need to specify this explicitly.

instance_nic_txqueuelength

Adds a txqueuelen key to control the txqueuelen parameter of the NIC device.

cluster_member_state

Adds GET /1.0/cluster/members/<member>/state API endpoint and associated ClusterMem-
berState API response type.

instances_placement_scriptlet

Adds support for a Starlark scriptlet to be provided to LXD to allow customized logic that
controls placement of new instances in a cluster.

The Starlark scriptlet is provided to LXD via the new global configuration option instances.
placement.scriptlet (page 412).

storage_pool_source_wipe

Adds support for a source.wipeBoolean on the storage pool, indicating that LXD shouldwipe
partition headers off the requested disk rather than potentially fail due to pre-existing file
systems.

667 of 954

zfs_block_mode

This adds support for using ZFS block volumes allowing the use of different file systems on
top of ZFS.

This adds the following new configuration options for ZFS storage pools:

• volume.zfs.block_mode

• volume.block.mount_options

• volume.block.filesystem

instance_generation_id

Adds support for instance generation ID. The VM or container generation ID will change
whenever the instance’s place in time moves backwards. As of now, the generation ID is
only exposed through to VM type instances. This allows for the VM guest OS to reinitialize
any state it needs to avoid duplicating potential state that has already occurred:

• volatile.uuid.generation (page 447)

disk_io_cache

This introduces a new io.cache (page 481) property to disk devices which can be used to
override the VM caching behavior.

amd_sev

Adds support for AMD SEV (Secure Encrypted Virtualization) that can be used to encrypt the
memory of a guest VM.

This adds the following new configuration options for SEV encryption:

• security.sev (page 437) : (bool) is SEV enabled for this VM

• security.sev.policy.es (page 437) : (bool) is SEV-ES enabled for this VM

• security.sev.session.dh (page 438) : (string) guest owner’s base64-encoded Diffie-
Hellman key

• security.sev.session.data (page 438) : (string) guest owner’s base64-encoded session
blob

storage_pool_loop_resize

This allows growing loop file backed storage pools by changing the size setting of the pool.

migration_vm_live

This adds support for performing VMQEMU to QEMU live migration for both shared storage
(clustered Ceph) and non-shared storage pools.

This also adds the CRIUType_VM_QEMU value of 3 for the migration CRIUType protobuf field.

668 of 954

ovn_nic_nesting

This adds support for nesting an ovn NIC inside another ovn NIC on the same instance. This
allows for an OVN logical switch port to be tunneled inside another OVN NIC using VLAN
tagging.

This feature is configured by specifying the parent NIC name using the nested (page 465)
property and the VLAN ID to use for tunneling with the vlan (page 466) property.

oidc

This adds support for OpenID Connect (OIDC) authentication.

This adds the following new configuration keys:

• oidc.issuer (page 406)

• oidc.client.id (page 406)

• oidc.audience (page 406)

network_ovn_l3only

This adds the ability to set an ovn network into “layer 3 only”mode. Thismode can be enabled
at IPv4 or IPv6 level using ipv4.l3only (page 590) and ipv6.l3only (page 591) configuration
options respectively.

With this mode enabled the following changes are made to the network:

• The virtual router’s internal port address will be configured with a single host netmask
(e.g. /32 for IPv4 or /128 for IPv6).

• Static routes for active instance NIC addresses will be added to the virtual router.

• A discard route for the entire internal subnet will be added to the virtual router to pre-
vent packets destined for inactive addresses from escaping to the uplink network.

• The DHCPv4 server will be configured to indicate that a netmask of 255.255.255.255
be used for instance configuration.

ovn_nic_acceleration_vdpa

This updates the ovn_nic_acceleration API extension. The acceleration (page 463) config-
uration key for OVN NICs can now takes the value vdpa to support Virtual Data Path Acceler-
ation (VDPA).

cluster_healing

This adds cluster healing which automatically evacuates offline cluster members.

This adds the following new configuration key:

• cluster.healing_threshold (page 407)

The configuration key takes an integer, and can be disabled by setting it to 0 (default). If set,
the value represents the threshold after which an offline cluster member is to be evacuated.
In case the value is lower than cluster.offline_threshold (page 408), that valuewill be used
instead.

669 of 954

When the offline cluster member is evacuated, only remote-backed instances will be mi-
grated. Local instances will be ignored as there is no way of migrating them once the cluster
member is offline.

instances_state_total

This extension adds a new total field to InstanceStateDisk and InstanceStateMemory, both
part of the instance’s state API.

auth_user

Add current user details to the main API endpoint.

This introduces:

• auth_user_name

• auth_user_method

security_csm

Introduce a new security.csm (page 433) configuration key to control the use of CSM (Com-
patibility Support Module) to allow legacy operating systems to be run in LXD VMs.

instances_rebuild

This extension adds the ability to rebuild an instance with the same origin image, alternate
imageor as empty. A new POST /1.0/instances/<name>/rebuild?project=<project>API end-
point has been added as well as a new CLI command lxc rebuild (page 870).

numa_cpu_placement

This adds the possibility to place a set of CPUs in a desired set of NUMA nodes.

This adds the following new configuration key:

• limits.cpu.nodes (page 421) : (string) comma-separated list of NUMA node IDs or
NUMA node ID ranges to place the CPUs (chosen with a dynamic value of limits.cpu
(page 421)) in.

custom_volume_iso

This adds the possibility to import ISO images as custom storage volumes.

This adds the --type flag to lxc storage volume import (page 905).

network_allocations

This adds the possibility to list a LXD deployment’s network allocations.

Through the lxc network list-allocations (page 813) command and the --project
<PROJECT> | --all-projectsflags, you can list all the used IP addresses, hardware addresses
(for instances), resource URIs and whether it uses NAT for each instance, network, network
forward and network load-balancer.

670 of 954

storage_api_remote_volume_snapshot_copy

This allows copying storage volume snapshots to and from remotes.

zfs_delegate

This implements a new zfs.delegate (page 569) volume Boolean for volumes on a ZFS stor-
age driver. When enabled and a suitable system is in use (requires ZFS 2.2 or higher), the ZFS
dataset will be delegated to the container, allowing for its use through the zfs command line
tool.

operations_get_query_all_projects

This introduces support for the all-projects query parameter for the GET API calls to both
/1.0/operations and /1.0/operations?recursion=1. This parameter allows bypassing the
project name filter.

metadata_configuration

Adds the GET /1.0/metadata/configuration API endpoint to retrieve the generated meta-
data configuration in a JSON format. The JSON structure adopts the structure "configs" >
`ENTITY` > `ENTITY_SECTION` > "keys" > [<CONFIG_OPTION_0>, <CONFIG_OPTION_1>, ...
]. Check the list of configuration options (page 401) to see which configuration options are
included.

syslog_socket

This introduces a syslog socket that can receive syslog formatted log messages. These can
be viewed in the events API and lxc monitor, and can be forwarded to Loki. To enable this
feature, set core.syslog_socket (page 404) to true.

event_lifecycle_name_and_project

This adds the fields Name and Project to lifecycle events.

instances_nic_limits_priority

This introduces a new per-NIC limits.priority option that works with both cgroup1 and
cgroup2unlike thedeprecated limits.network.priority instance setting, whichonlyworked
with cgroup1.

disk_initial_volume_configuration

This API extension provides the capability to set initial volume configurations for instance
root devices. Initial volume configurations are prefixed with initial. and can be specified
either through profiles or directly during instance initialization using the --device flag.

Note that these configuration are applied only at the time of instance creation and subse-
quent modifications have no effect on existing devices.

671 of 954

operation_wait

This API extension indicates that the /1.0/operations/{id}/wait endpoint exists on the
server. This indicates to the client that the endpoint can be used to wait for an operation
to complete rather than waiting for an operation event via the /1.0/events endpoint.

cluster_internal_custom_volume_copy

This extension adds support for copying and moving custom storage volumes within a clus-
ter with a single API call. Calling POST /1.0/storage-pools/<pool>/custom?target=<target>
will copy the custom volume specified in the source part of the request. Calling POST /
1.0/storage-pools/<pool>/custom/<volume>?target=<target>will move the custom volume
from the source, specified in the source part of the request, to the target.

disk_io_bus

This introduces a new io.bus (page 481) property to disk devices which can be used to over-
ride the bus the disk is attached to.

storage_cephfs_create_missing

This introduces the configuration keys cephfs.create_missing (page 527), cephfs.
osd_pg_num (page 528), cephfs.meta_pool (page 528) and cephfs.data_pool (page 528)
to be used when adding a cephfs storage pool to instruct LXD to create the necessary
entities for the storage pool, if they do not exist.

instance_move_config

This API extension provides the ability to use flags --profile, --no-profile, --device, and
--configwhen moving an instance between projects and/or storage pools.

ovn_ssl_config

This introduces new server configuration keys to provide the SSL CA and client key pair to
access the OVN databases. The new configuration keys are network.ovn.ca_cert (page 412),
network.ovn.client_cert (page 413) and network.ovn.client_key (page 413).

init_preseed_storage_volumes

This API extension provides the ability to configure storage volumes in preseed init.

metrics_instances_count

This extends themetrics to include the containers and virtual machines counts. Instances are
counted irrespective of their state.

server_instance_type_info

This API extension enables querying a server’s supported instance types. When querying the
/1.0 endpoint, a new field named instance_types is added to the retrieved data. This field
indicates which instance types are supported by the server.

672 of 954

resources_disk_mounted

Adds a mounted field to disk resources that LXD discovers on the system, reporting whether
that disk or partition is mounted.

server_version_lts

The API extension adds indicationwhether the LXD version is an LTS release. This is indicated
when command lxc version is executed or when /1.0 endpoint is queried.

oidc_groups_claim

This API extension enables setting an oidc.groups.claim (page 406) configuration key. If
OIDC authentication is configured and this claim is set, LXD will request this claim in the
scope of OIDC flow. The value of the claim will be extracted and might be used to make
authorization decisions.

loki_config_instance

Adds a new loki.instance (page 410) server configuration key to customize the instance
field in Loki events. This can be used to expose the name of the cluster rather than the in-
dividual system name sending the event as that’s usually already covered by the location
field.

storage_volatile_uuid

Adds a new volatile.uuid configuration key to all storage volumes, snapshots and buckets.
This information can be used by storage drivers as a separate identifier besides the name
when working with volumes.

import_instance_devices

This API extension provides the ability to use flags --device when importing an instance to
override instance’s devices.

instances_uefi_vars

This API extension indicates that the /1.0/instances/{name}/uefi-vars endpoint is sup-
ported on the server. This endpoint allows to get the full list of UEFI variables (HTTPmethod
GET) or replace the entire set of UEFI variables (HTTP method PUT).

instances_migration_stateful

This API extension allows newly created VMs to have their migration.stateful (page 429)
configuration key automatically set through the new server-level configuration key
instances.migration.stateful (page 411). If migration.stateful is already set at the pro-
file or instance level then instances.migration.stateful is not applied.

673 of 954

access_management

Adds new APIs under /1.0/auth for viewing and managing identities, groups, and permis-
sions. Adds an embedded OpenFGA authorization driver for enforcing fine-grained permis-
sions.

Important

Prior to the additionof this extension, allOIDC clientsweregiven full access to LXD (equiv-
alent to Unix socket access). This extension revokes access to all OIDC clients. To regain
access, a user must:

1. Make a call to the OIDC enabled LXD remote (e.g. lxc info) to ensure that their
OIDC identity is added to the LXD database.

2. Create a group: lxc auth group create <group_name>

3. Grant thegroupa suitable permission. As allOIDC clients prior to this extensionhave
had full access to LXD, the correspondingpermission is adminon server. To grant this
permission to your group, run: lxc auth group permission add <group_name> server
admin

4. Add themselves to the group. To do this, run: lxc auth identity group add oidc/
<email_address> <group_name>

Steps 2 to 4 above cannot be performed via OIDC authentication (access has been re-
voked). They must be performed by a sufficiently privileged user, either via Unix socket
or unrestricted TLS client certificate.

For more information on access control for OIDC clients, see Fine-grained authorization
(page 364).

vm_disk_io_limits

Adds the ability to limit disk I/O for virtual machines.

storage_volumes_all

This API extension adds support for listing storage volumes from all storage pools via /1.0/
storage-volumes or /1.0/storage-volumes/{type} to filter by volume type. Also adds a pool
field to storage volumes.

instances_files_modify_permissions

Adds the ability for POST /1.0/instances/{name}/files to modify the permissions of files
that already exist via the X-LXD-modify-perm header.

X-LXD-modify-perm should be a comma-separated list of 0 or more of mode, uid, and gid.

image_restriction_nesting

This extension adds a new image restriction, requirements.nesting which when true indi-
cates that an image cannot be run without nesting.

674 of 954

container_syscall_intercept_finit_module

Adds the linux.kernel_modules.load (page 417) container configuration option. If the op-
tion is set to ondemand, the finit_modules() syscall is intercepted and a privileged user in
the container’s user namespace can load the Linux kernel modules specified in the allow list
linux.kernel_modules (page 417).

device_usb_serial

This adds new configuration keys serial (page 491), busnum (page 490) and devnum (page 490)
for device type usb (page 490). The feature has been added to make it possible to distinguish
between devices with identical vendorid (page 491) and productid (page 490).

network_allocate_external_ips

Adds the ability to use an unspecified IPv4 (0.0.0.0) or IPv6 (::) address in the
listen_address field of the request body for POST /1.0/networks/{networkName}/
load-balancers and POST /1.0/networks/{networkName}/forwards. If an unspecified IP ad-
dress is used, supported drivers will allocate an available listen address automatically. Al-
location of external IP addresses is currently supported by the OVN network driver. The
OVNdriverwill allocate IP addresses from the subnets specified in the uplink network’s ipv4.
routes and ipv6.routes configuration options.

explicit_trust_token

Adds the ability to explicitly specify a trust token when creating a certificate and joining an
existing cluster.

shared_custom_block_volumes

This adds a configuration key security.shared to custom block volumes. If unset or false,
the custom block volume cannot be attached to multiple instances. This feature was added
to prevent data loss which can happen when custom block volumes are attached to multiple
instances at once.

instance_import_conversion

Adds the ability to convert images from different formats (e.g. VMDK or QCow2) into RAW
image format and import them as LXD instances.

instance_create_start

Adds a start field to the POST /1.0/instances API which when set to true will have the in-
stance automatically start upon creation.

In this scenario, the creation and startup is part of a single background operation.

instance_protection_start

Enables setting the security.protection.start (page 437) field which prevents instances
from being started if set to true.

675 of 954

devlxd_images_vm

Enables the security.devlxd.images (page 435) configuration option for virtual machines.
This controls the availability of a /1.0/images/FINGERPRINT/export API over devlxd. This can
be used by a virtual machine running LXD to access raw images from the host.

disk_io_bus_virtio_blk

Adds a new virtio-blk value for io.bus on disk devices which allows for the attached disk
to be connected to the virtio-blk bus.

metrics_api_requests

Adds the following internal metrics:

• Total completed requests

• Number of ongoing requests

projects_limits_disk_pool

This introduces per-pool project disk limits, introducing a limits.disk.pool.NAME configura-
tion option to the project limits. When limits.disk.pool.POOLNAME: 0 for a project, the pool
is excluded from lxc storage list in that project.

ubuntu_pro_guest_attach

Adds a new ubuntu_pro.guest_attach (page 417) configuration option for instances. When
set to on, if the host has guest attachment enabled, the guest can request a guest token for
Ubuntu Pro via devlxd.

metadata_configuration_entity_types

This adds entity type metadata to GET /1.0/metadata/configuration. The entity type meta-
data is a JSON object under the entities key.

access_management_tls

Expands APIs under /1.0/auth to include:

1. Creation of fine-grained TLS identities, whose permissions are managed via group
membership. This is performed via POST /1.0/auth/identities/tls. If the request
body contains {"token": true}, a token will be returned that may be used by
a non-authenticated caller to gain trust with the LXD server (the caller must send
their certificate during the TLS handshake). If the request body contains {"certifi-
cate": "<base64 encoded x509 certificate>"}", the identity will be created directly.
The request body may also specify an array of group names. The caller must have
can_create_identities on server.

2. Deletion of OIDC and fine-grained TLS identities. This is performed via DELETE /1.
0/auth/identities/tls/{nameOrFingerprint} or DELETE /1.0/auth/identities/oidc/
{nameOrEmailAddress}. The caller must have can_delete on the identity. All identities
may delete their own identity. For OIDC identities this revokes all access but does not

676 of 954

revoke trust (authentication is performed by the identity provider). For fine-grained
TLS identities, this revokes all access and revokes trust.

3. Functionality to update the certificate of a fine-grained TLS identity. This is per-
formed via PUT /1.0/auth/identities/tls/{nameOrFingerprint} or PATCH /1.0/auth/
identities/tls/{nameOrFingerprint}. The caller must provide a base64 encoded x509
certificate in the certificatefield of the request body. Fine-grained TLS identitiesmay
update their own certificate. To update the certificate of another identity, the caller
must have can_edit on the identity.

network_allocations_ovn_uplink

Includes OVN virtual routers external IPs to /1.0/network-allocations responses with the
type uplink. Introduces the network field on each allocation, indicating to which network
each allocated address belongs. And lastly, adds a project field on leases, leases can be re-
trieved via /1.0/networks/<network>/leases.

network_ovn_uplink_vlan

Adds support for using a bridge network with a specified VLAN ID as an OVN uplink.

state_logical_cpus

Adds logical_cpusfield to GET /1.0/cluster/members/{name}/statewhich contains the total
available logical CPUs available when LXD started.

vm_limits_cpu_pin_strategy

Adds a new limits.cpu.pin_strategy (page 422) configuration option for virtual machines.
This option controls theCPUpinning strategy. When set to none, CPUautopinning is disabled.
When set to auto, CPU auto pinning is enabled.

gpu_cdi

Adds support for using the Container Device Interface (CDI) specification to configure GPU
passthrough in LXD containers. The id field of GPU devices now accepts CDI identifiers (for
example, {VENDOR_DOMAIN_NAME}/gpu=gpu{INDEX}) for containers, in addition toDRMcard IDs.
This enables GPU passthrough for devices that don’t use PCI addressing (like NVIDIA Tegra
iGPUs) and provides a more flexible way to identify and configure GPU devices.

images_all_projects

This adds support for listing images across all projects using the all-projects parameter in
GET /1.0/images requests.

metadata_configuration_scope

This adds scope metadata to GET /1.0/metadata/configuration. Options marked with a
global scope are applied to all cluster members. Options with a local scope must be set
on a per-member basis.

677 of 954

unix_device_hotplug_ownership_inherit

Adds a new ownership.inherit (page 504) configuration option for unix-hotplug devices.
This option controls whether the device inherits ownership (GID and/or UID) from the host.
When set to true and GID and/or UID are unset, host ownership is inherited. When set
to false, host ownership is not inherited and ownership can be configured by setting gid
(page 503) and uid (page 504).

unix_device_hotplug_subsystem_device_option

Adds a new subsystem (page 504) configuration option for unix-hotplug devices. This adds
support for detecting unix-hotplug devices by subsystem, and can be used in conjunction
with productid (page 504) and vendorid (page 504).

storage_ceph_osd_pool_size

This introduces the configuration keys ceph.osd.pool_size (page 537), and cephfs.
osd_pool_size (page 528) to be used when adding or updating a ceph or cephfs storage pool
to instruct LXD to create set the replication size for the underlying OSD pools.

network_get_target

Adds optional target parameter to GET /1.0/network. When target is set, forward the re-
quest to the specified cluster member and return the non-managed interfaces from that
member.

network_zones_all_projects

This adds support for listing network zones across all projects using the all-projects param-
eter in GET /1.0/network-zones requests.

vm_root_volume_attachment

Adds support for virtual-machine root volumes and snapshots to be attached to other in-
stances as disk devices. Introduces the source.type and source.snapshot keys for disk de-
vices.

projects_limits_uplink_ips

Introduces per-project uplink IP limits for each available uplink network, adding
limits.networks.uplink_ips.ipv4.NETWORK_NAME and limits.networks.uplink_ips.ipv6.
NETWORK_NAME configuration keys for projects with features.networks enabled. These keys
define the maximum value of IPs made available on a network named NETWORK_NAME to
be assigned as uplink IPs for entities inside a certain project. These entities can be other
networks, network forwards or load balancers.

entities_with_entitlements

Adds fine_grainedfield to GET /1.0/auth/identities/current to indicate if the current iden-
tity interacting with the LXD API is fine-grained (that is, associated permissions aremanaged
via group membership). Allows LXD entities to be returned with an access_entitlements
field if the current identity is fine-grained and the GET request to fetch the LXD entities has

678 of 954

the with-access-entitlements=<comma_separated_list_of_candidate_entitlements> query
parameter.

profiles_all_projects

This adds support for listing profiles across all projects using the all-projects parameter in
GET /1.0/profiles requests.

storage_driver_powerflex

Adds a new powerflex storage driver which allows the consumption of storage volumes from
a Dell PowerFlex storage array using NVMe/TCP and SDC. The following new pool level con-
figuration keys have been added:

1. powerflex.clone_copy (page 543)

2. powerflex.domain (page 543)

3. powerflex.gateway (page 543)

4. powerflex.gateway.verify (page 544)

5. powerflex.mode (page 544)

6. powerflex.pool (page 544)

7. powerflex.sdt (page 544)

8. powerflex.user.name (page 544)

9. powerflex.user.password (page 545)

The following configuration keys have been added for volumes backed by PowerFlex:

1. block.type (page 546)

storage_driver_pure

Adds a new pure storage driver which allows the consumption of storage volumes from a
Pure Storage storage array using either iSCSI or NVMe/TCP.

The following pool level configuration keys have been added:

1. pure.gateway (page 551)

2. pure.gateway.verify (page 551)

3. pure.api.token (page 551)

4. pure.mode (page 551)

5. pure.target (page 551)

cloud_init_ssh_keys

Adds support for injecting additional SSH public keys into instances through cloud-init
(page 419) without conflicting with any configuration present on cloud-init.vendor-data
(page 420) or cloud-init.user-data (page 420).

679 of 954

To achieve this, the cloud-init.ssh-keys.KEYNAME configuration key is added for both in-
stances and profiles. This key is used to define a public key to be injected. KEYNAME can be
any arbitrary name for the injected key.

The value for cloud-init.ssh-keys.KEYNAME should be <user>:<key>, where <user> is the
name of the user for whom to inject the key. For <key>, provide either the public key or
a cloud-init import ID for a key hosted elsewhere. Example valid values for cloud-init.
ssh-keys.KEYNAME are root:gh:githubUser or myUser:ssh-keyAlg base64PublicKey.

oidc_scopes

This API extension enables setting an oidc.scopes (page 407) configuration key, which ac-
cepts a space-separated list of OIDC scopes to request from the identity provider. This con-
figuration option can be used to request additional scopes thatmight be required for retriev-
ing identity provider groups (page 367) from the identity provider. Additionally, the optional
scopes profile and offline_access can be unset via this setting. Note that the openid and
email scopes are always required.

project_default_network_and_storage

Adds flags –network and –storage. The –network flag adds a network device connected to
the specified network to the default profile. The –storage flag adds a root disk device using
the specified storage pool to the default profile.

client_cert_presence

Adds the field client_certificate to GET /1.0 to indicate if the current request has a client
certificate in it. This is for informational purposes only and does not affect the behavior of
the API.

clustering_groups_used_by

This API extension adds a used_by field to the API response for a cluster group (page 372).
Deletion of a cluster group is disallowed if the cluster group is referenced by project config-
uration (see restricted.cluster.groups (page 514)).

container_bpf_delegation

Adds new security.delegate_bpf (page 434).* group of options in order to support eBPF
delegation using BPF Token mechanism. See Privilege delegation using BPF Token (page 381)
for more information.

override_snapshot_profiles_on_copy

This adds a request option to set snapshot’s target profile on instance copy to be inherited
from target instance.

680 of 954

resources_device_fs_uuid

Adds the field device_fs_uuid including the respective UUID to each disk and partition indi-
cating whether or not a filesystem is located on the device.

backup_metadata_version

Adds the field version when exporting instances and custom storage volumes to define the
backup file format. In case the field is omitted, the server’s default version is used. This
maintains backwards compatibility with older clients.

When exporting an instance, the specific version can be provided using the --export-version
flag:

lxc export v1 --export-version 2

The same applies when exporting a custom storage volume:

lxc storage volume export pool1 vol1 --export-version 2

storage_buckets_all_projects

This adds support for listing storage buckets across all projects using the all-projects pa-
rameter in GET /1.0/storage-pools/POOL/buckets requests.

network_acls_all_projects

This adds support for listing network ACLs across all projects using the all-projects param-
eter in GET /1.0/network-acls requests.

networks_all_projects

This adds support for listing networks across all projects using the all-projects parameter
in GET /1.0/networks requests.

clustering_restore_skip_mode

Adds a skip mode to the restore request. This mode restores a cluster member’s status to
ONLINEwithout restarting any of its stopped local instances or migrating back instances that
were evacuated to other cluster members.

disk_io_threads_virtiofsd

Adds the io.threads (page 481) option on disk deviceswhich is used to control the virtiofsd
thread pool size when sharing file systems into VMs. This can help improve I/O performance.

oidc_client_secret

This adds support for the oidc.client.secret (page 406) configuration key. If set, the LXD
serverwill use this value in theOpenIDConnect (OIDC) authorization codeflow,which is used
by LXDUI. This configuration value is not sharedwith other LXD clients (such as the LXD CLI).

681 of 954

Events

Introduction

Events are messages about actions that have occurred over LXD. Using the API endpoint /1.
0/events directly or via lxc monitor (page 787) will connect to a WebSocket through which
logs and life-cycle messages will be streamed.

Event types

LXD Currently supports three event types.

• logging: Shows all logging messages regardless of the server logging level.

• operation: Shows all ongoing operations from creation to completion (including up-
dates to their state and progress metadata).

• lifecycle: Shows an audit trail for specific actions occurring over LXD.

Event structure

Example

location: cluster_name
metadata:
action: network-updated
requestor:

protocol: unix
username: root

source: /1.0/networks/lxdbr0
timestamp: "2021-03-14T00:00:00Z"
type: lifecycle

• location: The cluster member name (if clustered).

• timestamp: Time that the event occurred in RFC3339 format.

• type: The type of event this is (one of logging, operation, or lifecycle).

• metadata: Information about the specific event type.

Logging event structure

• message: The log message.

• level: The log-level of the log.

• context: Additional information included in the event.

Operation event structure

• id: The UUID of the operation.

• class: The type of operation (task, token, or websocket).

• description: A description of the operation.

• created_at: The operation’s creation date.

682 of 954

• updated_at: The operation’s date of last change.

• status: The current state of the operation.

• status_code: The operation status code.

• resources: Resources affected by this operation.

• metadata: Operation specific metadata.

• may_cancel: Whether the operation may be canceled.

• err: Error message of the operation.

• location: The cluster member name (if clustered).

Life-cycle event structure

• action: The life-cycle action that occurred.

• requestor: Information about who is making the request (if applicable).

• source: Path to what is being acted upon.

• context: Additional information included in the event.

Supported life-cycle events

Name Description Additional Information

certificate-created A new certificate has been added to the server trust store.
certificate-deleted The certificate has been deleted from the trust store.
certificate-updated The certificate’s configuration has been updated.
cluster-certificate-updated The certificate for the whole cluster has changed.
cluster-disabled Clustering has been disabled for this machine.
cluster-enabled Clustering has been enabled for this machine.
cluster-group-created A new cluster group has been created.
cluster-group-deleted A cluster group has been deleted.
cluster-group-renamed A cluster group has been renamed.
cluster-group-updated A cluster group has been updated.
cluster-member-added A newmachine has joined the cluster.
cluster-member-removed The cluster member has been removed from the cluster.
cluster-member-renamed The cluster member has been renamed. old_name: the previous name.
cluster-member-updated The cluster member’s configuration been edited.
cluster-token-created A join token for adding a cluster member has been created.
config-updated The server configuration has changed.
image-alias-created An alias has been created for an existing image. target: the original instance.
image-alias-deleted An alias has been deleted for an existing image. target: the original instance.
image-alias-renamed The alias for an existing image has been renamed. old_name: the previous name.
image-alias-updated The configuration for an image alias has changed. target: the original instance.
image-created A new image has been added to the image store. type: container or vm.
image-deleted The image has been deleted from the image store.
image-refreshed The local image copy has updated to the current source image version.
image-retrieved The raw image file has been downloaded from the server. target: destination server.
image-secret-created A one-time key to fetch this image has been created.

continues on next page

683 of 954

Table 2 – continued from previous page

Name Description Additional Information

image-updated The image’s configuration has changed.
instance-backup-created A backup of the instance has been created.
instance-backup-deleted The instance backup has been deleted.
instance-backup-renamed The instance backup has been renamed. old_name: the previous name.
instance-backup-retrieved The raw instance backup file has been downloaded.
instance-console Connected to the console of the instance. type: console or vga.
instance-console-reset The console buffer has been reset.
instance-console-retrieved The console log has been downloaded.
instance-created A new instance has been created.
instance-deleted The instance has been deleted.
instance-exec A command has been executed on the instance. command: the command to be executed.
instance-file-deleted A file on the instance has been deleted. file: path to the file.
instance-file-pushed The file has been pushed to the instance. file-source: local file path. file-destination: destination file path. info: file information.
instance-file-retrieved The file has been downloaded from the instance. file-source: instance file path. file-destination: destination file path.
instance-log-deleted The instance’s specified log file has been deleted.
instance-log-retrieved The instance’s specified log file has been downloaded.
instance-metadata-retrieved The instance’s image metadata has been downloaded.
instance-metadata-template-created A new image template file for the instance has been created. path: relative file path.
instance-metadata-template-deleted The image template file for the instance has been deleted. path: relative file path.
instance-metadata-template-retrieved The image template file for the instance has been downloaded. path: relative file path.
instance-metadata-updated The instance’s image metadata has changed.
instance-paused The instance has been put in a paused state.
instance-ready The instance is ready.
instance-renamed The instance has been renamed. old_name: the previous name.
instance-restarted The instance has restarted.
instance-restored The instance has been restored from a snapshot. snapshot: name of the snapshot being restored.
instance-resumed The instance has resumed after being paused.
instance-shutdown The instance has shut down.
instance-snapshot-created A snapshot of the instance has been created.
instance-snapshot-deleted The instance snapshot has been deleted.
instance-snapshot-renamed The instance snapshot has been renamed. old_name: the previous name.
instance-snapshot-updated The instance snapshot’s configuration has changed.
instance-started The instance has started.
instance-stopped The instance has stopped.
instance-updated The instance’s configuration has changed.
network-acl-created A new network ACL has been created.
network-acl-deleted The network ACL has been deleted.
network-acl-renamed The network ACL has been renamed. old_name: the previous name.
network-acl-updated The network ACL configuration has changed.
network-created A network device has been created.
network-deleted The network device has been deleted.
network-forward-created A new network forward has been created.
network-forward-deleted The network forward has been deleted.
network-forward-updated The network forward has been updated.
network-peer-created A new network peer has been created.
network-peer-deleted The network peer has been deleted.
network-peer-updated The network peer has been updated.
network-renamed The network device has been renamed. old_name: the previous name.

continues on next page

684 of 954

Table 2 – continued from previous page

Name Description Additional Information

network-updated The network device’s configuration has changed.
network-zone-created A new network zone has been created.
network-zone-deleted The network zone has been deleted.
network-zone-record-created A new network zone record has been created.
network-zone-record-deleted The network zone record has been deleted.
network-zone-record-updated The network zone record has been updated.
network-zone-updated The network zone has been updated.
operation-cancelled The operation has been canceled.
profile-created A new profile has been created.
profile-deleted The profile has been deleted.
profile-renamed The profile has been renamed . old_name: the previous name.
profile-updated The profile’s configuration has changed.
project-created A new project has been created.
project-deleted The project has been deleted.
project-renamed The project has been renamed. old_name: the previous name.
project-updated The project’s configuration has changed.
storage-pool-created A new storage pool has been created. target: cluster member name.
storage-pool-deleted The storage pool has been deleted.
storage-pool-updated The storage pool’s configuration has changed. target: cluster member name.
storage-volume-backup-created A new backup for the storage volume has been created. type: container, virtual-machine, image, or custom.
storage-volume-backup-deleted The storage volume’s backup has been deleted.
storage-volume-backup-renamed The storage volume’s backup has been renamed. old_name: the previous name.
storage-volume-backup-retrieved The storage volume’s backup has been downloaded.
storage-volume-created A new storage volume has been created. type: container, virtual-machine, image, or custom.
storage-volume-deleted The storage volume has been deleted.
storage-volume-renamed The storage volume has been renamed. old_name: the previous name.
storage-volume-restored The storage volume has been restored from a snapshot. snapshot: name of the snapshot being restored.
storage-volume-snapshot-created A new storage volume snapshot has been created. type: container, virtual-machine, image, or custom.
storage-volume-snapshot-deleted The storage volume’s snapshot has been deleted.
storage-volume-snapshot-renamed The storage volume’s snapshot has been renamed. old_name: the previous name.
storage-volume-snapshot-updated The configuration for the storage volume’s snapshot has changed.
storage-volume-updated The storage volume’s configuration has changed.
warning-acknowledged The warning’s status has been set to “acknowledged”.
warning-deleted The warning has been deleted.
warning-reset The warning’s status has been set to “new”.

Communication between instance and host

Communication between the hosted workload (instance) and its host while not strictly
needed is a pretty useful feature.

In LXD, this feature is implemented through a /dev/lxd/sock node which is created and set
up for all LXD instances.

This file is a Unix socket which processes inside the instance can connect to. It’s multi-
threaded so multiple clients can be connected at the same time.

685 of 954

Note

security.devlxd (page 435) must be set to true (which is the default) for an instance to
allow access to the socket.

Implementation details

LXDon the host binds /var/lib/lxd/devlxd/sock and starts listening for new connections on
it.

This socket is then exposed into every single instance started by LXD at /dev/lxd/sock.

The single socket is required so we can exceed 4096 instances, otherwise, LXD would have
to bind a different socket for every instance, quickly reaching the FD limit.

Authentication

Queries on /dev/lxd/sockwill only return information related to the requesting instance. To
figure out where a request comes from, LXD will extract the initial socket’s user credentials
and compare that to the list of instances it manages.

Protocol

The protocol on /dev/lxd/sock is plain-text HTTPwith JSONmessaging, so very similar to the
local version of the LXD protocol.

Unlike the main LXD API, there is no background operation and no authentication support in
the /dev/lxd/sock API.

REST-API

API structure

• /

– /1.0

* /1.0/config

· /1.0/config/{key}

* /1.0/devices

* /1.0/events

* /1.0/images/{fingerprint}/export

* /1.0/meta-data

API details

/

GET

• Description: List of supported APIs

686 of 954

• Return: list of supported API endpoint URLs (by default ['/1.0'])

Return value:

[
"/1.0"

]

/1.0

GET

• Description: Information about the 1.0 API

• Return: JSON object

Return value:

{
"api_version": "1.0",
"location": "foo.example.com",
"instance_type": "container",
"state": "Started",

}

PATCH

• Description: Update instance state (valid states are Ready and Started)

• Return: none

Input:

{
"state": "Ready"

}

/1.0/config

GET

• Description: List of configuration keys

• Return: list of configuration keys URL

Note that the configuration key names match those in the instance configuration, however
not all configuration namespaces will be exported to /dev/lxd/sock. Currently only the
cloud-init.* and user.* keys are accessible to the instance.

At this time, there also aren’t any instance-writable namespace.

Return value:

[
"/1.0/config/user.a"

]

687 of 954

/1.0/config/<KEY>

GET

• Description: Value of that key

• Return: Plain-text value

Return value:

blah

/1.0/devices

GET

• Description: Map of instance devices

• Return: JSON object

Return value:

{
"eth0": {

"name": "eth0",
"network": "lxdbr0",
"type": "nic"

},
"root": {

"path": "/",
"pool": "default",
"type": "disk"

}
}

/1.0/events

GET

• Description: WebSocket upgrade

• Return: none (never ending flow of events)

Supported arguments are:

• type: comma-separated list of notifications to subscribe to (defaults to all)

The notification types are:

• config (changes to any of the user.* configuration keys)

• device (any device addition, change or removal)

This never returns. Each notification is sent as a separate JSON object:

{
"timestamp": "2017-12-21T18:28:26.846603815-05:00",

(continues on next page)

688 of 954

(continued from previous page)

"type": "device",
"metadata": {

"name": "kvm",
"action": "added",
"config": {

"type": "unix-char",
"path": "/dev/kvm"

}
}

}

{
"timestamp": "2017-12-21T18:28:26.846603815-05:00",
"type": "config",
"metadata": {

"key": "user.foo",
"old_value": "",
"value": "bar"

}
}

/1.0/images/<FINGERPRINT>/export

GET

• Description: Download a public/cached image from the host

• Return: raw image or error

• Access: Requires security.devlxd.images (page 435) set to true

Return value:

See /1.0/images/<FINGERPRINT>/export in the daemon API.

/1.0/meta-data

GET

• Description: Container meta-data compatible with cloud-init

• Return: cloud-init meta-data

Return value:

instance-id: af6a01c7-f847-4688-a2a4-37fddd744625
local-hostname: abc

689 of 954

/1.0/ubuntu-pro

GET

• Description: Get Ubuntu Pro guest attachment setting for the instance

• Return: JSON object

Return value

{
"guest_attach": "on"

}

/1.0/ubuntu-pro/token

POST

• Description: Get an Ubuntu Pro guest attachment token

• Return: JSON object

Return value

{
"expires": "2025-03-23T20:00:00-04:00",
"token": "<RANDOM-STRING>",
"id": "9f65c3d0-c326-491e-927f-9b062b6649a0"

}

Related topics

How-to guides:

• LXD server and client (page 44)

Explanation:

• About lxd and lxc (page 345)

• The LXD Dqlite database (page 356)

4.6. Man pages
lxc is the command line client for LXD. Its usage is documented in the help pages for the lxc
commands and subcommands.

4.6.1. Man pages
lxc

Command line client for LXD

Synopsis

Description: Command line client for LXD

All of LXD’s features can be driven through the various commands below. For help with any
of those, simply call them with –help.

690 of 954

Options

--all Show less common commands
--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc alias (page 692) - Manage command aliases

• lxc auth (page 695) - Manage user authorization

• lxc cluster (page 715) - Manage cluster members

• lxc completion (page 733) - Generate the autocompletion script for the specified shell

• lxc config (page 738) - Manage instance and server configuration options

• lxc console (page 761) - Attach to instance consoles

• lxc copy (page 761) - Copy instances within or in between LXD servers

• lxc delete (page 762) - Delete instances and snapshots

• lxc exec (page 763) - Execute commands in instances

• lxc export (page 764) - Export instance backups

• lxc file (page 765) - Manage files in instances

• lxc image (page 770) - Manage images

• lxc import (page 781) - Import instance backups

• lxc info (page 782) - Show instance or server information

• lxc init (page 783) - Create instances from images

• lxc launch (page 784) - Create and start instances from images

• lxc list (page 785) - List instances

• lxc manpage (page 787) - Generate manpages for all commands

• lxc monitor (page 787) - Monitor a local or remote LXD server

• lxc move (page 788) - Move instances within or in between LXD servers

• lxc network (page 790) - Manage and attach instances to networks

• lxc operation (page 844) - List, show and delete background operations

• lxc pause (page 847) - Pause instances

• lxc profile (page 847) - Manage profiles

• lxc project (page 861) - Manage projects

691 of 954

• lxc publish (page 869) - Publish instances as images

• lxc query (page 869) - Send a raw query to LXD

• lxc rebuild (page 870) - Rebuild instances

• lxc remote (page 871) - Manage the list of remote servers

• lxc rename (page 876) - Rename instances and snapshots

• lxc restart (page 876) - Restart instances

• lxc restore (page 877) - Restore instances from snapshots

• lxc snapshot (page 878) - Create instance snapshots

• lxc start (page 879) - Start instances

• lxc stop (page 879) - Stop instances

• lxc storage (page 880) - Manage storage pools and volumes

• lxc version (page 913) - Show local and remote versions

• lxc warning (page 914) - Manage warnings

lxc alias

Manage command aliases

Synopsis

Description: Manage command aliases

lxc alias [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc alias add (page 693) - Add new aliases

• lxc alias list (page 693) - List aliases

• lxc alias remove (page 694) - Remove aliases

• lxc alias rename (page 694) - Rename aliases

692 of 954

lxc alias add

Add new aliases

Synopsis

Description: Add new aliases

lxc alias add <alias> <target> [flags]

Examples

lxc alias add list "list -c ns46S"
Overwrite the "list" command to pass -c ns46S.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc alias (page 692) - Manage command aliases

lxc alias list

List aliases

Synopsis

Description: List aliases

lxc alias list [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

(continues on next page)

693 of 954

(continued from previous page)

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc alias (page 692) - Manage command aliases

lxc alias remove

Remove aliases

Synopsis

Description: Remove aliases

lxc alias remove <alias> [flags]

Examples

lxc alias remove my-list
Remove the "my-list" alias.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc alias (page 692) - Manage command aliases

lxc alias rename

Rename aliases

694 of 954

Synopsis

Description: Rename aliases

lxc alias rename <old alias> <new alias> [flags]

Examples

lxc alias rename list my-list
Rename existing alias "list" to "my-list".

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc alias (page 692) - Manage command aliases

lxc auth

Manage user authorization

Synopsis

Description: Manage user authorization

lxc auth [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

695 of 954

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc auth group (page 696) - Manage groups

• lxc auth identity (page 702) - Manage identities

• lxc auth identity-provider-group (page 708) - Manage groups

• lxc auth permission (page 714) - Inspect permissions

lxc auth group

Manage groups

Synopsis

Description: Manage groups

lxc auth group [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth (page 695) - Manage user authorization

• lxc auth group create (page 696) - Create groups

• lxc auth group delete (page 697) - Delete groups

• lxc auth group edit (page 698) - Edit groups as YAML

• lxc auth group list (page 698) - List groups

• lxc auth group permission (page 699) - Manage permissions

• lxc auth group rename (page 701) - Rename groups

• lxc auth group show (page 701) - Show group configurations

lxc auth group create

Create groups

696 of 954

Synopsis

Description: Create groups

lxc auth group create [<remote>:]<group> [flags]

Options

-d, --description string Group description

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group (page 696) - Manage groups

lxc auth group delete

Delete groups

Synopsis

Description: Delete groups

lxc auth group delete [<remote>:]<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

697 of 954

SEE ALSO

• lxc auth group (page 696) - Manage groups

lxc auth group edit

Edit groups as YAML

Synopsis

Description: Edit groups as YAML

lxc auth group edit [<remote>:]<group> [flags]

Examples

lxc auth group edit <group> < group.yaml
Update a group using the content of group.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group (page 696) - Manage groups

lxc auth group list

List groups

Synopsis

Description: List groups

lxc auth group list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

698 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group (page 696) - Manage groups

lxc auth group permission

Manage permissions

Synopsis

Description: Manage permissions

lxc auth group permission [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group (page 696) - Manage groups

• lxc auth group permission add (page 699) - Add permissions to groups

• lxc auth group permission remove (page 700) - Remove permissions from groups

lxc auth group permission add

Add permissions to groups

699 of 954

Synopsis

Description: Add permissions to groups

lxc auth group permission add [<remote>:]<group> <entity_type> [<entity_name>]
<entitlement> [<key>=<value>...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group permission (page 699) - Manage permissions

lxc auth group permission remove

Remove permissions from groups

Synopsis

Description: Remove permissions from groups

lxc auth group permission remove [<remote>:]<group> <entity_type> [<entity_name>]
<entitlement> [<key>=<value>...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group permission (page 699) - Manage permissions

700 of 954

lxc auth group rename

Rename groups

Synopsis

Description: Rename groups

lxc auth group rename [<remote>:]<group> <new_name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth group (page 696) - Manage groups

lxc auth group show

Show group configurations

Synopsis

Description: Show group configurations

lxc auth group show [<remote>:]<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

701 of 954

SEE ALSO

• lxc auth group (page 696) - Manage groups

lxc auth identity

Manage identities

Synopsis

Description: Manage identities

lxc auth identity [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth (page 695) - Manage user authorization

• lxc auth identity create (page 702) - Create an identity

• lxc auth identity delete (page 703) - Delete an identity

• lxc auth identity edit (page 704) - Edit an identity as YAML

• lxc auth identity group (page 705) - Manage groups for the identity

• lxc auth identity info (page 706) - View the current identity

• lxc auth identity list (page 707) - List identities

• lxc auth identity show (page 707) - View an identity

lxc auth identity create

Create an identity

Synopsis

Description: Create a TLS identity

lxc auth identity create [<remote>:]<authentication_method>/<name> [<path to PEM
encoded certificate>] [[--group <group_name>]] [flags]

702 of 954

Options

-g, --group strings Groups to add to the identity

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity (page 702) - Manage identities

lxc auth identity delete

Delete an identity

Synopsis

Description: Delete an identity

lxc auth identity delete [<remote>:]<authentication_method>/<name_or_identifier>
[flags]

Examples

lxc auth identity delete oidc/jane.doe@example.com
Delete the OIDC identity with email address "jane.doe@example.com" in

the default remote.

lxc auth identity delete oidc/'Jane Doe'
Delete the OIDC identity with name "Jane Doe" in the default remote

(there must be only one OIDC identity on the server with this name).

lxc auth identity delete my-remote:tls/
12beaccbf9e7b7445185581b70099a5962c927e85006d5883856d909fe79f976

Delete the TLS identity with certificate fingerprint
"12beaccbf9e7b7445185581b70099a5962c927e85006d5883856d909fe79f976" in remote "my-
remote".

lxc auth identity delete my-remote:tls/jane-doe
Delete the TLS identity with name "jane-doe" in remote "my-remote"

(there must be only one TLS identity on "my-remote" with this name).

703 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity (page 702) - Manage identities

lxc auth identity edit

Edit an identity as YAML

Synopsis

Description: Edit an identity as YAML

lxc auth identity edit [<remote>:]<group> [flags]

Examples

lxc auth identity edit <authentication_method>/<name_or_identifier> < identity.
yaml

Update an identity using the content of identity.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity (page 702) - Manage identities

704 of 954

lxc auth identity group

Manage groups for the identity

Synopsis

Description: Manage groups for the identity

lxc auth identity group [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity (page 702) - Manage identities

• lxc auth identity group add (page 705) - Add a group to an identity

• lxc auth identity group remove (page 706) - Remove a group from an identity

lxc auth identity group add

Add a group to an identity

Synopsis

Description: Add a group to an identity

lxc auth identity group add [<remote>:]<authentication_method>/<name_or_
identifier> <group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

705 of 954

SEE ALSO

• lxc auth identity group (page 705) - Manage groups for the identity

lxc auth identity group remove

Remove a group from an identity

Synopsis

Description: Remove a group from an identity

lxc auth identity group remove [<remote>:]<authentication_method>/<name_or_
identifier> <group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity group (page 705) - Manage groups for the identity

lxc auth identity info

View the current identity

Synopsis

Description: Show the current identity

This commandwill display permissions for the current user. This includes contextual informa-
tion, such as effective groups and permissions that are granted via identity provider group
mappings.

lxc auth identity info [<remote>:] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

706 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity (page 702) - Manage identities

lxc auth identity list

List identities

Synopsis

Description: List identities

lxc auth identity list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity (page 702) - Manage identities

lxc auth identity show

View an identity

Synopsis

Description: Show identity configurations

The argument must be a concatenation of the authentication method and either the name
or identifier of the identity, delimited by a forward slash. This commandwill fail if an identity

707 of 954

name is used that is not unique within the authentication method. Use the identifier instead
if this occurs.

lxc auth identity show [<remote>:]<authentication_method>/<name_or_identifier>
[flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity (page 702) - Manage identities

lxc auth identity-provider-group

Manage groups

Synopsis

Description: Manage groups

lxc auth identity-provider-group [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth (page 695) - Manage user authorization

• lxc auth identity-provider-group create (page 709) - Create identity provider groups

• lxc auth identity-provider-group delete (page 709) - Delete identity provider groups

• lxc auth identity-provider-group edit (page 710) - Edit identity provider groups as YAML

708 of 954

• lxc auth identity-provider-group group (page 710) -Manage identity provider groupmap-
pings

• lxc auth identity-provider-group list (page 712) - List identity provider groups

• lxc auth identity-provider-group rename (page 713) - Rename identity provider groups

• lxc auth identity-provider-group show (page 713) - Show an identity provider group

lxc auth identity-provider-group create

Create identity provider groups

Synopsis

Description: Create identity provider groups

lxc auth identity-provider-group create [<remote>:]<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group (page 708) - Manage groups

lxc auth identity-provider-group delete

Delete identity provider groups

Synopsis

Description: Delete identity provider groups

lxc auth identity-provider-group delete [<remote>:]<identity_provider_group>
[flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

709 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group (page 708) - Manage groups

lxc auth identity-provider-group edit

Edit identity provider groups as YAML

Synopsis

Description: Edit identity provider groups as YAML

lxc auth identity-provider-group edit [<remote>:]<identity_provider_group> [flags]

Examples

lxc auth identity-provider-group edit <identity_provider_group> < identity-
provider-group.yaml

Update an identity provider group using the content of identity-provider-
group.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group (page 708) - Manage groups

lxc auth identity-provider-group group

Manage identity provider group mappings

710 of 954

Synopsis

Description: Manage identity provider group mappings

lxc auth identity-provider-group group [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group (page 708) - Manage groups

• lxc auth identity-provider-group group add (page 711) - Add a group to an identity
provider group

• lxc auth identity-provider-group group remove (page 712) - Remove identities from
groups

lxc auth identity-provider-group group add

Add a group to an identity provider group

Synopsis

Description: Add a group to an identity provider group

lxc auth identity-provider-group group add [<remote>:]<identity_provider_group>
<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

711 of 954

SEE ALSO

• lxc auth identity-provider-group group (page 710) -Manage identity provider groupmap-
pings

lxc auth identity-provider-group group remove

Remove identities from groups

Synopsis

Description: Remove identities from groups

lxc auth identity-provider-group group remove [<remote>:]<authentication_method>/
<name_or_identifier> <group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group group (page 710) -Manage identity provider groupmap-
pings

lxc auth identity-provider-group list

List identity provider groups

Synopsis

Description: List identity provider groups

lxc auth identity-provider-group list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

712 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group (page 708) - Manage groups

lxc auth identity-provider-group rename

Rename identity provider groups

Synopsis

Description: Rename identity provider groups

lxc auth identity-provider-group rename [<remote>:]<identity_provider_group> <new_
name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group (page 708) - Manage groups

lxc auth identity-provider-group show

Show an identity provider group

Synopsis

Description: Show an identity provider group

713 of 954

lxc auth identity-provider-group show [<remote>:]<identity_provider_group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth identity-provider-group (page 708) - Manage groups

lxc auth permission

Inspect permissions

Synopsis

Description: Inspect permissions

lxc auth permission [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth (page 695) - Manage user authorization

• lxc auth permission list (page 714) - List permissions

lxc auth permission list

List permissions

714 of 954

Synopsis

Description: List permissions

lxc auth permission list [<remote>:] [project=<project_name>] [entity_type=
<entity_type>] [flags]

Options

-f, --format string Display format (json, yaml, table, compact, csv)
(default "table")

--max-entitlements int Maximum number of unassigned entitlements to
display before overflowing (set to zero to display all) (default 3)

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc auth permission (page 714) - Inspect permissions

lxc cluster

Manage cluster members

Synopsis

Description: Manage cluster members

lxc cluster [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

715 of 954

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc cluster add (page 716) - Request a join token for adding a cluster member

• lxc cluster edit (page 717) - Edit cluster member configurations as YAML

• lxc cluster enable (page 717) - Enable clustering on a single non-clustered LXD server

• lxc cluster evacuate (page 718) - Evacuate cluster member

• lxc cluster get (page 719) - Get values for cluster member configuration keys

• lxc cluster group (page 719) - Manage cluster groups

• lxc cluster info (page 725) - Show useful information about a cluster member

• lxc cluster list (page 726) - List all the cluster members

• lxc cluster list-tokens (page 726) - List all active cluster member join tokens

• lxc cluster remove (page 727) - Remove a member from the cluster

• lxc cluster rename (page 728) - Rename a cluster member

• lxc cluster restore (page 728) - Restore cluster member

• lxc cluster revoke-token (page 729) - Revoke cluster member join token

• lxc cluster role (page 729) - Manage cluster roles

• lxc cluster set (page 731) - Set a cluster member’s configuration keys

• lxc cluster show (page 732) - Show details of a cluster member

• lxc cluster unset (page 732) - Unset a cluster member’s configuration keys

• lxc cluster update-certificate (page 733) - Update cluster certificate

lxc cluster add

Request a join token for adding a cluster member

Synopsis

Description: Request a join token for adding a cluster member

lxc cluster add [[<remote>:]<member>] [flags]

Options

--name Cluster member name (alternative to passing it as an argument)

Options inherited from parent commands

716 of 954

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster edit

Edit cluster member configurations as YAML

Synopsis

Description: Edit cluster member configurations as YAML

lxc cluster edit [<remote>:]<member> [flags]

Examples

lxc cluster edit <cluster member> < member.yaml
Update a cluster member using the content of member.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster enable

Enable clustering on a single non-clustered LXD server

717 of 954

Synopsis

Description: Enable clustering on a single non-clustered LXD server

This command turns a non-clustered LXD server into the first member of a new
LXD cluster, which will have the given name.

It's required that LXD is already available on the network. You can check
this by running 'lxc config get core.https_address'. If either an IP address
and port is displayed, or both, LXD is already available on the network. If
no value is set, use 'lxc config set core.https_address' to set it.

lxc cluster enable [<remote>:] <name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster evacuate

Evacuate cluster member

Synopsis

Description: Evacuate cluster member

Evacuation actions:

• stop: stop all instances on the member

• migrate: migrate all instances on the member to other members

• live-migrate: live migrate all instances on the member to other members

lxc cluster evacuate [<remote>:]<member> [flags]

Options

--action Force a particular instance evacuation action. One of stop,
migrate or live-migrate

--force Force evacuation without user confirmation

718 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster get

Get values for cluster member configuration keys

Synopsis

Description: Get values for cluster member configuration keys

lxc cluster get [<remote>:]<member> <key> [flags]

Options

-p, --property Get the key as a cluster property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster group

Manage cluster groups

719 of 954

Synopsis

Description: Manage cluster groups

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

• lxc cluster group add (page 720) - Add member to group

• lxc cluster group assign (page 721) - Assign sets of groups to cluster members

• lxc cluster group create (page 721) - Create a cluster group

• lxc cluster group delete (page 722) - Delete a cluster group

• lxc cluster group edit (page 723) - Edit a cluster group

• lxc cluster group list (page 723) - List all the cluster groups

• lxc cluster group remove (page 724) - Remove member from group

• lxc cluster group rename (page 724) - Rename a cluster group

• lxc cluster group show (page 725) - Show cluster group configurations

lxc cluster group add

Add member to group

Synopsis

Description: Add a cluster member to a cluster group

lxc cluster group add [<remote>:]<member> <group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information

(continues on next page)

720 of 954

(continued from previous page)

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc cluster group (page 719) - Manage cluster groups

lxc cluster group assign

Assign sets of groups to cluster members

Synopsis

Description: Assign sets of groups to cluster members

lxc cluster group assign [<remote>:]<member> <group> [flags]

Examples

lxc cluster group assign foo default,bar
Set the groups for "foo" to "default" and "bar".

lxc cluster group assign foo default
Reset "foo" to only using the "default" cluster group.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group (page 719) - Manage cluster groups

lxc cluster group create

Create a cluster group

721 of 954

Synopsis

Description: Create a cluster group

lxc cluster group create [<remote>:]<group> [flags]

Examples

lxc cluster group create g1

lxc cluster group create g1 < config.yaml
Create a cluster group with configuration from config.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group (page 719) - Manage cluster groups

lxc cluster group delete

Delete a cluster group

Synopsis

Description: Delete a cluster group

lxc cluster group delete [<remote>:]<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

722 of 954

SEE ALSO

• lxc cluster group (page 719) - Manage cluster groups

lxc cluster group edit

Edit a cluster group

Synopsis

Description: Edit a cluster group

lxc cluster group edit [<remote>:]<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group (page 719) - Manage cluster groups

lxc cluster group list

List all the cluster groups

Synopsis

Description: List all the cluster groups

lxc cluster group list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

723 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group (page 719) - Manage cluster groups

lxc cluster group remove

Remove member from group

Synopsis

Description: Remove a cluster member from a cluster group

lxc cluster group remove [<remote>:]<member> <group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group (page 719) - Manage cluster groups

lxc cluster group rename

Rename a cluster group

Synopsis

Description: Rename a cluster group

lxc cluster group rename [<remote>:]<group> <new-name> [flags]

Options inherited from parent commands

724 of 954

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group (page 719) - Manage cluster groups

lxc cluster group show

Show cluster group configurations

Synopsis

Description: Show cluster group configurations

lxc cluster group show [<remote>:]<group> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster group (page 719) - Manage cluster groups

lxc cluster info

Show useful information about a cluster member

Synopsis

Description: Show useful information about a cluster member

lxc cluster info [<remote>:]<member> [flags]

725 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster list

List all the cluster members

Synopsis

Description: List all the cluster members

lxc cluster list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster list-tokens

List all active cluster member join tokens

726 of 954

Synopsis

Description: List all active cluster member join tokens

lxc cluster list-tokens [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster remove

Remove a member from the cluster

Synopsis

Description: Remove a member from the cluster

lxc cluster remove [<remote>:]<member> [flags]

Options

-f, --force Force removing a member, even if degraded
--yes Don't require user confirmation for using --force

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

727 of 954

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster rename

Rename a cluster member

Synopsis

Description: Rename a cluster member

lxc cluster rename [<remote>:]<member> <new-name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster restore

Restore cluster member

Synopsis

Description: Restore cluster member

lxc cluster restore [<remote>:]<member> [flags]

Options

--action Force a particular instance restore action. Use "skip" to restore
only the cluster member status without starting local instances or migrating back
evacuated instances

--force Force restoration without user confirmation

728 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster revoke-token

Revoke cluster member join token

Synopsis

Description: Revoke cluster member join token

lxc cluster revoke-token [<remote>:]<member> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster role

Manage cluster roles

Synopsis

Description: Manage cluster roles

lxc cluster role [flags]

729 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

• lxc cluster role add (page 730) - Add roles to a cluster member

• lxc cluster role remove (page 730) - Remove roles from a cluster member

lxc cluster role add

Add roles to a cluster member

Synopsis

Description: Add roles to a cluster member

lxc cluster role add [<remote>:]<member> <role[,role...]> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster role (page 729) - Manage cluster roles

lxc cluster role remove

Remove roles from a cluster member

730 of 954

Synopsis

Description: Remove roles from a cluster member

lxc cluster role remove [<remote>:]<member> <role[,role...]> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster role (page 729) - Manage cluster roles

lxc cluster set

Set a cluster member’s configuration keys

Synopsis

Description: Set a cluster member’s configuration keys

lxc cluster set [<remote>:]<member> <key>=<value>... [flags]

Options

-p, --property Set the key as a cluster property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

731 of 954

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster show

Show details of a cluster member

Synopsis

Description: Show details of a cluster member

lxc cluster show [<remote>:]<member> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster unset

Unset a cluster member’s configuration keys

Synopsis

Description: Unset a cluster member’s configuration keys

lxc cluster unset [<remote>:]<member> <key> [flags]

Options

-p, --property Unset the key as a cluster property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

732 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc cluster update-certificate

Update cluster certificate

Synopsis

Description: Update cluster certificate with PEM certificate and key read from input files.

lxc cluster update-certificate [<remote>:] <cert.crt> <cert.key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc cluster (page 715) - Manage cluster members

lxc completion

Generate the autocompletion script for the specified shell

Synopsis

Generate the autocompletion script for lxc for the specified shell. See each sub-command’s
help for details on how to use the generated script.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help

(continues on next page)

733 of 954

(continued from previous page)

--project Override the source project
-q, --quiet Don't show progress information

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc completion bash (page 734) - Generate the autocompletion script for bash

• lxc completion fish (page 735) - Generate the autocompletion script for fish

• lxc completion powershell (page 736) - Generate the autocompletion script for power-
shell

• lxc completion zsh (page 737) - Generate the autocompletion script for zsh

lxc completion bash

Generate the autocompletion script for bash

Synopsis

Generate the autocompletion script for the bash shell.

This script depends on the ‘bash-completion’ package. If it is not installed already, you can
install it via your OS’s package manager.

To load completions in your current shell session:

source <(lxc completion bash)

To load completions for every new session, execute once:

Linux:

lxc completion bash > /etc/bash_completion.d/lxc

macOS:

lxc completion bash > $(brew --prefix)/etc/bash_completion.d/lxc

You will need to start a new shell for this setup to take effect.

lxc completion bash

734 of 954

Options

--no-descriptions disable completion descriptions

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc completion (page 733) - Generate the autocompletion script for the specified shell

lxc completion fish

Generate the autocompletion script for fish

Synopsis

Generate the autocompletion script for the fish shell.

To load completions in your current shell session:

lxc completion fish | source

To load completions for every new session, execute once:

lxc completion fish > ~/.config/fish/completions/lxc.fish

You will need to start a new shell for this setup to take effect.

lxc completion fish [flags]

Options

--no-descriptions disable completion descriptions

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

735 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc completion (page 733) - Generate the autocompletion script for the specified shell

lxc completion powershell

Generate the autocompletion script for powershell

Synopsis

Generate the autocompletion script for powershell.

To load completions in your current shell session:

lxc completion powershell | Out-String | Invoke-Expression

To load completions for every new session, add the output of the above command to your
powershell profile.

lxc completion powershell [flags]

Options

--no-descriptions disable completion descriptions

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc completion (page 733) - Generate the autocompletion script for the specified shell

736 of 954

lxc completion zsh

Generate the autocompletion script for zsh

Synopsis

Generate the autocompletion script for the zsh shell.

If shell completion is not already enabled in your environment youwill need to enable it. You
can execute the following once:

echo "autoload -U compinit; compinit" >> ~/.zshrc

To load completions in your current shell session:

source <(lxc completion zsh)

To load completions for every new session, execute once:

Linux:

lxc completion zsh > "${fpath[1]}/_lxc"

macOS:

lxc completion zsh > $(brew --prefix)/share/zsh/site-functions/_lxc

You will need to start a new shell for this setup to take effect.

lxc completion zsh [flags]

Options

--no-descriptions disable completion descriptions

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

737 of 954

SEE ALSO

• lxc completion (page 733) - Generate the autocompletion script for the specified shell

lxc config

Manage instance and server configuration options

Synopsis

Description: Manage instance and server configuration options

lxc config [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc config device (page 738) - Manage devices

• lxc config edit (page 744) - Edit instance or server configurations as YAML

• lxc config get (page 745) - Get values for instance or server configuration keys

• lxc config metadata (page 745) - Manage instance metadata files

• lxc config set (page 747) - Set instance or server configuration keys

• lxc config show (page 748) - Show instance or server configurations

• lxc config template (page 748) - Manage instance file templates

• lxc config trust (page 752) - Manage trusted clients

• lxc config uefi (page 756) - Manage instance UEFI variables

• lxc config unset (page 760) - Unset instance or server configuration keys

lxc config device

Manage devices

738 of 954

Synopsis

Description: Manage devices

lxc config device [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config (page 738) - Manage instance and server configuration options

• lxc config device add (page 739) - Add instance devices

• lxc config device get (page 740) - Get values for device configuration keys

• lxc config device list (page 741) - List instance devices

• lxc config device override (page 741) - Copy profile inherited devices and override con-
figuration keys

• lxc config device remove (page 742) - Remove instance devices

• lxc config device set (page 742) - Set device configuration keys

• lxc config device show (page 743) - Show full device configuration

• lxc config device unset (page 743) - Unset device configuration keys

lxc config device add

Add instance devices

Synopsis

Description: Add instance devices

lxc config device add [<remote>:]<instance> <device> <type> [key=value...] [flags]

Examples

lxc config device add [<remote>:]instance1 <device-name> disk source=/share/c1
path=/opt

Will mount the host's /share/c1 onto /opt in the instance.

(continues on next page)

739 of 954

(continued from previous page)

lxc config device add [<remote>:]instance1 <device-name> disk pool=some-pool
source=some-volume path=/opt

Will mount the some-volume volume on some-pool onto /opt in the instance.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device (page 738) - Manage devices

lxc config device get

Get values for device configuration keys

Synopsis

Description: Get values for device configuration keys

lxc config device get [<remote>:]<instance> <device> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device (page 738) - Manage devices

740 of 954

lxc config device list

List instance devices

Synopsis

Description: List instance devices

lxc config device list [<remote>:]<instance> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device (page 738) - Manage devices

lxc config device override

Copy profile inherited devices and override configuration keys

Synopsis

Description: Copy profile inherited devices and override configuration keys

lxc config device override [<remote>:]<instance> <device> [key=value...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

741 of 954

SEE ALSO

• lxc config device (page 738) - Manage devices

lxc config device remove

Remove instance devices

Synopsis

Description: Remove instance devices

lxc config device remove [<remote>:]<instance> <name>... [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device (page 738) - Manage devices

lxc config device set

Set device configuration keys

Synopsis

Description: Set device configuration keys

For backward compatibility, a single configuration key may still be set with: lxc config device
set [:]

lxc config device set [<remote>:]<instance> <device> <key>=<value>... [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

742 of 954

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device (page 738) - Manage devices

lxc config device show

Show full device configuration

Synopsis

Description: Show full device configuration

lxc config device show [<remote>:]<instance> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device (page 738) - Manage devices

lxc config device unset

Unset device configuration keys

Synopsis

Description: Unset device configuration keys

lxc config device unset [<remote>:]<instance> <device> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

743 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config device (page 738) - Manage devices

lxc config edit

Edit instance or server configurations as YAML

Synopsis

Description: Edit instance or server configurations as YAML

lxc config edit [<remote>:][<instance>[/<snapshot>]] [flags]

Examples

lxc config edit <instance> < instance.yaml
Update the instance configuration from config.yaml.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config (page 738) - Manage instance and server configuration options

744 of 954

lxc config get

Get values for instance or server configuration keys

Synopsis

Description: Get values for instance or server configuration keys

lxc config get [<remote>:][<instance>] <key> [flags]

Options

-e, --expanded Access the expanded configuration
-p, --property Get the key as an instance property

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config (page 738) - Manage instance and server configuration options

lxc config metadata

Manage instance metadata files

Synopsis

Description: Manage instance metadata files

lxc config metadata [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

745 of 954

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config (page 738) - Manage instance and server configuration options

• lxc config metadata edit (page 746) - Edit instance metadata files

• lxc config metadata show (page 746) - Show instance metadata files

lxc config metadata edit

Edit instance metadata files

Synopsis

Description: Edit instance metadata files

lxc config metadata edit [<remote>:]<instance> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config metadata (page 745) - Manage instance metadata files

lxc config metadata show

Show instance metadata files

Synopsis

Description: Show instance metadata files

lxc config metadata show [<remote>:]<instance> [flags]

746 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config metadata (page 745) - Manage instance metadata files

lxc config set

Set instance or server configuration keys

Synopsis

Description: Set instance or server configuration keys

For backward compatibility, a single configuration keymay still be set with: lxc config set [:][]

lxc config set [<remote>:][<instance>] <key>=<value>... [flags]

Examples

lxc config set [<remote>:]<instance> limits.cpu=2
Will set a CPU limit of "2" for the instance.

lxc config set core.https_address=[::]:8443
Will have LXD listen on IPv4 and IPv6 port 8443.

Options

-p, --property Set the key as an instance property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

747 of 954

SEE ALSO

• lxc config (page 738) - Manage instance and server configuration options

lxc config show

Show instance or server configurations

Synopsis

Description: Show instance or server configurations

lxc config show [<remote>:][<instance>[/<snapshot>]] [flags]

Options

-e, --expanded Show the expanded configuration
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config (page 738) - Manage instance and server configuration options

lxc config template

Manage instance file templates

Synopsis

Description: Manage instance file templates

lxc config template [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help

(continues on next page)

748 of 954

(continued from previous page)

--project Override the source project
-q, --quiet Don't show progress information

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc config (page 738) - Manage instance and server configuration options

• lxc config template create (page 749) - Create new instance file templates

• lxc config template delete (page 749) - Delete instance file templates

• lxc config template edit (page 750) - Edit instance file templates

• lxc config template list (page 751) - List instance file templates

• lxc config template show (page 751) - Show content of instance file templates

lxc config template create

Create new instance file templates

Synopsis

Description: Create new instance file templates

lxc config template create [<remote>:]<instance> <template> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config template (page 748) - Manage instance file templates

lxc config template delete

Delete instance file templates

749 of 954

Synopsis

Description: Delete instance file templates

lxc config template delete [<remote>:]<instance> <template> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config template (page 748) - Manage instance file templates

lxc config template edit

Edit instance file templates

Synopsis

Description: Edit instance file templates

lxc config template edit [<remote>:]<instance> <template> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config template (page 748) - Manage instance file templates

750 of 954

lxc config template list

List instance file templates

Synopsis

Description: List instance file templates

lxc config template list [<remote>:]<instance> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config template (page 748) - Manage instance file templates

lxc config template show

Show content of instance file templates

Synopsis

Description: Show content of instance file templates

lxc config template show [<remote>:]<instance> <template> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

751 of 954

SEE ALSO

• lxc config template (page 748) - Manage instance file templates

lxc config trust

Manage trusted clients

Synopsis

Description: Manage trusted clients

lxc config trust [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config (page 738) - Manage instance and server configuration options

• lxc config trust add (page 752) - Add new trusted client

• lxc config trust edit (page 753) - Edit trust configurations as YAML

• lxc config trust list (page 754) - List trusted clients

• lxc config trust list-tokens (page 754) - List all active certificate add tokens

• lxc config trust remove (page 755) - Remove trusted client

• lxc config trust revoke-token (page 755) - Revoke certificate add token

• lxc config trust show (page 756) - Show trust configurations

lxc config trust add

Add new trusted client

Synopsis

Description: Add new trusted client

The following certificate types are supported:

• client (default)

• metrics

752 of 954

If the certificate is omitted, a tokenwill be generated and returned. A client providing a valid
token will have its client certificate added to the trusted list and the consumed token will be
invalidated. Similar to certificates, tokens can be restricted to one or more projects.

lxc config trust add [<remote>:] [<cert>] [flags]

Options

--name Alternative certificate name
--projects List of projects to restrict the certificate to
--restricted Restrict the certificate to one or more projects
--type Type of certificate (default "client")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config trust (page 752) - Manage trusted clients

lxc config trust edit

Edit trust configurations as YAML

Synopsis

Description: Edit trust configurations as YAML

lxc config trust edit [<remote>:]<fingerprint> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

753 of 954

SEE ALSO

• lxc config trust (page 752) - Manage trusted clients

lxc config trust list

List trusted clients

Synopsis

Description: List trusted clients

lxc config trust list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config trust (page 752) - Manage trusted clients

lxc config trust list-tokens

List all active certificate add tokens

Synopsis

Description: List all active certificate add tokens

lxc config trust list-tokens [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

754 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config trust (page 752) - Manage trusted clients

lxc config trust remove

Remove trusted client

Synopsis

Description: Remove trusted client

lxc config trust remove [<remote>:]<fingerprint> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config trust (page 752) - Manage trusted clients

lxc config trust revoke-token

Revoke certificate add token

Synopsis

Description: Revoke certificate add token

lxc config trust revoke-token [<remote>:] <name> [flags]

755 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config trust (page 752) - Manage trusted clients

lxc config trust show

Show trust configurations

Synopsis

Description: Show trust configurations

lxc config trust show [<remote>:]<fingerprint> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config trust (page 752) - Manage trusted clients

lxc config uefi

Manage instance UEFI variables

Synopsis

Description: Manage instance UEFI variables

lxc config uefi [flags]

756 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config (page 738) - Manage instance and server configuration options

• lxc config uefi edit (page 757) - Edit instance UEFI variables

• lxc config uefi get (page 758) - Get UEFI variables for instance

• lxc config uefi set (page 758) - Set UEFI variables for instance

• lxc config uefi show (page 759) - Show instance UEFI variables

• lxc config uefi unset (page 759) - Unset UEFI variables for instance

lxc config uefi edit

Edit instance UEFI variables

Synopsis

Description: Edit instance UEFI variables

lxc config uefi edit [<remote>:]<instance> [flags]

Examples

lxc config uefi edit <instance> < instance_uefi_vars.yaml
Set the instance UEFI variables from instance_uefi_vars.yaml.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

757 of 954

SEE ALSO

• lxc config uefi (page 756) - Manage instance UEFI variables

lxc config uefi get

Get UEFI variables for instance

Synopsis

Description: Get UEFI variables for instance

lxc config uefi get [<remote>:]<instance> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config uefi (page 756) - Manage instance UEFI variables

lxc config uefi set

Set UEFI variables for instance

Synopsis

Description: Set UEFI variables for instance

lxc config uefi set [<remote>:]<instance> <key>=<value>... [flags]

Examples

lxc config uefi set [<remote>:]<instance> testvar-9073e4e0-60ec-4b6e-9903-
4c223c260f3c=aabb

Set a UEFI variable with name "testvar", GUID 9073e4e0-60ec-4b6e-9903-
4c223c260f3c and value "aabb" (HEX-encoded) for the instance.

758 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config uefi (page 756) - Manage instance UEFI variables

lxc config uefi show

Show instance UEFI variables

Synopsis

Description: Show instance UEFI variables

lxc config uefi show [<remote>:]<instance> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config uefi (page 756) - Manage instance UEFI variables

lxc config uefi unset

Unset UEFI variables for instance

Synopsis

Description: Unset UEFI variables for instance

lxc config uefi unset [<remote>:]<instance> <key> [flags]

759 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config uefi (page 756) - Manage instance UEFI variables

lxc config unset

Unset instance or server configuration keys

Synopsis

Description: Unset instance or server configuration keys

lxc config unset [<remote>:][<instance>] <key> [flags]

Options

-p, --property Unset the key as an instance property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc config (page 738) - Manage instance and server configuration options

760 of 954

lxc console

Attach to instance consoles

Synopsis

Description: Attach to instance consoles

This command allows you to interact with the boot console of an instance as well as retrieve
past log entries from it.

lxc console [<remote>:]<instance> [flags]

Options

--show-log Retrieve the container's console log
-t, --type Type of connection to establish: 'console' for serial console,

'vga' for SPICE graphical output (default "console")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc copy

Copy instances within or in between LXD servers

Synopsis

Description: Copy instances within or in between LXD servers

Transfer modes (–mode):

• pull: Target server pulls thedata fromthe source server (sourcemust listenonnetwork)

• push: Source serverpushes thedata to the target server (targetmust listenonnetwork)

• relay: The CLI connects to both source and server and proxies the data (both source and
target must listen on network)

The pull transfer mode is the default as it is compatible with all LXD versions.

761 of 954

lxc copy [<remote>:]<source>[/<snapshot>] [[<remote>:]<destination>] [flags]

Options

--allow-inconsistent Ignore copy errors for volatile files
-c, --config Config key/value to apply to the new instance
-d, --device New key/value to apply to a specific device
-e, --ephemeral Ephemeral instance

--instance-only Copy the instance without its snapshots
--mode Transfer mode. One of pull, push or relay (default

"pull")
--no-profiles Create the instance with no profiles applied

-p, --profile Profile to apply to the new instance
--refresh Perform an incremental copy
--stateless Copy a stateful instance stateless

-s, --storage Storage pool name
--target Cluster member name
--target-project Copy to a project different from the source

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc delete

Delete instances and snapshots

Synopsis

Description: Delete instances and snapshots

lxc delete [<remote>:]<instance>[/<snapshot>] [[<remote>:]<instance>[/<snapshot>].
..] [flags]

762 of 954

Options

-f, --force Force the removal of running instances
-i, --interactive Require user confirmation

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc exec

Execute commands in instances

Synopsis

Description: Execute commands in instances

The command is executeddirectly usingexec, so there is no shell and shell patterns (variables,
file redirects, …) won’t be understood. If you need a shell environment you need to execute
the shell executable, passing the shell commands as arguments, for example:

lxc exec <instance> -- sh -c "cd /tmp && pwd"

Mode defaults to non-interactive, interactive mode is selected if both stdin AND stdout are
terminals (stderr is ignored).

lxc exec [<remote>:]<instance> [flags] [--] <command line>

Options

--cwd Directory to run the command in (default /root)
-n, --disable-stdin Disable stdin (reads from /dev/null)

--env Environment variable to set (e.g. HOME=/home/foo)
-t, --force-interactive Force pseudo-terminal allocation
-T, --force-noninteractive Disable pseudo-terminal allocation

--group Group ID to run the command as (default 0)
--mode Override the terminal mode (auto, interactive or

non-interactive) (default "auto")
--user User ID to run the command as (default 0)

763 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc export

Export instance backups

Synopsis

Description: Export instances as backup tarballs.

lxc export [<remote>:]<instance> [target] [--instance-only] [--optimized-storage]
[flags]

Examples

lxc export u1 backup0.tar.gz
Download a backup tarball of the u1 instance.

Options

--compression Compression algorithm to use (none for uncompressed)
--export-version Use a different metadata format version than the

latest one supported by the server (to support imports on older LXD versions)
--instance-only Whether or not to only backup the instance (without

snapshots)
--optimized-storage Use storage driver optimized format (can only be

restored on a similar pool)

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information

(continues on next page)

764 of 954

(continued from previous page)

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc file

Manage files in instances

Synopsis

Description: Manage files in instances

lxc file [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc file create (page 765) - Create files and directories in instances

• lxc file delete (page 766) - Delete files in instances

• lxc file edit (page 767) - Edit files in instances

• lxc file mount (page 767) - Mount files from instances

• lxc file pull (page 768) - Pull files from instances

• lxc file push (page 769) - Push files into instances

lxc file create

Create files and directories in instances

765 of 954

Synopsis

Description: Create files and directories in instances

lxc file create [<remote>:]<instance>/<path> [<symlink target path>] [flags]

Examples

lxc file create foo/bar
To create a file /bar in the foo instance.

lxc file create --type=symlink foo/bar baz
To create a symlink /bar in instance foo whose target is baz.

Options

-p, --create-dirs Create any directories necessary
-f, --force Force creating files or directories

--gid Set the file's gid on create (default -1)
--mode Set the file's perms on create
--type The type to create (file, symlink, or directory) (default

"file")
--uid Set the file's uid on create (default -1)

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc file (page 765) - Manage files in instances

lxc file delete

Delete files in instances

Synopsis

Description: Delete files in instances

lxc file delete [<remote>:]<instance>/<path> [[<remote>:]<instance>/<path>...]
[flags]

766 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc file (page 765) - Manage files in instances

lxc file edit

Edit files in instances

Synopsis

Description: Edit files in instances

lxc file edit [<remote>:]<instance>/<path> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc file (page 765) - Manage files in instances

lxc file mount

Mount files from instances

Synopsis

Description: Mount files from instances

lxc file mount [<remote>:]<instance>[/<path>] [<target path>] [flags]

767 of 954

Examples

lxc file mount foo/root fooroot
To mount /root from the instance foo onto the local fooroot directory.

Options

--auth-user string Set authentication user when using SSH SFTP listener
--listen string Setup SSH SFTP listener on address:port instead of

mounting
--no-auth Disable authentication when using SSH SFTP listener

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc file (page 765) - Manage files in instances

lxc file pull

Pull files from instances

Synopsis

Description: Pull files from instances

lxc file pull [<remote>:]<instance>/<path> [[<remote>:]<instance>/<path>...]
<target path> [flags]

Examples

lxc file pull foo/etc/hosts .
To pull /etc/hosts from the instance and write it to the current directory.

Options

-p, --create-dirs Create any directories necessary
-r, --recursive Recursively transfer files

768 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc file (page 765) - Manage files in instances

lxc file push

Push files into instances

Synopsis

Description: Push files into instances

lxc file push <source path>... [<remote>:]<instance>/<path> [flags]

Examples

lxc file push /etc/hosts foo/etc/hosts
To push /etc/hosts into the instance "foo".

Options

-p, --create-dirs Create any directories necessary
--gid Set the file's gid on push (default -1)
--mode Set the file's perms on push

-r, --recursive Recursively transfer files
--uid Set the file's uid on push (default -1)

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

769 of 954

SEE ALSO

• lxc file (page 765) - Manage files in instances

lxc image

Manage images

Synopsis

Description: Manage images

In LXD instances are created from images. Those images were themselves either generated
from an existing instance or downloaded from an image server.

When using remote images, LXD will automatically cache images for you and remove them
upon expiration.

The imageunique identifier is thehash (sha-256) of its representation as a compressed tarball
(or for split images, the concatenation of the metadata and rootfs tarballs).

Images can be referenced by their full hash, shortest unique partial hash or alias name (if one
is set).

lxc image [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc image alias (page 771) - Manage image aliases

• lxc image copy (page 774) - Copy images between servers

• lxc image delete (page 774) - Delete images

• lxc image edit (page 775) - Edit image properties

• lxc image export (page 776) - Export and download images

• lxc image get-property (page 776) - Get image properties

• lxc image import (page 777) - Import images into the image store

• lxc image info (page 777) - Show useful information about images

770 of 954

• lxc image list (page 778) - List images

• lxc image refresh (page 779) - Refresh images

• lxc image set-property (page 780) - Set image properties

• lxc image show (page 780) - Show image properties

• lxc image unset-property (page 781) - Unset image properties

lxc image alias

Manage image aliases

Synopsis

Description: Manage image aliases

lxc image alias [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image (page 770) - Manage images

• lxc image alias create (page 771) - Create aliases for existing images

• lxc image alias delete (page 772) - Delete image aliases

• lxc image alias list (page 772) - List image aliases

• lxc image alias rename (page 773) - Rename aliases

lxc image alias create

Create aliases for existing images

Synopsis

Description: Create aliases for existing images

lxc image alias create [<remote>:]<alias> <fingerprint> [flags]

771 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image alias (page 771) - Manage image aliases

lxc image alias delete

Delete image aliases

Synopsis

Description: Delete image aliases

lxc image alias delete [<remote>:]<alias> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image alias (page 771) - Manage image aliases

lxc image alias list

List image aliases

Synopsis

Description: List image aliases

Filters may be part of the image hash or part of the image alias name.

772 of 954

lxc image alias list [<remote>:] [<filters>...] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image alias (page 771) - Manage image aliases

lxc image alias rename

Rename aliases

Synopsis

Description: Rename aliases

lxc image alias rename [<remote>:]<alias> <new-name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image alias (page 771) - Manage image aliases

773 of 954

lxc image copy

Copy images between servers

Synopsis

Description: Copy images between servers

The auto-updateflag instructs the server to keep this image up to date. It requires the source
to be an alias and for it to be public.

lxc image copy [<remote>:]<image> <remote>: [flags]

Options

--alias New aliases to add to the image
--auto-update Keep the image up to date after initial copy
--copy-aliases Copy aliases from source
--mode Transfer mode. One of pull (default), push or relay

(default "pull")
-p, --profile Profile to apply to the new image

--public Make image public
--target-project Copy to a project different from the source
--vm Copy virtual machine images

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image (page 770) - Manage images

lxc image delete

Delete images

Synopsis

Description: Delete images

lxc image delete [<remote>:]<image> [[<remote>:]<image>...] [flags]

774 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image (page 770) - Manage images

lxc image edit

Edit image properties

Synopsis

Description: Edit image properties

lxc image edit [<remote>:]<image> [flags]

Examples

lxc image edit <image>
Launch a text editor to edit the properties

lxc image edit <image> < image.yaml
Load the image properties from a YAML file

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image (page 770) - Manage images

775 of 954

lxc image export

Export and download images

Synopsis

Description: Export and download images

The output target is optional and defaults to the working directory.

lxc image export [<remote>:]<image> [<target>] [flags]

Options

--vm Query virtual machine images

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image (page 770) - Manage images

lxc image get-property

Get image properties

Synopsis

Description: Get image properties

lxc image get-property [<remote>:]<image> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

776 of 954

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image (page 770) - Manage images

lxc image import

Import images into the image store

Synopsis

Description: Import image into the image store

Directory import is only available on Linux and must be performed as root.

Descriptive properties can be set by providing key=value pairs. Example: os=Ubuntu re-
lease=noble variant=cloud.

lxc image import <tarball>|<directory>|<URL> [<rootfs tarball>] [<remote>:]
[key=value...] [flags]

Options

--alias New aliases to add to the image
--public Make image public

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image (page 770) - Manage images

lxc image info

Show useful information about images

777 of 954

Synopsis

Description: Show useful information about images

lxc image info [<remote>:]<image> [flags]

Options

--vm Query virtual machine images

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image (page 770) - Manage images

lxc image list

List images

Synopsis

Description: List images

Filters may be of the = form for property based filtering, or part of the image hash or part of
the image alias name.

The -c option takes a (optionally comma-separated) list of arguments that control which im-
age attributes to output when displaying in table or csv format.

Default column layout is: lfpdasu

Column shorthand chars:

l - Shortest image alias (and optionally number of other aliases)
L - Newline-separated list of all image aliases
f - Fingerprint (short)
F - Fingerprint (long)
p - Whether image is public
d - Description
e - Project
a - Architecture

(continues on next page)

778 of 954

(continued from previous page)

s - Size
u - Upload date
t - Type

lxc image list [<remote>:] [<filter>...] [flags]

Options

--all-projects Display images from all projects
-c, --columns Columns (default "lfpdatsu")
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image (page 770) - Manage images

lxc image refresh

Refresh images

Synopsis

Description: Refresh images

lxc image refresh [<remote>:]<image> [[<remote>:]<image>...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

779 of 954

SEE ALSO

• lxc image (page 770) - Manage images

lxc image set-property

Set image properties

Synopsis

Description: Set image properties

lxc image set-property [<remote>:]<image> <key> <value> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image (page 770) - Manage images

lxc image show

Show image properties

Synopsis

Description: Show image properties

lxc image show [<remote>:]<image> [flags]

Options

--vm Query virtual machine images

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

780 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image (page 770) - Manage images

lxc image unset-property

Unset image properties

Synopsis

Description: Unset image properties

lxc image unset-property [<remote>:]<image> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc image (page 770) - Manage images

lxc import

Import instance backups

Synopsis

Description: Import backups of instances including their snapshots.

lxc import [<remote>:] <backup file> [<instance name>] [flags]

Examples

lxc import backup0.tar.gz
Create a new instance using backup0.tar.gz as the source.

781 of 954

Options

-d, --device New key/value to apply to a specific device
-s, --storage Storage pool name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc info

Show instance or server information

Synopsis

Description: Show instance or server information

lxc info [<remote>:][<instance>] [flags]

Examples

lxc info [<remote>:]<instance> [--show-log]
For instance information.

lxc info [<remote>:] [--resources]
For LXD server information.

Options

--resources Show the resources available to the server
--show-log Show the instance's last 100 log lines
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

(continues on next page)

782 of 954

(continued from previous page)

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc init

Create instances from images

Synopsis

Description: Create instances from images

lxc init [<remote>:]<image> [<remote>:][<name>] [flags]

Examples

lxc init ubuntu:24.04 u1
Create a container (but do not start it)

lxc init ubuntu:24.04 u1 < config.yaml
Create a container with configuration from config.yaml

lxc init ubuntu:24.04 v1 --vm -c limits.cpu=4 -c limits.memory=4GiB
Create a virtual machine with 4 vCPUs and 4GiB of RAM

lxc init ubuntu:24.04 v1 --vm -c limits.cpu=2 -c limits.memory=8GiB -d root,
size=32GiB

Create a virtual machine with 2 vCPUs, 8GiB of RAM and a root disk of 32GiB

Options

-c, --config Config key/value to apply to the new instance
-d, --device New key/value to apply to a specific device

--empty Create an empty instance
-e, --ephemeral Ephemeral instance
-n, --network Network name

--no-profiles Create the instance with no profiles applied
-p, --profile Profile to apply to the new instance
-s, --storage Storage pool name

--target Cluster member name

(continues on next page)

783 of 954

(continued from previous page)

-t, --type Instance type
--vm Create a virtual machine

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc launch

Create and start instances from images

Synopsis

Description: Create and start instances from images

lxc launch [<remote>:]<image> [<remote>:][<name>] [flags]

Examples

lxc launch ubuntu:24.04 u1
Create and start a container

lxc launch ubuntu:24.04 u1 < config.yaml
Create and start a container with configuration from config.yaml

lxc launch ubuntu:24.04 u2 -t aws:t2.micro
Create and start a container using the same size as an AWS t2.micro (1 vCPU,

1GiB of RAM)

lxc launch ubuntu:24.04 v1 --vm -c limits.cpu=4 -c limits.memory=4GiB
Create and start a virtual machine with 4 vCPUs and 4GiB of RAM

lxc launch ubuntu:24.04 v1 --vm -c limits.cpu=2 -c limits.memory=8GiB -d root,
size=32GiB

Create and start a virtual machine with 2 vCPUs, 8GiB of RAM and a root disk
of 32GiB

784 of 954

Options

-c, --config Config key/value to apply to the new instance
--console[="console"] Immediately attach to the console

-d, --device New key/value to apply to a specific device
--empty Create an empty instance

-e, --ephemeral Ephemeral instance
-n, --network Network name

--no-profiles Create the instance with no profiles applied
-p, --profile Profile to apply to the new instance
-s, --storage Storage pool name

--target Cluster member name
-t, --type Instance type

--vm Create a virtual machine

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc list

List instances

Synopsis

Description: List instances

Default column layout: ns46tS Fast column layout: nsacPt

A single keyword like “web” which will list any instance with a name starting with “web”. A
regular expression on the instance name. (e.g. .*web.*01$). A key/value pair referring to
a configuration item. For those, the namespace can be abbreviated to the smallest unam-
biguous identifier. A key/value pair where the key is a shorthand. Multiple values must be
delimited by ‘,’. Available shorthands: - type={instance type} - status={instance current life-
cycle status} - architecture={instance architecture} - location={location name} - ipv4={ip or
CIDR} - ipv6={ip or CIDR}

Examples: - “user.blah=abc” will list all instances with the “blah” user property set to “abc”.
- “u.blah=abc” will do the same - “security.privileged=true” will list all privileged instances
- “s.privileged=true” will do the same - “type=container” will list all container instances -
“type=container status=running” will list all running container instances

785 of 954

A regular expression matching a configuration item or its value. (e.g.
volatile.eth0.hwaddr=00:16:3e:.*).

Whenmultiple filters are passed, they are added one on top of the other, selecting instances
which satisfy them all.

== Columns == The -c option takes a comma separated list of arguments that control which
instance attributes to output when displaying in table or csv format.

Column arguments are either pre-defined shorthand chars (see below), or (extended) config
keys.

Commas between consecutive shorthand chars are optional.

Pre-defined column shorthand chars: 4 - IPv4 address 6 - IPv6 address a - Architecture b -
Storage pool c - Creation date d - Description D - disk usage e - Project name l - Last used
date m - Memory usage M - Memory usage (%) n - Name N - Number of Processes p - PID of
the instance’s init process P - Profiles s - State S - Number of snapshots t - Type (container
or virtual-machine, ephemeral indicated if applicable) u - CPU usage (in seconds) L - Location
of the instance (e.g. its cluster member) f - Base Image Fingerprint (short) F - Base Image
Fingerprint (long)

Custom columns are defined with “[config:|devices:]key[:name][:maxWidth]”: KEY: The (ex-
tended) config or devices key to display. If [config:|devices:] is omitted then it defaults to
config key. NAME: Name to display in the column header. Defaults to the key if not specified
or empty.

MAXWIDTH: Max width of the column (longer results are truncated).
Defaults to -1 (unlimited). Use 0 to limit to the column header size.

lxc list [<remote>:] [<filter>...] [flags]

Examples

lxc list -c nFs46,volatile.eth0.hwaddr:MAC,config:image.os,devices:eth0.
parent:ETHP

Show instances using the "NAME", "BASE IMAGE", "STATE", "IPV4", "IPV6" and
"MAC" columns.

"BASE IMAGE", "MAC" and "IMAGE OS" are custom columns generated from instance
configuration keys.

"ETHP" is a custom column generated from a device key.

lxc list -c ns,user.comment:comment
List instances with their running state and user comment.

Options

--all-projects Display instances from all projects
-c, --columns Columns (default "ns46tSL")

--fast Fast mode (same as --columns=nsacPt)
-f, --format Format (csv|json|table|yaml|compact) (default "table")

786 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc manpage

Generate manpages for all commands

Synopsis

Description: Generate manpages for all commands

lxc manpage <target> [flags]

Options

-f, --format Format (man|md|rest|yaml) (default "man")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc monitor

Monitor a local or remote LXD server

787 of 954

Synopsis

Description: Monitor a local or remote LXD server

By default the monitor will listen to all message types.

lxc monitor [<remote>:] [flags]

Examples

lxc monitor --type=logging
Only show log messages.

lxc monitor --pretty --type=logging --loglevel=info
Show a pretty log of messages with info level or higher.

lxc monitor --type=lifecycle
Only show lifecycle events.

Options

--all-projects Show events from all projects
-f, --format Format (json|pretty|yaml) (default "yaml")

--loglevel Minimum level for log messages (only available when using
pretty format)

--pretty Pretty rendering (short for --format=pretty)
--type Event type to listen for

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc move

Move instances within or in between LXD servers

788 of 954

Synopsis

Description: Move instances within or in between LXD servers

Transfer modes (–mode):

• pull: Target server pulls thedata fromthe source server (sourcemust listenonnetwork)

• push: Source serverpushes thedata to the target server (targetmust listenonnetwork)

• relay: The CLI connects to both source and server and proxies the data (both source and
target must listen on network)

The pull transfer mode is the default as it is compatible with all LXD versions.

lxc move [<remote>:]<instance>[/<snapshot>] [<remote>:][<instance>[/<snapshot>]]
[flags]

Examples

lxc move [<remote>:]<source instance> [<remote>:][<destination instance>] [--
instance-only]

Move an instance between two hosts, renaming it if destination name differs.

lxc move <old name> <new name> [--instance-only]
Rename a local instance.

lxc move <instance>/<old snapshot name> <instance>/<new snapshot name>
Rename a snapshot.

Options

--allow-inconsistent Ignore copy errors for volatile files
-c, --config Config key/value to apply to the target instance
-d, --device New key/value to apply to a specific device

--instance-only Move the instance without its snapshots
--mode Transfer mode. One of pull, push or relay. (default

"pull")
--no-profiles Unset all profiles on the target instance

-p, --profile Profile to apply to the target instance
--stateless Copy a stateful instance as stateless

-s, --storage Storage pool name
--target Cluster member name
--target-project Copy to a project different from the source

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

789 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc network

Manage and attach instances to networks

Synopsis

Description: Manage and attach instances to networks

lxc network [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc network acl (page 791) - Manage network ACLs

• lxc network attach (page 799) - Attach network interfaces to instances

• lxc network attach-profile (page 800) - Attach network interfaces to profiles

• lxc network create (page 800) - Create new networks

• lxc network delete (page 801) - Delete networks

• lxc network detach (page 802) - Detach network interfaces from instances

• lxc network detach-profile (page 802) - Detach network interfaces from profiles

• lxc network edit (page 803) - Edit network configurations as YAML

• lxc network forward (page 803) - Manage network forwards

• lxc network get (page 811) - Get values for network configuration keys

790 of 954

• lxc network info (page 812) - Get runtime information on networks

• lxc network list (page 812) - List available networks

• lxc network list-allocations (page 813) - List network allocations in use

• lxc network list-leases (page 814) - List DHCP leases

• lxc network load-balancer (page 814) - Manage network load balancers

• lxc network peer (page 824) - Manage network peerings

• lxc network rename (page 829) - Rename networks

• lxc network set (page 830) - Set network configuration keys

• lxc network show (page 830) - Show network configurations

• lxc network unset (page 831) - Unset network configuration keys

• lxc network zone (page 832) - Manage network zones

lxc network acl

Manage network ACLs

Synopsis

Description: Manage network ACLs

lxc network acl [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

• lxc network acl create (page 792) - Create new network ACLs

• lxc network acl delete (page 792) - Delete network ACLs

• lxc network acl edit (page 793) - Edit network ACL configurations as YAML

• lxc network acl get (page 793) - Get values for network ACL configuration keys

• lxc network acl list (page 794) - List available network ACLS

• lxc network acl rename (page 795) - Rename network ACLs

791 of 954

• lxc network acl rule (page 795) - Manage network ACL rules

• lxc network acl set (page 797) - Set network ACL configuration keys

• lxc network acl show (page 798) - Show network ACL configurations

• lxc network acl show-log (page 798) - Show network ACL log

• lxc network acl unset (page 799) - Unset network ACL configuration keys

lxc network acl create

Create new network ACLs

Synopsis

Description: Create new network ACLs

lxc network acl create [<remote>:]<ACL> [key=value...] [flags]

Examples

lxc network acl create a1

lxc network acl create a1 < config.yaml
Create network acl with configuration from config.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl (page 791) - Manage network ACLs

lxc network acl delete

Delete network ACLs

Synopsis

Description: Delete network ACLs

lxc network acl delete [<remote>:]<ACL> [flags]

792 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl (page 791) - Manage network ACLs

lxc network acl edit

Edit network ACL configurations as YAML

Synopsis

Description: Edit network ACL configurations as YAML

lxc network acl edit [<remote>:]<ACL> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl (page 791) - Manage network ACLs

lxc network acl get

Get values for network ACL configuration keys

Synopsis

Description: Get values for network ACL configuration keys

lxc network acl get [<remote>:]<ACL> <key> [flags]

793 of 954

Options

-p, --property Get the key as a network ACL property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl (page 791) - Manage network ACLs

lxc network acl list

List available network ACLS

Synopsis

Description: List available network ACL

lxc network acl list [<remote>:] [flags]

Options

--all-projects Display network ACLs from all projects
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

794 of 954

SEE ALSO

• lxc network acl (page 791) - Manage network ACLs

lxc network acl rename

Rename network ACLs

Synopsis

Description: Rename network ACLs

lxc network acl rename [<remote>:]<ACL> <new-name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl (page 791) - Manage network ACLs

lxc network acl rule

Manage network ACL rules

Synopsis

Description: Manage network ACL rules

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

795 of 954

SEE ALSO

• lxc network acl (page 791) - Manage network ACLs

• lxc network acl rule add (page 796) - Add rules to an ACL

• lxc network acl rule remove (page 796) - Remove rules from an ACL

lxc network acl rule add

Add rules to an ACL

Synopsis

Description: Add rules to an ACL

lxc network acl rule add [<remote>:]<ACL> <direction> <key>=<value>... [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl rule (page 795) - Manage network ACL rules

lxc network acl rule remove

Remove rules from an ACL

Synopsis

Description: Remove rules from an ACL

lxc network acl rule remove [<remote>:]<ACL> <direction> <key>=<value>... [flags]

Options

--force Remove all rules that match

796 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl rule (page 795) - Manage network ACL rules

lxc network acl set

Set network ACL configuration keys

Synopsis

Description: Set network ACL configuration keys

For backward compatibility, a single configuration key may still be set with: lxc network set
[:]

lxc network acl set [<remote>:]<ACL> <key>=<value>... [flags]

Options

-p, --property Set the key as a network ACL property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl (page 791) - Manage network ACLs

797 of 954

lxc network acl show

Show network ACL configurations

Synopsis

Description: Show network ACL configurations

lxc network acl show [<remote>:]<ACL> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl (page 791) - Manage network ACLs

lxc network acl show-log

Show network ACL log

Synopsis

Description: Show network ACL log

lxc network acl show-log [<remote>:]<ACL> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

798 of 954

SEE ALSO

• lxc network acl (page 791) - Manage network ACLs

lxc network acl unset

Unset network ACL configuration keys

Synopsis

Description: Unset network ACL configuration keys

lxc network acl unset [<remote>:]<ACL> <key> [flags]

Options

-p, --property Unset the key as a network ACL property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network acl (page 791) - Manage network ACLs

lxc network attach

Attach network interfaces to instances

Synopsis

Description: Attach new network interfaces to instances

lxc network attach [<remote>:]<network> <instance> [<device name>] [<interface
name>] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help

(continues on next page)

799 of 954

(continued from previous page)

--project Override the source project
-q, --quiet Don't show progress information

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network attach-profile

Attach network interfaces to profiles

Synopsis

Description: Attach network interfaces to profiles

lxc network attach-profile [<remote>:]<network> <profile> [<device name>] [
<interface name>] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network create

Create new networks

Synopsis

Description: Create new networks

lxc network create [<remote>:]<network> [key=value...] [flags]

800 of 954

Examples

lxc network create foo
Create a new network called foo

lxc network create bar network=baz --type ovn
Create a new OVN network called bar using baz as its uplink network

Options

--target Cluster member name
-t, --type Network type

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network delete

Delete networks

Synopsis

Description: Delete networks

lxc network delete [<remote>:]<network> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

801 of 954

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network detach

Detach network interfaces from instances

Synopsis

Description: Detach network interfaces from instances

lxc network detach [<remote>:]<network> <instance> [<device name>] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network detach-profile

Detach network interfaces from profiles

Synopsis

Description: Detach network interfaces from profiles

lxc network detach-profile [<remote>:]<network> <profile> [<device name>] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

802 of 954

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network edit

Edit network configurations as YAML

Synopsis

Description: Edit network configurations as YAML

lxc network edit [<remote>:]<network> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network forward

Manage network forwards

Synopsis

Description: Manage network forwards

lxc network forward [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

803 of 954

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

• lxc network forward create (page 804) - Create new network forwards

• lxc network forward delete (page 805) - Delete network forwards

• lxc network forward edit (page 805) - Edit network forward configurations as YAML

• lxc network forward get (page 806) - Get values for network forward configuration keys

• lxc network forward list (page 807) - List available network forwards

• lxc network forward port (page 807) - Manage network forward ports

• lxc network forward set (page 809) - Set network forward keys

• lxc network forward show (page 810) - Show network forward configurations

• lxc network forward unset (page 810) - Unset network forward configuration keys

lxc network forward create

Create new network forwards

Synopsis

Description: Create new network forwards

lxc network forward create [<remote>:]<network> [<listen_address>] [key=value...]
[flags]

Examples

lxc network forward create n1 127.0.0.1

lxc network forward create n1 127.0.0.1 < config.yaml
Create a new network forward for network n1 from config.yaml

Options

--allocate Auto-allocate an IPv4 or IPv6 listen address. One of 'ipv4',
'ipv6'.

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information

(continues on next page)

804 of 954

(continued from previous page)

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc network forward (page 803) - Manage network forwards

lxc network forward delete

Delete network forwards

Synopsis

Description: Delete network forwards

lxc network forward delete [<remote>:]<network> <listen_address> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward (page 803) - Manage network forwards

lxc network forward edit

Edit network forward configurations as YAML

Synopsis

Description: Edit network forward configurations as YAML

lxc network forward edit [<remote>:]<network> <listen_address> [flags]

805 of 954

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward (page 803) - Manage network forwards

lxc network forward get

Get values for network forward configuration keys

Synopsis

Description: Get values for network forward configuration keys

lxc network forward get [<remote>:]<network> <listen_address> <key> [flags]

Options

-p, --property Get the key as a network forward property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward (page 803) - Manage network forwards

806 of 954

lxc network forward list

List available network forwards

Synopsis

Description: List available network forwards

lxc network forward list [<remote>:]<network> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward (page 803) - Manage network forwards

lxc network forward port

Manage network forward ports

Synopsis

Description: Manage network forward ports

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

807 of 954

SEE ALSO

• lxc network forward (page 803) - Manage network forwards

• lxc network forward port add (page 808) - Add ports to a forward

• lxc network forward port remove (page 808) - Remove ports from a forward

lxc network forward port add

Add ports to a forward

Synopsis

Description: Add ports to a forward

lxc network forward port add [<remote>:]<network> <listen_address> <protocol>
<listen_port(s)> <target_address> [<target_port(s)>] [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward port (page 807) - Manage network forward ports

lxc network forward port remove

Remove ports from a forward

Synopsis

Description: Remove ports from a forward

lxc network forward port remove [<remote>:]<network> <listen_address> [<protocol>]
[<listen_port(s)>] [flags]

808 of 954

Options

--force Remove all ports that match
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward port (page 807) - Manage network forward ports

lxc network forward set

Set network forward keys

Synopsis

Description: Set network forward keys

For backward compatibility, a single configuration key may still be set with: lxc network set
[:] <listen_address>

lxc network forward set [<remote>:]<network> <listen_address> <key>=<value>...
[flags]

Options

-p, --property Set the key as a network forward property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

809 of 954

SEE ALSO

• lxc network forward (page 803) - Manage network forwards

lxc network forward show

Show network forward configurations

Synopsis

Description: Show network forward configurations

lxc network forward show [<remote>:]<network> <listen_address> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward (page 803) - Manage network forwards

lxc network forward unset

Unset network forward configuration keys

Synopsis

Description: Unset network forward keys

lxc network forward unset [<remote>:]<network> <listen_address> <key> [flags]

Options

-p, --property Unset the key as a network forward property

810 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network forward (page 803) - Manage network forwards

lxc network get

Get values for network configuration keys

Synopsis

Description: Get values for network configuration keys

lxc network get [<remote>:]<network> <key> [flags]

Options

-p, --property Get the key as a network property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

811 of 954

lxc network info

Get runtime information on networks

Synopsis

Description: Get runtime information on networks

lxc network info [<remote>:]<network> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network list

List available networks

Synopsis

Description: List available networks

lxc network list [<remote>:] [flags]

Options

--all-projects Display networks from all projects
-f, --format Format (csv|json|table|yaml|compact) (default "table")

--target Cluster member name

812 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network list-allocations

List network allocations in use

Synopsis

Description: List network allocations in use

lxc network list-allocations [flags]

Options

--all-projects Run against all projects
-f, --format Format (csv|json|table|yaml|compact) (default "table")
-p, --project string Run again a specific project (default "default")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
-q, --quiet Don't show progress information

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

813 of 954

lxc network list-leases

List DHCP leases

Synopsis

Description: List DHCP leases

lxc network list-leases [<remote>:]<network> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network load-balancer

Manage network load balancers

Synopsis

Description: Manage network load balancers

lxc network load-balancer [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

814 of 954

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

• lxc network load-balancer backend (page815) -Managenetwork loadbalancer backends

• lxc network load-balancer create (page 817) - Create new network load balancers

• lxc network load-balancer delete (page 818) - Delete network load balancers

• lxc network load-balancer edit (page 818) - Edit network load balancer configurations as
YAML

• lxc network load-balancer get (page 819) - Get values for network load balancer config-
uration keys

• lxc network load-balancer list (page 820) - List available network load balancers

• lxc network load-balancer port (page 820) - Manage network load balancer ports

• lxc network load-balancer set (page 822) - Set network load balancer keys

• lxc network load-balancer show (page 823) - Shownetwork load balancer configurations

• lxc network load-balancer unset (page 823) - Unset network load balancer configuration
keys

lxc network load-balancer backend

Manage network load balancer backends

Synopsis

Description: Manage network load balancer backends

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer (page 814) - Manage network load balancers

• lxc network load-balancer backend add (page 816) - Add backends to a load balancer

• lxc network load-balancer backend remove (page 816) - Remove backends from a load
balancer

815 of 954

lxc network load-balancer backend add

Add backends to a load balancer

Synopsis

Description: Add backend to a load balancer

lxc network load-balancer backend add [<remote>:]<network> <listen_address>
<backend_name> <target_address> [<target_port(s)>] [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer backend (page815) -Managenetwork loadbalancer backends

lxc network load-balancer backend remove

Remove backends from a load balancer

Synopsis

Description: Remove backend from a load balancer

lxc network load-balancer backend remove [<remote>:]<network> <listen_address>
<backend_name> [flags]

Options

--target Cluster member name

816 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer backend (page815) -Managenetwork loadbalancer backends

lxc network load-balancer create

Create new network load balancers

Synopsis

Description: Create new network load balancers

lxc network load-balancer create [<remote>:]<network> [<listen_address>]
[key=value...] [flags]

Examples

lxc network load-balancer create n1 127.0.0.1

lxc network load-balancer create n1 127.0.0.1 < config.yaml
Create network load-balancer for network n1 with configuration from config.

yaml

Options

--allocate Auto-allocate an IPv4 or IPv6 listen address. One of 'ipv4',
'ipv6'.

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

817 of 954

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer (page 814) - Manage network load balancers

lxc network load-balancer delete

Delete network load balancers

Synopsis

Description: Delete network load balancers

lxc network load-balancer delete [<remote>:]<network> <listen_address> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer (page 814) - Manage network load balancers

lxc network load-balancer edit

Edit network load balancer configurations as YAML

Synopsis

Description: Edit network load balancer configurations as YAML

lxc network load-balancer edit [<remote>:]<network> <listen_address> [flags]

818 of 954

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer (page 814) - Manage network load balancers

lxc network load-balancer get

Get values for network load balancer configuration keys

Synopsis

Description: Get values for network load balancer configuration keys

lxc network load-balancer get [<remote>:]<network> <listen_address> <key> [flags]

Options

-p, --property Get the key as a network load balancer property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer (page 814) - Manage network load balancers

819 of 954

lxc network load-balancer list

List available network load balancers

Synopsis

Description: List available network load balancers

lxc network load-balancer list [<remote>:]<network> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer (page 814) - Manage network load balancers

lxc network load-balancer port

Manage network load balancer ports

Synopsis

Description: Manage network load balancer ports

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

820 of 954

SEE ALSO

• lxc network load-balancer (page 814) - Manage network load balancers

• lxc network load-balancer port add (page 821) - Add ports to a load balancer

• lxc network load-balancer port remove (page 821) - Remove ports from a load balancer

lxc network load-balancer port add

Add ports to a load balancer

Synopsis

Description: Add ports to a load balancer

lxc network load-balancer port add [<remote>:]<network> <listen_address>
<protocol> <listen_port(s)> <backend_name>[,<backend_name>...] [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer port (page 820) - Manage network load balancer ports

lxc network load-balancer port remove

Remove ports from a load balancer

Synopsis

Description: Remove ports from a load balancer

lxc network load-balancer port remove [<remote>:]<network> <listen_address> [
<protocol>] [<listen_port(s)>] [flags]

821 of 954

Options

--force Remove all ports that match
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer port (page 820) - Manage network load balancer ports

lxc network load-balancer set

Set network load balancer keys

Synopsis

Description: Set network load balancer keys

For backward compatibility, a single configuration key may still be set with: lxc network set
[:] <listen_address>

lxc network load-balancer set [<remote>:]<network> <listen_address> <key>=<value>.
.. [flags]

Options

-p, --property Set the key as a network load balancer property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

822 of 954

SEE ALSO

• lxc network load-balancer (page 814) - Manage network load balancers

lxc network load-balancer show

Show network load balancer configurations

Synopsis

Description: Show network load balancer configurations

lxc network load-balancer show [<remote>:]<network> <listen_address> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer (page 814) - Manage network load balancers

lxc network load-balancer unset

Unset network load balancer configuration keys

Synopsis

Description: Unset network load balancer keys

lxc network load-balancer unset [<remote>:]<network> <listen_address> <key>
[flags]

Options

-p, --property Unset the key as a network load balancer property

823 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network load-balancer (page 814) - Manage network load balancers

lxc network peer

Manage network peerings

Synopsis

Description: Manage network peerings

lxc network peer [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

• lxc network peer create (page 825) - Create new network peering

• lxc network peer delete (page 825) - Delete network peerings

• lxc network peer edit (page 826) - Edit network peer configurations as YAML

• lxc network peer get (page 826) - Get values for network peer configuration keys

• lxc network peer list (page 827) - List available network peers

• lxc network peer set (page 827) - Set network peer keys

• lxc network peer show (page 828) - Show network peer configurations

824 of 954

• lxc network peer unset (page 829) - Unset network peer configuration keys

lxc network peer create

Create new network peering

Synopsis

Description: Create new network peering

lxc network peer create [<remote>:]<network> <peer_name> <[target project/]target_
network> [key=value...] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer (page 824) - Manage network peerings

lxc network peer delete

Delete network peerings

Synopsis

Description: Delete network peerings

lxc network peer delete [<remote>:]<network> <peer_name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

825 of 954

SEE ALSO

• lxc network peer (page 824) - Manage network peerings

lxc network peer edit

Edit network peer configurations as YAML

Synopsis

Description: Edit network peer configurations as YAML

lxc network peer edit [<remote>:]<network> <peer_name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer (page 824) - Manage network peerings

lxc network peer get

Get values for network peer configuration keys

Synopsis

Description: Get values for network peer configuration keys

lxc network peer get [<remote>:]<network> <peer_name> <key> [flags]

Options

-p, --property Get the key as a network peer property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

826 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer (page 824) - Manage network peerings

lxc network peer list

List available network peers

Synopsis

Description: List available network peers

lxc network peer list [<remote>:]<network> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer (page 824) - Manage network peerings

lxc network peer set

Set network peer keys

Synopsis

Description: Set network peer keys

For backward compatibility, a single configuration key may still be set with: lxc network set
[:] <peer_name>

827 of 954

lxc network peer set [<remote>:]<network> <peer_name> <key>=<value>... [flags]

Options

-p, --property Set the key as a network peer property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer (page 824) - Manage network peerings

lxc network peer show

Show network peer configurations

Synopsis

Description: Show network peer configurations

lxc network peer show [<remote>:]<network> <peer name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer (page 824) - Manage network peerings

828 of 954

lxc network peer unset

Unset network peer configuration keys

Synopsis

Description: Unset network peer keys

lxc network peer unset [<remote>:]<network> <peer_name> <key> [flags]

Options

-p, --property Unset the key as a network peer property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network peer (page 824) - Manage network peerings

lxc network rename

Rename networks

Synopsis

Description: Rename networks

lxc network rename [<remote>:]<network> <new-name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

829 of 954

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network set

Set network configuration keys

Synopsis

Description: Set network configuration keys

For backward compatibility, a single configuration key may still be set with: lxc network set
[:]

lxc network set [<remote>:]<network> <key>=<value>... [flags]

Options

-p, --property Set the key as a network property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network show

Show network configurations

Synopsis

Description: Show network configurations

lxc network show [<remote>:]<network> [flags]

830 of 954

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network unset

Unset network configuration keys

Synopsis

Description: Unset network configuration keys

lxc network unset [<remote>:]<network> <key> [flags]

Options

-p, --property Unset the key as a network property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

831 of 954

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

lxc network zone

Manage network zones

Synopsis

Description: Manage network zones

lxc network zone [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network (page 790) - Manage and attach instances to networks

• lxc network zone create (page 832) - Create new network zones

• lxc network zone delete (page 833) - Delete network zones

• lxc network zone edit (page 834) - Edit network zone configurations as YAML

• lxc network zone get (page 834) - Get values for network zone configuration keys

• lxc network zone list (page 835) - List available network zones

• lxc network zone record (page 835) - Manage network zone records

• lxc network zone set (page 843) - Set network zone configuration keys

• lxc network zone show (page 843) - Show network zone configurations

• lxc network zone unset (page 844) - Unset network zone configuration keys

lxc network zone create

Create new network zones

832 of 954

Synopsis

Description: Create new network zones

lxc network zone create [<remote>:]<Zone> [key=value...] [flags]

Examples

lxc network zone create z1

lxc network zone create z1 < config.yaml
Create network zone z1 with configuration from config.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone (page 832) - Manage network zones

lxc network zone delete

Delete network zones

Synopsis

Description: Delete network zones

lxc network zone delete [<remote>:]<Zone> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

833 of 954

SEE ALSO

• lxc network zone (page 832) - Manage network zones

lxc network zone edit

Edit network zone configurations as YAML

Synopsis

Description: Edit network zone configurations as YAML

lxc network zone edit [<remote>:]<Zone> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone (page 832) - Manage network zones

lxc network zone get

Get values for network zone configuration keys

Synopsis

Description: Get values for network zone configuration keys

lxc network zone get [<remote>:]<Zone> <key> [flags]

Options

-p, --property Get the key as a network zone property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

834 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone (page 832) - Manage network zones

lxc network zone list

List available network zones

Synopsis

Description: List available network zone

lxc network zone list [<remote>:] [flags]

Options

--all-projects Display network zones from all projects
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone (page 832) - Manage network zones

lxc network zone record

Manage network zone records

Synopsis

Description: Manage network zone records

835 of 954

lxc network zone record [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone (page 832) - Manage network zones

• lxc network zone record create (page 836) - Create new network zone record

• lxc network zone record delete (page 837) - Delete network zone record

• lxc network zone record edit (page 837) - Edit network zone record configurations as
YAML

• lxc network zone record entry (page 838) - Manage network zone record entries

• lxc network zone record get (page 840) - Get values for network zone record configura-
tion keys

• lxc network zone record list (page 840) - List available network zone records

• lxc network zone record set (page 841) - Set network zone record configuration keys

• lxc network zone record show (page 841) - Show network zone record configuration

• lxc network zone record unset (page 842) - Unset network zone record configuration
keys

lxc network zone record create

Create new network zone record

Synopsis

Description: Create new network zone record

lxc network zone record create [<remote>:]<zone> <record> [key=value...] [flags]

Examples

lxc network zone record create z1 r1

lxc network zone record create z1 r1 < config.yaml
Create record r1 for zone z1 with configuration from config.yaml

836 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record (page 835) - Manage network zone records

lxc network zone record delete

Delete network zone record

Synopsis

Description: Delete network zone record

lxc network zone record delete [<remote>:]<zone> <record> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record (page 835) - Manage network zone records

lxc network zone record edit

Edit network zone record configurations as YAML

Synopsis

Description: Edit network zone record configurations as YAML

lxc network zone record edit [<remote>:]<zone> <record> [flags]

837 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record (page 835) - Manage network zone records

lxc network zone record entry

Manage network zone record entries

Synopsis

Description: Manage network zone record entries

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record (page 835) - Manage network zone records

• lxc network zone record entry add (page 838) - Add a network zone record entry

• lxc network zone record entry remove (page 839) - Remove a network zone record entry

lxc network zone record entry add

Add a network zone record entry

Synopsis

Description: Add entries to a network zone record

838 of 954

lxc network zone record entry add [<remote>:]<zone> <record> <type> <value>
[flags]

Options

--ttl Entry TTL

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record entry (page 838) - Manage network zone record entries

lxc network zone record entry remove

Remove a network zone record entry

Synopsis

Description: Remove entries from a network zone record

lxc network zone record entry remove [<remote>:]<zone> <record> <type> <value>
[flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

839 of 954

SEE ALSO

• lxc network zone record entry (page 838) - Manage network zone record entries

lxc network zone record get

Get values for network zone record configuration keys

Synopsis

Description: Get values for network zone record configuration keys

lxc network zone record get [<remote>:]<zone> <record> <key> [flags]

Options

-p, --property Get the key as a network zone record property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record (page 835) - Manage network zone records

lxc network zone record list

List available network zone records

Synopsis

Description: List available network zone records

lxc network zone record list [<remote>:]<zone> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

840 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record (page 835) - Manage network zone records

lxc network zone record set

Set network zone record configuration keys

Synopsis

Description: Set network zone record configuration keys

lxc network zone record set [<remote>:]<zone> <record> <key>=<value>... [flags]

Options

-p, --property Set the key as a network zone record property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record (page 835) - Manage network zone records

lxc network zone record show

Show network zone record configuration

841 of 954

Synopsis

Description: Show network zone record configurations

lxc network zone record show [<remote>:]<zone> <record> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone record (page 835) - Manage network zone records

lxc network zone record unset

Unset network zone record configuration keys

Synopsis

Description: Unset network zone record configuration keys

lxc network zone record unset [<remote>:]<zone> <record> <key> [flags]

Options

-p, --property Unset the key as a network zone record property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

842 of 954

SEE ALSO

• lxc network zone record (page 835) - Manage network zone records

lxc network zone set

Set network zone configuration keys

Synopsis

Description: Set network zone configuration keys

For backward compatibility, a single configuration key may still be set with: lxc network set
[:]

lxc network zone set [<remote>:]<Zone> <key>=<value>... [flags]

Options

-p, --property Set the key as a network zone property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone (page 832) - Manage network zones

lxc network zone show

Show network zone configurations

Synopsis

Description: Show network zone configurations

lxc network zone show [<remote>:]<Zone> [flags]

843 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone (page 832) - Manage network zones

lxc network zone unset

Unset network zone configuration keys

Synopsis

Description: Unset network zone configuration keys

lxc network zone unset [<remote>:]<Zone> <key> [flags]

Options

-p, --property Unset the key as a network zone property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc network zone (page 832) - Manage network zones

lxc operation

List, show and delete background operations

844 of 954

Synopsis

Description: List, show and delete background operations

lxc operation [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc operation delete (page 845) - Delete a background operation (will attempt to cancel)

• lxc operation list (page 846) - List background operations

• lxc operation show (page 846) - Show details on a background operation

lxc operation delete

Delete a background operation (will attempt to cancel)

Synopsis

Description: Delete a background operation (will attempt to cancel)

lxc operation delete [<remote>:]<operation> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

845 of 954

SEE ALSO

• lxc operation (page 844) - List, show and delete background operations

lxc operation list

List background operations

Synopsis

Description: List background operations

lxc operation list [<remote>:] [flags]

Options

--all-projects List operations from all projects
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc operation (page 844) - List, show and delete background operations

lxc operation show

Show details on a background operation

Synopsis

Description: Show details on a background operation

lxc operation show [<remote>:]<operation> [flags]

Examples

lxc operation show 344a79e4-d88a-45bf-9c39-c72c26f6ab8a
Show details on that operation UUID

846 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc operation (page 844) - List, show and delete background operations

lxc pause

Pause instances

Synopsis

Description: Pause instances

lxc pause [<remote>:]<instance> [[<remote>:]<instance>...] [flags]

Options

--all Run against all instances

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc profile

Manage profiles

847 of 954

Synopsis

Description: Manage profiles

lxc profile [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc profile add (page 848) - Add profiles to instances

• lxc profile assign (page 849) - Assign sets of profiles to instances

• lxc profile copy (page 850) - Copy profiles

• lxc profile create (page 850) - Create profiles

• lxc profile delete (page 851) - Delete profiles

• lxc profile device (page 852) - Manage devices

• lxc profile edit (page 856) - Edit profile configurations as YAML

• lxc profile get (page 857) - Get values for profile configuration keys

• lxc profile list (page 857) - List profiles

• lxc profile remove (page 858) - Remove profiles from instances

• lxc profile rename (page 859) - Rename profiles

• lxc profile set (page 859) - Set profile configuration keys

• lxc profile show (page 860) - Show profile configurations

• lxc profile unset (page 860) - Unset profile configuration keys

lxc profile add

Add profiles to instances

848 of 954

Synopsis

Description: Add profiles to instances

lxc profile add [<remote>:]<instance> <profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc profile assign

Assign sets of profiles to instances

Synopsis

Description: Assign sets of profiles to instances

lxc profile assign [<remote>:]<instance> <profiles> [flags]

Examples

lxc profile assign foo default,bar
Set the profiles for "foo" to "default" and "bar".

lxc profile assign foo default
Reset "foo" to only using the "default" profile.

lxc profile assign foo ''
Remove all profile from "foo"

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information

(continues on next page)

849 of 954

(continued from previous page)

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc profile copy

Copy profiles

Synopsis

Description: Copy profiles

lxc profile copy [<remote>:]<profile> [<remote>:]<profile> [flags]

Options

--refresh Update the target profile from the source if it already
exists

--target-project Copy to a project different from the source

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc profile create

Create profiles

Synopsis

Description: Create profiles

850 of 954

lxc profile create [<remote>:]<profile> [flags]

Examples

lxc profile create p1

lxc profile create p1 < config.yaml
Create profile with configuration from config.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc profile delete

Delete profiles

Synopsis

Description: Delete profiles

lxc profile delete [<remote>:]<profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

851 of 954

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc profile device

Manage devices

Synopsis

Description: Manage devices

lxc profile device [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

• lxc profile device add (page 852) - Add instance devices

• lxc profile device get (page 853) - Get values for device configuration keys

• lxc profile device list (page 854) - List instance devices

• lxc profile device remove (page 854) - Remove instance devices

• lxc profile device set (page 855) - Set device configuration keys

• lxc profile device show (page 855) - Show full device configuration

• lxc profile device unset (page 856) - Unset device configuration keys

lxc profile device add

Add instance devices

Synopsis

Description: Add instance devices

lxc profile device add [<remote>:]<profile> <device> <type> [key=value...] [flags]

852 of 954

Examples

lxc profile device add [<remote>:]profile1 <device-name> disk source=/share/c1
path=/opt

Will mount the host's /share/c1 onto /opt in the instance.

lxc profile device add [<remote>:]profile1 <device-name> disk pool=some-pool
source=some-volume path=/opt

Will mount the some-volume volume on some-pool onto /opt in the instance.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile device (page 852) - Manage devices

lxc profile device get

Get values for device configuration keys

Synopsis

Description: Get values for device configuration keys

lxc profile device get [<remote>:]<profile> <device> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

853 of 954

SEE ALSO

• lxc profile device (page 852) - Manage devices

lxc profile device list

List instance devices

Synopsis

Description: List instance devices

lxc profile device list [<remote>:]<profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile device (page 852) - Manage devices

lxc profile device remove

Remove instance devices

Synopsis

Description: Remove instance devices

lxc profile device remove [<remote>:]<profile> <name>... [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

854 of 954

SEE ALSO

• lxc profile device (page 852) - Manage devices

lxc profile device set

Set device configuration keys

Synopsis

Description: Set device configuration keys

For backward compatibility, a single configuration keymay still be set with: lxc profile device
set [:]

lxc profile device set [<remote>:]<profile> <device> <key>=<value>... [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile device (page 852) - Manage devices

lxc profile device show

Show full device configuration

Synopsis

Description: Show full device configuration

lxc profile device show [<remote>:]<profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

855 of 954

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile device (page 852) - Manage devices

lxc profile device unset

Unset device configuration keys

Synopsis

Description: Unset device configuration keys

lxc profile device unset [<remote>:]<profile> <device> <key> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile device (page 852) - Manage devices

lxc profile edit

Edit profile configurations as YAML

Synopsis

Description: Edit profile configurations as YAML

lxc profile edit [<remote>:]<profile> [flags]

Examples

lxc profile edit <profile> < profile.yaml
Update a profile using the content of profile.yaml

856 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc profile get

Get values for profile configuration keys

Synopsis

Description: Get values for profile configuration keys

lxc profile get [<remote>:]<profile> <key> [flags]

Options

-p, --property Get the key as a profile property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc profile list

List profiles

857 of 954

Synopsis

Description: List profiles

The -c option takes a (optionally comma-separated) list of arguments that control which pro-
file attributes to output when displaying in table or csv format.

Default column layout is: ndu

Column shorthand chars: n - Profile Name d - Description u - Used By

lxc profile list [<remote>:] [flags]

Options

--all-projects Display profiles from all projects
-c, --columns Columns (default "ndu")
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc profile remove

Remove profiles from instances

Synopsis

Description: Remove profiles from instances

lxc profile remove [<remote>:]<instance> <profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

858 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc profile rename

Rename profiles

Synopsis

Description: Rename profiles

lxc profile rename [<remote>:]<profile> <new-name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc profile set

Set profile configuration keys

Synopsis

Description: Set profile configuration keys

For backward compatibility, a single configuration key may still be set with: lxc profile set [:]

lxc profile set [<remote>:]<profile> <key>=<value>... [flags]

859 of 954

Options

-p, --property Set the key as a profile property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc profile show

Show profile configurations

Synopsis

Description: Show profile configurations

lxc profile show [<remote>:]<profile> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc profile unset

Unset profile configuration keys

860 of 954

Synopsis

Description: Unset profile configuration keys

lxc profile unset [<remote>:]<profile> <key> [flags]

Options

-p, --property Unset the key as a profile property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc profile (page 847) - Manage profiles

lxc project

Manage projects

Synopsis

Description: Manage projects

lxc project [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

861 of 954

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc project create (page 862) - Create projects

• lxc project delete (page 863) - Delete projects

• lxc project edit (page 863) - Edit project configurations as YAML

• lxc project get (page 864) - Get values for project configuration keys

• lxc project info (page 865) - Get a summary of resource allocations

• lxc project list (page 865) - List projects

• lxc project rename (page 866) - Rename projects

• lxc project set (page 866) - Set project configuration keys

• lxc project show (page 867) - Show project options

• lxc project switch (page 868) - Switch the current project

• lxc project unset (page 868) - Unset project configuration keys

lxc project create

Create projects

Synopsis

Description: Create projects

lxc project create [<remote>:]<project> [flags]

Examples

lxc project create p1

lxc project create p1 < config.yaml
Create a project with configuration from config.yaml

Options

-c, --config Config key/value to apply to the new project
-n, --network Add a NIC device to the default profile connected to the

specified network
-s, --storage Add a storage pool to be used as the root device in the default

profile

862 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project (page 861) - Manage projects

lxc project delete

Delete projects

Synopsis

Description: Delete projects

lxc project delete [<remote>:]<project> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project (page 861) - Manage projects

lxc project edit

Edit project configurations as YAML

Synopsis

Description: Edit project configurations as YAML

lxc project edit [<remote>:]<project> [flags]

863 of 954

Examples

lxc project edit <project> < project.yaml
Update a project using the content of project.yaml

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project (page 861) - Manage projects

lxc project get

Get values for project configuration keys

Synopsis

Description: Get values for project configuration keys

lxc project get [<remote>:]<project> <key> [flags]

Options

-p, --property Get the key as a project property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

864 of 954

SEE ALSO

• lxc project (page 861) - Manage projects

lxc project info

Get a summary of resource allocations

Synopsis

Description: Get a summary of resource allocations

lxc project info [<remote>:]<project> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project (page 861) - Manage projects

lxc project list

List projects

Synopsis

Description: List projects

lxc project list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

865 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project (page 861) - Manage projects

lxc project rename

Rename projects

Synopsis

Description: Rename projects

lxc project rename [<remote>:]<project> <new-name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project (page 861) - Manage projects

lxc project set

Set project configuration keys

Synopsis

Description: Set project configuration keys

For backward compatibility, a single configuration key may still be set with: lxc project set [:]

866 of 954

lxc project set [<remote>:]<project> <key>=<value>... [flags]

Options

-p, --property Set the key as a project property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project (page 861) - Manage projects

lxc project show

Show project options

Synopsis

Description: Show project options

lxc project show [<remote>:]<project> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project (page 861) - Manage projects

867 of 954

lxc project switch

Switch the current project

Synopsis

Description: Switch the current project

lxc project switch [<remote>:]<project> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc project (page 861) - Manage projects

lxc project unset

Unset project configuration keys

Synopsis

Description: Unset project configuration keys

lxc project unset [<remote>:]<project> <key> [flags]

Options

-p, --property Unset the key as a project property

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

868 of 954

SEE ALSO

• lxc project (page 861) - Manage projects

lxc publish

Publish instances as images

Synopsis

Description: Publish instances as images

lxc publish [<remote>:]<instance>[/<snapshot>] [<remote>:] [flags] [key=value...]

Options

--alias New alias to define at target
--compression none Compression algorithm to use (none for uncompressed)
--expire Image expiration date (format: rfc3339)

-f, --force Stop the instance if currently running
--public Make the image public (accessible to unauthenticated

clients as well)
--reuse If the image alias already exists, delete and create a

new one

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc query

Send a raw query to LXD

Synopsis

Description: Send a raw query to LXD

lxc query [<remote>:]<API path> [flags]

869 of 954

Examples

lxc query -X DELETE --wait /1.0/instances/c1
Delete local instance "c1".

Options

-d, --data Input data
--raw Print the raw response

-X, --request Action (default "GET")
--wait Wait for the operation to complete

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc rebuild

Rebuild instances

Synopsis

Description: Wipe the instance root disk and re-initialize. The original image is used to re-
initialize the instance if a different image or –empty is not specified.

lxc rebuild [<remote>:]<image> [<remote>:]<instance> [flags]

Options

--empty Rebuild as an empty instance
-f, --force If an instance is running, stop it and then rebuild it

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help

(continues on next page)

870 of 954

(continued from previous page)

--project Override the source project
-q, --quiet Don't show progress information

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc remote

Manage the list of remote servers

Synopsis

Description: Manage the list of remote servers

lxc remote [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc remote add (page 872) - Add new remote servers

• lxc remote get-default (page 872) - Show the default remote

• lxc remote list (page 873) - List the available remotes

• lxc remote remove (page 873) - Remove remotes

• lxc remote rename (page 874) - Rename remotes

• lxc remote set-url (page 875) - Set the URL for the remote

• lxc remote switch (page 875) - Switch the default remote

871 of 954

lxc remote add

Add new remote servers

Synopsis

Description: Add new remote servers

URL for remote resources must be HTTPS (https://).

Basic authentication can be used when combined with the “simplestreams” proto-
col: lxc remote add some-name https://LOGIN:PASSWORD@example.com/some/path –
protocol=simplestreams

lxc remote add [<remote>] <IP|FQDN|URL|token> [flags]

Options

--accept-certificate Accept certificate
--auth-type Server authentication type (tls or oidc)
--password Remote admin password
--project Project to use for the remote
--protocol Server protocol (lxd or simplestreams)
--public Public image server
--token Remote trust token

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
-q, --quiet Don't show progress information

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc remote (page 871) - Manage the list of remote servers

lxc remote get-default

Show the default remote

Synopsis

Description: Show the default remote

lxc remote get-default [flags]

872 of 954

https://LOGIN:PASSWORD@example.com/some/path

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc remote (page 871) - Manage the list of remote servers

lxc remote list

List the available remotes

Synopsis

Description: List the available remotes

lxc remote list [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc remote (page 871) - Manage the list of remote servers

lxc remote remove

Remove remotes

873 of 954

Synopsis

Description: Remove remotes

lxc remote remove <remote> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc remote (page 871) - Manage the list of remote servers

lxc remote rename

Rename remotes

Synopsis

Description: Rename remotes

lxc remote rename <remote> <new-name> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc remote (page 871) - Manage the list of remote servers

874 of 954

lxc remote set-url

Set the URL for the remote

Synopsis

Description: Set the URL for the remote

lxc remote set-url <remote> <URL> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc remote (page 871) - Manage the list of remote servers

lxc remote switch

Switch the default remote

Synopsis

Description: Switch the default remote

lxc remote switch <remote> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

875 of 954

SEE ALSO

• lxc remote (page 871) - Manage the list of remote servers

lxc rename

Rename instances and snapshots

Synopsis

Description: Rename instances and snapshots

lxc rename [<remote>:]<instance>[/<snapshot>] <instance>[/<snapshot>] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc restart

Restart instances

Synopsis

Description: Restart instances

The opposite of “lxc pause” is “lxc start”.

lxc restart [<remote>:]<instance> [[<remote>:]<instance>...] [flags]

Options

--all Run against all instances
--console[="console"] Immediately attach to the console

-f, --force Force the instance to stop
--timeout Time to wait for the instance to shutdown cleanly

(default -1)

876 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc restore

Restore instances from snapshots

Synopsis

Description: Restore instances from snapshots

If –stateful is passed, then the running state will be restored too.

lxc restore [<remote>:]<instance> <snapshot> [flags]

Examples

lxc snapshot u1 snap0
Create the snapshot.

lxc restore u1 snap0
Restore the snapshot.

Options

--stateful Whether or not to restore the instance's running state from
snapshot (if available)

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

877 of 954

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc snapshot

Create instance snapshots

Synopsis

Description: Create instance snapshots

When –stateful is used, LXD attempts to checkpoint the instance’s running state, including
process memory state, TCP connections, …

lxc snapshot [<remote>:]<instance> [<snapshot name>] [flags]

Examples

lxc snapshot u1 snap0
Create a snapshot of "u1" called "snap0".

lxc snapshot u1 snap0 < config.yaml
Create a snapshot of "u1" called "snap0" with the configuration

from "config.yaml".

Options

--no-expiry Ignore any configured auto-expiry for the instance
--reuse If the snapshot name already exists, delete and create a new

one
--stateful Whether or not to snapshot the instance's running state

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

878 of 954

lxc start

Start instances

Synopsis

Description: Start instances

lxc start [<remote>:]<instance> [[<remote>:]<instance>...] [flags]

Options

--all Run against all instances
--console[="console"] Immediately attach to the console
--stateless Ignore the instance state

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc stop

Stop instances

Synopsis

Description: Stop instances

lxc stop [<remote>:]<instance> [[<remote>:]<instance>...] [flags]

Options

--all Run against all instances
--console[="console"] Immediately attach to the console

-f, --force Force the instance to stop
--stateful Store the instance state
--timeout Time to wait for the instance to shutdown cleanly

(default -1)

879 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc storage

Manage storage pools and volumes

Synopsis

Description: Manage storage pools and volumes

lxc storage [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc storage bucket (page 881) - Manage storage buckets

• lxc storage create (page 891) - Create storage pools

• lxc storage delete (page 892) - Delete storage pools

• lxc storage edit (page 893) - Edit storage pool configurations as YAML

• lxc storage get (page 893) - Get values for storage pool configuration keys

• lxc storage info (page 894) - Show useful information about storage pools

• lxc storage list (page 895) - List available storage pools

880 of 954

• lxc storage set (page 895) - Set storage pool configuration keys

• lxc storage show (page 896) - Show storage pool configurations and resources

• lxc storage unset (page 897) - Unset storage pool configuration keys

• lxc storage volume (page 897) - Manage storage volumes

lxc storage bucket

Manage storage buckets

Synopsis

Description: Manage storage buckets.

lxc storage bucket [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage (page 880) - Manage storage pools and volumes

• lxc storage bucket create (page 881) - Create new custom storage buckets

• lxc storage bucket delete (page 882) - Delete storage buckets

• lxc storage bucket edit (page 883) - Edit storage bucket configurations as YAML

• lxc storage bucket get (page 884) - Get values for storage bucket configuration keys

• lxc storage bucket key (page 884) - Manage storage bucket keys

• lxc storage bucket list (page 889) - List storage buckets

• lxc storage bucket set (page 889) - Set storage bucket configuration keys

• lxc storage bucket show (page 890) - Show storage bucket configurations

• lxc storage bucket unset (page 891) - Unset storage bucket configuration keys

lxc storage bucket create

Create new custom storage buckets

881 of 954

Synopsis

Description: Create new custom storage buckets

lxc storage bucket create [<remote>:]<pool> <bucket> [key=value...] [flags]

Examples

lxc storage bucket create p1 b01
Create a new storage bucket name b01 in storage pool p1

lxc storage bucket create p1 b01 < config.yaml
Create a new storage bucket name b01 in storage pool p1 using the

content of config.yaml

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket (page 881) - Manage storage buckets

lxc storage bucket delete

Delete storage buckets

Synopsis

Description: Delete storage buckets

lxc storage bucket delete [<remote>:]<pool> <bucket> [flags]

Options

--target Cluster member name

882 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket (page 881) - Manage storage buckets

lxc storage bucket edit

Edit storage bucket configurations as YAML

Synopsis

Description: Edit storage bucket configurations as YAML

lxc storage bucket edit [<remote>:]<pool> <bucket> [flags]

Examples

lxc storage bucket edit [<remote>:]<pool> <bucket> < bucket.yaml
Update a storage bucket using the content of bucket.yaml.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

883 of 954

SEE ALSO

• lxc storage bucket (page 881) - Manage storage buckets

lxc storage bucket get

Get values for storage bucket configuration keys

Synopsis

Description: Get values for storage bucket configuration keys

lxc storage bucket get [<remote>:]<pool> <bucket> <key> [flags]

Options

-p, --property Get the key as a storage bucket property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket (page 881) - Manage storage buckets

lxc storage bucket key

Manage storage bucket keys

Synopsis

Description: Manage storage bucket keys.

lxc storage bucket key [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help

(continues on next page)

884 of 954

(continued from previous page)

--project Override the source project
-q, --quiet Don't show progress information

--sub-commands Use with help or --help to view sub-commands
-v, --verbose Show all information messages

--version Print version number

SEE ALSO

• lxc storage bucket (page 881) - Manage storage buckets

• lxc storage bucket key create (page 885) - Create key for a storage bucket

• lxc storage bucket key delete (page 886) - Delete key from a storage bucket

• lxc storage bucket key edit (page 886) - Edit storage bucket key as YAML

• lxc storage bucket key list (page 887) - List storage bucket keys

• lxc storage bucket key show (page 888) - Show storage bucket key configurations

lxc storage bucket key create

Create key for a storage bucket

Synopsis

Description: Create key for a storage bucket

lxc storage bucket key create [<remote>:]<pool> <bucket> <key> [flags]

Examples

lxc storage bucket key create p1 b01 k1
Create a key called k1 for the bucket b01 in the pool p1.

lxc storage bucket key create p1 b01 k1 < config.yaml
Create a key called k1 for the bucket b01 in the pool p1 using the

content of config.yaml.

Options

--access-key Access key (auto-generated if empty)
--role Role (admin or read-only) (default "read-only")
--secret-key Secret key (auto-generated if empty)
--target Cluster member name

885 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket key (page 884) - Manage storage bucket keys

lxc storage bucket key delete

Delete key from a storage bucket

Synopsis

Description: Delete key from a storage bucket

lxc storage bucket key delete [<remote>:]<pool> <bucket> <key> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket key (page 884) - Manage storage bucket keys

lxc storage bucket key edit

Edit storage bucket key as YAML

886 of 954

Synopsis

Description: Edit storage bucket key as YAML

lxc storage bucket key edit [<remote>:]<pool> <bucket> <key> [flags]

Examples

lxc storage bucket edit [<remote>:]<pool> <bucket> <key> < key.yaml
Update a storage bucket key using the content of key.yaml.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket key (page 884) - Manage storage bucket keys

lxc storage bucket key list

List storage bucket keys

Synopsis

Description: List storage bucket keys

lxc storage bucket key list [<remote>:]<pool> <bucket> [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")
--target Cluster member name

887 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket key (page 884) - Manage storage bucket keys

lxc storage bucket key show

Show storage bucket key configurations

Synopsis

Description: Show storage bucket key configurations

lxc storage bucket key show [<remote>:]<pool> <bucket> <key> [flags]

Examples

lxc storage bucket key show default data foo
Will show the properties of a bucket key called "foo" for a bucket called

"data" in the "default" pool.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

888 of 954

SEE ALSO

• lxc storage bucket key (page 884) - Manage storage bucket keys

lxc storage bucket list

List storage buckets

Synopsis

Description: List storage buckets

lxc storage bucket list [<remote>:]<pool> [flags]

Options

--all-projects Display storage pool buckets from all projects
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket (page 881) - Manage storage buckets

lxc storage bucket set

Set storage bucket configuration keys

Synopsis

Description: Set storage bucket configuration keys

Forbackward compatibility, a single configurationkeymay still be setwith: lxc storagebucket
set [:]

lxc storage bucket set [<remote>:]<pool> <bucket> <key>=<value>... [flags]

889 of 954

Options

-p, --property Set the key as a storage bucket property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket (page 881) - Manage storage buckets

lxc storage bucket show

Show storage bucket configurations

Synopsis

Description: Show storage bucket configurations

lxc storage bucket show [<remote>:]<pool> <bucket> [flags]

Examples

lxc storage bucket show default data
Will show the properties of a bucket called "data" in the "default" pool.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

890 of 954

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket (page 881) - Manage storage buckets

lxc storage bucket unset

Unset storage bucket configuration keys

Synopsis

Description: Unset storage bucket configuration keys

lxc storage bucket unset [<remote>:]<pool> <bucket> <key> [flags]

Options

-p, --property Unset the key as a storage bucket property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage bucket (page 881) - Manage storage buckets

lxc storage create

Create storage pools

Synopsis

Description: Create storage pools

lxc storage create [<remote>:]<pool> <driver> [key=value...] [flags]

891 of 954

Examples

lxc storage create s1 dir

lxc storage create s1 dir < config.yaml
Create a storage pool using the content of config.yaml.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage (page 880) - Manage storage pools and volumes

lxc storage delete

Delete storage pools

Synopsis

Description: Delete storage pools

lxc storage delete [<remote>:]<pool> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

892 of 954

SEE ALSO

• lxc storage (page 880) - Manage storage pools and volumes

lxc storage edit

Edit storage pool configurations as YAML

Synopsis

Description: Edit storage pool configurations as YAML

lxc storage edit [<remote>:]<pool> [flags]

Examples

lxc storage edit [<remote>:]<pool> < pool.yaml
Update a storage pool using the content of pool.yaml.

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage (page 880) - Manage storage pools and volumes

lxc storage get

Get values for storage pool configuration keys

Synopsis

Description: Get values for storage pool configuration keys

lxc storage get [<remote>:]<pool> <key> [flags]

Options

-p, --property Get the key as a storage property
--target Cluster member name

893 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage (page 880) - Manage storage pools and volumes

lxc storage info

Show useful information about storage pools

Synopsis

Description: Show useful information about storage pools

lxc storage info [<remote>:]<pool> [flags]

Options

--bytes Show the used and free space in bytes
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage (page 880) - Manage storage pools and volumes

894 of 954

lxc storage list

List available storage pools

Synopsis

Description: List available storage pools

lxc storage list [<remote>:] [flags]

Options

-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage (page 880) - Manage storage pools and volumes

lxc storage set

Set storage pool configuration keys

Synopsis

Description: Set storage pool configuration keys

For backward compatibility, a single configuration keymay still be set with: lxc storage set [:]

lxc storage set [<remote>:]<pool> <key> <value> [flags]

Options

-p, --property Set the key as a storage property
--target Cluster member name

895 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage (page 880) - Manage storage pools and volumes

lxc storage show

Show storage pool configurations and resources

Synopsis

Description: Show storage pool configurations and resources

lxc storage show [<remote>:]<pool> [flags]

Options

--resources Show the resources available to the storage pool
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage (page 880) - Manage storage pools and volumes

896 of 954

lxc storage unset

Unset storage pool configuration keys

Synopsis

Description: Unset storage pool configuration keys

lxc storage unset [<remote>:]<pool> <key> [flags]

Options

-p, --property Unset the key as a storage property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage (page 880) - Manage storage pools and volumes

lxc storage volume

Manage storage volumes

Synopsis

Description: Manage storage volumes

Unless specified through a prefix, all volume operations affect “custom” (user created) vol-
umes.

lxc storage volume [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

897 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage (page 880) - Manage storage pools and volumes

• lxc storage volume attach (page 898) - Attach new storage volumes to instances

• lxc storage volume attach-profile (page 899) - Attach new storage volumes to profiles

• lxc storage volume copy (page 900) - Copy storage volumes

• lxc storage volume create (page 900) - Create new custom storage volumes

• lxc storage volume delete (page 901) - Delete storage volumes

• lxc storage volume detach (page 902) - Detach storage volumes from instances

• lxc storage volume detach-profile (page 902) - Detach storage volumes from profiles

• lxc storage volume edit (page 903) - Edit storage volume configurations as YAML

• lxc storage volume export (page 904) - Export custom storage volume

• lxc storage volume get (page 904) - Get values for storage volume configuration keys

• lxc storage volume import (page 905) - Import custom storage volumes

• lxc storage volume info (page 906) - Show storage volume state information

• lxc storage volume list (page 907) - List storage volumes

• lxc storage volume move (page 908) - Move storage volumes between pools

• lxc storage volume rename (page 908) - Rename storage volumes and storage volume
snapshots

• lxc storage volume restore (page 909) - Restore storage volume snapshots

• lxc storage volume set (page 910) - Set storage volume configuration keys

• lxc storage volume show (page 911) - Show storage volume configurations

• lxc storage volume snapshot (page 912) - Snapshot storage volumes

• lxc storage volume unset (page 913) - Unset storage volume configuration keys

lxc storage volume attach

Attach new storage volumes to instances

Synopsis

Description: Attach new storage volumes to instances

must be one of “custom” or “virtual-machine”

898 of 954

lxc storage volume attach [<remote>:]<pool> [<type>/]<volume>[/<snapshot>]
<instance> [<device name>] [<path>] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume attach-profile

Attach new storage volumes to profiles

Synopsis

Description: Attach new storage volumes to profiles

must be one of “custom” or “virtual-machine”

lxc storage volume attach-profile [<remote:>]<pool> [<type>/]<volume>[/<snapshot>]
<profile> [<device name>] [<path>] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

899 of 954

lxc storage volume copy

Copy storage volumes

Synopsis

Description: Copy storage volumes

lxc storage volume copy [<remote>:]<pool>/<volume>[/<snapshot>] [<remote>:]<pool>/
<volume> [flags]

Options

--destination-target Destination cluster member name
--mode Transfer mode. One of pull (default), push or relay.

(default "pull")
--refresh Refresh and update the existing storage volume copies
--target Cluster member name
--target-project Copy to a project different from the source
--volume-only Copy the volume without its snapshots

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume create

Create new custom storage volumes

Synopsis

Description: Create new custom storage volumes

lxc storage volume create [<remote>:]<pool> <volume> [key=value...] [flags]

900 of 954

Examples

lxc storage volume create p1 v1

lxc storage volume create p1 v1 < config.yaml
Create storage volume v1 for pool p1 with configuration from config.

yaml.

Options

--target Cluster member name
--type Content type, block or filesystem (default "filesystem")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume delete

Delete storage volumes

Synopsis

Description: Delete storage volumes

lxc storage volume delete [<remote>:]<pool> <volume>[/<snapshot>] [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

901 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume detach

Detach storage volumes from instances

Synopsis

Description: Detach storage volumes from instances

lxc storage volume detach [<remote>:]<pool> [<type>/]<volume>[/<snapshot>]
<instance> [<device name>] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume detach-profile

Detach storage volumes from profiles

Synopsis

Description: Detach storage volumes from profiles

lxc storage volume detach-profile [<remote:>]<pool> [<type>/]<volume>[/<snapshot>]
<profile> [<device name>] [flags]

902 of 954

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume edit

Edit storage volume configurations as YAML

Synopsis

Description: Edit storage volume configurations as YAML

lxc storage volume edit [<remote>:]<pool> [<type>/]<volume> [flags]

Examples

Provide the type of the storage volume if it is not custom.
Supported types are custom, image, container and virtual-machine.

lxc storage volume edit [<remote>:]<pool> [<type>/]<volume> < volume.yaml
Update a storage volume using the content of pool.yaml.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

903 of 954

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume export

Export custom storage volume

Synopsis

Description: Export custom storage volume

lxc storage volume export [<remote>:]<pool> <volume> [<path>] [flags]

Options

--compression Define a compression algorithm: for backup or none
--export-version Use a different metadata format version than the

latest one supported by the server (to support imports on older LXD versions)
--optimized-storage Use storage driver optimized format (can only be

restored on a similar pool)
--target Cluster member name
--volume-only Export the volume without its snapshots

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume get

Get values for storage volume configuration keys

Synopsis

Description: Get values for storage volume configuration keys

lxc storage volume get [<remote>:]<pool> [<type>/]<volume>[/<snapshot>] <key>
[flags]

904 of 954

Examples

Provide the type of the storage volume if it is not custom.
Supported types are custom, image, container and virtual-machine.

Add the name of the snapshot if type is one of custom, container or virtual-
machine.

lxc storage volume get default data size
Returns the size of a custom volume "data" in pool "default".

lxc storage volume get default virtual-machine/data snapshots.expiry
Returns the snapshot expiration period for a virtual machine "data" in pool

"default".

Options

-p, --property Get the key as a storage volume property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume import

Import custom storage volumes

Synopsis

Description: Import backups of custom volumes including their snapshots.

lxc storage volume import [<remote>:]<pool> <backup file> [<volume name>] [flags]

905 of 954

Examples

lxc storage volume import default backup0.tar.gz
Create a new custom volume using backup0.tar.gz as the source.

Options

--target Cluster member name
--type Import type, backup or iso (default "backup")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume info

Show storage volume state information

Synopsis

Description: Show storage volume state information

lxc storage volume info [<remote>:]<pool> [<type>/]<volume> [flags]

Examples

Provide the type of the storage volume if it is not custom.
Supported types are custom, container and virtual-machine.

lxc storage volume info default data
Returns state information for a custom volume "data" in pool "default".

lxc storage volume info default virtual-machine/data
Returns state information for a virtual machine "data" in pool "default".

906 of 954

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume list

List storage volumes

Synopsis

Description: List storage volumes

The -c option takes a (optionally comma-separated) list of arguments that control which im-
age attributes to output when displaying in table or csv format.

Column shorthand chars: p - Storage pool name c - Content type (filesystem or block) d -
Description e - Project name L - Location of the instance (e.g. its cluster member) n - Name
t - Type of volume (custom, image, container or virtual-machine) u - Number of references
(used by) U - Current disk usage

lxc storage volume list [<remote>:][<pool>] [<filter>...] [flags]

Options

--all-projects All projects
-c, --columns Columns (default "petndcuL")
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

(continues on next page)

907 of 954

(continued from previous page)

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume move

Move storage volumes between pools

Synopsis

Description: Move storage volumes between pools

lxc storage volume move [<remote>:]<pool>/<volume> [<remote>:]<pool>/<volume>
[flags]

Options

--destination-target Destination cluster member name
--mode Transfer mode, one of pull (default), push or relay

(default "pull")
--target Cluster member name
--target-project Move to a project different from the source

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume rename

Rename storage volumes and storage volume snapshots

908 of 954

Synopsis

Description: Rename storage volumes

lxc storage volume rename [<remote>:]<pool> <old name>[/<old snapshot name>] <new
name>[/<new snapshot name>] [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume restore

Restore storage volume snapshots

Synopsis

Description: Restore storage volume snapshots

lxc storage volume restore [<remote>:]<pool> <volume> <snapshot> [flags]

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

909 of 954

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume set

Set storage volume configuration keys

Synopsis

Description: Set storage volume configuration keys

For backward compatibility, a single configuration key may still be set with: lxc storage vol-
ume set [:] [/]

lxc storage volume set [<remote>:]<pool> [<type>/]<volume> <key>=<value>...
[flags]

Examples

Provide the type of the storage volume if it is not custom.
Supported types are custom, image, container and virtual-machine.

lxc storage volume set default data size=1GiB
Sets the size of a custom volume "data" in pool "default" to 1 GiB.

lxc storage volume set default virtual-machine/data snapshots.expiry=7d
Sets the snapshot expiration period for a virtual machine "data" in pool

"default" to seven days.

Options

-p, --property Set the key as a storage volume property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

910 of 954

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume show

Show storage volume configurations

Synopsis

Description: Show storage volume configurations

lxc storage volume show [<remote>:]<pool> [<type>/]<volume>[/<snapshot>] [flags]

Examples

Provide the type of the storage volume if it is not custom.
Supported types are custom, image, container and virtual-machine.

Add the name of the snapshot if type is one of custom, container or virtual-
machine.

lxc storage volume show default data
Will show the properties of a custom volume called "data" in the "default"

pool.

lxc storage volume show default container/data
Will show the properties of the filesystem for a container called "data" in

the "default" pool.

lxc storage volume show default virtual-machine/data/snap0
Will show the properties of snapshot "snap0" for a virtual machine called

"data" in the "default" pool.

Options

--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

911 of 954

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc storage volume snapshot

Snapshot storage volumes

Synopsis

Description: Snapshot storage volumes

lxc storage volume snapshot [<remote>:]<pool> <volume> [<snapshot>] [flags]

Examples

lxc storage volume snapshot default v1 snap0
Create a snapshot of "v1" in pool "default" called "snap0".

lxc storage volume snapshot default v1 snap0 < config.yaml
Create a snapshot of "v1" in pool "default" called "snap0" with the

configuration from "config.yaml".

Options

--no-expiry Ignore any configured auto-expiry for the storage volume
--reuse If the snapshot name already exists, delete and create a new

one
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

912 of 954

lxc storage volume unset

Unset storage volume configuration keys

Synopsis

Description: Unset storage volume configuration keys

lxc storage volume unset [<remote>:]<pool> [<type>/]<volume> <key> [flags]

Examples

Provide the type of the storage volume if it is not custom.
Supported types are custom, image, container and virtual-machine.

lxc storage volume unset default data size
Removes the size/quota of a custom volume "data" in pool "default".

lxc storage volume unset default virtual-machine/data snapshots.expiry
Removes the snapshot expiration period for a virtual machine "data" in pool

"default".

Options

-p, --property Unset the key as a storage volume property
--target Cluster member name

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc storage volume (page 897) - Manage storage volumes

lxc version

Show local and remote versions

913 of 954

Synopsis

Description: Show local and remote versions

lxc version [<remote>:] [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

lxc warning

Manage warnings

Synopsis

Description: Manage warnings

lxc warning [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc (page 690) - Command line client for LXD

• lxc warning acknowledge (page 915) - Acknowledge warning

• lxc warning delete (page 915) - Delete warning

• lxc warning list (page 916) - List warnings

914 of 954

• lxc warning show (page 917) - Show warning

lxc warning acknowledge

Acknowledge warning

Synopsis

Description: Acknowledge warning

lxc warning acknowledge [<remote>:]<warning-uuid> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc warning (page 914) - Manage warnings

lxc warning delete

Delete warning

Synopsis

Description: Delete warning

lxc warning delete [<remote>:][<warning-uuid>] [flags]

Options

-a, --all Delete all warnings

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

(continues on next page)

915 of 954

(continued from previous page)

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc warning (page 914) - Manage warnings

lxc warning list

List warnings

Synopsis

Description: List warnings

The -c option takes a (optionally comma-separated) list of arguments that control which
warning attributes to output when displaying in table or csv format.

Default column layout is: utSscpLl

Column shorthand chars:

c - Count
l - Last seen
L - Location
f - First seen
p - Project
s - Severity
S - Status
u - UUID
t - Type

lxc warning list [<remote>:] [flags]

Options

-a, --all List all warnings
-c, --columns Columns (default "utSscpLl")
-f, --format Format (csv|json|table|yaml|compact) (default "table")

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

916 of 954

SEE ALSO

• lxc warning (page 914) - Manage warnings

lxc warning show

Show warning

Synopsis

Description: Show warning

lxc warning show [<remote>:]<warning-uuid> [flags]

Options inherited from parent commands

--debug Show all debug messages
--force-local Force using the local unix socket

-h, --help Print help
--project Override the source project

-q, --quiet Don't show progress information
--sub-commands Use with help or --help to view sub-commands

-v, --verbose Show all information messages
--version Print version number

SEE ALSO

• lxc warning (page 914) - Manage warnings

4.7. Implementation details
You don’t need to be aware of the internal implementation details to use LXD. However, ad-
vanced users might be interested in knowing what happens internally.

4.7.1. Internals
Environment variables

The LXD client and daemon respect some environment variables to adapt to the user’s envi-
ronment and to turn some advanced features on and off.

Note

These environment variables are not available if you use the LXD snap.

917 of 954

Common

Name Description

LXD_DIR The LXD data directory
PATH List of paths to look into when resolving binaries
http_proxy Proxy server URL for HTTP
https_proxy Proxy server URL for HTTPS
no_proxy List of domains, IP addresses or CIDR ranges that don’t require the use of a

proxy

Client environment variable

Name Description

EDITOR What text editor to use
VISUAL What text editor to use (if EDITOR isn’t set)
LXD_CONF Path to the LXC configuration directory
LXD_GLOBAL_CONF Path to the global LXC configuration directory
LXC_REMOTE Name of the remote to use (overrides configured default remote)

Server environment variable

Name Description

LXD_EXEC_PATHFull path to the LXD binary (used when forking subcommands)
LXD_LXC_TEMPLATE_CONFIGPath to the LXC template configuration directory
LXD_SECURITY_APPARMORIf set to false, forces AppArmor off
LXD_UNPRIVILEGED_ONLYIf set to true, enforces that only unprivileged containers can be created.

Note that any privileged containers that have been created before setting
LXD_UNPRIVILEGED_ONLY will continue to be privileged. To use this option
effectively it should be set when the LXD daemon is first set up.

LXD_OVMF_PATHPath to an OVMF build including OVMF_CODE.fd and OVMF_VARS.ms.fd (depre-
cated, please use LXD_QEMU_FW_PATH instead)

LXD_QEMU_FW_PATHPath (or : separated list of paths) to firmware (OVMF, SeaBIOS) to be used by
QEMU

LXD_IDMAPPED_MOUNTS_DISABLEDisable idmappedmounts support (usefulwhen testing traditional UID shifting)
LXD_DEVMONITOR_DIRPath to be monitored by the device monitor. This is primarily for testing.
LXD_FSMONITOR_DRIVERDriver to be used for file systemmonitoring. This is primarily for testing.

UEFI variables for VMs

UEFI (Unified Extensible Firmware Interface) variables store and represent configuration set-
tings of the UEFI firmware. See UEFI277 for more information.

You can see a list of UEFI variables on your system by running ls -l /sys/firmware/efi/
efivars/. Usually, you don’t need to touch these variables, but in specific cases they can be
useful to debug UEFI, SHIM, or boot loader issues in virtual machines.

277 https://en.wikipedia.org/wiki/UEFI

918 of 954

https://en.wikipedia.org/wiki/UEFI

To configure UEFI variables for a VM, use the lxc config uefi (page 756) command or the
/1.0/instances/<instance_name>/uefi-vars endpoint.

For example, to set a variable to a value (hexadecimal):

CLI

API

lxc config uefi set <instance_name> <variable_name>-<GUID>=<value>

lxc query --request PUT /1.0/instances/<instance_name>/uefi-vars --data '{
"variables": {

"<variable_name>-<GUID>": {
"attr": 3,
"data": "<value>"

},
}

}'

See PUT /1.0/instances/{name}/uefi-vars for more information.

To display the variables that are set for a specific VM:

CLI

API

lxc config uefi show <instance_name>

lxc query --request GET /1.0/instances/<instance_name>/uefi-vars

See GET /1.0/instances/{name}/uefi-vars for more information.

Example

You can use UEFI variables to disable secure boot, for example.

Important

Use this method only for debugging purposes. LXD provides the security.secureboot
(page 437) option to control the secure boot behavior.

The following command checks the secure boot state:

lxc config uefi get v1 SecureBootEnable-f0a30bc7-af08-4556-99c4-001009c93a44

A value of 01 indicates that secure boot is active. You can then turn it off with the following
command:

lxc config uefi set v1 SecureBootEnable-f0a30bc7-af08-4556-99c4-001009c93a44=00

919 of 954

Daemon behavior

This specification covers some of the LXD daemon (page 345)’s behavior.

Startup

On every start, LXD checks that its directory structure exists. If it doesn’t, it creates the
required directories, generates a key pair and initializes the database.

Once the daemon is ready for work, LXD scans the instances table for any instance for
which the stored power state differs from the current one. If an instance’s power state was
recorded as running and the instance isn’t running, LXD starts it.

Signal handling

SIGINT, SIGQUIT, SIGTERM

For those signals, LXD assumes that it’s being temporarily stopped and will be restarted at a
later time to continue handling the instances.

The instances will keep running and LXD will close all connections and exit cleanly.

SIGPWR

Indicates to LXD that the host is going down.

LXDwill attempt a clean shutdownof all the instances. After 30 seconds, it kills any remaining
instance.

The instance power_state in the instances table is kept as it was so that LXD can restore the
instances as they were after the host is done rebooting.

SIGUSR1

Write a memory profile dump to the file specified with --memprofile.

System call interception

LXD supports intercepting some specific system calls fromunprivileged containers. If they’re
considered to be safe, it executes them with elevated privileges on the host.

Doing so comes with a performance impact for the syscall in question and will cause some
work for LXD to evaluate the request and if allowed, process it with elevated privileges.

Enabling of specific system call interception options is done on a per-container basis through
container configuration options.

Available system calls

mknod / mknodat

The mknod and mknodat system calls can be used to create a variety of special files.

Most commonly inside containers, they may be called to create block or character devices.
Creating such devices isn’t allowed in unprivileged containers as this is a very easy way to
escalate privileges by allowing direct write access to resources like disks or memory.

920 of 954

But there are files which are safe to create. For those, intercepting this syscall may unblock
some specific workloads and allow them to run inside an unprivileged containers.

The devices which are currently allowed are:

• OverlayFS whiteout (char 0:0)

• /dev/console (char 5:1)

• /dev/full (char 1:7)

• /dev/null (char 1:3)

• /dev/random (char 1:8)

• /dev/tty (char 5:0)

• /dev/urandom (char 1:9)

• /dev/zero (char 1:5)

All file typesother than characterdevices are currently sent to thekernel as usual, soenabling
this feature doesn’t change their behavior at all.

This can be enabled by setting security.syscalls.intercept.mknod (page 439) to true.

bpf

The bpf system call is used to manage eBPF programs in the kernel. Those can be attached
to a variety of kernel subsystems.

In general, loading of eBPF programs that are not trusted can be problematic as it can facili-
tate timing based attacks.

LXD’s eBPF support is currently restricted to programs managing devices cgroup entries. To
enable it, you need to set both security.syscalls.intercept.bpf (page 439) and security.
syscalls.intercept.bpf.devices (page 439) to true.

mount

The mount system call allows for mounting both physical and virtual file systems. By default,
unprivileged containers are restricted by the kernel to just a handful of virtual and network
file systems.

To allow mounting physical file systems, system call interception can be used. LXD offers a
variety of options to handle this.

security.syscalls.intercept.mount (page 440) is used to control the entire feature and
needs to be turned on for any of the other options to work.

security.syscalls.intercept.mount.allowed (page 440) allows specifying a list of file sys-
tems which can be directly mounted in the container. This is the most dangerous option as it
allows the user to feed data that is not trusted at the kernel. This can easily be used to crash
the host system or to attack it. It should only ever be used in trusted environments.

security.syscalls.intercept.mount.shift (page 440) can be set on top of that so the re-
sulting mount is shifted to the UID/GID map used by the container. This is needed to avoid
everything showing up as nobody/nogroup inside of unprivileged containers.

921 of 954

The much safer alternative to those is security.syscalls.intercept.mount.fuse (page 440)
which can be set to pairs of file-system name and FUSE handler. When this is set, an attempt
at mounting one of the configured file systems will be transparently redirected to instead
calling the FUSE equivalent of that file system.

As this is all running as the caller, it avoids the entire issue around the kernel attack surface
and so is generally considered to be safe, though you should keep in mind that any kind of
system call interception makes for an easy way to overload the host system.

sched_setscheduler

The sched_setscheduler system call is used to manage process priority.

Granting this may allow a user to significantly increase the priority of their processes, poten-
tially taking a lot of system resources.

It also allows access to schedulers like SCHED_FIFO which are generally considered to be
flawed and can significantly impact overall system stability. This is why under normal con-
ditions, only the real root user (or global CAP_SYS_NICE) would allow its use.

setxattr

The setxattr system call is used to set extended attributes on files.

The attributes which are handled by this currently are:

• trusted.overlay.opaque (OverlayFS directory whiteout)

Note that because the mediation must happen on a number of character strings, there is no
easy way at present to only intercept the few attributes we care about. As we only allow
the attributes above, this may result in breakage for other attributes that would have been
previously allowed by the kernel.

This can be enabled by setting security.syscalls.intercept.setxattr (page 441) to true.

sysinfo

The sysinfo system call is used by some distributions instead of /proc/ entries to report on
resource usage.

In order to provide resource usage information specific to the container, rather than the
whole system, this syscall interception mode uses cgroup-based resource usage information
to fill in the system call response.

Idmaps for user namespace

LXD runs safe containers. This is achievedmostly through the use of user namespaces which
make it possible to run containers unprivileged, greatly limiting the attack surface.

User namespaces work by mapping a set of UIDs and GIDs on the host to a set of UIDs and
GIDs in the container.

For example, we can define that the host UIDs and GIDs from 100000 to 165535may be used
by LXD and should be mapped to UID/GID 0 through 65535 in the container.

As a result a process running as UID 0 in the container will actually be running as UID 100000.

922 of 954

Allocations should always be of at least 65536 UIDs and GIDs to cover the POSIX range in-
cluding root (0) and nobody (65534).

Kernel support

User namespaces require a kernel >= 3.12, LXDwill start even on older kernels but will refuse
to start containers.

Allowed ranges

If you installed LXD via snap

If you installed LXD via the Snap Store (page 28) (the recommended method), this section
does not apply.

The lxd daemon runs as root inside the snap environment and does not use the newuidmap
or newgidmap utilities. Thus, the allowed ID ranges in /etc/subuid and /etc/subgid are
ignored, and you don’t need to set them.

On most hosts, LXD will check /etc/subuid and /etc/subgid for allocations for the root user
and onfirst start, set the default profile to use the first 65536UIDs andGIDs from that range.

If the range is shorter than 65536 (which includes no range at all), then LXDwill fail to create
or start any container until this is corrected.

If some but not all of /etc/subuid, /etc/subgid, newuidmap (path lookup) and newgidmap (path
lookup) can be found on the system, LXD will fail the startup of any container until this is
corrected as this shows a broken shadow setup.

If none of those files can be found, then LXD will assume a 1000000000 UID/GID range start-
ing at a base UID/GID of 1000000.

This is the most common case and is usually the recommended setup when not running on
a system which also hosts fully unprivileged containers (where the container runtime itself
runs as a user).

Varying ranges between hosts

The sourcemap is sentwhenmoving containers between hosts so that they can be remapped
on the receiving host.

Different idmaps per container

LXD supports using different idmaps per container, to further isolate containers from each
other. This is controlledwith twoper-container configuration keys, security.idmap.isolated
(page 436) and security.idmap.size (page 436).

Containers with security.idmap.isolated will have a unique ID range computed for them
among the other containers with security.idmap.isolated set (if none is available, setting
this key will simply fail).

Containers with security.idmap.size set will have their ID range set to this size. Isolated
containers without this property set default to a ID range of size 65536; this allows for POSIX
compliance and a nobody user inside the container.

923 of 954

To select a specificmap, the security.idmap.base keywill let you override the auto-detection
mechanism and tell LXD what host UID/GID you want to use as the base for the container.

These properties require a container reboot to take effect.

Custom idmaps

LXD also supports customizing bits of the idmap, e.g. to allow users to bind mount parts of
the host’s file system into a container without the need for any UID-shifting file system. The
per-container configuration key for this is raw.idmap (page 431), and looks like:

both 1000 1000
uid 50-60 500-510
gid 100000-110000 10000-20000

The first line configures both the UID and GID 1000 on the host to map to UID 1000 inside
the container (this can be used for example to bind mount a user’s home directory into a
container).

The second and third lines map only the UID or GID ranges into the container, respectively.
The second entry per line is the source ID, i.e. the ID on the host, and the third entry is the
range inside the container. These ranges must be the same size.

This property requires a container reboot to take effect.

For non-snap installations of LXD, youmight need to add an entry for the root user into /etc/
subid and/or /etc/subgid so the container is allowed to make use of it. See: Allowed ranges
(page 923).

OVN implementation

Open Virtual Networks (OVN) is an open source Software Defined Network (SDN) solution.
OVN is designed to be incredibly flexible. This flexibility comes at the cost of complexity.
OVN is not prescriptive about how it should be used.

For LXD, the best way to think of OVN is as a toolkit. We need to translate networking con-
cepts in LXD to their OVN analogue and instruct OVN directly, at a low level, what to do.

This document outlines LXD’s approach to OVN in a basic setup. It does not yet cover load-
balancers, peering, forwards, zones, or ACLs.

For more detailed documentation on OVN itself, please see:

• Overview of OVN and SDNs278.

• OVN architectural overview279.

• OVN northbound database schema documentation280.

• OVN southbound database schema documentation281.
278 https://ubuntu.com/blog/data-centre-networking-what-is-ovn
279 https://manpages.ubuntu.com/manpages/noble/man7/ovn-architecture.7.html
280 https://manpages.ubuntu.com/manpages/noble/en/man5/ovn-nb.5.html
281 https://manpages.ubuntu.com/manpages/noble/en/man5/ovn-sb.5.html

924 of 954

https://ubuntu.com/blog/data-centre-networking-what-is-ovn
https://manpages.ubuntu.com/manpages/noble/man7/ovn-architecture.7.html
https://manpages.ubuntu.com/manpages/noble/en/man5/ovn-nb.5.html
https://manpages.ubuntu.com/manpages/noble/en/man5/ovn-sb.5.html

OVN concepts

This section outlines the OVN concepts that we use in LXD. These are usually represented in
tables in the OVN northbound database.

Chassis

A chassis is where traffic physically ingresses into or egresses out of the virtual network. In
LXD, there will usually be one chassis per cluster member. If LXD is configured to use OVN
networking, then all members can be used as OVN chassis.

Note

If any cluster members have the role ovn-chassis, only those members are represented
as chassis in the chassis group table (see below). If no members have the role, all cluster
members are added to the chassis group.

Open vSwitch (OVS) Bridge

OVS bridges are used to connect virtual networks to physical ones and vice-versa. If the LXD
daemon invokes OVS APIs, that means changes are being applied on the same host machine.

For each LXD cluster member there are two OVS bridges:

• The provider bridge. This is used when connecting the uplink network on the host to
the external switch inside each OVN network.

• The integration bridge. This is used when connecting instances to the internal switch
inside each OVN network.

Chassis group

A chassis group is an indirection between physical chassis and the virtual networks that use
them. Each LXD OVN network has one chassis group. This allows us to, for example, set
chassis priority on a per-network basis so that not all ingress/egress is happening on a single
cluster member.

OVN underlay

The OVN underlay is the means by which networks are virtualized across cluster members. It
is a Geneve tunnel which creates a layer 2 overlay network across layer 3 infrastructure. The
OVN underlay is configured and managed by OVN.

Logical router

A logical router is a virtualized router. There is one per LXDOVN network. This handles layer
3 networking and additionally has associated NAT rules and security policies.

925 of 954

Logical switch

Logical routers cannot be directly connected to OVS bridges; for this, we use a logical switch.
There are two logical switches per LXD OVN network:

• Theexternal switch, which connects via logical switchport to aport on the logical router
and to the provider OVS switch.

• The internal switch, which connects via logical switch port to a port on the logical router
and to the integration bridge. This switch contains DHCP and IP allocation configura-
tion.

Logical switch/router ports

When you create a logical router or switch inOVN, it doesn’t initially have any ports. You need
to create ports and then link them. For example, the internal logical switch and the logical
router for a LXD OVN network are connected by:

1. Adding a logical router port to the logical router.

2. Adding a logical switch port to the internal logical switch.

3. Configuring the internal logical switch port as a router port and setting the logical
router name.

Some configuration is applied directly at port level. For example, in a LXDOVNnetwork, IPv6
router advertisement settings are applied on the logical router port for the internal switch.
This is by design. It allows OVN to push configuration down to the port level so that packets
are handled as quickly as possible.

Port groups

When a LXD OVN network is created, a port group will be created that is specific to that
network. When instances are connected to the network, logical switch ports are created for
them on the internal switch. These logical switch ports are added to the port group for the
network. When a port group is created or updated in the OVN northbound database, the
address set table is automatically populated. Address sets are used for managing access
control lists (ACLs). By creating and maintaining the port group, we can easily select the
whole network when managing ACLs.

OVN Uplink

An OVN network can specify an uplink network. That uplink network must be a managed
network and be of type physical or bridge. From these managed network definitions LXD
ascertains a parent interface to use for the uplink connectivity.

For managed bridge networks the interface is the name of the network itself.

Formanaged physical networks it is the per-clustermember value of the parent setting. The
parent interface itself can have one of three types:

• Linux native bridge.

• OVS Bridge.

• Physical interface (or bond or vlan).

926 of 954

It is important to note that a physical managed network’s parent interface can be any of
these types, and that for a managed bridge network the parent interface can be either types
of bridges.

Bridge (OVS)

A user can separately configure a managed bridge network with the openvswitch bridge.
driver. AnOVN network can be createdwith network set to the name of themanaged bridge
network. In this case LXD configures a bridgemappingon theOVSbridge to connect theOVN
network:

Fig. 3: OVN uplink OVS bridge

Physical

An OVN network can be created with network set to a physical network, where the physical
network is essentially a database entry in LXD that tells it how to interact with an actual
parent network device. In this case, an OVS bridge is created automatically. A bridge port
connects the OVS bridge to the parent. A bridge mapping is used (as above) to connect the
OVS bridge to the OVN network.

Note

When using a physical network as an uplink for OVN, any IP addresses on the parent inter-
face will become defunct. The parent network must not have any assigned IP addresses.

Bridge (native)

A native Linux bridge can be used. In this case, we perform the same steps as in the physical
network and additionally configure a veth pair. The veth pair is used so that the bridge can
still be used for other purposes (since the bridge maintains its configuration). This is handy
for development and testing but is not performant and should not be used in production.

927 of 954

Fig. 4: OVN uplink physical

Fig. 5: OVN uplink native bridge

928 of 954

OVN Network

In the simplest case, a LXD OVN network has the below configuration:

Fig. 6: LXD OVN network diagram

Note

This diagram does not show cross-cluster networks. This conceptual diagram should look
the same on all cluster members. If the chassis group prioritizes another chassis for the
uplink, the traffic is routed through that chassis.

929 of 954

Integration bridge

The cluster setting network.ovn.integration_bridge must contain the name of an OVS
bridge that is used to connect instances to anOVN network via a NIC device. This OVS bridge
must be pre-configured on all cluster members with the same name. Connectivity to the in-
tegration bridge differs between containers and virtual machines:

• Containers use a veth pair (similar to connecting to a native bridge uplink network).

Fig. 7: Integration bridge connectivity with containers

• Virtual machines use a TAP device (this can be presented to QEMU as a device whereas
a veth pair cannot).

VM live migration implementation

Live migration for virtual machines (page 136) in LXD is achieved by streaming instance state
from a source QEMU (Quick Emulator) to a target QEMU. VM live migration is supported for
all storage pool types.

API extension: migration_vm_live

Conceptual process

The live migration workflow varies depending on the type of storage pool used. The two key
scenarios are non-shared storage and shared storagewithin a cluster (e.g., Ceph). If live state
transfer is not supported by a target, a stateful stop is performed prior to migration.

930 of 954

Fig. 8: Integration bridge connectivity with virtual machines

Live migration for non-shared storage

This process leverages the QEMU built-in Network Block Device (NBD) client-server mecha-
nism to transfer the virtual machine’s disk and memory state. Below is an overview of the
steps:

1. Set up connection.

2. Determine migration type (shared or non-shared storage).

3. Set migration capabilities.

4. Non-shared storage preparation.

1. Create and configure snapshot file for root disk writes during migration.

2. Add the snapshot as a block device to the source VM.

3. Redirect disk writes to the snapshot.

5. Storage transfer.

1. For shared storage, we just perform checks at this point.

2. For non-shared storage, set up an NBD listener and connect it to the target to
transfer the disk.

6. Snapshot sync for non-shared storage to ensure consistency between source and tar-
get.

7. Transfer VM state to target.

931 of 954

Fig. 9: Non-Shared Storage Migration

932 of 954

The state transitions during the process are shown below:

Fig. 10: Non-Shared Storage Migration State Transitions

Intra-cluster member live migration (Ceph shared storage pool)

For shared storage pools such as Ceph, disk data transfer is unnecessary. Instead, the process
focuses on transferring the VM state through a dedicated migration socket:

1. Validate cluster state and storage pool readiness.

2. Notify the shared disks that they will be accessed from another system.

3. Pause the guestOSon the sourceVMand transfer the live state data over themigration
socket.

4. Stop and delete source VM.

5. Start the target VM using the transferred state.

Migration API

Sending a POST request to /1.0/instances/{name} renames, moves an instance between
pools, or migrates an instance to another server. In the push case, the returned operation
metadata for migration is a background operation with progress data. For the pull case, it is
a WebSocket operation with a number of secrets to be passed to the target server.

Live migration call stack

Below is a general overview of the key functions of the live migration call stack:

lxd/lxd/instance_post.go282

instancePost283

This function handles post requests to the /1.0/instances endpoint.

lxd/lxd/migrate_instance.go284

Do285

282 https://github.com/canonical/lxd/blob/main/lxd/instance_post.go
283 https://github.com/canonical/lxd/blob/main/lxd/instance_post.go#L74
284 https://github.com/canonical/lxd/blob/main/lxd/migrate_instance.go
285 https://github.com/canonical/lxd/blob/main/lxd/migrate_instance.go#L87

933 of 954

https://github.com/canonical/lxd/blob/main/lxd/instance_post.go#L74
https://github.com/canonical/lxd/blob/main/lxd/migrate_instance.go#L87

This function performs the migration operation on the source VM for the given state and
operation. It sets up the necessaryWebSocket connections for control, state, and filesystem,
and then initiates the migration process.

lxd/lxd/instance/drivers/driver_qemu.go286

MigrateSend287

This function controls the sending of a migration, checking for stateful support, waiting for
connections, performing checks, and sending a migration offer. When performing an intra-
cluster same-name migration, steps are taken to prevent corruption of volatile device con-
figuration keys during the start and stop of the instance on both source and target.

migrateSendLive288

This function performs the live migration send process:

1. Connect to the QEMUmonitor: The function begins by establishing a connection to the
QEMUmonitor using qmp.Connect.

2. Define disk names: The function defines names for the root disk (lxd_root), the NBD
target disk (lxd_root_nbd), and the snapshot disk (lxd_root_snapshot). These will be
used later to manage the root disk and its snapshot during migration.

3. Check for shared storage: If the migration involves shared storage, the migration pro-
cess can bypass the need for synchronizing the root disk. The function checks for this
condition by verifying if clusterMoveSourceName is non-empty and the pool is remote.

4. Non-shared storage snapshot setup: If shared storage is not used, the function pro-
ceeds to set up a temporary snapshot of the root disk.

1. Migration capabilities such as auto-converge, pause-before-switchover, and
zero-blocks are set to optimize the migration process.

2. The function creates a QCOW2 snapshot file of the root disk, which will store
changes to the disk during migration.

3. The snapshot file is opened for reading and writing, and the file descriptor is
passed to QEMU.

4. The snapshot is added as a block device to QEMU, ensuring that it is not visible to
the guest OS.

5. A snapshot of the root disk is taken using monitor.BlockDevSnapshot. This ensures
that changes to the root disk are isolated during migration.

6. Revert function: The revert function is used to cleanup in caseof failure. It ensures
that the guest is resumed, and any changes made during snapshot creation are
merged back into the root disk if migration fails

5. Shared storage setup: If shared storage is used, only the auto-converge migration ca-
pability is set, and no snapshot creation is necessary.

6. Perform storage transfer: The storage pool is migrated while the VM is still running.
The volSourceArgs.AllowInconsistent flag is set to true to allow migration while the
disk is in use. The migration checks are done by calling pool.MigrateInstance.

286 https://github.com/canonical/lxd/blob/main/lxd/instance/drivers/driver_qemu.go
287 https://github.com/canonical/lxd/blob/main/lxd/instance/drivers/driver_qemu.go#L6436
288 https://github.com/canonical/lxd/blob/main/lxd/instance/drivers/driver_qemu.go#L6666

934 of 954

https://github.com/canonical/lxd/blob/main/lxd/instance/drivers/driver_qemu.go#L6436
https://github.com/canonical/lxd/blob/main/lxd/instance/drivers/driver_qemu.go#L6666

7. Notify shared disk pools: For each disk in the VM, the migration process checks if the
disk belongs to a shared pool. If so, the disk is prepared formigration by calling Migrat-
eVolume on the source disk.

8. Set upNBD listener and connection: If shared storage is not used, the function sets up a
Unix socket listener for NBD connections. This listener handles the actual data transfer
of the root disk from the source VM to the migration target.

9. Begin block device mirroring: After setting up the NBD connection, the function
starts transferring the migration snapshot to the target disk by using monitor.
BlockDevMirror.

10. Send stateful migration checkpoint: The function creates a pipe to transfer the state
of the VM during the migration process. It writes the VMs state to the stateConn via
the pipe, using d.saveStateHandle to handle the state transfer. Note that the source
VMs guest OS is paused while the state is transferred. This ensures that the VMs state
is consistent when the migration completes.

11. Finalize snapshot transfer: If non-shared storage is used, the function waits for the
state transfer to reach the pre-switchover stage, ensuring that the guest remains
paused during this process. Next, the function cancels the block job associated with
the root snapshot to finalize the transfer and ensure that no changes are lost.

12. Completion: Once all transfers are complete, the function proceeds to finalize the mi-
gration process by resuming the target VM and ensuring that source VM resources are
cleaned up. The source VM is stopped, and its storage is discarded.

Related topics

How-to guides:

• Troubleshooting (page 325)

935 of 954

Configuration options
cluster
scheduler.instance, 602
user.*, 602

device
acceleration, 463
address, 506
bind, 501
boot.priority (Type: <code

class="literal">disk</code>:
<code class="literal">disk-device-
conf</code>), 480

boot.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 450

boot.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-macvlan-device-
conf</code>), 456

boot.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-
conf</code>), 464

boot.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-
conf</code>), 470

boot.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-physical-device-
conf</code>), 460

boot.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-sriov-device-
conf</code>), 458

busnum, 490
ceph.cluster_name, 481
ceph.user_name, 481
connect, 501
devnum, 490
gid (Type: <code class="literal">gpu</code>:

<code class="literal">gpu-physical-
device-conf</code>), 492

gid (Type: <code class="literal">proxy</code>:
<code class="literal">proxy-device-
conf</code>), 501

gid (Type: <code class="literal">unix-
block</code>: <code

class="literal">unix-block-device-
conf</code>), 488

gid (Type: <code class="literal">unix-
char</code>: <code
class="literal">unix-char-device-
conf</code>), 486

gid (Type: <code class="literal">unix-
hotplug</code>: <code
class="literal">unix-hotplug-device-
conf</code>), 503

gid (Type: <code class="literal">usb</code>:
<code class="literal">unix-usb-device-
conf</code>), 490

gvrp (Type: <code class="literal">nic</code>:
<code class="literal">nic-ipvlan-
device-conf</code>), 468

gvrp (Type: <code class="literal">nic</code>:
<code class="literal">nic-macvlan-
device-conf</code>), 456

gvrp (Type: <code class="literal">nic</code>:
<code class="literal">nic-physical-
device-conf</code>), 461

gvrp (Type: <code class="literal">nic</code>:
<code class="literal">nic-routed-
device-conf</code>), 474

host_name (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 450

host_name (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-
conf</code>), 464

host_name (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-
conf</code>), 470

host_name (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 474

hwaddr (Type: <code
class="literal">infiniband</code>:
<code class="literal">infiniband-
device-conf</code>), 498

hwaddr (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 450

936 of 954

hwaddr (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 468

hwaddr (Type: <code
class="literal">nic</code>: <code
class="literal">nic-macvlan-device-
conf</code>), 456

hwaddr (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-
conf</code>), 464

hwaddr (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-
conf</code>), 470

hwaddr (Type: <code
class="literal">nic</code>: <code
class="literal">nic-physical-device-
conf</code>), 461

hwaddr (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 474

hwaddr (Type: <code
class="literal">nic</code>: <code
class="literal">nic-sriov-device-
conf</code>), 458

id (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-mdev-
device-conf</code>), 494

id (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-mig-device-
conf</code>), 495

id (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-physical-
device-conf</code>), 492

id (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-sriov-
device-conf</code>), 497

initial.*, 481
io.bus, 481
io.cache, 481
io.threads, 481
ipv4.address (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 451

ipv4.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-

conf</code>), 468
ipv4.address (Type: <code

class="literal">nic</code>: <code
class="literal">nic-ovn-device-
conf</code>), 464

ipv4.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 474

ipv4.gateway (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 468

ipv4.gateway (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 474

ipv4.host_address, 474
ipv4.host_table (Type: <code

class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 468

ipv4.host_table (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 475

ipv4.neighbor_probe, 475
ipv4.routes (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 451

ipv4.routes (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-
conf</code>), 464

ipv4.routes (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-
conf</code>), 471

ipv4.routes (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 475

ipv4.routes.external (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 451

ipv4.routes.external (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-
conf</code>), 464

937 of 954

ipv6.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 451

ipv6.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 468

ipv6.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-
conf</code>), 465

ipv6.address (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 475

ipv6.gateway (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 469

ipv6.gateway (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 475

ipv6.host_address, 475
ipv6.host_table (Type: <code

class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 469

ipv6.host_table (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 476

ipv6.neighbor_probe, 476
ipv6.routes (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 451

ipv6.routes (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-
conf</code>), 465

ipv6.routes (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-
conf</code>), 471

ipv6.routes (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 476

ipv6.routes.external (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 452

ipv6.routes.external (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ovn-device-
conf</code>), 465

limits.egress (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 452

limits.egress (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-
conf</code>), 471

limits.egress (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 476

limits.ingress (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 452

limits.ingress (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-
conf</code>), 471

limits.ingress (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 476

limits.max (Type: <code
class="literal">disk</code>:
<code class="literal">disk-device-
conf</code>), 482

limits.max (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 452

limits.max (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-
conf</code>), 471

limits.max (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 476

limits.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 452

938 of 954

limits.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-
conf</code>), 471

limits.priority (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 477

limits.read, 482
limits.write, 482
listen, 501
maas.subnet.ipv4 (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 453

maas.subnet.ipv4 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-macvlan-device-
conf</code>), 456

maas.subnet.ipv4 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-physical-device-
conf</code>), 461

maas.subnet.ipv4 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-sriov-device-
conf</code>), 458

maas.subnet.ipv6 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 453

maas.subnet.ipv6 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-macvlan-device-
conf</code>), 456

maas.subnet.ipv6 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-physical-device-
conf</code>), 461

maas.subnet.ipv6 (Type: <code
class="literal">nic</code>: <code
class="literal">nic-sriov-device-
conf</code>), 459

major (Type: <code class="literal">unix-
block</code>: <code
class="literal">unix-block-device-
conf</code>), 488

major (Type: <code class="literal">unix-
char</code>: <code
class="literal">unix-char-device-
conf</code>), 486

mdev, 494
mig.ci, 496
mig.gi, 496
mig.uuid, 496
minor (Type: <code class="literal">unix-

block</code>: <code
class="literal">unix-block-device-
conf</code>), 488

minor (Type: <code class="literal">unix-
char</code>: <code
class="literal">unix-char-device-
conf</code>), 486

mode (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-physical-
device-conf</code>), 493

mode (Type: <code class="literal">nic</code>:
<code class="literal">nic-ipvlan-
device-conf</code>), 469

mode (Type: <code
class="literal">proxy</code>:
<code class="literal">proxy-device-
conf</code>), 502

mode (Type: <code class="literal">unix-
block</code>: <code
class="literal">unix-block-device-
conf</code>), 488

mode (Type: <code class="literal">unix-
char</code>: <code
class="literal">unix-char-device-
conf</code>), 486

mode (Type: <code class="literal">unix-
hotplug</code>: <code
class="literal">unix-hotplug-device-
conf</code>), 503

mode (Type: <code class="literal">usb</code>:
<code class="literal">unix-usb-device-
conf</code>), 490

mtu (Type: <code
class="literal">infiniband</code>:
<code class="literal">infiniband-
device-conf</code>), 498

mtu (Type: <code class="literal">nic</code>:
<code class="literal">nic-bridged-
device-conf</code>), 453

mtu (Type: <code class="literal">nic</code>:
<code class="literal">nic-ipvlan-
device-conf</code>), 469

mtu (Type: <code class="literal">nic</code>:
<code class="literal">nic-macvlan-
device-conf</code>), 456

mtu (Type: <code class="literal">nic</code>:

939 of 954

<code class="literal">nic-p2p-device-
conf</code>), 472

mtu (Type: <code class="literal">nic</code>:
<code class="literal">nic-physical-
device-conf</code>), 461

mtu (Type: <code class="literal">nic</code>:
<code class="literal">nic-routed-
device-conf</code>), 477

mtu (Type: <code class="literal">nic</code>:
<code class="literal">nic-sriov-device-
conf</code>), 459

name (Type: <code
class="literal">infiniband</code>:
<code class="literal">infiniband-
device-conf</code>), 498

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-bridged-
device-conf</code>), 453

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-ipvlan-
device-conf</code>), 469

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-macvlan-
device-conf</code>), 457

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-ovn-device-
conf</code>), 465

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-p2p-device-
conf</code>), 472

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-physical-
device-conf</code>), 461

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-routed-
device-conf</code>), 477

name (Type: <code class="literal">nic</code>:
<code class="literal">nic-sriov-device-
conf</code>), 459

nat, 502
nested, 465
network (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 453

network (Type: <code
class="literal">nic</code>: <code
class="literal">nic-macvlan-device-
conf</code>), 457

network (Type: <code
class="literal">nic</code>: <code

class="literal">nic-ovn-device-
conf</code>), 465

network (Type: <code
class="literal">nic</code>: <code
class="literal">nic-physical-device-
conf</code>), 462

network (Type: <code
class="literal">nic</code>: <code
class="literal">nic-sriov-device-
conf</code>), 459

nictype, 499
ownership.inherit, 504
parent (Type: <code

class="literal">infiniband</code>:
<code class="literal">infiniband-
device-conf</code>), 499

parent (Type: <code
class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 453

parent (Type: <code
class="literal">nic</code>: <code
class="literal">nic-ipvlan-device-
conf</code>), 469

parent (Type: <code
class="literal">nic</code>: <code
class="literal">nic-macvlan-device-
conf</code>), 457

parent (Type: <code
class="literal">nic</code>: <code
class="literal">nic-physical-device-
conf</code>), 462

parent (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 477

parent (Type: <code
class="literal">nic</code>: <code
class="literal">nic-sriov-device-
conf</code>), 459

path (Type: <code class="literal">disk</code>:
<code class="literal">disk-device-
conf</code>), 482

path (Type: <code class="literal">tpm</code>:
<code class="literal">tpm-device-
conf</code>), 505

path (Type: <code class="literal">unix-
block</code>: <code
class="literal">unix-block-device-
conf</code>), 488

path (Type: <code class="literal">unix-

940 of 954

char</code>: <code
class="literal">unix-char-device-
conf</code>), 487

pathrm, 505
pci (Type: <code class="literal">gpu</code>:

<code class="literal">gpu-mdev-
device-conf</code>), 495

pci (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-mig-device-
conf</code>), 496

pci (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-physical-
device-conf</code>), 493

pci (Type: <code class="literal">gpu</code>:
<code class="literal">gpu-sriov-
device-conf</code>), 497

pool, 483
productid (Type: <code

class="literal">gpu</code>: <code
class="literal">gpu-mdev-device-
conf</code>), 495

productid (Type: <code
class="literal">gpu</code>: <code
class="literal">gpu-mig-device-
conf</code>), 496

productid (Type: <code
class="literal">gpu</code>: <code
class="literal">gpu-physical-device-
conf</code>), 493

productid (Type: <code
class="literal">gpu</code>: <code
class="literal">gpu-sriov-device-
conf</code>), 497

productid (Type: <code class="literal">unix-
hotplug</code>: <code
class="literal">unix-hotplug-device-
conf</code>), 504

productid (Type: <code
class="literal">usb</code>: <code
class="literal">unix-usb-device-
conf</code>), 490

propagation, 483
proxy_protocol, 502
queue.tx.length (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 454

queue.tx.length (Type: <code
class="literal">nic</code>: <code
class="literal">nic-p2p-device-
conf</code>), 472

queue.tx.length (Type: <code
class="literal">nic</code>: <code
class="literal">nic-routed-device-
conf</code>), 477

raw.mount.options, 483
readonly, 483
recursive, 483
required (Type: <code

class="literal">disk</code>:
<code class="literal">disk-device-
conf</code>), 483

required (Type: <code class="literal">unix-
block</code>: <code
class="literal">unix-block-device-
conf</code>), 489

required (Type: <code class="literal">unix-
char</code>: <code
class="literal">unix-char-device-
conf</code>), 487

required (Type: <code class="literal">unix-
hotplug</code>: <code
class="literal">unix-hotplug-device-
conf</code>), 504

required (Type: <code
class="literal">usb</code>: <code
class="literal">unix-usb-device-
conf</code>), 491

security.acls, 466
security.acls.default.egress.action, 466
security.acls.default.egress.logged, 466
security.acls.default.ingress.action, 466
security.acls.default.ingress.logged, 466
security.gid, 502
security.ipv4_filtering, 454
security.ipv6_filtering, 454
security.mac_filtering (Type: <code

class="literal">nic</code>: <code
class="literal">nic-bridged-device-
conf</code>), 454

security.mac_filtering (Type: <code
class="literal">nic</code>: <code
class="literal">nic-sriov-device-
conf</code>), 459

security.port_isolation, 454
security.uid, 502
serial, 491
shift, 484
size, 484
size.state, 484
source (Type: <code

class="literal">disk</code>:

941 of 954

<code class="literal">disk-device-
conf</code>), 484

source (Type: <code class="literal">unix-
block</code>: <code
class="literal">unix-block-device-
conf</code>), 489

source (Type: <code class="literal">unix-
char</code>: <code
class="literal">unix-char-device-
conf</code>), 487

source.snapshot, 484
source.type, 485
subsystem, 504
uid (Type: <code class="literal">gpu</code>:

<code class="literal">gpu-physical-
device-conf</code>), 493

uid (Type: <code class="literal">proxy</code>:
<code class="literal">proxy-device-
conf</code>), 503

uid (Type: <code class="literal">unix-
block</code>: <code
class="literal">unix-block-device-
conf</code>), 489

uid (Type: <code class="literal">unix-
char</code>: <code
class="literal">unix-char-device-
conf</code>), 487

uid (Type: <code class="literal">unix-
hotplug</code>: <code
class="literal">unix-hotplug-device-
conf</code>), 504

uid (Type: <code class="literal">usb</code>:
<code class="literal">unix-usb-device-
conf</code>), 491

vendorid (Type: <code
class="literal">gpu</code>: <code
class="literal">gpu-mdev-device-
conf</code>), 495

vendorid (Type: <code
class="literal">gpu</code>: <code
class="literal">gpu-mig-device-
conf</code>), 496

vendorid (Type: <code
class="literal">gpu</code>: <code
class="literal">gpu-physical-device-
conf</code>), 493

vendorid (Type: <code
class="literal">gpu</code>: <code
class="literal">gpu-sriov-device-
conf</code>), 497

vendorid (Type: <code class="literal">unix-

hotplug</code>: <code
class="literal">unix-hotplug-device-
conf</code>), 504

vendorid (Type: <code
class="literal">usb</code>: <code
class="literal">unix-usb-device-
conf</code>), 491

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-bridged-
device-conf</code>), 455

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-ipvlan-
device-conf</code>), 470

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-macvlan-
device-conf</code>), 457

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-ovn-device-
conf</code>), 466

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-physical-
device-conf</code>), 462

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-routed-
device-conf</code>), 477

vlan (Type: <code class="literal">nic</code>:
<code class="literal">nic-sriov-device-
conf</code>), 460

vlan.tagged, 455

instance
agent.nic_config, 416
architecture, 415
boot.autostart, 418
boot.autostart.delay, 418
boot.autostart.priority, 418
boot.debug_edk2, 419
boot.host_shutdown_timeout, 419
boot.stop.priority, 419
cloud-init.network-config, 419
cloud-init.ssh-keys.KEYNAME, 420
cloud-init.user-data, 420
cloud-init.vendor-data, 420
cluster.evacuate, 416
environment.*, 418
limits.cpu, 421
limits.cpu.allowance, 421
limits.cpu.nodes, 421
limits.cpu.pin_strategy, 422
limits.cpu.priority, 422
limits.disk.priority, 422

942 of 954

limits.hugepages.1GB, 422
limits.hugepages.1MB, 423
limits.hugepages.2MB, 423
limits.hugepages.64KB, 423
limits.kernel.*, 425
limits.memory, 423
limits.memory.enforce, 424
limits.memory.hugepages, 424
limits.memory.swap, 424
limits.memory.swap.priority, 424
limits.processes, 425
linux.kernel_modules, 417
linux.kernel_modules.load, 417
linux.sysctl.*, 417
migration.incremental.memory, 428
migration.incremental.memory.goal, 429
migration.incremental.memory.iterations,

429
migration.stateful, 429
name, 415
nvidia.driver.capabilities, 429
nvidia.require.cuda, 430
nvidia.require.driver, 430
nvidia.runtime, 430
raw.apparmor, 430
raw.idmap, 431
raw.lxc, 431
raw.qemu, 431
raw.qemu.conf, 431
raw.seccomp, 431
security.agent.metrics, 433
security.csm, 433
security.delegate_bpf, 434
security.delegate_bpf.attach_types, 434
security.delegate_bpf.cmd_types, 434
security.delegate_bpf.map_types, 434
security.delegate_bpf.prog_types, 435
security.devlxd, 435
security.devlxd.images, 435
security.idmap.base, 435
security.idmap.isolated, 436
security.idmap.size, 436
security.nesting, 436
security.privileged, 436
security.protection.delete, 436
security.protection.shift, 437
security.protection.start, 437
security.secureboot, 437
security.sev, 437
security.sev.policy.es, 437
security.sev.session.data, 438

security.sev.session.dh, 438
security.syscalls.allow, 438
security.syscalls.deny, 438
security.syscalls.deny_compat, 439
security.syscalls.deny_default, 439
security.syscalls.intercept.bpf, 439
security.syscalls.intercept.bpf.devices,

439
security.syscalls.intercept.mknod, 439
security.syscalls.intercept.mount, 440
security.syscalls.intercept.mount.allowed,

440
security.syscalls.intercept.mount.fuse,

440
security.syscalls.intercept.mount.shift,

440
security.syscalls.intercept.sched_setscheduler,

441
security.syscalls.intercept.setxattr, 441
security.syscalls.intercept.sysinfo, 441
snapshots.expiry, 441
snapshots.pattern, 442
snapshots.schedule, 442
snapshots.schedule.stopped, 442
ubuntu_pro.guest_attach, 417
user.*, 418
user.network-config, 420
user.user-data, 420
user.vendor-data, 421
volatile.<name>.apply_quota, 443
volatile.<name>.ceph_rbd, 443
volatile.<name>.host_name, 443
volatile.<name>.hwaddr, 443
volatile.<name>.last_state.created, 443
volatile.<name>.last_state.hwaddr, 444
volatile.<name>.last_state.mtu, 444
volatile.<name>.last_state.vdpa.name, 444
volatile.<name>.last_state.vf.hwaddr, 444
volatile.<name>.last_state.vf.id, 444
volatile.<name>.last_state.vf.spoofcheck,

444
volatile.<name>.last_state.vf.vlan, 445
volatile.apply_nvram, 445
volatile.apply_template, 445
volatile.base_image, 445
volatile.cloud-init.instance-id, 445
volatile.evacuate.origin, 445
volatile.idmap.base, 446
volatile.idmap.current, 446
volatile.idmap.next, 446
volatile.last_state.idmap, 446

943 of 954

volatile.last_state.power, 446
volatile.uuid, 446
volatile.uuid.generation, 447
volatile.vsock_id, 447

network
action, 222
backends, 272
bgp.ipv4.nexthop, 574
bgp.ipv6.nexthop, 575
bgp.peers.NAME.address (Bridge network:

<code class="literal">bridge-network-
conf</code>), 575

bgp.peers.NAME.address (Physical net-
work: <code class="literal">physical-
network-conf</code>), 596

bgp.peers.NAME.asn (Bridge network: <code
class="literal">bridge-network-
conf</code>), 575

bgp.peers.NAME.asn (Physical network: <code
class="literal">physical-network-
conf</code>), 596

bgp.peers.NAME.holdtime (Bridge network:
<code class="literal">bridge-network-
conf</code>), 575

bgp.peers.NAME.holdtime (Physical net-
work: <code class="literal">physical-
network-conf</code>), 596

bgp.peers.NAME.password (Bridge network:
<code class="literal">bridge-network-
conf</code>), 575

bgp.peers.NAME.password (Physical net-
work: <code class="literal">physical-
network-conf</code>), 596

bridge.driver, 576
bridge.external_interfaces, 576
bridge.hwaddr (Bridge network: <code

class="literal">bridge-network-
conf</code>), 576

bridge.hwaddr (OVN network: <code
class="literal">ovn-network-
conf</code>), 589

bridge.mode, 576
bridge.mtu (Bridge network: <code

class="literal">bridge-network-
conf</code>), 576

bridge.mtu (OVN network: <code
class="literal">ovn-network-
conf</code>), 589

config (How to configure network ACLs:
<code class="literal">acl-acl-

properties</code>), 219
config (How to configure network for-

wards: <code class="literal">forward-
forward-properties</code>), 243

config (How to configure net-
work load balancers: <code
class="literal">load-balancer-load-
balancer-properties</code>), 272

config (How to create OVN peer
routing relationships: <code
class="literal">peering-peering-
properties</code>), 277

config (How to configure network zones:
<code class="literal">zone-record-
properties</code>), 257

description (How to configure network
ACLs: <code class="literal">acl-acl-
properties</code>), 219

description (How to configure network
ACLs: <code class="literal">acl-rule-
properties</code>), 222

description (How to configure network for-
wards: <code class="literal">forward-
forward-properties</code>), 243

description (How to configure network for-
wards: <code class="literal">forward-
port-properties</code>), 247

description (How to configure network load
balancers: <code class="literal">load-
balancer-load-balancer-backend-
properties</code>), 273

description (How to configure network load
balancers: <code class="literal">load-
balancer-load-balancer-port-
properties</code>), 274

description (How to configure net-
work load balancers: <code
class="literal">load-balancer-load-
balancer-properties</code>), 272

description (How to create OVN peer
routing relationships: <code
class="literal">peering-peering-
properties</code>), 277

description (How to configure network
zones: <code class="literal">zone-
record-properties</code>), 257

destination, 222
destination_port, 222
dns.domain (Bridge network: <code

class="literal">bridge-network-
conf</code>), 577

944 of 954

dns.domain (OVN network: <code
class="literal">ovn-network-
conf</code>), 589

dns.mode, 577
dns.nameservers (Physical network: <code

class="literal">physical-network-
conf</code>), 597

dns.nameservers (How to configure network
zones: <code class="literal">zone-
config-options</code>), 255

dns.search (Bridge network: <code
class="literal">bridge-network-
conf</code>), 577

dns.search (OVN network: <code
class="literal">ovn-network-
conf</code>), 589

dns.zone.forward (Bridge network: <code
class="literal">bridge-network-
conf</code>), 577

dns.zone.forward (OVN network: <code
class="literal">ovn-network-
conf</code>), 589

dns.zone.reverse.ipv4 (Bridge network:
<code class="literal">bridge-network-
conf</code>), 577

dns.zone.reverse.ipv4 (OVN network:
<code class="literal">ovn-network-
conf</code>), 589

dns.zone.reverse.ipv6 (Bridge network:
<code class="literal">bridge-network-
conf</code>), 578

dns.zone.reverse.ipv6 (OVN network:
<code class="literal">ovn-network-
conf</code>), 590

egress, 219
entries, 257
fan.overlay_subnet, 578
fan.type, 578
fan.underlay_subnet, 578
gvrp (Macvlan network: <code

class="literal">macvlan-network-
conf</code>), 594

gvrp (Physical network: <code
class="literal">physical-network-
conf</code>), 597

icmp_code, 223
icmp_type, 223
ingress, 219
ipv4.address (Bridge network: <code

class="literal">bridge-network-
conf</code>), 578

ipv4.address (OVN network: <code
class="literal">ovn-network-
conf</code>), 590

ipv4.dhcp (Bridge network: <code
class="literal">bridge-network-
conf</code>), 579

ipv4.dhcp (OVN network: <code
class="literal">ovn-network-
conf</code>), 590

ipv4.dhcp.expiry, 579
ipv4.dhcp.gateway, 579
ipv4.dhcp.ranges, 579
ipv4.firewall, 579
ipv4.gateway, 597
ipv4.l3only, 590
ipv4.nat (Bridge network: <code

class="literal">bridge-network-
conf</code>), 580

ipv4.nat (OVN network: <code
class="literal">ovn-network-
conf</code>), 590

ipv4.nat.address (Bridge network: <code
class="literal">bridge-network-
conf</code>), 580

ipv4.nat.address (OVN network: <code
class="literal">ovn-network-
conf</code>), 590

ipv4.nat.order, 580
ipv4.ovn.ranges (Bridge network: <code

class="literal">bridge-network-
conf</code>), 580

ipv4.ovn.ranges (Physical network: <code
class="literal">physical-network-
conf</code>), 597

ipv4.routes (Bridge network: <code
class="literal">bridge-network-
conf</code>), 580

ipv4.routes (Physical network: <code
class="literal">physical-network-
conf</code>), 597

ipv4.routes.anycast, 598
ipv4.routing, 581
ipv6.address (Bridge network: <code

class="literal">bridge-network-
conf</code>), 581

ipv6.address (OVN network: <code
class="literal">ovn-network-
conf</code>), 591

ipv6.dhcp (Bridge network: <code
class="literal">bridge-network-
conf</code>), 581

945 of 954

ipv6.dhcp (OVN network: <code
class="literal">ovn-network-
conf</code>), 591

ipv6.dhcp.expiry, 581
ipv6.dhcp.ranges, 581
ipv6.dhcp.stateful (Bridge network: <code

class="literal">bridge-network-
conf</code>), 582

ipv6.dhcp.stateful (OVN network: <code
class="literal">ovn-network-
conf</code>), 591

ipv6.firewall, 582
ipv6.gateway, 598
ipv6.l3only, 591
ipv6.nat (Bridge network: <code

class="literal">bridge-network-
conf</code>), 582

ipv6.nat (OVN network: <code
class="literal">ovn-network-
conf</code>), 591

ipv6.nat.address (Bridge network: <code
class="literal">bridge-network-
conf</code>), 582

ipv6.nat.address (OVN network: <code
class="literal">ovn-network-
conf</code>), 591

ipv6.nat.order, 582
ipv6.ovn.ranges (Bridge network: <code

class="literal">bridge-network-
conf</code>), 583

ipv6.ovn.ranges (Physical network: <code
class="literal">physical-network-
conf</code>), 598

ipv6.routes (Bridge network: <code
class="literal">bridge-network-
conf</code>), 583

ipv6.routes (Physical network: <code
class="literal">physical-network-
conf</code>), 598

ipv6.routes.anycast, 598
ipv6.routing, 583
listen_address (How to configure

network forwards: <code
class="literal">forward-forward-
properties</code>), 243

listen_address (How to configure net-
work load balancers: <code
class="literal">load-balancer-load-
balancer-properties</code>), 272

listen_port (How to configure network for-
wards: <code class="literal">forward-

port-properties</code>), 247
listen_port (How to configure network load

balancers: <code class="literal">load-
balancer-load-balancer-port-
properties</code>), 275

maas.subnet.ipv4 (Bridge network: <code
class="literal">bridge-network-
conf</code>), 583

maas.subnet.ipv4 (Macvlan network: <code
class="literal">macvlan-network-
conf</code>), 594

maas.subnet.ipv4 (Physical network: <code
class="literal">physical-network-
conf</code>), 599

maas.subnet.ipv4 (SR-IOV network: <code
class="literal">sriov-network-
conf</code>), 600

maas.subnet.ipv6 (Bridge network: <code
class="literal">bridge-network-
conf</code>), 583

maas.subnet.ipv6 (Macvlan network: <code
class="literal">macvlan-network-
conf</code>), 594

maas.subnet.ipv6 (Physical network: <code
class="literal">physical-network-
conf</code>), 599

maas.subnet.ipv6 (SR-IOV network: <code
class="literal">sriov-network-
conf</code>), 601

mtu (Macvlan network: <code
class="literal">macvlan-network-
conf</code>), 594

mtu (Physical network: <code
class="literal">physical-network-
conf</code>), 599

mtu (SR-IOV network: <code
class="literal">sriov-network-
conf</code>), 601

name (How to configure network ACLs:
<code class="literal">acl-acl-
properties</code>), 219

name (How to configure network load bal-
ancers: <code class="literal">load-
balancer-load-balancer-backend-
properties</code>), 274

name (How to createOVNpeer routing relation-
ships: <code class="literal">peering-
peering-properties</code>), 277

name (How to configure network zones:
<code class="literal">zone-record-
properties</code>), 257

946 of 954

network, 592
network.nat, 255
ovn.ingress_mode, 599
parent (Macvlan network: <code

class="literal">macvlan-network-
conf</code>), 595

parent (Physical network: <code
class="literal">physical-network-
conf</code>), 599

parent (SR-IOV network: <code
class="literal">sriov-network-
conf</code>), 601

peers.NAME.address, 256
peers.NAME.key, 256
ports (How to configure network forwards:

<code class="literal">forward-
forward-properties</code>), 243

ports (How to configure network load
balancers: <code class="literal">load-
balancer-load-balancer-
properties</code>), 272

protocol (How to configure network ACLs:
<code class="literal">acl-rule-
properties</code>), 223

protocol (How to configure network for-
wards: <code class="literal">forward-
port-properties</code>), 247

protocol (How to configure network load
balancers: <code class="literal">load-
balancer-load-balancer-port-
properties</code>), 275

raw.dnsmasq, 584
security.acls (Bridge network: <code

class="literal">bridge-network-
conf</code>), 584

security.acls (OVN network: <code
class="literal">ovn-network-
conf</code>), 592

security.acls.default.egress.action
(Bridge network: <code
class="literal">bridge-network-
conf</code>), 584

security.acls.default.egress.action (OVN
network: <code class="literal">ovn-
network-conf</code>), 592

security.acls.default.egress.logged
(Bridge network: <code
class="literal">bridge-network-
conf</code>), 584

security.acls.default.egress.logged (OVN
network: <code class="literal">ovn-

network-conf</code>), 592
security.acls.default.ingress.action

(Bridge network: <code
class="literal">bridge-network-
conf</code>), 584

security.acls.default.ingress.action
(OVN network: <code
class="literal">ovn-network-
conf</code>), 592

security.acls.default.ingress.logged
(Bridge network: <code
class="literal">bridge-network-
conf</code>), 585

security.acls.default.ingress.logged
(OVN network: <code
class="literal">ovn-network-
conf</code>), 592

source, 223
source_port, 223
state, 223
status, 277
target_address (How to configure

network forwards: <code
class="literal">forward-port-
properties</code>), 247

target_address (How to config-
ure network load balancers:
<code class="literal">load-
balancer-load-balancer-backend-
properties</code>), 274

target_backend, 275
target_network, 277
target_port (How to configure network for-

wards: <code class="literal">forward-
port-properties</code>), 248

target_port (How to configure network load
balancers: <code class="literal">load-
balancer-load-balancer-backend-
properties</code>), 274

target_project, 278
tunnel.NAME.group, 585
tunnel.NAME.id, 585
tunnel.NAME.interface, 585
tunnel.NAME.local, 585
tunnel.NAME.port, 585
tunnel.NAME.protocol, 586
tunnel.NAME.remote, 586
tunnel.NAME.ttl, 586
user.* (Bridge network: <code

class="literal">bridge-network-
conf</code>), 586

947 of 954

user.* (Macvlan network: <code
class="literal">macvlan-network-
conf</code>), 595

user.* (OVN network: <code
class="literal">ovn-network-
conf</code>), 593

user.* (Physical network: <code
class="literal">physical-network-
conf</code>), 599

user.* (SR-IOV network: <code
class="literal">sriov-network-
conf</code>), 601

user.* (How to configure network zones:
<code class="literal">zone-config-
options</code>), 256

vlan (Macvlan network: <code
class="literal">macvlan-network-
conf</code>), 595

vlan (Physical network: <code
class="literal">physical-network-
conf</code>), 600

vlan (SR-IOV network: <code
class="literal">sriov-network-
conf</code>), 601

project
backups.compression_algorithm, 520
features.images, 510
features.networks, 510
features.networks.zones, 510
features.profiles, 510
features.storage.buckets, 510
features.storage.volumes, 510
images.auto_update_cached, 520
images.auto_update_interval, 520
images.compression_algorithm, 520
images.default_architecture, 521
images.remote_cache_expiry, 521
limits.containers, 511
limits.cpu, 511
limits.disk, 512
limits.disk.pool.POOL_NAME, 512
limits.instances, 512
limits.memory, 512
limits.networks, 512
limits.networks.uplink_ips.ipv4.NETWORK_NAME,

512
limits.networks.uplink_ips.ipv6.NETWORK_NAME,

513
limits.processes, 513
limits.virtual-machines, 513

restricted, 514
restricted.backups, 514
restricted.cluster.groups, 514
restricted.cluster.target, 514
restricted.containers.interception, 515
restricted.containers.lowlevel, 515
restricted.containers.nesting, 515
restricted.containers.privilege, 515
restricted.devices.disk, 516
restricted.devices.disk.paths, 516
restricted.devices.gpu, 516
restricted.devices.infiniband, 516
restricted.devices.nic, 517
restricted.devices.pci, 517
restricted.devices.proxy, 517
restricted.devices.unix-block, 517
restricted.devices.unix-char, 517
restricted.devices.unix-hotplug, 518
restricted.devices.usb, 518
restricted.idmap.gid, 518
restricted.idmap.uid, 518
restricted.networks.access, 518
restricted.networks.subnets, 519
restricted.networks.uplinks, 519
restricted.networks.zones, 519
restricted.snapshots, 519
restricted.virtual-machines.lowlevel, 520
user.*, 521

server
acme.agree_tos, 405
acme.ca_url, 405
acme.domain, 405
acme.email, 405
backups.compression_algorithm, 411
cluster.healing_threshold, 407
cluster.https_address, 407
cluster.images_minimal_replica, 407
cluster.join_token_expiry, 408
cluster.max_standby, 408
cluster.max_voters, 408
cluster.offline_threshold, 408
core.bgp_address, 401
core.bgp_asn, 401
core.bgp_routerid, 401
core.debug_address, 402
core.dns_address, 402
core.https_address, 402
core.https_allowed_credentials, 402
core.https_allowed_headers, 402
core.https_allowed_methods, 402

948 of 954

core.https_allowed_origin, 403
core.https_trusted_proxy, 403
core.metrics_address, 403
core.metrics_authentication, 403
core.proxy_http, 403
core.proxy_https, 404
core.proxy_ignore_hosts, 404
core.remote_token_expiry, 404
core.shutdown_timeout, 404
core.storage_buckets_address, 404
core.syslog_socket, 404
core.trust_ca_certificates, 405
images.auto_update_cached, 409
images.auto_update_interval, 409
images.compression_algorithm, 409
images.default_architecture, 409
images.remote_cache_expiry, 409
instances.migration.stateful, 411
instances.nic.host_name, 411
instances.placement.scriptlet, 412
loki.api.ca_cert, 410
loki.api.url, 410
loki.auth.password, 410
loki.auth.username, 410
loki.instance, 410
loki.labels, 410
loki.loglevel, 411
loki.types, 411
maas.api.key, 412
maas.api.url, 412
maas.machine, 412
network.ovn.ca_cert, 412
network.ovn.client_cert, 413
network.ovn.client_key, 413
network.ovn.integration_bridge, 413
network.ovn.northbound_connection, 413
oidc.audience, 406
oidc.client.id, 406
oidc.client.secret, 406
oidc.groups.claim, 406
oidc.issuer, 406
oidc.scopes, 407
storage.backups_volume, 413
storage.images_volume, 413

storage
block.filesystem (Ceph RBD - <code

class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 538

block.filesystem (LVM - <code

class="literal">lvm</code>:
<code class="literal">lvm-volume-
conf</code>), 560

block.filesystem (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-
volume-conf</code>), 545

block.filesystem (Pure Storage - <code
class="literal">pure</code>:
<code class="literal">pure-volume-
conf</code>), 552

block.filesystem (ZFS - <code
class="literal">zfs</code>:
<code class="literal">zfs-volume-
conf</code>), 566

block.mount_options (Ceph RBD - <code
class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 538

block.mount_options (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-volume-
conf</code>), 560

block.mount_options (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-
volume-conf</code>), 546

block.mount_options (Pure Storage -
<code class="literal">pure</code>:
<code class="literal">pure-volume-
conf</code>), 552

block.mount_options (ZFS - <code
class="literal">zfs</code>:
<code class="literal">zfs-volume-
conf</code>), 567

block.type, 546
btrfs.mount_options, 523
ceph.cluster_name, 536
ceph.osd.data_pool_name, 536
ceph.osd.pg_num, 536
ceph.osd.pool_name, 536
ceph.osd.pool_size, 537
ceph.rbd.clone_copy, 537
ceph.rbd.du, 537
ceph.rbd.features, 537
ceph.user.name, 537
cephfs.cluster_name, 527
cephfs.create_missing, 527
cephfs.data_pool, 528
cephfs.fscache, 528
cephfs.meta_pool, 528

949 of 954

cephfs.osd_pg_num, 528
cephfs.osd_pool_size, 528
cephfs.path, 529
cephfs.user.name, 529
cephobject.bucket.name_prefix, 533
cephobject.cluster_name, 533
cephobject.radosgw.endpoint, 533
cephobject.radosgw.endpoint_cert_file,

533
cephobject.user.name, 534
lvm.stripes, 560
lvm.stripes.size, 560
lvm.thinpool_metadata_size, 558
lvm.thinpool_name, 558
lvm.use_thinpool, 558
lvm.vg.force_reuse, 559
lvm.vg_name, 559
powerflex.clone_copy, 543
powerflex.domain, 543
powerflex.gateway, 543
powerflex.gateway.verify, 544
powerflex.mode, 544
powerflex.pool, 544
powerflex.sdt, 544
powerflex.user.name, 544
powerflex.user.password, 545
pure.api.token, 551
pure.gateway, 551
pure.gateway.verify, 551
pure.mode, 551
pure.target, 551
rsync.bwlimit (Directory - <code

class="literal">dir</code>: <code
class="literal">dir-pool-conf</code>),
554

rsync.bwlimit (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-pool-
conf</code>), 559

rsync.bwlimit (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-pool-
conf</code>), 545

rsync.compression (Directory - <code
class="literal">dir</code>: <code
class="literal">dir-pool-conf</code>),
554

rsync.compression (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-pool-
conf</code>), 559

rsync.compression (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-pool-
conf</code>), 545

security.shared (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-volume-
conf</code>), 524

security.shared (Ceph RBD - <code
class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 538

security.shared (Directory - <code
class="literal">dir</code>:
<code class="literal">dir-volume-
conf</code>), 555

security.shared (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-volume-
conf</code>), 561

security.shared (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-
volume-conf</code>), 546

security.shared (ZFS - <code
class="literal">zfs</code>:
<code class="literal">zfs-volume-
conf</code>), 567

security.shifted (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-volume-
conf</code>), 524

security.shifted (Ceph RBD - <code
class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 539

security.shifted (CephFS - <code
class="literal">cephfs</code>:
<code class="literal">cephfs-volume-
conf</code>), 530

security.shifted (Directory - <code
class="literal">dir</code>:
<code class="literal">dir-volume-
conf</code>), 555

security.shifted (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-volume-
conf</code>), 561

security.shifted (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-

950 of 954

volume-conf</code>), 546
security.shifted (ZFS - <code

class="literal">zfs</code>:
<code class="literal">zfs-volume-
conf</code>), 567

security.unmapped (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-volume-
conf</code>), 524

security.unmapped (Ceph RBD - <code
class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 539

security.unmapped (CephFS - <code
class="literal">cephfs</code>:
<code class="literal">cephfs-volume-
conf</code>), 530

security.unmapped (Directory - <code
class="literal">dir</code>:
<code class="literal">dir-volume-
conf</code>), 555

security.unmapped (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-volume-
conf</code>), 561

security.unmapped (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-
volume-conf</code>), 546

security.unmapped (ZFS - <code
class="literal">zfs</code>:
<code class="literal">zfs-volume-
conf</code>), 567

size (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-bucket-
conf</code>), 526

size (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-pool-
conf</code>), 523

size (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-volume-
conf</code>), 524

size (Ceph RBD - <code
class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 539

size (CephFS - <code
class="literal">cephfs</code>:

<code class="literal">cephfs-volume-
conf</code>), 530

size (Ceph Object - <code
class="literal">cephobject</code>:
<code class="literal">cephobject-
bucket-conf</code>), 534

size (Directory - <code
class="literal">dir</code>:
<code class="literal">dir-volume-
conf</code>), 555

size (LVM - <code class="literal">lvm</code>:
<code class="literal">lvm-bucket-
conf</code>), 563

size (LVM - <code class="literal">lvm</code>:
<code class="literal">lvm-pool-
conf</code>), 559

size (LVM - <code class="literal">lvm</code>:
<code class="literal">lvm-volume-
conf</code>), 561

size (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-
volume-conf</code>), 547

size (Pure Storage - <code
class="literal">pure</code>:
<code class="literal">pure-volume-
conf</code>), 552

size (ZFS - <code class="literal">zfs</code>:
<code class="literal">zfs-bucket-
conf</code>), 570

size (ZFS - <code class="literal">zfs</code>:
<code class="literal">zfs-pool-
conf</code>), 565

size (ZFS - <code class="literal">zfs</code>:
<code class="literal">zfs-volume-
conf</code>), 567

snapshots.expiry (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-volume-
conf</code>), 524

snapshots.expiry (Ceph RBD - <code
class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 539

snapshots.expiry (CephFS - <code
class="literal">cephfs</code>:
<code class="literal">cephfs-volume-
conf</code>), 530

snapshots.expiry (Directory - <code
class="literal">dir</code>:
<code class="literal">dir-volume-

951 of 954

conf</code>), 555
snapshots.expiry (LVM - <code

class="literal">lvm</code>:
<code class="literal">lvm-volume-
conf</code>), 561

snapshots.expiry (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-
volume-conf</code>), 547

snapshots.expiry (Pure Storage - <code
class="literal">pure</code>:
<code class="literal">pure-volume-
conf</code>), 552

snapshots.expiry (ZFS - <code
class="literal">zfs</code>:
<code class="literal">zfs-volume-
conf</code>), 568

snapshots.pattern (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-volume-
conf</code>), 524

snapshots.pattern (Ceph RBD - <code
class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 539

snapshots.pattern (CephFS - <code
class="literal">cephfs</code>:
<code class="literal">cephfs-volume-
conf</code>), 530

snapshots.pattern (Directory - <code
class="literal">dir</code>:
<code class="literal">dir-volume-
conf</code>), 556

snapshots.pattern (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-volume-
conf</code>), 562

snapshots.pattern (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-
volume-conf</code>), 547

snapshots.pattern (Pure Storage - <code
class="literal">pure</code>:
<code class="literal">pure-volume-
conf</code>), 552

snapshots.pattern (ZFS - <code
class="literal">zfs</code>:
<code class="literal">zfs-volume-
conf</code>), 568

snapshots.schedule (Btrfs - <code
class="literal">btrfs</code>:

<code class="literal">btrfs-volume-
conf</code>), 525

snapshots.schedule (Ceph RBD - <code
class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 540

snapshots.schedule (CephFS - <code
class="literal">cephfs</code>:
<code class="literal">cephfs-volume-
conf</code>), 531

snapshots.schedule (Directory - <code
class="literal">dir</code>:
<code class="literal">dir-volume-
conf</code>), 556

snapshots.schedule (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-volume-
conf</code>), 562

snapshots.schedule (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-
volume-conf</code>), 547

snapshots.schedule (Pure Storage -
<code class="literal">pure</code>:
<code class="literal">pure-volume-
conf</code>), 553

snapshots.schedule (ZFS - <code
class="literal">zfs</code>:
<code class="literal">zfs-volume-
conf</code>), 568

source (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-pool-
conf</code>), 523

source (Ceph RBD - <code
class="literal">ceph</code>:
<code class="literal">ceph-pool-
conf</code>), 538

source (CephFS - <code
class="literal">cephfs</code>:
<code class="literal">cephfs-pool-
conf</code>), 529

source (Directory - <code
class="literal">dir</code>: <code
class="literal">dir-pool-conf</code>),
554

source (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-pool-
conf</code>), 559

source (ZFS - <code class="literal">zfs</code>:

952 of 954

<code class="literal">zfs-pool-
conf</code>), 565

source.wipe (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-pool-
conf</code>), 523

source.wipe (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-pool-
conf</code>), 560

source.wipe (ZFS - <code
class="literal">zfs</code>: <code
class="literal">zfs-pool-conf</code>),
565

volatile.idmap.last (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-volume-
conf</code>), 525

volatile.idmap.last (Ceph RBD - <code
class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 540

volatile.idmap.last (CephFS - <code
class="literal">cephfs</code>:
<code class="literal">cephfs-volume-
conf</code>), 531

volatile.idmap.last (Directory - <code
class="literal">dir</code>:
<code class="literal">dir-volume-
conf</code>), 556

volatile.idmap.last (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-volume-
conf</code>), 562

volatile.idmap.last (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-
volume-conf</code>), 548

volatile.idmap.last (ZFS - <code
class="literal">zfs</code>:
<code class="literal">zfs-volume-
conf</code>), 569

volatile.idmap.next (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-volume-
conf</code>), 525

volatile.idmap.next (Ceph RBD - <code
class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 540

volatile.idmap.next (CephFS - <code

class="literal">cephfs</code>:
<code class="literal">cephfs-volume-
conf</code>), 531

volatile.idmap.next (Directory - <code
class="literal">dir</code>:
<code class="literal">dir-volume-
conf</code>), 557

volatile.idmap.next (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-volume-
conf</code>), 563

volatile.idmap.next (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-
volume-conf</code>), 548

volatile.idmap.next (ZFS - <code
class="literal">zfs</code>:
<code class="literal">zfs-volume-
conf</code>), 569

volatile.pool.pristine (Ceph RBD -
<code class="literal">ceph</code>:
<code class="literal">ceph-pool-
conf</code>), 538

volatile.pool.pristine (CephFS - <code
class="literal">cephfs</code>:
<code class="literal">cephfs-pool-
conf</code>), 529

volatile.pool.pristine (Ceph Object - <code
class="literal">cephobject</code>:
<code class="literal">cephobject-
pool-conf</code>), 534

volatile.uuid (Btrfs - <code
class="literal">btrfs</code>:
<code class="literal">btrfs-volume-
conf</code>), 526

volatile.uuid (Ceph RBD - <code
class="literal">ceph</code>:
<code class="literal">ceph-volume-
conf</code>), 540

volatile.uuid (CephFS - <code
class="literal">cephfs</code>:
<code class="literal">cephfs-volume-
conf</code>), 531

volatile.uuid (Directory - <code
class="literal">dir</code>:
<code class="literal">dir-volume-
conf</code>), 557

volatile.uuid (LVM - <code
class="literal">lvm</code>:
<code class="literal">lvm-volume-
conf</code>), 563

953 of 954

volatile.uuid (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-
volume-conf</code>), 548

volatile.uuid (Pure Storage - <code
class="literal">pure</code>:
<code class="literal">pure-volume-
conf</code>), 553

volatile.uuid (ZFS - <code
class="literal">zfs</code>:
<code class="literal">zfs-volume-
conf</code>), 569

volume.size (Dell PowerFlex - <code
class="literal">powerflex</code>:
<code class="literal">powerflex-pool-
conf</code>), 545

volume.size (Pure Storage - <code
class="literal">pure</code>:
<code class="literal">pure-pool-
conf</code>), 551

zfs.block_mode, 569
zfs.blocksize, 569
zfs.clone_copy, 566
zfs.delegate, 569
zfs.export, 566
zfs.pool_name, 566
zfs.remove_snapshots, 570
zfs.reserve_space, 570
zfs.use_refquota, 570

sysctl
fs.aio-max-nr, 603
fs.inotify.max_queued_events, 603
fs.inotify.max_user_instances, 604
fs.inotify.max_user_watches, 604
kernel.dmesg_restrict, 604
kernel.keys.maxbytes, 604
kernel.keys.maxkeys, 605
net.core.bpf_jit_limit, 605
net.ipv4.neigh.default.gc_thresh3, 605
net.ipv6.neigh.default.gc_thresh3, 605
vm.max_map_count, 606

954 of 954

	Tutorials
	First steps with LXD
	Install and initialize LXD
	Launch and inspect instances
	Configure instances
	Interact with instances
	Manage snapshots
	Next steps

	Getting started with the UI
	Install and initialize LXD
	Access the UI
	Create and start instances
	Inspect instances
	Stop and delete instances
	Configure instances
	Manage snapshots
	Add a custom storage volume
	Use projects
	Clean up entities
	Next steps

	How-to guides
	Get started
	Getting started
	How to install LXD
	Install the LXD snap package
	Requirements
	Install
	Optionally specify a channel
	Post-installation
	Add the current user
	Hold or schedule updates

	Other Linux installation options
	Other operating systems
	Native builds of the client
	Install LXD from source
	From source: Build the latest version
	From source: Build a release
	Start the build
	From source: Install
	Machine setup
	Shell completions

	Manage access to LXD
	Upgrade LXD

	How to initialize LXD
	Interactive configuration
	Minimal setup

	Non-interactive configuration
	Re-configuring an existing LXD installation
	Rollback
	Default profile
	Configuration format

	How to access the LXD web UI
	Enable or disable the UI

	How to access the local LXD documentation
	Related topics

	LXD server and client
	How to expose LXD to the network
	Authenticate with the LXD server

	How to configure the LXD server
	Configure server options
	Display the server configuration
	Edit the full server configuration

	How to configure Auth0 as login method for the LXD UI and CLI
	Using Auth0.com to access LXD
	Set up automatic group mappings

	How to configure Ory Hydra as login method for the LXD UI
	Using Ory Hydra to access LXD UI

	How to configure Keycloak as login method for LXD
	Using Keycloak to access LXD

	How to configure authentication with Entra ID
	Using Entra ID directly (LXD UI only)
	Using Keycloak as an Identity Broker for Entra ID
	Additional Keycloak settings

	How to add remote servers
	Authentication
	List configured remotes
	Add a remote LXD server
	Select a default remote
	Configure a global remote

	How to add command aliases
	Related topics

	Work with LXD
	Instances
	How to create instances
	Examples
	Create a container
	Create a virtual machine
	Create a container with specific configuration options
	Create a VM on a specific cluster member
	Create a container with a specific instance type
	Create a VM that boots from an ISO
	Install the LXD agent into virtual machine instances
	Create a Windows VM

	How to configure instances
	Configure instance options
	Configure instance properties
	Configure devices
	Display instance configuration
	Edit the full instance configuration

	How to manage instances
	Show information about an instance
	Start an instance
	Prevent accidental start of instances

	Stop an instance
	Delete an instance
	Prevent accidental deletion of instances

	Rebuild an instance

	How to use profiles
	View profiles
	Create an empty profile
	Edit a profile
	Set specific options for a profile
	Edit the full profile

	Apply a profile to an instance
	Remove a profile from an instance

	How to troubleshoot failing instances
	Troubleshooting examples
	Debug systemd init
	Emergency systemd shell
	Issue starting RHEL 7 container

	How to configure Ubuntu Pro guest attachment
	How to access files in an instance
	Edit instance files
	Delete files from the instance
	Pull files from the instance to the local machine
	Push files from the local machine to the instance
	Mount a file system from the instance

	How to access the console
	Access the graphical console (for virtual machines)

	How to run commands in an instance
	Run commands inside your instance
	Execution mode
	User, groups and working directory
	Environment

	Get shell access to your instance

	How to use cloud-init
	cloud-init support in images
	Configuration options
	Vendor data and user data

	How to configure cloud-init
	YAML format for cloud-init configuration

	How to check the cloud-init status
	How to specify user or vendor data
	Examples
	Upgrade packages
	Install packages
	Set the time zone
	Run commands
	Add a user account

	How to specify network configuration data
	Example

	How to inject SSH keys into instances
	Examples

	How to add a routed NIC device to a virtual machine
	How to back up instances
	Use snapshots for instance backup
	Create a snapshot
	View, edit or delete snapshots
	Schedule instance snapshots
	Restore an instance snapshot

	Use export files for instance backup
	Export an instance
	Restore an instance from an export file

	Copy an instance to a backup server

	How to migrate LXD instances between servers
	Migrate instances
	Copy instances
	Migrate and copy options
	Live migration
	Live migration for virtual machines
	Live migration for containers

	Temporarily migrate all instances from a cluster member
	Related topics

	How to import physical or virtual machines to LXD instances
	Interactive instance import
	Non-interactive instance import

	How to pass an NVIDIA GPU to a container
	Steps
	Related topics

	Related topics

	Images
	How to use remote images
	List configured remotes
	List available images on a remote
	Add a remote server
	Add a simple streams server
	Add a remote LXD server

	Reference an image
	Select a default remote

	How to manage images
	List available images
	Filter available images

	View image information
	Edit image properties
	Delete an image
	Configure image aliases
	Export an image to a set of files

	How to associate profiles with an image
	How to copy and import images
	Copy an image from a remote
	Import an image from files
	Import from the local file system
	Import from a file on a remote web server
	Custom HTTP headers

	How to create images
	Publish an image from an instance or snapshot
	Prepare the instance for publishing

	Build an image
	Repack a Windows image

	Related topics

	Projects
	How to create and configure projects
	Create a project
	Configure a project
	Set specific configuration options
	Edit the project

	How to work with different projects
	List projects
	Switch projects
	Target a project
	Move an instance to another project
	Copy a profile to another project

	How to confine users to specific projects
	Confine users to specific projects on the HTTPS API
	Confine users to specific LXD projects via Unix socket

	Related topics

	Storage
	How to manage storage pools
	Create a storage pool
	Examples

	Create a storage pool in a cluster
	Configure storage pool settings
	View storage pools
	Resize a storage pool

	How to manage storage volumes
	View storage volumes
	Create a custom storage volume
	Create the volume
	Attach the volume to an instance
	Use the volume for backups or images

	Configure storage volume settings
	Create a storage volume in a cluster

	How to manage storage buckets and keys
	Install requirements for local storage buckets
	Configure the S3 address
	Manage storage buckets
	Create a storage bucket
	Configure storage bucket settings
	View storage buckets
	Resize a storage bucket

	Manage storage bucket keys
	Create storage bucket keys
	Edit or delete storage bucket keys
	View storage bucket keys

	How to create an instance in a specific storage pool
	Move instance storage volumes to another pool

	How to back up custom storage volumes
	Use snapshots for volume backup
	Create a snapshot of a custom storage volume
	View, edit or delete snapshots
	Schedule snapshots of a custom storage volume
	Restore a snapshot of a custom storage volume

	Use export files for volume backup
	Export a custom storage volume
	Restore a custom storage volume from an export file

	How to move or copy storage volumes
	Copy custom storage volumes
	Move or rename custom storage volumes
	Copy or migrate between cluster members
	Copy or move between projects
	Copy or migrate between LXD servers
	Move instance storage volumes to another pool

	Related topics

	Networking
	How to create a network
	Network types
	Create a network
	Attach a network to an instance
	Attach the network as a device

	How to configure a network
	How to configure LXD as a BGP server
	Configure the BGP server
	Configure next-hop (bridge only)
	Configure BGP peers for OVN networks

	How to configure network ACLs
	List ACLs
	Show an ACL
	Create an ACL
	Name requirements
	Instructions
	ACL properties

	ACL rules
	Add a rule
	Remove a rule
	Edit a rule
	Rule ordering and application of actions
	Rule properties
	Use selectors in rules
	Subject name selectors (ACL groups)
	Network subject selectors
	Log traffic
	View logs

	Edit an ACL
	Rename an ACL
	Edit other properties
	Edit a custom user key via PATCH API
	Example

	Delete an ACL
	Assign an ACL
	Assign an ACL to a bridge or OVN network
	Assign an ACL to the OVN NIC of an instance
	Additional options

	Configure default actions
	Bridge limitations

	How to configure network forwards
	List network forwards
	Show a network forward
	Create a network forward
	Requirements for listen addresses
	Create a forward in an OVN network
	Create a forward in a bridge network
	Forward properties

	Configure ports
	Port properties

	Edit a network forward
	Delete a network forward

	How to configure network zones
	Project views
	Generated records
	Forward records
	Reverse records

	Enable the built-in DNS server
	Create and configure a network zone
	Configuration options

	Add a network zone to a network
	Add custom records
	Create a record
	Record properties
	Add or remove entries

	How to configure your firewall
	xtables vs. nftables
	Use LXD’s firewall
	Use another firewall
	Disable LXD’s firewall rules
	firewalld: Add the bridge to the trusted zone
	UFW: Add rules for the bridge

	Prevent connectivity issues with LXD and Docker

	How to integrate with systemd-resolved
	Configure resolved
	Make the resolved configuration persistent
	Recommended approach
	Create a systemd network file
	Apply the updated configuration
	Alternative approach

	How to set up OVN with LXD
	Set up a standalone OVN network
	Set up a LXD cluster on OVN
	Send OVN logs to LXD

	How to configure network load balancers
	Create a network load balancer
	Load balancer properties
	Requirements for listen addresses

	Configure backends
	Backend properties

	Configure ports
	Port properties

	Edit a network load balancer
	Delete a network load balancer

	How to create OVN peer routing relationships
	Create a routing relationship between networks
	Peering properties

	List routing relationships
	Edit a routing relationship

	How to display IPAM information of a LXD deployment
	View DHCP leases for fully controlled networks

	Related topics

	Get ready for production
	Clustering
	How to form a cluster
	Configure the cluster interactively
	Initialize the bootstrap server
	Join additional servers

	Configure the cluster through preseed files
	Initialize the bootstrap server
	Join additional servers

	Use MicroCloud

	How to manage a cluster
	Configure your cluster
	Assign member roles
	Edit the cluster member configuration

	Evacuate and restore cluster members
	Evacuate a cluster member
	Restore an evacuated cluster member
	Evacuation mode and live migration
	Automatic evacuation

	Delete cluster members
	Deal with offline cluster members

	Upgrade cluster members
	Update the cluster certificate

	How to configure networks for a cluster
	Separate REST API and clustering networks

	How to configure storage for a cluster
	View member-specific pool configuration
	Create storage volumes

	How to manage instances in a cluster
	Launch an instance on a specific cluster member
	Check where an instance is located
	Migrate an instance

	How to set up cluster groups
	Launch an instance on a cluster group member

	How to recover a cluster
	Database members
	Recover from quorum loss
	Reconfigure the cluster
	Automated Backups
	Find the most up-to-date cluster member
	Manually alter Raft membership

	Related topics

	Production setup
	How to benchmark performance
	Get the tool
	Run the tool
	Select an image
	Create and launch containers
	Delete containers

	How to increase the network bandwidth
	Increase the network bandwidth on the LXD host
	Increase the transmit queue length on the instances

	How to monitor metrics
	Query the raw data
	Set up Prometheus
	Expose the metrics endpoint
	Add a metrics certificate to LXD
	Make the metrics certificate available for Prometheus
	Configure Prometheus to scrape from LXD

	How to send logs to Loki
	Configure LXD to send logs
	Query Loki logs
	Add labels

	Set up a Grafana dashboard
	Scripted setup and LXD UI integration

	How to back up a LXD server
	What to back up
	Full backup
	Export a snapshot

	Partial backup
	Back up instances and volumes
	Secondary backup LXD server
	Export tarballs
	Snapshots
	Back up the database

	How to recover instances in case of disaster
	Recovery process
	Example

	Related topics

	Miscellaneous
	How to manage the LXD snap
	View snap information
	Manage updates
	Schedule updates with the refresh timer
	Hold updates
	Manual updates
	Synchronize updates for a LXD cluster cohort
	Manage updates with an Enterprise Store proxy

	Configure the snap
	Change the snap channel
	Manage the LXD daemon
	Related topics

	Troubleshooting
	How to troubleshoot (some) Dqlite errors
	Recognizing Dqlite-related errors
	The Dqlite data directory
	Spotting anomalies
	Specific error messages
	Interventions
	Get help

	How to debug LXD
	Debugging lxc and lxd
	lxc --debug
	lxc monitor

	REST API through local socket
	REST API through HTTPS
	With command line tools
	With browser

	Debug LXD using pprof
	Debug the LXD database
	Dumping the database content or schema
	Running custom queries from the console
	Running custom queries at LXD daemon startup
	Syncing the cluster database to disk

	Inspect a core dump file

	Frequently asked questions
	Why do my instances not have network access?
	How to enable the LXD server for remote access?
	When I do a lxc remote add, it asks for a token?
	Why should I not run privileged containers?
	Can I bind-mount my home directory in a container?
	How can I run Docker inside a LXD container?
	Where does the LXD client (lxc) store its configuration?
	Why can I not ping my LXD instance from another host?
	How can I monitor what LXD is doing?
	Why does LXD stall when creating an instance?
	Why does starting containers suddenly fail?
	Why does LXD not start on Ubuntu 20.04 LTS or earlier?
	Why does my VM stop responding when I try to pass through a GPU?

	How to get support
	Community support
	Forum
	IRC
	Documentation
	Bug reports and feature requests
	Other community resources

	Commercial support
	Related topics

	How to contribute to LXD
	Code of Conduct
	License and copyright
	Pull requests
	Commit structure
	Developer Certificate of Origin sign-off
	Including a Signed-off-by line in your commits

	Commit signature verification
	Make-generated files
	Formatting
	CLI tool string updates
	API updates
	Configuration options updates
	Development environment setup

	Contribute to the code
	Install LXD from source
	Add your fork as a remote
	Build LXD
	Important notes for new LXD contributors

	Contribute to the documentation
	Ways to contribute
	Documentation framework
	Build the documentation
	Automatic documentation checks
	Document instructions (how-to guides)
	Using tabs for client-specific information
	Guidelines for writing instructions

	Document configuration options
	Adding or modifying configuration options
	Including configuration options in documentation
	When to update documentation files

	Explanation
	Important concepts
	lxd and lxc
	LXD vs. LXC
	LXD daemon
	lxd vs. lxc

	Containers and VMs
	Application containers vs. system containers
	Virtual machines vs. system containers
	Instance types in LXD
	Related topics

	Entities in LXD
	Local and remote images
	Caching
	Auto-update
	Special image properties
	Related topics

	Storage pools, volumes, and buckets
	Storage pools
	Data storage location
	Shared with the host
	Dedicated disk or partition
	Loop disk
	Remote storage

	Default storage pool

	Storage volumes
	Storage volume types
	Content types

	Storage buckets
	Related topics

	Networking setups
	Network devices
	Managed networks
	Fully controlled networks
	External networks

	Recommendations
	Related topics

	The LXD Dqlite database
	Dqlite
	File location
	Backup

	lxc show and info

	Access management
	Remote API authentication
	TLS client certificates
	Communication protocol
	Trusted TLS clients
	Using a PKI system
	Trusting certificates
	Revoking certificates

	OpenID Connect authentication
	TLS server certificate
	Failure scenarios
	Server certificate changed
	Server trust relationship revoked

	Related topics

	Remote API authorization
	Restricted TLS certificates
	Fine-grained authorization
	Explore permissions
	Explore identities
	Manage permissions
	Use groups defined by the identity provider

	Instances grouping with projects
	Isolation of projects
	Confined projects in a multi-user environment
	Multi-user LXD daemon

	Related topics

	Production setup
	Clusters
	Cluster members
	Member roles
	Offline members and fault tolerance
	Failure domains

	Member configuration

	Images
	Cluster groups
	Automatic placement of instances
	Instance placement scriptlet

	Related topics

	Performance tuning
	Run benchmarks
	Monitor instance metrics
	Tune server settings
	Tune the network bandwidth
	Related topics

	Security
	Supported versions
	Access to the LXD daemon
	Local access to the LXD daemon
	Access to the remote API

	Container security
	Unprivileged containers
	Privileged containers
	Container name leakage

	Network security
	Bridged NIC security
	Routed NIC security

	Related topics

	Privilege delegation using BPF Token
	Overview
	Example (socket filter)
	Finding the right configuration

	Reference
	General information
	Requirements
	Go
	Kernel requirements
	LXC
	QEMU
	ZFS
	Additional libraries (and development headers)
	Related topics

	Architectures
	Virtual machine support

	Releases and snap
	Releases
	LTS releases
	Support
	Support levels
	Currently supported

	Feature releases
	Support

	The LXD snap
	Channels
	Tracks
	LTS tracks
	Feature track
	The default track
	The latest track

	Risk levels
	Updates
	Updates on clusters

	Related topics

	Remote image servers
	Remote server types
	Related topics

	Image format
	Content
	Metadata
	Root file system
	Templates (optional)
	Template rules
	Template files

	Image tarballs
	Unified tarball
	Split tarballs

	Related topics

	Guest OS compatibility
	Virtual machines
	Notes
	LXD agent
	CSM/BIOS boot
	Virtual TPM
	VirtIO-BLK or NVMe
	Disconnect the ISO

	Containers

	Container runtime environment
	File system
	Devices
	Network
	Container-to-host communication

	Mounts
	LXCFS

	PID1
	Related topics

	Configuration options
	Index
	Server configuration
	Core configuration
	ACME configuration
	OpenID Connect configuration
	Cluster configuration
	Images configuration
	Loki configuration
	Miscellaneous options
	Related topics

	Instance configuration
	Instance properties
	Instance name requirements

	Instance options
	Miscellaneous options
	Boot-related options
	cloud-init configuration
	Resource limits
	CPU limits
	CPU pinning
	CPU limits for virtual machines
	Allowance and priority (container only)
	Huge page limits
	Kernel resource limits

	Migration options
	NVIDIA and CUDA configuration
	Raw instance configuration overrides
	Override QEMU configuration

	Security policies
	Snapshot scheduling and configuration
	Automatic snapshot names

	Volatile internal data

	Devices
	Standard devices
	Type: none
	Configuration examples

	Type: nic
	nictype vs. network
	Available NIC types
	nictype: bridged
	Device options
	Configuration examples
	nictype: macvlan
	Device options
	Configuration examples
	nictype: sriov
	Device options
	Configuration examples
	nictype: physical
	Device options
	Configuration examples
	nictype: ovn
	Device options
	Configuration examples
	nictype: ipvlan
	Device options
	Configuration examples
	nictype: p2p
	Device options
	Configuration examples
	nictype: routed
	Device options
	Configuration examples
	bridged, macvlan or ipvlan for connection to physical network
	MAAS integration

	Type: disk
	Types of disk devices
	Initial volume configuration for instance root disk devices
	Device options
	Configuration examples

	Type: unix-char
	Device options
	Configuration examples
	Hotplugging

	Type: unix-block
	Device options
	Configuration examples
	Hotplugging

	Type: usb
	Device options
	Configuration examples

	Type: gpu
	gputype: physical
	Device options
	Configuration examples
	CDI mode
	gputype: mdev
	Device options
	Configuration examples
	gputype: mig
	Device options
	Configuration examples
	gputype: sriov
	Device options
	Configuration examples
	Related topics

	Type: infiniband
	Device options
	Configuration examples

	Type: proxy
	NAT mode
	Specifying IP addresses
	Device options
	Configuration examples

	Type: unix-hotplug
	Device options
	Configuration examples

	Type: tpm
	Device options
	Configuration examples

	Type: pci
	Device options
	Configuration examples

	Units for storage and network limits
	Related topics

	Preseed YAML file fields
	Related topics

	Project configuration
	Project features
	Project limits
	Project restrictions
	Project-specific configuration
	Related topics

	Storage drivers
	Btrfs - btrfs
	Terminology
	btrfs driver in LXD
	Quotas

	Configuration options
	Storage pool configuration
	Storage volume configuration
	Storage bucket configuration

	CephFS - cephfs
	Terminology
	cephfs driver in LXD
	Configuration options
	Storage pool configuration
	Storage volume configuration

	Ceph Object - cephobject
	Terminology
	cephobject driver in LXD
	Configuration options
	Storage pool configuration
	Storage bucket configuration

	Ceph RBD - ceph
	Terminology
	ceph driver in LXD
	Limitations

	Configuration options
	Storage pool configuration
	Storage volume configuration

	Dell PowerFlex - powerflex
	Terminology
	powerflex driver in LXD
	Volume names
	Limitations

	Configuration options
	Storage pool configuration
	Storage volume configuration

	Pure Storage - pure
	Terminology
	The pure driver in LXD
	Volume names
	Limitations

	Configuration options
	Storage pool configuration
	Storage volume configuration

	Directory - dir
	dir driver in LXD
	Quotas

	Configuration options
	Storage pool configuration
	Storage volume configuration
	Storage bucket configuration

	LVM - lvm
	Terminology
	lvm driver in LXD
	Configuration options
	Storage pool configuration
	Storage volume configuration
	Storage bucket configuration

	ZFS - zfs
	Terminology
	zfs driver in LXD
	Limitations
	Quotas

	Configuration options
	Storage pool configuration
	Storage volume configuration
	Storage bucket configuration

	Feature comparison
	Optimized image storage
	Optimized volume transfer
	Optimized volume refresh

	Recommended setup
	Security considerations
	Related topics

	Networks
	Fully controlled networks
	Bridge network
	IPv6 prefix size
	Configuration options
	Supported features
	Firewall issues

	OVN network
	OVN networking architecture
	Configuration options
	Supported features

	External networks
	Macvlan network
	Configuration options

	Physical network
	Configuration options
	Supported features

	SR-IOV network
	Configuration options

	Related topics

	Cluster member configuration
	Related topics

	Production setup
	Server settings for a LXD production setup
	/etc/security/limits.conf
	/etc/sysctl.conf
	Related topics

	Provided metrics
	Instance metrics
	Internal metrics
	API rates metrics
	Related topics

	Fine-grained permissions
	Permissions
	Server
	Project
	Storage pool
	Identity
	Group
	Identity provider group
	Certificate
	Instance
	Image
	Image alias
	Network
	Network ACL
	Network zone
	Profile
	Storage volume
	Storage bucket

	REST API
	REST API
	REST API
	API versioning
	Return values
	Standard return value
	Background operation
	Error

	Status codes
	List of current status codes

	Recursion
	Filtering
	Asynchronous operations
	Notifications
	PUT vs PATCH
	The PUT method
	The PATCH method

	Instances, containers and virtual-machines
	API structure

	Main API specification
	API extensions
	storage_zfs_remove_snapshots
	container_host_shutdown_timeout
	container_stop_priority
	container_syscall_filtering
	auth_pki
	container_last_used_at
	etag
	patch
	usb_devices
	https_allowed_credentials
	image_compression_algorithm
	directory_manipulation
	container_cpu_time
	storage_zfs_use_refquota
	storage_lvm_mount_options
	network
	profile_usedby
	container_push
	container_exec_recording
	certificate_update
	container_exec_signal_handling
	gpu_devices
	container_image_properties
	migration_progress
	id_map
	network_firewall_filtering
	network_routes
	storage
	file_delete
	file_append
	network_dhcp_expiry
	storage_lvm_vg_rename
	storage_lvm_thinpool_rename
	network_vlan
	image_create_aliases
	container_stateless_copy
	container_only_migration
	storage_zfs_clone_copy
	unix_device_rename
	storage_rsync_bwlimit
	network_vxlan_interface
	storage_btrfs_mount_options
	entity_description
	image_force_refresh
	storage_lvm_lv_resizing
	id_map_base
	file_symlinks
	container_push_target
	network_vlan_physical
	storage_images_delete
	container_edit_metadata
	container_snapshot_stateful_migration
	storage_driver_ceph
	storage_ceph_user_name
	instance_types
	storage_volatile_initial_source
	storage_ceph_force_osd_reuse
	storage_block_filesystem_btrfs
	resources
	kernel_limits
	storage_api_volume_rename
	network_sriov
	console
	restrict_devlxd
	migration_pre_copy
	infiniband
	maas_network
	devlxd_events
	proxy
	network_dhcp_gateway
	file_get_symlink
	network_leases
	unix_device_hotplug
	storage_api_local_volume_handling
	operation_description
	clustering
	event_lifecycle
	storage_api_remote_volume_handling
	nvidia_runtime
	container_mount_propagation
	container_backup
	devlxd_images
	container_local_cross_pool_handling
	proxy_unix
	proxy_udp
	clustering_join
	proxy_tcp_udp_multi_port_handling
	network_state
	proxy_unix_dac_properties
	container_protection_delete
	proxy_priv_drop
	pprof_http
	proxy_haproxy_protocol
	network_hwaddr
	proxy_nat
	network_nat_order
	container_full
	backup_compression
	nvidia_runtime_config
	storage_api_volume_snapshots
	storage_unmapped
	projects
	network_vxlan_ttl
	container_incremental_copy
	usb_optional_vendorid
	snapshot_scheduling
	snapshots_schedule_aliases
	container_copy_project
	clustering_server_address
	clustering_image_replication
	container_protection_shift
	snapshot_expiry
	snapshot_expiry_creation
	network_leases_location
	resources_cpu_socket
	resources_gpu
	resources_numa
	kernel_features
	id_map_current
	event_location
	storage_api_remote_volume_snapshots
	network_nat_address
	container_nic_routes
	cluster_internal_copy
	seccomp_notify
	lxc_features
	container_nic_ipvlan
	network_vlan_sriov
	storage_cephfs
	container_nic_ipfilter
	resources_v2
	container_exec_user_group_cwd
	container_syscall_intercept
	container_disk_shift
	storage_shifted
	resources_infiniband
	daemon_storage
	instances
	image_types
	resources_disk_sata
	clustering_roles
	images_expiry
	resources_network_firmware
	backup_compression_algorithm
	ceph_data_pool_name
	container_syscall_intercept_mount
	compression_squashfs
	container_raw_mount
	container_nic_routed
	container_syscall_intercept_mount_fuse
	container_disk_ceph
	virtual-machines
	image_profiles
	clustering_architecture
	resources_disk_id
	storage_lvm_stripes
	vm_boot_priority
	unix_hotplug_devices
	api_filtering
	instance_nic_network
	clustering_sizing
	firewall_driver
	storage_lvm_vg_force_reuse
	container_syscall_intercept_hugetlbfs
	limits_hugepages
	container_nic_routed_gateway
	projects_restrictions
	custom_volume_snapshot_expiry
	volume_snapshot_scheduling
	trust_ca_certificates
	snapshot_disk_usage
	clustering_edit_roles
	container_nic_routed_host_address
	container_nic_ipvlan_gateway
	resources_usb_pci
	resources_cpu_threads_numa
	resources_cpu_core_die
	api_os
	container_nic_routed_host_table
	container_nic_ipvlan_host_table
	container_nic_ipvlan_mode
	resources_system
	images_push_relay
	network_dns_search
	container_nic_routed_limits
	instance_nic_bridged_vlan
	network_state_bond_bridge
	resources_cpu_isolated
	usedby_consistency
	custom_block_volumes
	clustering_failure_domains
	container_syscall_filtering_allow_deny_syntax
	resources_gpu_mdev
	console_vga_type
	projects_limits_disk
	network_type_macvlan
	network_type_sriov
	container_syscall_intercept_bpf_devices
	network_type_ovn
	projects_networks
	projects_networks_restricted_uplinks
	custom_volume_backup
	backup_override_name
	storage_rsync_compression
	network_type_physical
	network_ovn_external_subnets
	network_ovn_nat
	network_ovn_external_routes_remove
	tpm_device_type
	storage_zfs_clone_copy_rebase
	gpu_mdev
	resources_pci_iommu
	resources_network_usb
	resources_disk_address
	network_physical_ovn_ingress_mode
	network_ovn_dhcp
	network_physical_routes_anycast
	projects_limits_instances
	network_state_vlan
	instance_nic_bridged_port_isolation
	instance_bulk_state_change
	network_gvrp
	instance_pool_move
	gpu_sriov
	pci_device_type
	storage_volume_state
	network_acl
	migration_stateful
	disk_state_quota
	storage_ceph_features
	projects_compression
	projects_images_remote_cache_expiry
	certificate_project
	network_ovn_acl
	projects_images_auto_update
	projects_restricted_cluster_target
	images_default_architecture
	network_ovn_acl_defaults
	gpu_mig
	project_usage
	network_bridge_acl
	warnings
	projects_restricted_backups_and_snapshots
	clustering_join_token
	clustering_description
	server_trusted_proxy
	clustering_update_cert
	storage_api_project
	server_instance_driver_operational
	server_supported_storage_drivers
	event_lifecycle_requestor_address
	resources_gpu_usb
	clustering_evacuation
	network_ovn_nat_address
	network_bgp
	network_forward
	custom_volume_refresh
	network_counters_errors_dropped
	metrics
	image_source_project
	clustering_config
	network_peer
	linux_sysctl
	network_dns
	ovn_nic_acceleration
	certificate_self_renewal
	instance_project_move
	storage_volume_project_move
	cloud_init
	network_dns_nat
	database_leader
	instance_all_projects
	clustering_groups
	ceph_rbd_du
	instance_get_full
	qemu_metrics
	gpu_mig_uuid
	event_project
	clustering_evacuation_live
	instance_allow_inconsistent_copy
	network_state_ovn
	storage_volume_api_filtering
	image_restrictions
	storage_zfs_export
	network_dns_records
	storage_zfs_reserve_space
	network_acl_log
	storage_zfs_blocksize
	metrics_cpu_seconds
	instance_snapshot_never
	certificate_token
	instance_nic_routed_neighbor_probe
	event_hub
	agent_nic_config
	projects_restricted_intercept
	metrics_authentication
	images_target_project
	cluster_migration_inconsistent_copy
	cluster_ovn_chassis
	container_syscall_intercept_sched_setscheduler
	storage_lvm_thinpool_metadata_size
	storage_volume_state_total
	instance_file_head
	instances_nic_host_name
	image_copy_profile
	container_syscall_intercept_sysinfo
	clustering_evacuation_mode
	resources_pci_vpd
	qemu_raw_conf
	storage_cephfs_fscache
	network_load_balancer
	vsock_api
	instance_ready_state
	network_bgp_holdtime
	storage_volumes_all_projects
	metrics_memory_oom_total
	storage_buckets
	storage_buckets_create_credentials
	metrics_cpu_effective_total
	projects_networks_restricted_access
	storage_buckets_local
	loki
	acme
	internal_metrics
	cluster_join_token_expiry
	remote_token_expiry
	storage_volumes_created_at
	cpu_hotplug
	projects_networks_zones
	instance_nic_txqueuelength
	cluster_member_state
	instances_placement_scriptlet
	storage_pool_source_wipe
	zfs_block_mode
	instance_generation_id
	disk_io_cache
	amd_sev
	storage_pool_loop_resize
	migration_vm_live
	ovn_nic_nesting
	oidc
	network_ovn_l3only
	ovn_nic_acceleration_vdpa
	cluster_healing
	instances_state_total
	auth_user
	security_csm
	instances_rebuild
	numa_cpu_placement
	custom_volume_iso
	network_allocations
	storage_api_remote_volume_snapshot_copy
	zfs_delegate
	operations_get_query_all_projects
	metadata_configuration
	syslog_socket
	event_lifecycle_name_and_project
	instances_nic_limits_priority
	disk_initial_volume_configuration
	operation_wait
	cluster_internal_custom_volume_copy
	disk_io_bus
	storage_cephfs_create_missing
	instance_move_config
	ovn_ssl_config
	init_preseed_storage_volumes
	metrics_instances_count
	server_instance_type_info
	resources_disk_mounted
	server_version_lts
	oidc_groups_claim
	loki_config_instance
	storage_volatile_uuid
	import_instance_devices
	instances_uefi_vars
	instances_migration_stateful
	access_management
	vm_disk_io_limits
	storage_volumes_all
	instances_files_modify_permissions
	image_restriction_nesting
	container_syscall_intercept_finit_module
	device_usb_serial
	network_allocate_external_ips
	explicit_trust_token
	shared_custom_block_volumes
	instance_import_conversion
	instance_create_start
	instance_protection_start
	devlxd_images_vm
	disk_io_bus_virtio_blk
	metrics_api_requests
	projects_limits_disk_pool
	ubuntu_pro_guest_attach
	metadata_configuration_entity_types
	access_management_tls
	network_allocations_ovn_uplink
	network_ovn_uplink_vlan
	state_logical_cpus
	vm_limits_cpu_pin_strategy
	gpu_cdi
	images_all_projects
	metadata_configuration_scope
	unix_device_hotplug_ownership_inherit
	unix_device_hotplug_subsystem_device_option
	storage_ceph_osd_pool_size
	network_get_target
	network_zones_all_projects
	vm_root_volume_attachment
	projects_limits_uplink_ips
	entities_with_entitlements
	profiles_all_projects
	storage_driver_powerflex
	storage_driver_pure
	cloud_init_ssh_keys
	oidc_scopes
	project_default_network_and_storage
	client_cert_presence
	clustering_groups_used_by
	container_bpf_delegation
	override_snapshot_profiles_on_copy
	resources_device_fs_uuid
	backup_metadata_version
	storage_buckets_all_projects
	network_acls_all_projects
	networks_all_projects
	clustering_restore_skip_mode
	disk_io_threads_virtiofsd
	oidc_client_secret

	Events
	Introduction
	Event types
	Event structure
	Example
	Logging event structure
	Operation event structure
	Life-cycle event structure

	Supported life-cycle events

	Communication between instance and host
	Implementation details
	Authentication
	Protocol
	REST-API
	API structure
	API details
	/
	GET
	/1.0
	GET
	PATCH
	/1.0/config
	GET
	/1.0/config/<KEY>
	GET
	/1.0/devices
	GET
	/1.0/events
	GET
	/1.0/images/<FINGERPRINT>/export
	GET
	/1.0/meta-data
	GET
	/1.0/ubuntu-pro
	GET
	/1.0/ubuntu-pro/token
	POST

	Related topics

	Man pages
	Man pages
	lxc
	Synopsis
	Options
	SEE ALSO
	lxc alias
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc alias add
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc alias list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc alias remove
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc alias rename
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc auth
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group create
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc auth group delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc auth group list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc auth group permission
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group permission add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group permission remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth group show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity create
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity delete
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity group
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity group add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity group remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity info
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group group
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group group add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group group remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth identity-provider-group show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth permission
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc auth permission list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc cluster enable
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster evacuate
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group assign
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group create
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster group show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster info
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster list-tokens
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster remove
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster restore
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster revoke-token
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster role
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster role add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster role remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc cluster unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc cluster update-certificate
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc completion
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc completion bash
	Synopsis
	Linux:
	macOS:
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc completion fish
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc completion powershell
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc completion zsh
	Synopsis
	Linux:
	macOS:
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device add
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc config device get
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device list
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device override
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device set
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config device unset
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config edit
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config metadata
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config metadata edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config metadata show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config set
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config show
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config template
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config template create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config template delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config template edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config template list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config template show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config trust
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config trust add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config trust edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config trust list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config trust list-tokens
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc config trust remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config trust revoke-token
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config trust show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config uefi
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config uefi edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc config uefi get
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config uefi set
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc config uefi show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config uefi unset
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc config unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc console
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc copy
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc exec
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc export
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc file
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc file create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc file delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc file edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc file mount
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc file pull
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc file push
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image alias
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image alias create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image alias delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image alias list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image alias rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image copy
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc image export
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image get-property
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image import
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image info
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image refresh
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image set-property
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc image show
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc image unset-property
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc import
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc info
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc init
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc launch
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc list
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc manpage
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc monitor
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc move
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl create
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc network acl delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network acl list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network acl rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl rule
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl rule add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl rule remove
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network acl set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network acl show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl show-log
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network acl unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network attach
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network attach-profile
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network detach
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network detach-profile
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network forward
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network forward create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward edit
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward port
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network forward port add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward port remove
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward show
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network forward unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network info
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network list-allocations
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network list-leases
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer backend
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer backend add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer backend remove
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer edit
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer port
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer port add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer port remove
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer show
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network load-balancer unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network peer
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network peer create
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network peer delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network peer edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network peer get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network peer list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network peer set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network peer show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network peer unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network show
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone create
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc network zone delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record create
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record edit
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record entry
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record entry add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record entry remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone record unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc network zone show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc network zone unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc operation
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc operation delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc operation list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc operation show
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc pause
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc profile
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile add
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile assign
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc profile copy
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc profile create
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc profile delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device add
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc profile device get
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device list
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device set
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile device unset
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc profile get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc profile list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc profile remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc profile show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc profile unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc project
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc project create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc project delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc project edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc project get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc project info
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc project list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc project rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc project set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc project show
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc project switch
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc project unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc publish
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc query
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc rebuild
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc remote
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc remote add
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc remote get-default
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc remote list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc remote remove
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc remote rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc remote set-url
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc remote switch
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc rename
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc restart
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc restore
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc snapshot
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc start
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc stop
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket edit
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket key
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket key create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket key delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket key edit
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket key list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket key show
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket show
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage bucket unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage delete
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage edit
	Synopsis
	Examples
	Options inherited from parent commands
	SEE ALSO
	lxc storage get
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage info
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage set
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage show
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage unset
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume attach
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume attach-profile
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume copy
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume detach
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume detach-profile
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume edit
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume export
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume get
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume import
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume info
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume move
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume rename
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume restore
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume set
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume show
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume snapshot
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc storage volume unset
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc version
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc warning
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc warning acknowledge
	Synopsis
	Options inherited from parent commands
	SEE ALSO
	lxc warning delete
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc warning list
	Synopsis
	Options
	Options inherited from parent commands
	SEE ALSO
	lxc warning show
	Synopsis
	Options inherited from parent commands
	SEE ALSO

	Implementation details
	Internals
	Environment variables
	Common
	Client environment variable
	Server environment variable

	UEFI variables for VMs
	Example

	Daemon behavior
	Startup
	Signal handling
	SIGINT, SIGQUIT, SIGTERM
	SIGPWR
	SIGUSR1

	System call interception
	Available system calls
	mknod / mknodat
	bpf
	mount
	sched_setscheduler
	setxattr
	sysinfo

	Idmaps for user namespace
	Kernel support
	Allowed ranges
	Varying ranges between hosts
	Different idmaps per container
	Custom idmaps

	OVN implementation
	OVN concepts
	Chassis
	Open vSwitch (OVS) Bridge
	Chassis group
	OVN underlay
	Logical router
	Logical switch
	Logical switch/router ports
	Port groups

	OVN Uplink
	Bridge (OVS)
	Physical
	Bridge (native)

	OVN Network
	Integration bridge

	VM live migration implementation
	Conceptual process
	Live migration for non-shared storage
	Intra-cluster member live migration (Ceph shared storage pool)

	Migration API
	Live migration call stack
	lxd/lxd/instance_post.go
	lxd/lxd/migrate_instance.go
	lxd/lxd/instance/drivers/driver_qemu.go

	Related topics

	Configuration options

